rjw | 1f88458 | 2022-01-06 17:20:42 +0800 | [diff] [blame^] | 1 | /* |
| 2 | * This contains encryption functions for per-file encryption. |
| 3 | * |
| 4 | * Copyright (C) 2015, Google, Inc. |
| 5 | * Copyright (C) 2015, Motorola Mobility |
| 6 | * |
| 7 | * Written by Michael Halcrow, 2014. |
| 8 | * |
| 9 | * Filename encryption additions |
| 10 | * Uday Savagaonkar, 2014 |
| 11 | * Encryption policy handling additions |
| 12 | * Ildar Muslukhov, 2014 |
| 13 | * Add fscrypt_pullback_bio_page() |
| 14 | * Jaegeuk Kim, 2015. |
| 15 | * |
| 16 | * This has not yet undergone a rigorous security audit. |
| 17 | * |
| 18 | * The usage of AES-XTS should conform to recommendations in NIST |
| 19 | * Special Publication 800-38E and IEEE P1619/D16. |
| 20 | */ |
| 21 | |
| 22 | #include <linux/pagemap.h> |
| 23 | #include <linux/mempool.h> |
| 24 | #include <linux/module.h> |
| 25 | #include <linux/scatterlist.h> |
| 26 | #include <linux/ratelimit.h> |
| 27 | #include <linux/dcache.h> |
| 28 | #include <linux/namei.h> |
| 29 | #include <crypto/aes.h> |
| 30 | #include <crypto/skcipher.h> |
| 31 | #include "fscrypt_private.h" |
| 32 | |
| 33 | static unsigned int num_prealloc_crypto_pages = 32; |
| 34 | static unsigned int num_prealloc_crypto_ctxs = 128; |
| 35 | |
| 36 | module_param(num_prealloc_crypto_pages, uint, 0444); |
| 37 | MODULE_PARM_DESC(num_prealloc_crypto_pages, |
| 38 | "Number of crypto pages to preallocate"); |
| 39 | module_param(num_prealloc_crypto_ctxs, uint, 0444); |
| 40 | MODULE_PARM_DESC(num_prealloc_crypto_ctxs, |
| 41 | "Number of crypto contexts to preallocate"); |
| 42 | |
| 43 | static mempool_t *fscrypt_bounce_page_pool = NULL; |
| 44 | |
| 45 | static LIST_HEAD(fscrypt_free_ctxs); |
| 46 | static DEFINE_SPINLOCK(fscrypt_ctx_lock); |
| 47 | |
| 48 | static struct workqueue_struct *fscrypt_read_workqueue; |
| 49 | static DEFINE_MUTEX(fscrypt_init_mutex); |
| 50 | |
| 51 | static struct kmem_cache *fscrypt_ctx_cachep; |
| 52 | struct kmem_cache *fscrypt_info_cachep; |
| 53 | |
| 54 | void fscrypt_enqueue_decrypt_work(struct work_struct *work) |
| 55 | { |
| 56 | queue_work(fscrypt_read_workqueue, work); |
| 57 | } |
| 58 | EXPORT_SYMBOL(fscrypt_enqueue_decrypt_work); |
| 59 | |
| 60 | /** |
| 61 | * fscrypt_release_ctx() - Releases an encryption context |
| 62 | * @ctx: The encryption context to release. |
| 63 | * |
| 64 | * If the encryption context was allocated from the pre-allocated pool, returns |
| 65 | * it to that pool. Else, frees it. |
| 66 | * |
| 67 | * If there's a bounce page in the context, this frees that. |
| 68 | */ |
| 69 | void fscrypt_release_ctx(struct fscrypt_ctx *ctx) |
| 70 | { |
| 71 | unsigned long flags; |
| 72 | |
| 73 | if (ctx->flags & FS_CTX_HAS_BOUNCE_BUFFER_FL && ctx->w.bounce_page) { |
| 74 | mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool); |
| 75 | ctx->w.bounce_page = NULL; |
| 76 | } |
| 77 | ctx->w.control_page = NULL; |
| 78 | if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) { |
| 79 | kmem_cache_free(fscrypt_ctx_cachep, ctx); |
| 80 | } else { |
| 81 | spin_lock_irqsave(&fscrypt_ctx_lock, flags); |
| 82 | list_add(&ctx->free_list, &fscrypt_free_ctxs); |
| 83 | spin_unlock_irqrestore(&fscrypt_ctx_lock, flags); |
| 84 | } |
| 85 | } |
| 86 | EXPORT_SYMBOL(fscrypt_release_ctx); |
| 87 | |
| 88 | /** |
| 89 | * fscrypt_get_ctx() - Gets an encryption context |
| 90 | * @inode: The inode for which we are doing the crypto |
| 91 | * @gfp_flags: The gfp flag for memory allocation |
| 92 | * |
| 93 | * Allocates and initializes an encryption context. |
| 94 | * |
| 95 | * Return: An allocated and initialized encryption context on success; error |
| 96 | * value or NULL otherwise. |
| 97 | */ |
| 98 | struct fscrypt_ctx *fscrypt_get_ctx(const struct inode *inode, gfp_t gfp_flags) |
| 99 | { |
| 100 | struct fscrypt_ctx *ctx = NULL; |
| 101 | struct fscrypt_info *ci = inode->i_crypt_info; |
| 102 | unsigned long flags; |
| 103 | |
| 104 | if (ci == NULL) |
| 105 | return ERR_PTR(-ENOKEY); |
| 106 | |
| 107 | /* |
| 108 | * We first try getting the ctx from a free list because in |
| 109 | * the common case the ctx will have an allocated and |
| 110 | * initialized crypto tfm, so it's probably a worthwhile |
| 111 | * optimization. For the bounce page, we first try getting it |
| 112 | * from the kernel allocator because that's just about as fast |
| 113 | * as getting it from a list and because a cache of free pages |
| 114 | * should generally be a "last resort" option for a filesystem |
| 115 | * to be able to do its job. |
| 116 | */ |
| 117 | spin_lock_irqsave(&fscrypt_ctx_lock, flags); |
| 118 | ctx = list_first_entry_or_null(&fscrypt_free_ctxs, |
| 119 | struct fscrypt_ctx, free_list); |
| 120 | if (ctx) |
| 121 | list_del(&ctx->free_list); |
| 122 | spin_unlock_irqrestore(&fscrypt_ctx_lock, flags); |
| 123 | if (!ctx) { |
| 124 | ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags); |
| 125 | if (!ctx) |
| 126 | return ERR_PTR(-ENOMEM); |
| 127 | ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL; |
| 128 | } else { |
| 129 | ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL; |
| 130 | } |
| 131 | ctx->flags &= ~FS_CTX_HAS_BOUNCE_BUFFER_FL; |
| 132 | return ctx; |
| 133 | } |
| 134 | EXPORT_SYMBOL(fscrypt_get_ctx); |
| 135 | |
| 136 | int fscrypt_do_page_crypto(const struct inode *inode, fscrypt_direction_t rw, |
| 137 | u64 lblk_num, struct page *src_page, |
| 138 | struct page *dest_page, unsigned int len, |
| 139 | unsigned int offs, gfp_t gfp_flags) |
| 140 | { |
| 141 | struct { |
| 142 | __le64 index; |
| 143 | u8 padding[FS_IV_SIZE - sizeof(__le64)]; |
| 144 | } iv; |
| 145 | struct skcipher_request *req = NULL; |
| 146 | DECLARE_CRYPTO_WAIT(wait); |
| 147 | struct scatterlist dst, src; |
| 148 | struct fscrypt_info *ci = inode->i_crypt_info; |
| 149 | struct crypto_skcipher *tfm = ci->ci_ctfm; |
| 150 | int res = 0; |
| 151 | |
| 152 | if (WARN_ON_ONCE(len <= 0)) |
| 153 | return -EINVAL; |
| 154 | if (WARN_ON_ONCE(len % FS_CRYPTO_BLOCK_SIZE != 0)) |
| 155 | return -EINVAL; |
| 156 | |
| 157 | BUILD_BUG_ON(sizeof(iv) != FS_IV_SIZE); |
| 158 | BUILD_BUG_ON(AES_BLOCK_SIZE != FS_IV_SIZE); |
| 159 | iv.index = cpu_to_le64(lblk_num); |
| 160 | memset(iv.padding, 0, sizeof(iv.padding)); |
| 161 | |
| 162 | if (ci->ci_essiv_tfm != NULL) { |
| 163 | crypto_cipher_encrypt_one(ci->ci_essiv_tfm, (u8 *)&iv, |
| 164 | (u8 *)&iv); |
| 165 | } |
| 166 | |
| 167 | req = skcipher_request_alloc(tfm, gfp_flags); |
| 168 | if (!req) { |
| 169 | printk_ratelimited(KERN_ERR |
| 170 | "%s: crypto_request_alloc() failed\n", |
| 171 | __func__); |
| 172 | return -ENOMEM; |
| 173 | } |
| 174 | |
| 175 | skcipher_request_set_callback( |
| 176 | req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, |
| 177 | crypto_req_done, &wait); |
| 178 | |
| 179 | sg_init_table(&dst, 1); |
| 180 | sg_set_page(&dst, dest_page, len, offs); |
| 181 | sg_init_table(&src, 1); |
| 182 | sg_set_page(&src, src_page, len, offs); |
| 183 | skcipher_request_set_crypt(req, &src, &dst, len, &iv); |
| 184 | if (rw == FS_DECRYPT) |
| 185 | res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait); |
| 186 | else |
| 187 | res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); |
| 188 | skcipher_request_free(req); |
| 189 | if (res) { |
| 190 | printk_ratelimited(KERN_ERR |
| 191 | "%s: crypto_skcipher_encrypt() returned %d\n", |
| 192 | __func__, res); |
| 193 | return res; |
| 194 | } |
| 195 | return 0; |
| 196 | } |
| 197 | |
| 198 | struct page *fscrypt_alloc_bounce_page(struct fscrypt_ctx *ctx, |
| 199 | gfp_t gfp_flags) |
| 200 | { |
| 201 | ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags); |
| 202 | if (ctx->w.bounce_page == NULL) |
| 203 | return ERR_PTR(-ENOMEM); |
| 204 | ctx->flags |= FS_CTX_HAS_BOUNCE_BUFFER_FL; |
| 205 | return ctx->w.bounce_page; |
| 206 | } |
| 207 | |
| 208 | /** |
| 209 | * fscypt_encrypt_page() - Encrypts a page |
| 210 | * @inode: The inode for which the encryption should take place |
| 211 | * @page: The page to encrypt. Must be locked for bounce-page |
| 212 | * encryption. |
| 213 | * @len: Length of data to encrypt in @page and encrypted |
| 214 | * data in returned page. |
| 215 | * @offs: Offset of data within @page and returned |
| 216 | * page holding encrypted data. |
| 217 | * @lblk_num: Logical block number. This must be unique for multiple |
| 218 | * calls with same inode, except when overwriting |
| 219 | * previously written data. |
| 220 | * @gfp_flags: The gfp flag for memory allocation |
| 221 | * |
| 222 | * Encrypts @page using the ctx encryption context. Performs encryption |
| 223 | * either in-place or into a newly allocated bounce page. |
| 224 | * Called on the page write path. |
| 225 | * |
| 226 | * Bounce page allocation is the default. |
| 227 | * In this case, the contents of @page are encrypted and stored in an |
| 228 | * allocated bounce page. @page has to be locked and the caller must call |
| 229 | * fscrypt_restore_control_page() on the returned ciphertext page to |
| 230 | * release the bounce buffer and the encryption context. |
| 231 | * |
| 232 | * In-place encryption is used by setting the FS_CFLG_OWN_PAGES flag in |
| 233 | * fscrypt_operations. Here, the input-page is returned with its content |
| 234 | * encrypted. |
| 235 | * |
| 236 | * Return: A page with the encrypted content on success. Else, an |
| 237 | * error value or NULL. |
| 238 | */ |
| 239 | struct page *fscrypt_encrypt_page(const struct inode *inode, |
| 240 | struct page *page, |
| 241 | unsigned int len, |
| 242 | unsigned int offs, |
| 243 | u64 lblk_num, gfp_t gfp_flags) |
| 244 | |
| 245 | { |
| 246 | struct fscrypt_ctx *ctx; |
| 247 | struct page *ciphertext_page = page; |
| 248 | int err; |
| 249 | |
| 250 | if (inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES) { |
| 251 | /* with inplace-encryption we just encrypt the page */ |
| 252 | err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num, page, |
| 253 | ciphertext_page, len, offs, |
| 254 | gfp_flags); |
| 255 | if (err) |
| 256 | return ERR_PTR(err); |
| 257 | |
| 258 | return ciphertext_page; |
| 259 | } |
| 260 | |
| 261 | if (WARN_ON_ONCE(!PageLocked(page))) |
| 262 | return ERR_PTR(-EINVAL); |
| 263 | |
| 264 | ctx = fscrypt_get_ctx(inode, gfp_flags); |
| 265 | if (IS_ERR(ctx)) |
| 266 | return (struct page *)ctx; |
| 267 | |
| 268 | /* The encryption operation will require a bounce page. */ |
| 269 | ciphertext_page = fscrypt_alloc_bounce_page(ctx, gfp_flags); |
| 270 | if (IS_ERR(ciphertext_page)) |
| 271 | goto errout; |
| 272 | |
| 273 | ctx->w.control_page = page; |
| 274 | err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num, |
| 275 | page, ciphertext_page, len, offs, |
| 276 | gfp_flags); |
| 277 | if (err) { |
| 278 | ciphertext_page = ERR_PTR(err); |
| 279 | goto errout; |
| 280 | } |
| 281 | SetPagePrivate(ciphertext_page); |
| 282 | set_page_private(ciphertext_page, (unsigned long)ctx); |
| 283 | lock_page(ciphertext_page); |
| 284 | return ciphertext_page; |
| 285 | |
| 286 | errout: |
| 287 | fscrypt_release_ctx(ctx); |
| 288 | return ciphertext_page; |
| 289 | } |
| 290 | EXPORT_SYMBOL(fscrypt_encrypt_page); |
| 291 | |
| 292 | /** |
| 293 | * fscrypt_decrypt_page() - Decrypts a page in-place |
| 294 | * @inode: The corresponding inode for the page to decrypt. |
| 295 | * @page: The page to decrypt. Must be locked in case |
| 296 | * it is a writeback page (FS_CFLG_OWN_PAGES unset). |
| 297 | * @len: Number of bytes in @page to be decrypted. |
| 298 | * @offs: Start of data in @page. |
| 299 | * @lblk_num: Logical block number. |
| 300 | * |
| 301 | * Decrypts page in-place using the ctx encryption context. |
| 302 | * |
| 303 | * Called from the read completion callback. |
| 304 | * |
| 305 | * Return: Zero on success, non-zero otherwise. |
| 306 | */ |
| 307 | int fscrypt_decrypt_page(const struct inode *inode, struct page *page, |
| 308 | unsigned int len, unsigned int offs, u64 lblk_num) |
| 309 | { |
| 310 | if (WARN_ON_ONCE(!PageLocked(page) && |
| 311 | !(inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES))) |
| 312 | return -EINVAL; |
| 313 | |
| 314 | return fscrypt_do_page_crypto(inode, FS_DECRYPT, lblk_num, page, page, |
| 315 | len, offs, GFP_NOFS); |
| 316 | } |
| 317 | EXPORT_SYMBOL(fscrypt_decrypt_page); |
| 318 | |
| 319 | /* |
| 320 | * Validate dentries for encrypted directories to make sure we aren't |
| 321 | * potentially caching stale data after a key has been added or |
| 322 | * removed. |
| 323 | */ |
| 324 | static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags) |
| 325 | { |
| 326 | struct dentry *dir; |
| 327 | int dir_has_key, cached_with_key; |
| 328 | |
| 329 | if (flags & LOOKUP_RCU) |
| 330 | return -ECHILD; |
| 331 | |
| 332 | dir = dget_parent(dentry); |
| 333 | if (!IS_ENCRYPTED(d_inode(dir))) { |
| 334 | dput(dir); |
| 335 | return 0; |
| 336 | } |
| 337 | |
| 338 | /* this should eventually be an flag in d_flags */ |
| 339 | spin_lock(&dentry->d_lock); |
| 340 | cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY; |
| 341 | spin_unlock(&dentry->d_lock); |
| 342 | dir_has_key = (d_inode(dir)->i_crypt_info != NULL); |
| 343 | dput(dir); |
| 344 | |
| 345 | /* |
| 346 | * If the dentry was cached without the key, and it is a |
| 347 | * negative dentry, it might be a valid name. We can't check |
| 348 | * if the key has since been made available due to locking |
| 349 | * reasons, so we fail the validation so ext4_lookup() can do |
| 350 | * this check. |
| 351 | * |
| 352 | * We also fail the validation if the dentry was created with |
| 353 | * the key present, but we no longer have the key, or vice versa. |
| 354 | */ |
| 355 | if ((!cached_with_key && d_is_negative(dentry)) || |
| 356 | (!cached_with_key && dir_has_key) || |
| 357 | (cached_with_key && !dir_has_key)) |
| 358 | return 0; |
| 359 | return 1; |
| 360 | } |
| 361 | |
| 362 | const struct dentry_operations fscrypt_d_ops = { |
| 363 | .d_revalidate = fscrypt_d_revalidate, |
| 364 | }; |
| 365 | EXPORT_SYMBOL(fscrypt_d_ops); |
| 366 | |
| 367 | void fscrypt_restore_control_page(struct page *page) |
| 368 | { |
| 369 | struct fscrypt_ctx *ctx; |
| 370 | |
| 371 | ctx = (struct fscrypt_ctx *)page_private(page); |
| 372 | set_page_private(page, (unsigned long)NULL); |
| 373 | ClearPagePrivate(page); |
| 374 | unlock_page(page); |
| 375 | fscrypt_release_ctx(ctx); |
| 376 | } |
| 377 | EXPORT_SYMBOL(fscrypt_restore_control_page); |
| 378 | |
| 379 | static void fscrypt_destroy(void) |
| 380 | { |
| 381 | struct fscrypt_ctx *pos, *n; |
| 382 | |
| 383 | list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list) |
| 384 | kmem_cache_free(fscrypt_ctx_cachep, pos); |
| 385 | INIT_LIST_HEAD(&fscrypt_free_ctxs); |
| 386 | mempool_destroy(fscrypt_bounce_page_pool); |
| 387 | fscrypt_bounce_page_pool = NULL; |
| 388 | } |
| 389 | |
| 390 | /** |
| 391 | * fscrypt_initialize() - allocate major buffers for fs encryption. |
| 392 | * @cop_flags: fscrypt operations flags |
| 393 | * |
| 394 | * We only call this when we start accessing encrypted files, since it |
| 395 | * results in memory getting allocated that wouldn't otherwise be used. |
| 396 | * |
| 397 | * Return: Zero on success, non-zero otherwise. |
| 398 | */ |
| 399 | int fscrypt_initialize(unsigned int cop_flags) |
| 400 | { |
| 401 | int i, res = -ENOMEM; |
| 402 | |
| 403 | /* No need to allocate a bounce page pool if this FS won't use it. */ |
| 404 | if (cop_flags & FS_CFLG_OWN_PAGES) |
| 405 | return 0; |
| 406 | |
| 407 | mutex_lock(&fscrypt_init_mutex); |
| 408 | if (fscrypt_bounce_page_pool) |
| 409 | goto already_initialized; |
| 410 | |
| 411 | for (i = 0; i < num_prealloc_crypto_ctxs; i++) { |
| 412 | struct fscrypt_ctx *ctx; |
| 413 | |
| 414 | ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS); |
| 415 | if (!ctx) |
| 416 | goto fail; |
| 417 | list_add(&ctx->free_list, &fscrypt_free_ctxs); |
| 418 | } |
| 419 | |
| 420 | fscrypt_bounce_page_pool = |
| 421 | mempool_create_page_pool(num_prealloc_crypto_pages, 0); |
| 422 | if (!fscrypt_bounce_page_pool) |
| 423 | goto fail; |
| 424 | |
| 425 | already_initialized: |
| 426 | mutex_unlock(&fscrypt_init_mutex); |
| 427 | return 0; |
| 428 | fail: |
| 429 | fscrypt_destroy(); |
| 430 | mutex_unlock(&fscrypt_init_mutex); |
| 431 | return res; |
| 432 | } |
| 433 | |
| 434 | /** |
| 435 | * fscrypt_init() - Set up for fs encryption. |
| 436 | */ |
| 437 | static int __init fscrypt_init(void) |
| 438 | { |
| 439 | /* |
| 440 | * Use an unbound workqueue to allow bios to be decrypted in parallel |
| 441 | * even when they happen to complete on the same CPU. This sacrifices |
| 442 | * locality, but it's worthwhile since decryption is CPU-intensive. |
| 443 | * |
| 444 | * Also use a high-priority workqueue to prioritize decryption work, |
| 445 | * which blocks reads from completing, over regular application tasks. |
| 446 | */ |
| 447 | fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue", |
| 448 | WQ_UNBOUND | WQ_HIGHPRI, |
| 449 | num_online_cpus()); |
| 450 | if (!fscrypt_read_workqueue) |
| 451 | goto fail; |
| 452 | |
| 453 | fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT); |
| 454 | if (!fscrypt_ctx_cachep) |
| 455 | goto fail_free_queue; |
| 456 | |
| 457 | fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT); |
| 458 | if (!fscrypt_info_cachep) |
| 459 | goto fail_free_ctx; |
| 460 | |
| 461 | return 0; |
| 462 | |
| 463 | fail_free_ctx: |
| 464 | kmem_cache_destroy(fscrypt_ctx_cachep); |
| 465 | fail_free_queue: |
| 466 | destroy_workqueue(fscrypt_read_workqueue); |
| 467 | fail: |
| 468 | return -ENOMEM; |
| 469 | } |
| 470 | module_init(fscrypt_init) |
| 471 | |
| 472 | /** |
| 473 | * fscrypt_exit() - Shutdown the fs encryption system |
| 474 | */ |
| 475 | static void __exit fscrypt_exit(void) |
| 476 | { |
| 477 | fscrypt_destroy(); |
| 478 | |
| 479 | if (fscrypt_read_workqueue) |
| 480 | destroy_workqueue(fscrypt_read_workqueue); |
| 481 | kmem_cache_destroy(fscrypt_ctx_cachep); |
| 482 | kmem_cache_destroy(fscrypt_info_cachep); |
| 483 | |
| 484 | fscrypt_essiv_cleanup(); |
| 485 | } |
| 486 | module_exit(fscrypt_exit); |
| 487 | |
| 488 | MODULE_LICENSE("GPL"); |