rjw | 1f88458 | 2022-01-06 17:20:42 +0800 | [diff] [blame^] | 1 | /* |
| 2 | * fs/f2fs/gc.c |
| 3 | * |
| 4 | * Copyright (c) 2012 Samsung Electronics Co., Ltd. |
| 5 | * http://www.samsung.com/ |
| 6 | * |
| 7 | * This program is free software; you can redistribute it and/or modify |
| 8 | * it under the terms of the GNU General Public License version 2 as |
| 9 | * published by the Free Software Foundation. |
| 10 | */ |
| 11 | #include <linux/fs.h> |
| 12 | #include <linux/module.h> |
| 13 | #include <linux/backing-dev.h> |
| 14 | #include <linux/init.h> |
| 15 | #include <linux/f2fs_fs.h> |
| 16 | #include <linux/kthread.h> |
| 17 | #include <linux/delay.h> |
| 18 | #include <linux/freezer.h> |
| 19 | |
| 20 | #include "f2fs.h" |
| 21 | #include "node.h" |
| 22 | #include "segment.h" |
| 23 | #include "gc.h" |
| 24 | #include <trace/events/f2fs.h> |
| 25 | |
| 26 | static int gc_thread_func(void *data) |
| 27 | { |
| 28 | struct f2fs_sb_info *sbi = data; |
| 29 | struct f2fs_gc_kthread *gc_th = sbi->gc_thread; |
| 30 | wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head; |
| 31 | unsigned int wait_ms; |
| 32 | |
| 33 | wait_ms = gc_th->min_sleep_time; |
| 34 | |
| 35 | set_freezable(); |
| 36 | do { |
| 37 | wait_event_interruptible_timeout(*wq, |
| 38 | kthread_should_stop() || freezing(current) || |
| 39 | gc_th->gc_wake, |
| 40 | msecs_to_jiffies(wait_ms)); |
| 41 | |
| 42 | /* give it a try one time */ |
| 43 | if (gc_th->gc_wake) |
| 44 | gc_th->gc_wake = 0; |
| 45 | |
| 46 | if (try_to_freeze()) |
| 47 | continue; |
| 48 | if (kthread_should_stop()) |
| 49 | break; |
| 50 | |
| 51 | if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) { |
| 52 | increase_sleep_time(gc_th, &wait_ms); |
| 53 | continue; |
| 54 | } |
| 55 | |
| 56 | #ifdef CONFIG_F2FS_FAULT_INJECTION |
| 57 | if (time_to_inject(sbi, FAULT_CHECKPOINT)) { |
| 58 | f2fs_show_injection_info(FAULT_CHECKPOINT); |
| 59 | f2fs_stop_checkpoint(sbi, false); |
| 60 | } |
| 61 | #endif |
| 62 | |
| 63 | if (!sb_start_write_trylock(sbi->sb)) |
| 64 | continue; |
| 65 | |
| 66 | /* |
| 67 | * [GC triggering condition] |
| 68 | * 0. GC is not conducted currently. |
| 69 | * 1. There are enough dirty segments. |
| 70 | * 2. IO subsystem is idle by checking the # of writeback pages. |
| 71 | * 3. IO subsystem is idle by checking the # of requests in |
| 72 | * bdev's request list. |
| 73 | * |
| 74 | * Note) We have to avoid triggering GCs frequently. |
| 75 | * Because it is possible that some segments can be |
| 76 | * invalidated soon after by user update or deletion. |
| 77 | * So, I'd like to wait some time to collect dirty segments. |
| 78 | */ |
| 79 | if (gc_th->gc_urgent) { |
| 80 | wait_ms = gc_th->urgent_sleep_time; |
| 81 | mutex_lock(&sbi->gc_mutex); |
| 82 | goto do_gc; |
| 83 | } |
| 84 | |
| 85 | if (!mutex_trylock(&sbi->gc_mutex)) |
| 86 | goto next; |
| 87 | |
| 88 | if (!is_idle(sbi)) { |
| 89 | increase_sleep_time(gc_th, &wait_ms); |
| 90 | mutex_unlock(&sbi->gc_mutex); |
| 91 | goto next; |
| 92 | } |
| 93 | |
| 94 | if (has_enough_invalid_blocks(sbi)) |
| 95 | decrease_sleep_time(gc_th, &wait_ms); |
| 96 | else |
| 97 | increase_sleep_time(gc_th, &wait_ms); |
| 98 | do_gc: |
| 99 | stat_inc_bggc_count(sbi); |
| 100 | |
| 101 | /* if return value is not zero, no victim was selected */ |
| 102 | if (f2fs_gc(sbi, test_opt(sbi, FORCE_FG_GC), true, NULL_SEGNO)) |
| 103 | wait_ms = gc_th->no_gc_sleep_time; |
| 104 | |
| 105 | trace_f2fs_background_gc(sbi->sb, wait_ms, |
| 106 | prefree_segments(sbi), free_segments(sbi)); |
| 107 | |
| 108 | /* balancing f2fs's metadata periodically */ |
| 109 | f2fs_balance_fs_bg(sbi); |
| 110 | next: |
| 111 | sb_end_write(sbi->sb); |
| 112 | |
| 113 | } while (!kthread_should_stop()); |
| 114 | return 0; |
| 115 | } |
| 116 | |
| 117 | int start_gc_thread(struct f2fs_sb_info *sbi) |
| 118 | { |
| 119 | struct f2fs_gc_kthread *gc_th; |
| 120 | dev_t dev = sbi->sb->s_bdev->bd_dev; |
| 121 | int err = 0; |
| 122 | |
| 123 | gc_th = f2fs_kmalloc(sbi, sizeof(struct f2fs_gc_kthread), GFP_KERNEL); |
| 124 | if (!gc_th) { |
| 125 | err = -ENOMEM; |
| 126 | goto out; |
| 127 | } |
| 128 | |
| 129 | gc_th->urgent_sleep_time = DEF_GC_THREAD_URGENT_SLEEP_TIME; |
| 130 | gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME; |
| 131 | gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME; |
| 132 | gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME; |
| 133 | |
| 134 | gc_th->gc_idle = 0; |
| 135 | gc_th->gc_urgent = 0; |
| 136 | gc_th->gc_wake= 0; |
| 137 | |
| 138 | sbi->gc_thread = gc_th; |
| 139 | init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head); |
| 140 | sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi, |
| 141 | "f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev)); |
| 142 | if (IS_ERR(gc_th->f2fs_gc_task)) { |
| 143 | err = PTR_ERR(gc_th->f2fs_gc_task); |
| 144 | kfree(gc_th); |
| 145 | sbi->gc_thread = NULL; |
| 146 | } |
| 147 | out: |
| 148 | return err; |
| 149 | } |
| 150 | |
| 151 | void stop_gc_thread(struct f2fs_sb_info *sbi) |
| 152 | { |
| 153 | struct f2fs_gc_kthread *gc_th = sbi->gc_thread; |
| 154 | if (!gc_th) |
| 155 | return; |
| 156 | kthread_stop(gc_th->f2fs_gc_task); |
| 157 | kfree(gc_th); |
| 158 | sbi->gc_thread = NULL; |
| 159 | } |
| 160 | |
| 161 | static int select_gc_type(struct f2fs_gc_kthread *gc_th, int gc_type) |
| 162 | { |
| 163 | int gc_mode = (gc_type == BG_GC) ? GC_CB : GC_GREEDY; |
| 164 | |
| 165 | if (!gc_th) |
| 166 | return gc_mode; |
| 167 | |
| 168 | if (gc_th->gc_idle) { |
| 169 | if (gc_th->gc_idle == 1) |
| 170 | gc_mode = GC_CB; |
| 171 | else if (gc_th->gc_idle == 2) |
| 172 | gc_mode = GC_GREEDY; |
| 173 | } |
| 174 | if (gc_th->gc_urgent) |
| 175 | gc_mode = GC_GREEDY; |
| 176 | return gc_mode; |
| 177 | } |
| 178 | |
| 179 | static void select_policy(struct f2fs_sb_info *sbi, int gc_type, |
| 180 | int type, struct victim_sel_policy *p) |
| 181 | { |
| 182 | struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| 183 | |
| 184 | if (p->alloc_mode == SSR) { |
| 185 | p->gc_mode = GC_GREEDY; |
| 186 | p->dirty_segmap = dirty_i->dirty_segmap[type]; |
| 187 | p->max_search = dirty_i->nr_dirty[type]; |
| 188 | p->ofs_unit = 1; |
| 189 | } else { |
| 190 | p->gc_mode = select_gc_type(sbi->gc_thread, gc_type); |
| 191 | p->dirty_segmap = dirty_i->dirty_segmap[DIRTY]; |
| 192 | p->max_search = dirty_i->nr_dirty[DIRTY]; |
| 193 | p->ofs_unit = sbi->segs_per_sec; |
| 194 | } |
| 195 | |
| 196 | /* we need to check every dirty segments in the FG_GC case */ |
| 197 | if (gc_type != FG_GC && |
| 198 | (sbi->gc_thread && !sbi->gc_thread->gc_urgent) && |
| 199 | p->max_search > sbi->max_victim_search) |
| 200 | p->max_search = sbi->max_victim_search; |
| 201 | |
| 202 | /* let's select beginning hot/small space first in no_heap mode*/ |
| 203 | if (test_opt(sbi, NOHEAP) && |
| 204 | (type == CURSEG_HOT_DATA || IS_NODESEG(type))) |
| 205 | p->offset = 0; |
| 206 | else |
| 207 | p->offset = SIT_I(sbi)->last_victim[p->gc_mode]; |
| 208 | } |
| 209 | |
| 210 | static unsigned int get_max_cost(struct f2fs_sb_info *sbi, |
| 211 | struct victim_sel_policy *p) |
| 212 | { |
| 213 | /* SSR allocates in a segment unit */ |
| 214 | if (p->alloc_mode == SSR) |
| 215 | return sbi->blocks_per_seg; |
| 216 | if (p->gc_mode == GC_GREEDY) |
| 217 | return 2 * sbi->blocks_per_seg * p->ofs_unit; |
| 218 | else if (p->gc_mode == GC_CB) |
| 219 | return UINT_MAX; |
| 220 | else /* No other gc_mode */ |
| 221 | return 0; |
| 222 | } |
| 223 | |
| 224 | static unsigned int check_bg_victims(struct f2fs_sb_info *sbi) |
| 225 | { |
| 226 | struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| 227 | unsigned int secno; |
| 228 | |
| 229 | /* |
| 230 | * If the gc_type is FG_GC, we can select victim segments |
| 231 | * selected by background GC before. |
| 232 | * Those segments guarantee they have small valid blocks. |
| 233 | */ |
| 234 | for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) { |
| 235 | if (sec_usage_check(sbi, secno)) |
| 236 | continue; |
| 237 | |
| 238 | if (no_fggc_candidate(sbi, secno)) |
| 239 | continue; |
| 240 | |
| 241 | clear_bit(secno, dirty_i->victim_secmap); |
| 242 | return GET_SEG_FROM_SEC(sbi, secno); |
| 243 | } |
| 244 | return NULL_SEGNO; |
| 245 | } |
| 246 | |
| 247 | static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno) |
| 248 | { |
| 249 | struct sit_info *sit_i = SIT_I(sbi); |
| 250 | unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); |
| 251 | unsigned int start = GET_SEG_FROM_SEC(sbi, secno); |
| 252 | unsigned long long mtime = 0; |
| 253 | unsigned int vblocks; |
| 254 | unsigned char age = 0; |
| 255 | unsigned char u; |
| 256 | unsigned int i; |
| 257 | |
| 258 | for (i = 0; i < sbi->segs_per_sec; i++) |
| 259 | mtime += get_seg_entry(sbi, start + i)->mtime; |
| 260 | vblocks = get_valid_blocks(sbi, segno, true); |
| 261 | |
| 262 | mtime = div_u64(mtime, sbi->segs_per_sec); |
| 263 | vblocks = div_u64(vblocks, sbi->segs_per_sec); |
| 264 | |
| 265 | u = (vblocks * 100) >> sbi->log_blocks_per_seg; |
| 266 | |
| 267 | /* Handle if the system time has changed by the user */ |
| 268 | if (mtime < sit_i->min_mtime) |
| 269 | sit_i->min_mtime = mtime; |
| 270 | if (mtime > sit_i->max_mtime) |
| 271 | sit_i->max_mtime = mtime; |
| 272 | if (sit_i->max_mtime != sit_i->min_mtime) |
| 273 | age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime), |
| 274 | sit_i->max_mtime - sit_i->min_mtime); |
| 275 | |
| 276 | return UINT_MAX - ((100 * (100 - u) * age) / (100 + u)); |
| 277 | } |
| 278 | |
| 279 | static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi, |
| 280 | unsigned int segno, struct victim_sel_policy *p) |
| 281 | { |
| 282 | if (p->alloc_mode == SSR) |
| 283 | return get_seg_entry(sbi, segno)->ckpt_valid_blocks; |
| 284 | |
| 285 | /* alloc_mode == LFS */ |
| 286 | if (p->gc_mode == GC_GREEDY) |
| 287 | return get_valid_blocks(sbi, segno, true); |
| 288 | else |
| 289 | return get_cb_cost(sbi, segno); |
| 290 | } |
| 291 | |
| 292 | static unsigned int count_bits(const unsigned long *addr, |
| 293 | unsigned int offset, unsigned int len) |
| 294 | { |
| 295 | unsigned int end = offset + len, sum = 0; |
| 296 | |
| 297 | while (offset < end) { |
| 298 | if (test_bit(offset++, addr)) |
| 299 | ++sum; |
| 300 | } |
| 301 | return sum; |
| 302 | } |
| 303 | |
| 304 | /* |
| 305 | * This function is called from two paths. |
| 306 | * One is garbage collection and the other is SSR segment selection. |
| 307 | * When it is called during GC, it just gets a victim segment |
| 308 | * and it does not remove it from dirty seglist. |
| 309 | * When it is called from SSR segment selection, it finds a segment |
| 310 | * which has minimum valid blocks and removes it from dirty seglist. |
| 311 | */ |
| 312 | static int get_victim_by_default(struct f2fs_sb_info *sbi, |
| 313 | unsigned int *result, int gc_type, int type, char alloc_mode) |
| 314 | { |
| 315 | struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| 316 | struct sit_info *sm = SIT_I(sbi); |
| 317 | struct victim_sel_policy p; |
| 318 | unsigned int secno, last_victim; |
| 319 | unsigned int last_segment = MAIN_SEGS(sbi); |
| 320 | unsigned int nsearched = 0; |
| 321 | |
| 322 | mutex_lock(&dirty_i->seglist_lock); |
| 323 | |
| 324 | p.alloc_mode = alloc_mode; |
| 325 | select_policy(sbi, gc_type, type, &p); |
| 326 | |
| 327 | p.min_segno = NULL_SEGNO; |
| 328 | p.min_cost = get_max_cost(sbi, &p); |
| 329 | |
| 330 | if (*result != NULL_SEGNO) { |
| 331 | if (get_valid_blocks(sbi, *result, false) && |
| 332 | !sec_usage_check(sbi, GET_SEC_FROM_SEG(sbi, *result))) |
| 333 | p.min_segno = *result; |
| 334 | goto out; |
| 335 | } |
| 336 | |
| 337 | if (p.max_search == 0) |
| 338 | goto out; |
| 339 | |
| 340 | last_victim = sm->last_victim[p.gc_mode]; |
| 341 | if (p.alloc_mode == LFS && gc_type == FG_GC) { |
| 342 | p.min_segno = check_bg_victims(sbi); |
| 343 | if (p.min_segno != NULL_SEGNO) |
| 344 | goto got_it; |
| 345 | } |
| 346 | |
| 347 | while (1) { |
| 348 | unsigned long cost; |
| 349 | unsigned int segno; |
| 350 | |
| 351 | segno = find_next_bit(p.dirty_segmap, last_segment, p.offset); |
| 352 | if (segno >= last_segment) { |
| 353 | if (sm->last_victim[p.gc_mode]) { |
| 354 | last_segment = |
| 355 | sm->last_victim[p.gc_mode]; |
| 356 | sm->last_victim[p.gc_mode] = 0; |
| 357 | p.offset = 0; |
| 358 | continue; |
| 359 | } |
| 360 | break; |
| 361 | } |
| 362 | |
| 363 | p.offset = segno + p.ofs_unit; |
| 364 | if (p.ofs_unit > 1) { |
| 365 | p.offset -= segno % p.ofs_unit; |
| 366 | nsearched += count_bits(p.dirty_segmap, |
| 367 | p.offset - p.ofs_unit, |
| 368 | p.ofs_unit); |
| 369 | } else { |
| 370 | nsearched++; |
| 371 | } |
| 372 | |
| 373 | secno = GET_SEC_FROM_SEG(sbi, segno); |
| 374 | |
| 375 | if (sec_usage_check(sbi, secno)) |
| 376 | goto next; |
| 377 | if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap)) |
| 378 | goto next; |
| 379 | if (gc_type == FG_GC && p.alloc_mode == LFS && |
| 380 | no_fggc_candidate(sbi, secno)) |
| 381 | goto next; |
| 382 | |
| 383 | cost = get_gc_cost(sbi, segno, &p); |
| 384 | |
| 385 | if (p.min_cost > cost) { |
| 386 | p.min_segno = segno; |
| 387 | p.min_cost = cost; |
| 388 | } |
| 389 | next: |
| 390 | if (nsearched >= p.max_search) { |
| 391 | if (!sm->last_victim[p.gc_mode] && segno <= last_victim) |
| 392 | sm->last_victim[p.gc_mode] = last_victim + 1; |
| 393 | else |
| 394 | sm->last_victim[p.gc_mode] = segno + 1; |
| 395 | sm->last_victim[p.gc_mode] %= MAIN_SEGS(sbi); |
| 396 | break; |
| 397 | } |
| 398 | } |
| 399 | if (p.min_segno != NULL_SEGNO) { |
| 400 | got_it: |
| 401 | if (p.alloc_mode == LFS) { |
| 402 | secno = GET_SEC_FROM_SEG(sbi, p.min_segno); |
| 403 | if (gc_type == FG_GC) |
| 404 | sbi->cur_victim_sec = secno; |
| 405 | else |
| 406 | set_bit(secno, dirty_i->victim_secmap); |
| 407 | } |
| 408 | *result = (p.min_segno / p.ofs_unit) * p.ofs_unit; |
| 409 | |
| 410 | trace_f2fs_get_victim(sbi->sb, type, gc_type, &p, |
| 411 | sbi->cur_victim_sec, |
| 412 | prefree_segments(sbi), free_segments(sbi)); |
| 413 | } |
| 414 | out: |
| 415 | mutex_unlock(&dirty_i->seglist_lock); |
| 416 | |
| 417 | return (p.min_segno == NULL_SEGNO) ? 0 : 1; |
| 418 | } |
| 419 | |
| 420 | static const struct victim_selection default_v_ops = { |
| 421 | .get_victim = get_victim_by_default, |
| 422 | }; |
| 423 | |
| 424 | static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino) |
| 425 | { |
| 426 | struct inode_entry *ie; |
| 427 | |
| 428 | ie = radix_tree_lookup(&gc_list->iroot, ino); |
| 429 | if (ie) |
| 430 | return ie->inode; |
| 431 | return NULL; |
| 432 | } |
| 433 | |
| 434 | static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode) |
| 435 | { |
| 436 | struct inode_entry *new_ie; |
| 437 | |
| 438 | if (inode == find_gc_inode(gc_list, inode->i_ino)) { |
| 439 | iput(inode); |
| 440 | return; |
| 441 | } |
| 442 | new_ie = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS); |
| 443 | new_ie->inode = inode; |
| 444 | |
| 445 | f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie); |
| 446 | list_add_tail(&new_ie->list, &gc_list->ilist); |
| 447 | } |
| 448 | |
| 449 | static void put_gc_inode(struct gc_inode_list *gc_list) |
| 450 | { |
| 451 | struct inode_entry *ie, *next_ie; |
| 452 | list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) { |
| 453 | radix_tree_delete(&gc_list->iroot, ie->inode->i_ino); |
| 454 | iput(ie->inode); |
| 455 | list_del(&ie->list); |
| 456 | kmem_cache_free(inode_entry_slab, ie); |
| 457 | } |
| 458 | } |
| 459 | |
| 460 | static int check_valid_map(struct f2fs_sb_info *sbi, |
| 461 | unsigned int segno, int offset) |
| 462 | { |
| 463 | struct sit_info *sit_i = SIT_I(sbi); |
| 464 | struct seg_entry *sentry; |
| 465 | int ret; |
| 466 | |
| 467 | down_read(&sit_i->sentry_lock); |
| 468 | sentry = get_seg_entry(sbi, segno); |
| 469 | ret = f2fs_test_bit(offset, sentry->cur_valid_map); |
| 470 | up_read(&sit_i->sentry_lock); |
| 471 | return ret; |
| 472 | } |
| 473 | |
| 474 | /* |
| 475 | * This function compares node address got in summary with that in NAT. |
| 476 | * On validity, copy that node with cold status, otherwise (invalid node) |
| 477 | * ignore that. |
| 478 | */ |
| 479 | static void gc_node_segment(struct f2fs_sb_info *sbi, |
| 480 | struct f2fs_summary *sum, unsigned int segno, int gc_type) |
| 481 | { |
| 482 | struct f2fs_summary *entry; |
| 483 | block_t start_addr; |
| 484 | int off; |
| 485 | int phase = 0; |
| 486 | |
| 487 | start_addr = START_BLOCK(sbi, segno); |
| 488 | |
| 489 | next_step: |
| 490 | entry = sum; |
| 491 | |
| 492 | for (off = 0; off < sbi->blocks_per_seg; off++, entry++) { |
| 493 | nid_t nid = le32_to_cpu(entry->nid); |
| 494 | struct page *node_page; |
| 495 | struct node_info ni; |
| 496 | |
| 497 | /* stop BG_GC if there is not enough free sections. */ |
| 498 | if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) |
| 499 | return; |
| 500 | |
| 501 | if (check_valid_map(sbi, segno, off) == 0) |
| 502 | continue; |
| 503 | |
| 504 | if (phase == 0) { |
| 505 | ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1, |
| 506 | META_NAT, true); |
| 507 | continue; |
| 508 | } |
| 509 | |
| 510 | if (phase == 1) { |
| 511 | ra_node_page(sbi, nid); |
| 512 | continue; |
| 513 | } |
| 514 | |
| 515 | /* phase == 2 */ |
| 516 | node_page = get_node_page(sbi, nid); |
| 517 | if (IS_ERR(node_page)) |
| 518 | continue; |
| 519 | |
| 520 | /* block may become invalid during get_node_page */ |
| 521 | if (check_valid_map(sbi, segno, off) == 0) { |
| 522 | f2fs_put_page(node_page, 1); |
| 523 | continue; |
| 524 | } |
| 525 | |
| 526 | get_node_info(sbi, nid, &ni); |
| 527 | if (ni.blk_addr != start_addr + off) { |
| 528 | f2fs_put_page(node_page, 1); |
| 529 | continue; |
| 530 | } |
| 531 | |
| 532 | move_node_page(node_page, gc_type); |
| 533 | stat_inc_node_blk_count(sbi, 1, gc_type); |
| 534 | } |
| 535 | |
| 536 | if (++phase < 3) |
| 537 | goto next_step; |
| 538 | } |
| 539 | |
| 540 | /* |
| 541 | * Calculate start block index indicating the given node offset. |
| 542 | * Be careful, caller should give this node offset only indicating direct node |
| 543 | * blocks. If any node offsets, which point the other types of node blocks such |
| 544 | * as indirect or double indirect node blocks, are given, it must be a caller's |
| 545 | * bug. |
| 546 | */ |
| 547 | block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode) |
| 548 | { |
| 549 | unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4; |
| 550 | unsigned int bidx; |
| 551 | |
| 552 | if (node_ofs == 0) |
| 553 | return 0; |
| 554 | |
| 555 | if (node_ofs <= 2) { |
| 556 | bidx = node_ofs - 1; |
| 557 | } else if (node_ofs <= indirect_blks) { |
| 558 | int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1); |
| 559 | bidx = node_ofs - 2 - dec; |
| 560 | } else { |
| 561 | int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1); |
| 562 | bidx = node_ofs - 5 - dec; |
| 563 | } |
| 564 | return bidx * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode); |
| 565 | } |
| 566 | |
| 567 | static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, |
| 568 | struct node_info *dni, block_t blkaddr, unsigned int *nofs) |
| 569 | { |
| 570 | struct page *node_page; |
| 571 | nid_t nid; |
| 572 | unsigned int ofs_in_node; |
| 573 | block_t source_blkaddr; |
| 574 | |
| 575 | nid = le32_to_cpu(sum->nid); |
| 576 | ofs_in_node = le16_to_cpu(sum->ofs_in_node); |
| 577 | |
| 578 | node_page = get_node_page(sbi, nid); |
| 579 | if (IS_ERR(node_page)) |
| 580 | return false; |
| 581 | |
| 582 | get_node_info(sbi, nid, dni); |
| 583 | |
| 584 | if (sum->version != dni->version) { |
| 585 | f2fs_msg(sbi->sb, KERN_WARNING, |
| 586 | "%s: valid data with mismatched node version.", |
| 587 | __func__); |
| 588 | set_sbi_flag(sbi, SBI_NEED_FSCK); |
| 589 | } |
| 590 | |
| 591 | *nofs = ofs_of_node(node_page); |
| 592 | source_blkaddr = datablock_addr(NULL, node_page, ofs_in_node); |
| 593 | f2fs_put_page(node_page, 1); |
| 594 | |
| 595 | if (source_blkaddr != blkaddr) |
| 596 | return false; |
| 597 | return true; |
| 598 | } |
| 599 | |
| 600 | /* |
| 601 | * Move data block via META_MAPPING while keeping locked data page. |
| 602 | * This can be used to move blocks, aka LBAs, directly on disk. |
| 603 | */ |
| 604 | static void move_data_block(struct inode *inode, block_t bidx, |
| 605 | unsigned int segno, int off) |
| 606 | { |
| 607 | struct f2fs_io_info fio = { |
| 608 | .sbi = F2FS_I_SB(inode), |
| 609 | .ino = inode->i_ino, |
| 610 | .type = DATA, |
| 611 | .temp = COLD, |
| 612 | .op = REQ_OP_READ, |
| 613 | .op_flags = 0, |
| 614 | .encrypted_page = NULL, |
| 615 | .in_list = false, |
| 616 | }; |
| 617 | struct dnode_of_data dn; |
| 618 | struct f2fs_summary sum; |
| 619 | struct node_info ni; |
| 620 | struct page *page; |
| 621 | block_t newaddr; |
| 622 | int err; |
| 623 | |
| 624 | /* do not read out */ |
| 625 | page = f2fs_grab_cache_page(inode->i_mapping, bidx, false); |
| 626 | if (!page) |
| 627 | return; |
| 628 | |
| 629 | if (!check_valid_map(F2FS_I_SB(inode), segno, off)) |
| 630 | goto out; |
| 631 | |
| 632 | if (f2fs_is_atomic_file(inode)) |
| 633 | goto out; |
| 634 | |
| 635 | if (f2fs_is_pinned_file(inode)) { |
| 636 | f2fs_pin_file_control(inode, true); |
| 637 | goto out; |
| 638 | } |
| 639 | |
| 640 | set_new_dnode(&dn, inode, NULL, NULL, 0); |
| 641 | err = get_dnode_of_data(&dn, bidx, LOOKUP_NODE); |
| 642 | if (err) |
| 643 | goto out; |
| 644 | |
| 645 | if (unlikely(dn.data_blkaddr == NULL_ADDR)) { |
| 646 | ClearPageUptodate(page); |
| 647 | goto put_out; |
| 648 | } |
| 649 | |
| 650 | /* |
| 651 | * don't cache encrypted data into meta inode until previous dirty |
| 652 | * data were writebacked to avoid racing between GC and flush. |
| 653 | */ |
| 654 | f2fs_wait_on_page_writeback(page, DATA, true); |
| 655 | |
| 656 | get_node_info(fio.sbi, dn.nid, &ni); |
| 657 | set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version); |
| 658 | |
| 659 | /* read page */ |
| 660 | fio.page = page; |
| 661 | fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; |
| 662 | |
| 663 | allocate_data_block(fio.sbi, NULL, fio.old_blkaddr, &newaddr, |
| 664 | &sum, CURSEG_COLD_DATA, NULL, false); |
| 665 | |
| 666 | fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(fio.sbi), |
| 667 | newaddr, FGP_LOCK | FGP_CREAT, GFP_NOFS); |
| 668 | if (!fio.encrypted_page) { |
| 669 | err = -ENOMEM; |
| 670 | goto recover_block; |
| 671 | } |
| 672 | |
| 673 | err = f2fs_submit_page_bio(&fio); |
| 674 | if (err) |
| 675 | goto put_page_out; |
| 676 | |
| 677 | /* write page */ |
| 678 | lock_page(fio.encrypted_page); |
| 679 | |
| 680 | if (unlikely(fio.encrypted_page->mapping != META_MAPPING(fio.sbi))) { |
| 681 | err = -EIO; |
| 682 | goto put_page_out; |
| 683 | } |
| 684 | if (unlikely(!PageUptodate(fio.encrypted_page))) { |
| 685 | err = -EIO; |
| 686 | goto put_page_out; |
| 687 | } |
| 688 | |
| 689 | set_page_dirty(fio.encrypted_page); |
| 690 | f2fs_wait_on_page_writeback(fio.encrypted_page, DATA, true); |
| 691 | if (clear_page_dirty_for_io(fio.encrypted_page)) |
| 692 | dec_page_count(fio.sbi, F2FS_DIRTY_META); |
| 693 | |
| 694 | set_page_writeback(fio.encrypted_page); |
| 695 | ClearPageError(page); |
| 696 | |
| 697 | /* allocate block address */ |
| 698 | f2fs_wait_on_page_writeback(dn.node_page, NODE, true); |
| 699 | |
| 700 | fio.op = REQ_OP_WRITE; |
| 701 | fio.op_flags = REQ_SYNC; |
| 702 | fio.new_blkaddr = newaddr; |
| 703 | err = f2fs_submit_page_write(&fio); |
| 704 | if (err) { |
| 705 | if (PageWriteback(fio.encrypted_page)) |
| 706 | end_page_writeback(fio.encrypted_page); |
| 707 | goto put_page_out; |
| 708 | } |
| 709 | |
| 710 | f2fs_update_iostat(fio.sbi, FS_GC_DATA_IO, F2FS_BLKSIZE); |
| 711 | |
| 712 | f2fs_update_data_blkaddr(&dn, newaddr); |
| 713 | set_inode_flag(inode, FI_APPEND_WRITE); |
| 714 | if (page->index == 0) |
| 715 | set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); |
| 716 | put_page_out: |
| 717 | f2fs_put_page(fio.encrypted_page, 1); |
| 718 | recover_block: |
| 719 | if (err) |
| 720 | __f2fs_replace_block(fio.sbi, &sum, newaddr, fio.old_blkaddr, |
| 721 | true, true); |
| 722 | put_out: |
| 723 | f2fs_put_dnode(&dn); |
| 724 | out: |
| 725 | f2fs_put_page(page, 1); |
| 726 | } |
| 727 | |
| 728 | static void move_data_page(struct inode *inode, block_t bidx, int gc_type, |
| 729 | unsigned int segno, int off) |
| 730 | { |
| 731 | struct page *page; |
| 732 | |
| 733 | page = get_lock_data_page(inode, bidx, true); |
| 734 | if (IS_ERR(page)) |
| 735 | return; |
| 736 | |
| 737 | if (!check_valid_map(F2FS_I_SB(inode), segno, off)) |
| 738 | goto out; |
| 739 | |
| 740 | if (f2fs_is_atomic_file(inode)) |
| 741 | goto out; |
| 742 | if (f2fs_is_pinned_file(inode)) { |
| 743 | if (gc_type == FG_GC) |
| 744 | f2fs_pin_file_control(inode, true); |
| 745 | goto out; |
| 746 | } |
| 747 | |
| 748 | if (gc_type == BG_GC) { |
| 749 | if (PageWriteback(page)) |
| 750 | goto out; |
| 751 | set_page_dirty(page); |
| 752 | set_cold_data(page); |
| 753 | } else { |
| 754 | struct f2fs_io_info fio = { |
| 755 | .sbi = F2FS_I_SB(inode), |
| 756 | .ino = inode->i_ino, |
| 757 | .type = DATA, |
| 758 | .temp = COLD, |
| 759 | .op = REQ_OP_WRITE, |
| 760 | .op_flags = REQ_SYNC, |
| 761 | .old_blkaddr = NULL_ADDR, |
| 762 | .page = page, |
| 763 | .encrypted_page = NULL, |
| 764 | .need_lock = LOCK_REQ, |
| 765 | .io_type = FS_GC_DATA_IO, |
| 766 | }; |
| 767 | bool is_dirty = PageDirty(page); |
| 768 | int err; |
| 769 | |
| 770 | retry: |
| 771 | set_page_dirty(page); |
| 772 | f2fs_wait_on_page_writeback(page, DATA, true); |
| 773 | if (clear_page_dirty_for_io(page)) { |
| 774 | inode_dec_dirty_pages(inode); |
| 775 | remove_dirty_inode(inode); |
| 776 | } |
| 777 | |
| 778 | set_cold_data(page); |
| 779 | |
| 780 | err = do_write_data_page(&fio); |
| 781 | if (err) { |
| 782 | clear_cold_data(page); |
| 783 | if (err == -ENOMEM) { |
| 784 | congestion_wait(BLK_RW_ASYNC, HZ/50); |
| 785 | goto retry; |
| 786 | } |
| 787 | if (is_dirty) |
| 788 | set_page_dirty(page); |
| 789 | } |
| 790 | } |
| 791 | out: |
| 792 | f2fs_put_page(page, 1); |
| 793 | } |
| 794 | |
| 795 | /* |
| 796 | * This function tries to get parent node of victim data block, and identifies |
| 797 | * data block validity. If the block is valid, copy that with cold status and |
| 798 | * modify parent node. |
| 799 | * If the parent node is not valid or the data block address is different, |
| 800 | * the victim data block is ignored. |
| 801 | */ |
| 802 | static void gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, |
| 803 | struct gc_inode_list *gc_list, unsigned int segno, int gc_type) |
| 804 | { |
| 805 | struct super_block *sb = sbi->sb; |
| 806 | struct f2fs_summary *entry; |
| 807 | block_t start_addr; |
| 808 | int off; |
| 809 | int phase = 0; |
| 810 | |
| 811 | start_addr = START_BLOCK(sbi, segno); |
| 812 | |
| 813 | next_step: |
| 814 | entry = sum; |
| 815 | |
| 816 | for (off = 0; off < sbi->blocks_per_seg; off++, entry++) { |
| 817 | struct page *data_page; |
| 818 | struct inode *inode; |
| 819 | struct node_info dni; /* dnode info for the data */ |
| 820 | unsigned int ofs_in_node, nofs; |
| 821 | block_t start_bidx; |
| 822 | nid_t nid = le32_to_cpu(entry->nid); |
| 823 | |
| 824 | /* stop BG_GC if there is not enough free sections. */ |
| 825 | if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) |
| 826 | return; |
| 827 | |
| 828 | if (check_valid_map(sbi, segno, off) == 0) |
| 829 | continue; |
| 830 | |
| 831 | if (phase == 0) { |
| 832 | ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1, |
| 833 | META_NAT, true); |
| 834 | continue; |
| 835 | } |
| 836 | |
| 837 | if (phase == 1) { |
| 838 | ra_node_page(sbi, nid); |
| 839 | continue; |
| 840 | } |
| 841 | |
| 842 | /* Get an inode by ino with checking validity */ |
| 843 | if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs)) |
| 844 | continue; |
| 845 | |
| 846 | if (phase == 2) { |
| 847 | ra_node_page(sbi, dni.ino); |
| 848 | continue; |
| 849 | } |
| 850 | |
| 851 | ofs_in_node = le16_to_cpu(entry->ofs_in_node); |
| 852 | |
| 853 | if (phase == 3) { |
| 854 | inode = f2fs_iget(sb, dni.ino); |
| 855 | if (IS_ERR(inode) || is_bad_inode(inode)) |
| 856 | continue; |
| 857 | |
| 858 | /* if inode uses special I/O path, let's go phase 3 */ |
| 859 | if (f2fs_post_read_required(inode)) { |
| 860 | add_gc_inode(gc_list, inode); |
| 861 | continue; |
| 862 | } |
| 863 | |
| 864 | if (!down_write_trylock( |
| 865 | &F2FS_I(inode)->dio_rwsem[WRITE])) { |
| 866 | iput(inode); |
| 867 | continue; |
| 868 | } |
| 869 | |
| 870 | start_bidx = start_bidx_of_node(nofs, inode); |
| 871 | data_page = get_read_data_page(inode, |
| 872 | start_bidx + ofs_in_node, REQ_RAHEAD, |
| 873 | true); |
| 874 | up_write(&F2FS_I(inode)->dio_rwsem[WRITE]); |
| 875 | if (IS_ERR(data_page)) { |
| 876 | iput(inode); |
| 877 | continue; |
| 878 | } |
| 879 | |
| 880 | f2fs_put_page(data_page, 0); |
| 881 | add_gc_inode(gc_list, inode); |
| 882 | continue; |
| 883 | } |
| 884 | |
| 885 | /* phase 4 */ |
| 886 | inode = find_gc_inode(gc_list, dni.ino); |
| 887 | if (inode) { |
| 888 | struct f2fs_inode_info *fi = F2FS_I(inode); |
| 889 | bool locked = false; |
| 890 | |
| 891 | if (S_ISREG(inode->i_mode)) { |
| 892 | if (!down_write_trylock(&fi->dio_rwsem[READ])) |
| 893 | continue; |
| 894 | if (!down_write_trylock( |
| 895 | &fi->dio_rwsem[WRITE])) { |
| 896 | up_write(&fi->dio_rwsem[READ]); |
| 897 | continue; |
| 898 | } |
| 899 | locked = true; |
| 900 | |
| 901 | /* wait for all inflight aio data */ |
| 902 | inode_dio_wait(inode); |
| 903 | } |
| 904 | |
| 905 | start_bidx = start_bidx_of_node(nofs, inode) |
| 906 | + ofs_in_node; |
| 907 | if (f2fs_post_read_required(inode)) |
| 908 | move_data_block(inode, start_bidx, segno, off); |
| 909 | else |
| 910 | move_data_page(inode, start_bidx, gc_type, |
| 911 | segno, off); |
| 912 | |
| 913 | if (locked) { |
| 914 | up_write(&fi->dio_rwsem[WRITE]); |
| 915 | up_write(&fi->dio_rwsem[READ]); |
| 916 | } |
| 917 | |
| 918 | stat_inc_data_blk_count(sbi, 1, gc_type); |
| 919 | } |
| 920 | } |
| 921 | |
| 922 | if (++phase < 5) |
| 923 | goto next_step; |
| 924 | } |
| 925 | |
| 926 | static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim, |
| 927 | int gc_type) |
| 928 | { |
| 929 | struct sit_info *sit_i = SIT_I(sbi); |
| 930 | int ret; |
| 931 | |
| 932 | down_write(&sit_i->sentry_lock); |
| 933 | ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type, |
| 934 | NO_CHECK_TYPE, LFS); |
| 935 | up_write(&sit_i->sentry_lock); |
| 936 | return ret; |
| 937 | } |
| 938 | |
| 939 | static int do_garbage_collect(struct f2fs_sb_info *sbi, |
| 940 | unsigned int start_segno, |
| 941 | struct gc_inode_list *gc_list, int gc_type) |
| 942 | { |
| 943 | struct page *sum_page; |
| 944 | struct f2fs_summary_block *sum; |
| 945 | struct blk_plug plug; |
| 946 | unsigned int segno = start_segno; |
| 947 | unsigned int end_segno = start_segno + sbi->segs_per_sec; |
| 948 | int seg_freed = 0; |
| 949 | unsigned char type = IS_DATASEG(get_seg_entry(sbi, segno)->type) ? |
| 950 | SUM_TYPE_DATA : SUM_TYPE_NODE; |
| 951 | |
| 952 | /* readahead multi ssa blocks those have contiguous address */ |
| 953 | if (sbi->segs_per_sec > 1) |
| 954 | ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno), |
| 955 | sbi->segs_per_sec, META_SSA, true); |
| 956 | |
| 957 | /* reference all summary page */ |
| 958 | while (segno < end_segno) { |
| 959 | sum_page = get_sum_page(sbi, segno++); |
| 960 | unlock_page(sum_page); |
| 961 | } |
| 962 | |
| 963 | blk_start_plug(&plug); |
| 964 | |
| 965 | for (segno = start_segno; segno < end_segno; segno++) { |
| 966 | |
| 967 | /* find segment summary of victim */ |
| 968 | sum_page = find_get_page(META_MAPPING(sbi), |
| 969 | GET_SUM_BLOCK(sbi, segno)); |
| 970 | f2fs_put_page(sum_page, 0); |
| 971 | |
| 972 | if (get_valid_blocks(sbi, segno, false) == 0) |
| 973 | goto freed; |
| 974 | if (!PageUptodate(sum_page) || unlikely(f2fs_cp_error(sbi))) |
| 975 | goto next; |
| 976 | |
| 977 | sum = page_address(sum_page); |
| 978 | if (type != GET_SUM_TYPE((&sum->footer))) { |
| 979 | f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent segment (%u) " |
| 980 | "type [%d, %d] in SSA and SIT", |
| 981 | segno, type, GET_SUM_TYPE((&sum->footer))); |
| 982 | set_sbi_flag(sbi, SBI_NEED_FSCK); |
| 983 | goto next; |
| 984 | } |
| 985 | |
| 986 | /* |
| 987 | * this is to avoid deadlock: |
| 988 | * - lock_page(sum_page) - f2fs_replace_block |
| 989 | * - check_valid_map() - down_write(sentry_lock) |
| 990 | * - down_read(sentry_lock) - change_curseg() |
| 991 | * - lock_page(sum_page) |
| 992 | */ |
| 993 | if (type == SUM_TYPE_NODE) |
| 994 | gc_node_segment(sbi, sum->entries, segno, gc_type); |
| 995 | else |
| 996 | gc_data_segment(sbi, sum->entries, gc_list, segno, |
| 997 | gc_type); |
| 998 | |
| 999 | stat_inc_seg_count(sbi, type, gc_type); |
| 1000 | |
| 1001 | freed: |
| 1002 | if (gc_type == FG_GC && |
| 1003 | get_valid_blocks(sbi, segno, false) == 0) |
| 1004 | seg_freed++; |
| 1005 | next: |
| 1006 | f2fs_put_page(sum_page, 0); |
| 1007 | } |
| 1008 | |
| 1009 | if (gc_type == FG_GC) |
| 1010 | f2fs_submit_merged_write(sbi, |
| 1011 | (type == SUM_TYPE_NODE) ? NODE : DATA); |
| 1012 | |
| 1013 | blk_finish_plug(&plug); |
| 1014 | |
| 1015 | stat_inc_call_count(sbi->stat_info); |
| 1016 | |
| 1017 | return seg_freed; |
| 1018 | } |
| 1019 | |
| 1020 | int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, |
| 1021 | bool background, unsigned int segno) |
| 1022 | { |
| 1023 | int gc_type = sync ? FG_GC : BG_GC; |
| 1024 | int sec_freed = 0, seg_freed = 0, total_freed = 0; |
| 1025 | int ret = 0; |
| 1026 | struct cp_control cpc; |
| 1027 | unsigned int init_segno = segno; |
| 1028 | struct gc_inode_list gc_list = { |
| 1029 | .ilist = LIST_HEAD_INIT(gc_list.ilist), |
| 1030 | .iroot = RADIX_TREE_INIT(GFP_NOFS), |
| 1031 | }; |
| 1032 | |
| 1033 | trace_f2fs_gc_begin(sbi->sb, sync, background, |
| 1034 | get_pages(sbi, F2FS_DIRTY_NODES), |
| 1035 | get_pages(sbi, F2FS_DIRTY_DENTS), |
| 1036 | get_pages(sbi, F2FS_DIRTY_IMETA), |
| 1037 | free_sections(sbi), |
| 1038 | free_segments(sbi), |
| 1039 | reserved_segments(sbi), |
| 1040 | prefree_segments(sbi)); |
| 1041 | |
| 1042 | cpc.reason = __get_cp_reason(sbi); |
| 1043 | gc_more: |
| 1044 | if (unlikely(!(sbi->sb->s_flags & MS_ACTIVE))) { |
| 1045 | ret = -EINVAL; |
| 1046 | goto stop; |
| 1047 | } |
| 1048 | if (unlikely(f2fs_cp_error(sbi))) { |
| 1049 | ret = -EIO; |
| 1050 | goto stop; |
| 1051 | } |
| 1052 | |
| 1053 | if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) { |
| 1054 | /* |
| 1055 | * For example, if there are many prefree_segments below given |
| 1056 | * threshold, we can make them free by checkpoint. Then, we |
| 1057 | * secure free segments which doesn't need fggc any more. |
| 1058 | */ |
| 1059 | if (prefree_segments(sbi)) { |
| 1060 | ret = write_checkpoint(sbi, &cpc); |
| 1061 | if (ret) |
| 1062 | goto stop; |
| 1063 | } |
| 1064 | if (has_not_enough_free_secs(sbi, 0, 0)) |
| 1065 | gc_type = FG_GC; |
| 1066 | } |
| 1067 | |
| 1068 | /* f2fs_balance_fs doesn't need to do BG_GC in critical path. */ |
| 1069 | if (gc_type == BG_GC && !background) { |
| 1070 | ret = -EINVAL; |
| 1071 | goto stop; |
| 1072 | } |
| 1073 | if (!__get_victim(sbi, &segno, gc_type)) { |
| 1074 | ret = -ENODATA; |
| 1075 | goto stop; |
| 1076 | } |
| 1077 | |
| 1078 | seg_freed = do_garbage_collect(sbi, segno, &gc_list, gc_type); |
| 1079 | if (gc_type == FG_GC && seg_freed == sbi->segs_per_sec) |
| 1080 | sec_freed++; |
| 1081 | total_freed += seg_freed; |
| 1082 | |
| 1083 | if (gc_type == FG_GC) |
| 1084 | sbi->cur_victim_sec = NULL_SEGNO; |
| 1085 | |
| 1086 | if (!sync) { |
| 1087 | if (has_not_enough_free_secs(sbi, sec_freed, 0)) { |
| 1088 | segno = NULL_SEGNO; |
| 1089 | goto gc_more; |
| 1090 | } |
| 1091 | |
| 1092 | if (gc_type == FG_GC) |
| 1093 | ret = write_checkpoint(sbi, &cpc); |
| 1094 | } |
| 1095 | stop: |
| 1096 | SIT_I(sbi)->last_victim[ALLOC_NEXT] = 0; |
| 1097 | SIT_I(sbi)->last_victim[FLUSH_DEVICE] = init_segno; |
| 1098 | |
| 1099 | trace_f2fs_gc_end(sbi->sb, ret, total_freed, sec_freed, |
| 1100 | get_pages(sbi, F2FS_DIRTY_NODES), |
| 1101 | get_pages(sbi, F2FS_DIRTY_DENTS), |
| 1102 | get_pages(sbi, F2FS_DIRTY_IMETA), |
| 1103 | free_sections(sbi), |
| 1104 | free_segments(sbi), |
| 1105 | reserved_segments(sbi), |
| 1106 | prefree_segments(sbi)); |
| 1107 | |
| 1108 | mutex_unlock(&sbi->gc_mutex); |
| 1109 | |
| 1110 | put_gc_inode(&gc_list); |
| 1111 | |
| 1112 | if (sync && !ret) |
| 1113 | ret = sec_freed ? 0 : -EAGAIN; |
| 1114 | return ret; |
| 1115 | } |
| 1116 | |
| 1117 | void build_gc_manager(struct f2fs_sb_info *sbi) |
| 1118 | { |
| 1119 | u64 main_count, resv_count, ovp_count; |
| 1120 | |
| 1121 | DIRTY_I(sbi)->v_ops = &default_v_ops; |
| 1122 | |
| 1123 | /* threshold of # of valid blocks in a section for victims of FG_GC */ |
| 1124 | main_count = SM_I(sbi)->main_segments << sbi->log_blocks_per_seg; |
| 1125 | resv_count = SM_I(sbi)->reserved_segments << sbi->log_blocks_per_seg; |
| 1126 | ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg; |
| 1127 | |
| 1128 | sbi->fggc_threshold = div64_u64((main_count - ovp_count) * |
| 1129 | BLKS_PER_SEC(sbi), (main_count - resv_count)); |
| 1130 | sbi->gc_pin_file_threshold = DEF_GC_FAILED_PINNED_FILES; |
| 1131 | |
| 1132 | /* give warm/cold data area from slower device */ |
| 1133 | if (f2fs_is_multi_device(sbi) && sbi->segs_per_sec == 1) |
| 1134 | SIT_I(sbi)->last_victim[ALLOC_NEXT] = |
| 1135 | GET_SEGNO(sbi, FDEV(0).end_blk) + 1; |
| 1136 | } |