blob: d65dd118408701aa7ee0752d703eab16c2fe9edc [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * fs/f2fs/inline.c
3 * Copyright (c) 2013, Intel Corporation
4 * Authors: Huajun Li <huajun.li@intel.com>
5 * Haicheng Li <haicheng.li@intel.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13
14#include "f2fs.h"
15#include "node.h"
16#include <trace/events/android_fs.h>
17
18bool f2fs_may_inline_data(struct inode *inode)
19{
20 if (f2fs_is_atomic_file(inode))
21 return false;
22
23 if (!S_ISREG(inode->i_mode) && !S_ISLNK(inode->i_mode))
24 return false;
25
26 if (i_size_read(inode) > MAX_INLINE_DATA(inode))
27 return false;
28
29 if (f2fs_post_read_required(inode))
30 return false;
31
32 return true;
33}
34
35bool f2fs_may_inline_dentry(struct inode *inode)
36{
37 if (!test_opt(F2FS_I_SB(inode), INLINE_DENTRY))
38 return false;
39
40 if (!S_ISDIR(inode->i_mode))
41 return false;
42
43 return true;
44}
45
46void read_inline_data(struct page *page, struct page *ipage)
47{
48 struct inode *inode = page->mapping->host;
49 void *src_addr, *dst_addr;
50
51 if (PageUptodate(page))
52 return;
53
54 f2fs_bug_on(F2FS_P_SB(page), page->index);
55
56 zero_user_segment(page, MAX_INLINE_DATA(inode), PAGE_SIZE);
57
58 /* Copy the whole inline data block */
59 src_addr = inline_data_addr(inode, ipage);
60 dst_addr = kmap_atomic(page);
61 memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode));
62 flush_dcache_page(page);
63 kunmap_atomic(dst_addr);
64 if (!PageUptodate(page))
65 SetPageUptodate(page);
66}
67
68void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from)
69{
70 void *addr;
71
72 if (from >= MAX_INLINE_DATA(inode))
73 return;
74
75 addr = inline_data_addr(inode, ipage);
76
77 f2fs_wait_on_page_writeback(ipage, NODE, true);
78 memset(addr + from, 0, MAX_INLINE_DATA(inode) - from);
79 set_page_dirty(ipage);
80
81 if (from == 0)
82 clear_inode_flag(inode, FI_DATA_EXIST);
83}
84
85int f2fs_read_inline_data(struct inode *inode, struct page *page)
86{
87 struct page *ipage;
88
89 if (trace_android_fs_dataread_start_enabled()) {
90 char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
91
92 path = android_fstrace_get_pathname(pathbuf,
93 MAX_TRACE_PATHBUF_LEN,
94 inode);
95 trace_android_fs_dataread_start(inode, page_offset(page),
96 PAGE_SIZE, current->pid,
97 path, current->comm);
98 }
99
100 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
101 if (IS_ERR(ipage)) {
102 trace_android_fs_dataread_end(inode, page_offset(page),
103 PAGE_SIZE);
104 unlock_page(page);
105 return PTR_ERR(ipage);
106 }
107
108 if (!f2fs_has_inline_data(inode)) {
109 f2fs_put_page(ipage, 1);
110 trace_android_fs_dataread_end(inode, page_offset(page),
111 PAGE_SIZE);
112 return -EAGAIN;
113 }
114
115 if (page->index)
116 zero_user_segment(page, 0, PAGE_SIZE);
117 else
118 read_inline_data(page, ipage);
119
120 if (!PageUptodate(page))
121 SetPageUptodate(page);
122 f2fs_put_page(ipage, 1);
123 trace_android_fs_dataread_end(inode, page_offset(page),
124 PAGE_SIZE);
125 unlock_page(page);
126 return 0;
127}
128
129int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page)
130{
131 struct f2fs_io_info fio = {
132 .sbi = F2FS_I_SB(dn->inode),
133 .ino = dn->inode->i_ino,
134 .type = DATA,
135 .op = REQ_OP_WRITE,
136 .op_flags = REQ_SYNC | REQ_PRIO,
137 .page = page,
138 .encrypted_page = NULL,
139 .io_type = FS_DATA_IO,
140 };
141 int dirty, err;
142
143 if (!f2fs_exist_data(dn->inode))
144 goto clear_out;
145
146 err = f2fs_reserve_block(dn, 0);
147 if (err)
148 return err;
149
150 if (unlikely(dn->data_blkaddr != NEW_ADDR)) {
151 f2fs_put_dnode(dn);
152 set_sbi_flag(fio.sbi, SBI_NEED_FSCK);
153 f2fs_msg(fio.sbi->sb, KERN_WARNING,
154 "%s: corrupted inline inode ino=%lx, i_addr[0]:0x%x, "
155 "run fsck to fix.",
156 __func__, dn->inode->i_ino, dn->data_blkaddr);
157 return -EFSCORRUPTED;
158 }
159
160 f2fs_bug_on(F2FS_P_SB(page), PageWriteback(page));
161
162 read_inline_data(page, dn->inode_page);
163 set_page_dirty(page);
164
165 /* clear dirty state */
166 dirty = clear_page_dirty_for_io(page);
167
168 /* write data page to try to make data consistent */
169 set_page_writeback(page);
170 ClearPageError(page);
171 fio.old_blkaddr = dn->data_blkaddr;
172 set_inode_flag(dn->inode, FI_HOT_DATA);
173 write_data_page(dn, &fio);
174 f2fs_wait_on_page_writeback(page, DATA, true);
175 if (dirty) {
176 inode_dec_dirty_pages(dn->inode);
177 remove_dirty_inode(dn->inode);
178 }
179
180 /* this converted inline_data should be recovered. */
181 set_inode_flag(dn->inode, FI_APPEND_WRITE);
182
183 /* clear inline data and flag after data writeback */
184 truncate_inline_inode(dn->inode, dn->inode_page, 0);
185 clear_inline_node(dn->inode_page);
186clear_out:
187 stat_dec_inline_inode(dn->inode);
188 clear_inode_flag(dn->inode, FI_INLINE_DATA);
189 f2fs_put_dnode(dn);
190 return 0;
191}
192
193int f2fs_convert_inline_inode(struct inode *inode)
194{
195 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
196 struct dnode_of_data dn;
197 struct page *ipage, *page;
198 int err = 0;
199
200 if (!f2fs_has_inline_data(inode))
201 return 0;
202
203 page = f2fs_grab_cache_page(inode->i_mapping, 0, false);
204 if (!page)
205 return -ENOMEM;
206
207 f2fs_lock_op(sbi);
208
209 ipage = get_node_page(sbi, inode->i_ino);
210 if (IS_ERR(ipage)) {
211 err = PTR_ERR(ipage);
212 goto out;
213 }
214
215 set_new_dnode(&dn, inode, ipage, ipage, 0);
216
217 if (f2fs_has_inline_data(inode))
218 err = f2fs_convert_inline_page(&dn, page);
219
220 f2fs_put_dnode(&dn);
221out:
222 f2fs_unlock_op(sbi);
223
224 f2fs_put_page(page, 1);
225
226 f2fs_balance_fs(sbi, dn.node_changed);
227
228 return err;
229}
230
231int f2fs_write_inline_data(struct inode *inode, struct page *page)
232{
233 void *src_addr, *dst_addr;
234 struct dnode_of_data dn;
235 struct address_space *mapping = page_mapping(page);
236 unsigned long flags;
237 int err;
238
239 set_new_dnode(&dn, inode, NULL, NULL, 0);
240 err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
241 if (err)
242 return err;
243
244 if (!f2fs_has_inline_data(inode)) {
245 f2fs_put_dnode(&dn);
246 return -EAGAIN;
247 }
248
249 f2fs_bug_on(F2FS_I_SB(inode), page->index);
250
251 f2fs_wait_on_page_writeback(dn.inode_page, NODE, true);
252 src_addr = kmap_atomic(page);
253 dst_addr = inline_data_addr(inode, dn.inode_page);
254 memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode));
255 kunmap_atomic(src_addr);
256 set_page_dirty(dn.inode_page);
257
258 spin_lock_irqsave(&mapping->tree_lock, flags);
259 radix_tree_tag_clear(&mapping->page_tree, page_index(page),
260 PAGECACHE_TAG_DIRTY);
261 spin_unlock_irqrestore(&mapping->tree_lock, flags);
262
263 set_inode_flag(inode, FI_APPEND_WRITE);
264 set_inode_flag(inode, FI_DATA_EXIST);
265
266 clear_inline_node(dn.inode_page);
267 f2fs_put_dnode(&dn);
268 return 0;
269}
270
271bool recover_inline_data(struct inode *inode, struct page *npage)
272{
273 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
274 struct f2fs_inode *ri = NULL;
275 void *src_addr, *dst_addr;
276 struct page *ipage;
277
278 /*
279 * The inline_data recovery policy is as follows.
280 * [prev.] [next] of inline_data flag
281 * o o -> recover inline_data
282 * o x -> remove inline_data, and then recover data blocks
283 * x o -> remove inline_data, and then recover inline_data
284 * x x -> recover data blocks
285 */
286 if (IS_INODE(npage))
287 ri = F2FS_INODE(npage);
288
289 if (f2fs_has_inline_data(inode) &&
290 ri && (ri->i_inline & F2FS_INLINE_DATA)) {
291process_inline:
292 ipage = get_node_page(sbi, inode->i_ino);
293 f2fs_bug_on(sbi, IS_ERR(ipage));
294
295 f2fs_wait_on_page_writeback(ipage, NODE, true);
296
297 src_addr = inline_data_addr(inode, npage);
298 dst_addr = inline_data_addr(inode, ipage);
299 memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode));
300
301 set_inode_flag(inode, FI_INLINE_DATA);
302 set_inode_flag(inode, FI_DATA_EXIST);
303
304 set_page_dirty(ipage);
305 f2fs_put_page(ipage, 1);
306 return true;
307 }
308
309 if (f2fs_has_inline_data(inode)) {
310 ipage = get_node_page(sbi, inode->i_ino);
311 f2fs_bug_on(sbi, IS_ERR(ipage));
312 truncate_inline_inode(inode, ipage, 0);
313 clear_inode_flag(inode, FI_INLINE_DATA);
314 f2fs_put_page(ipage, 1);
315 } else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) {
316 if (truncate_blocks(inode, 0, false))
317 return false;
318 goto process_inline;
319 }
320 return false;
321}
322
323struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
324 struct fscrypt_name *fname, struct page **res_page)
325{
326 struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
327 struct qstr name = FSTR_TO_QSTR(&fname->disk_name);
328 struct f2fs_dir_entry *de;
329 struct f2fs_dentry_ptr d;
330 struct page *ipage;
331 void *inline_dentry;
332 f2fs_hash_t namehash;
333
334 ipage = get_node_page(sbi, dir->i_ino);
335 if (IS_ERR(ipage)) {
336 *res_page = ipage;
337 return NULL;
338 }
339
340 namehash = f2fs_dentry_hash(&name, fname);
341
342 inline_dentry = inline_data_addr(dir, ipage);
343
344 make_dentry_ptr_inline(dir, &d, inline_dentry);
345 de = find_target_dentry(fname, namehash, NULL, &d);
346 unlock_page(ipage);
347 if (de)
348 *res_page = ipage;
349 else
350 f2fs_put_page(ipage, 0);
351
352 return de;
353}
354
355int make_empty_inline_dir(struct inode *inode, struct inode *parent,
356 struct page *ipage)
357{
358 struct f2fs_dentry_ptr d;
359 void *inline_dentry;
360
361 inline_dentry = inline_data_addr(inode, ipage);
362
363 make_dentry_ptr_inline(inode, &d, inline_dentry);
364 do_make_empty_dir(inode, parent, &d);
365
366 set_page_dirty(ipage);
367
368 /* update i_size to MAX_INLINE_DATA */
369 if (i_size_read(inode) < MAX_INLINE_DATA(inode))
370 f2fs_i_size_write(inode, MAX_INLINE_DATA(inode));
371 return 0;
372}
373
374/*
375 * NOTE: ipage is grabbed by caller, but if any error occurs, we should
376 * release ipage in this function.
377 */
378static int f2fs_move_inline_dirents(struct inode *dir, struct page *ipage,
379 void *inline_dentry)
380{
381 struct page *page;
382 struct dnode_of_data dn;
383 struct f2fs_dentry_block *dentry_blk;
384 struct f2fs_dentry_ptr src, dst;
385 int err;
386
387 page = f2fs_grab_cache_page(dir->i_mapping, 0, false);
388 if (!page) {
389 f2fs_put_page(ipage, 1);
390 return -ENOMEM;
391 }
392
393 set_new_dnode(&dn, dir, ipage, NULL, 0);
394 err = f2fs_reserve_block(&dn, 0);
395 if (err)
396 goto out;
397
398 if (unlikely(dn.data_blkaddr != NEW_ADDR)) {
399 f2fs_put_dnode(&dn);
400 set_sbi_flag(F2FS_P_SB(page), SBI_NEED_FSCK);
401 f2fs_msg(F2FS_P_SB(page)->sb, KERN_WARNING,
402 "%s: corrupted inline inode ino=%lx, i_addr[0]:0x%x, "
403 "run fsck to fix.",
404 __func__, dir->i_ino, dn.data_blkaddr);
405 err = -EFSCORRUPTED;
406 goto out;
407 }
408
409 f2fs_wait_on_page_writeback(page, DATA, true);
410 zero_user_segment(page, MAX_INLINE_DATA(dir), PAGE_SIZE);
411
412 dentry_blk = page_address(page);
413
414 make_dentry_ptr_inline(dir, &src, inline_dentry);
415 make_dentry_ptr_block(dir, &dst, dentry_blk);
416
417 /* copy data from inline dentry block to new dentry block */
418 memcpy(dst.bitmap, src.bitmap, src.nr_bitmap);
419 memset(dst.bitmap + src.nr_bitmap, 0, dst.nr_bitmap - src.nr_bitmap);
420 /*
421 * we do not need to zero out remainder part of dentry and filename
422 * field, since we have used bitmap for marking the usage status of
423 * them, besides, we can also ignore copying/zeroing reserved space
424 * of dentry block, because them haven't been used so far.
425 */
426 memcpy(dst.dentry, src.dentry, SIZE_OF_DIR_ENTRY * src.max);
427 memcpy(dst.filename, src.filename, src.max * F2FS_SLOT_LEN);
428
429 if (!PageUptodate(page))
430 SetPageUptodate(page);
431 set_page_dirty(page);
432
433 /* clear inline dir and flag after data writeback */
434 truncate_inline_inode(dir, ipage, 0);
435
436 stat_dec_inline_dir(dir);
437 clear_inode_flag(dir, FI_INLINE_DENTRY);
438
439 f2fs_i_depth_write(dir, 1);
440 if (i_size_read(dir) < PAGE_SIZE)
441 f2fs_i_size_write(dir, PAGE_SIZE);
442out:
443 f2fs_put_page(page, 1);
444 return err;
445}
446
447static int f2fs_add_inline_entries(struct inode *dir, void *inline_dentry)
448{
449 struct f2fs_dentry_ptr d;
450 unsigned long bit_pos = 0;
451 int err = 0;
452
453 make_dentry_ptr_inline(dir, &d, inline_dentry);
454
455 while (bit_pos < d.max) {
456 struct f2fs_dir_entry *de;
457 struct qstr new_name;
458 nid_t ino;
459 umode_t fake_mode;
460
461 if (!test_bit_le(bit_pos, d.bitmap)) {
462 bit_pos++;
463 continue;
464 }
465
466 de = &d.dentry[bit_pos];
467
468 if (unlikely(!de->name_len)) {
469 bit_pos++;
470 continue;
471 }
472
473 new_name.name = d.filename[bit_pos];
474 new_name.len = le16_to_cpu(de->name_len);
475
476 ino = le32_to_cpu(de->ino);
477 fake_mode = get_de_type(de) << S_SHIFT;
478
479 err = f2fs_add_regular_entry(dir, &new_name, NULL, NULL,
480 ino, fake_mode);
481 if (err)
482 goto punch_dentry_pages;
483
484 bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
485 }
486 return 0;
487punch_dentry_pages:
488 truncate_inode_pages(&dir->i_data, 0);
489 truncate_blocks(dir, 0, false);
490 remove_dirty_inode(dir);
491 return err;
492}
493
494static int f2fs_move_rehashed_dirents(struct inode *dir, struct page *ipage,
495 void *inline_dentry)
496{
497 void *backup_dentry;
498 int err;
499
500 backup_dentry = f2fs_kmalloc(F2FS_I_SB(dir),
501 MAX_INLINE_DATA(dir), GFP_F2FS_ZERO);
502 if (!backup_dentry) {
503 f2fs_put_page(ipage, 1);
504 return -ENOMEM;
505 }
506
507 memcpy(backup_dentry, inline_dentry, MAX_INLINE_DATA(dir));
508 truncate_inline_inode(dir, ipage, 0);
509
510 unlock_page(ipage);
511
512 err = f2fs_add_inline_entries(dir, backup_dentry);
513 if (err)
514 goto recover;
515
516 lock_page(ipage);
517
518 stat_dec_inline_dir(dir);
519 clear_inode_flag(dir, FI_INLINE_DENTRY);
520 kfree(backup_dentry);
521 return 0;
522recover:
523 lock_page(ipage);
524 f2fs_wait_on_page_writeback(ipage, NODE, true);
525 memcpy(inline_dentry, backup_dentry, MAX_INLINE_DATA(dir));
526 f2fs_i_depth_write(dir, 0);
527 f2fs_i_size_write(dir, MAX_INLINE_DATA(dir));
528 set_page_dirty(ipage);
529 f2fs_put_page(ipage, 1);
530
531 kfree(backup_dentry);
532 return err;
533}
534
535static int f2fs_convert_inline_dir(struct inode *dir, struct page *ipage,
536 void *inline_dentry)
537{
538 if (!F2FS_I(dir)->i_dir_level)
539 return f2fs_move_inline_dirents(dir, ipage, inline_dentry);
540 else
541 return f2fs_move_rehashed_dirents(dir, ipage, inline_dentry);
542}
543
544int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
545 const struct qstr *orig_name,
546 struct inode *inode, nid_t ino, umode_t mode)
547{
548 struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
549 struct page *ipage;
550 unsigned int bit_pos;
551 f2fs_hash_t name_hash;
552 void *inline_dentry = NULL;
553 struct f2fs_dentry_ptr d;
554 int slots = GET_DENTRY_SLOTS(new_name->len);
555 struct page *page = NULL;
556 int err = 0;
557
558 ipage = get_node_page(sbi, dir->i_ino);
559 if (IS_ERR(ipage))
560 return PTR_ERR(ipage);
561
562 inline_dentry = inline_data_addr(dir, ipage);
563 make_dentry_ptr_inline(dir, &d, inline_dentry);
564
565 bit_pos = room_for_filename(d.bitmap, slots, d.max);
566 if (bit_pos >= d.max) {
567 err = f2fs_convert_inline_dir(dir, ipage, inline_dentry);
568 if (err)
569 return err;
570 err = -EAGAIN;
571 goto out;
572 }
573
574 if (inode) {
575 down_write(&F2FS_I(inode)->i_sem);
576 page = init_inode_metadata(inode, dir, new_name,
577 orig_name, ipage);
578 if (IS_ERR(page)) {
579 err = PTR_ERR(page);
580 goto fail;
581 }
582 }
583
584 f2fs_wait_on_page_writeback(ipage, NODE, true);
585
586 name_hash = f2fs_dentry_hash(new_name, NULL);
587 f2fs_update_dentry(ino, mode, &d, new_name, name_hash, bit_pos);
588
589 set_page_dirty(ipage);
590
591 /* we don't need to mark_inode_dirty now */
592 if (inode) {
593 f2fs_i_pino_write(inode, dir->i_ino);
594 f2fs_put_page(page, 1);
595 }
596
597 update_parent_metadata(dir, inode, 0);
598fail:
599 if (inode)
600 up_write(&F2FS_I(inode)->i_sem);
601out:
602 f2fs_put_page(ipage, 1);
603 return err;
604}
605
606void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
607 struct inode *dir, struct inode *inode)
608{
609 struct f2fs_dentry_ptr d;
610 void *inline_dentry;
611 int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
612 unsigned int bit_pos;
613 int i;
614
615 lock_page(page);
616 f2fs_wait_on_page_writeback(page, NODE, true);
617
618 inline_dentry = inline_data_addr(dir, page);
619 make_dentry_ptr_inline(dir, &d, inline_dentry);
620
621 bit_pos = dentry - d.dentry;
622 for (i = 0; i < slots; i++)
623 __clear_bit_le(bit_pos + i, d.bitmap);
624
625 set_page_dirty(page);
626 f2fs_put_page(page, 1);
627
628 dir->i_ctime = dir->i_mtime = current_time(dir);
629 f2fs_mark_inode_dirty_sync(dir, false);
630
631 if (inode)
632 f2fs_drop_nlink(dir, inode);
633}
634
635bool f2fs_empty_inline_dir(struct inode *dir)
636{
637 struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
638 struct page *ipage;
639 unsigned int bit_pos = 2;
640 void *inline_dentry;
641 struct f2fs_dentry_ptr d;
642
643 ipage = get_node_page(sbi, dir->i_ino);
644 if (IS_ERR(ipage))
645 return false;
646
647 inline_dentry = inline_data_addr(dir, ipage);
648 make_dentry_ptr_inline(dir, &d, inline_dentry);
649
650 bit_pos = find_next_bit_le(d.bitmap, d.max, bit_pos);
651
652 f2fs_put_page(ipage, 1);
653
654 if (bit_pos < d.max)
655 return false;
656
657 return true;
658}
659
660int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
661 struct fscrypt_str *fstr)
662{
663 struct inode *inode = file_inode(file);
664 struct page *ipage = NULL;
665 struct f2fs_dentry_ptr d;
666 void *inline_dentry = NULL;
667 int err;
668
669 make_dentry_ptr_inline(inode, &d, inline_dentry);
670
671 if (ctx->pos == d.max)
672 return 0;
673
674 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
675 if (IS_ERR(ipage))
676 return PTR_ERR(ipage);
677
678 /*
679 * f2fs_readdir was protected by inode.i_rwsem, it is safe to access
680 * ipage without page's lock held.
681 */
682 unlock_page(ipage);
683
684 inline_dentry = inline_data_addr(inode, ipage);
685
686 make_dentry_ptr_inline(inode, &d, inline_dentry);
687
688 err = f2fs_fill_dentries(ctx, &d, 0, fstr);
689 if (!err)
690 ctx->pos = d.max;
691
692 f2fs_put_page(ipage, 0);
693 return err < 0 ? err : 0;
694}
695
696int f2fs_inline_data_fiemap(struct inode *inode,
697 struct fiemap_extent_info *fieinfo, __u64 start, __u64 len)
698{
699 __u64 byteaddr, ilen;
700 __u32 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED |
701 FIEMAP_EXTENT_LAST;
702 struct node_info ni;
703 struct page *ipage;
704 int err = 0;
705
706 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
707 if (IS_ERR(ipage))
708 return PTR_ERR(ipage);
709
710 if (!f2fs_has_inline_data(inode)) {
711 err = -EAGAIN;
712 goto out;
713 }
714
715 ilen = min_t(size_t, MAX_INLINE_DATA(inode), i_size_read(inode));
716 if (start >= ilen)
717 goto out;
718 if (start + len < ilen)
719 ilen = start + len;
720 ilen -= start;
721
722 get_node_info(F2FS_I_SB(inode), inode->i_ino, &ni);
723 byteaddr = (__u64)ni.blk_addr << inode->i_sb->s_blocksize_bits;
724 byteaddr += (char *)inline_data_addr(inode, ipage) -
725 (char *)F2FS_INODE(ipage);
726 err = fiemap_fill_next_extent(fieinfo, start, byteaddr, ilen, flags);
727out:
728 f2fs_put_page(ipage, 1);
729 return err;
730}