rjw | 1f88458 | 2022-01-06 17:20:42 +0800 | [diff] [blame^] | 1 | /* |
| 2 | * fs/f2fs/node.c |
| 3 | * |
| 4 | * Copyright (c) 2012 Samsung Electronics Co., Ltd. |
| 5 | * http://www.samsung.com/ |
| 6 | * |
| 7 | * This program is free software; you can redistribute it and/or modify |
| 8 | * it under the terms of the GNU General Public License version 2 as |
| 9 | * published by the Free Software Foundation. |
| 10 | */ |
| 11 | #include <linux/fs.h> |
| 12 | #include <linux/f2fs_fs.h> |
| 13 | #include <linux/mpage.h> |
| 14 | #include <linux/backing-dev.h> |
| 15 | #include <linux/blkdev.h> |
| 16 | #include <linux/pagevec.h> |
| 17 | #include <linux/swap.h> |
| 18 | |
| 19 | #include "f2fs.h" |
| 20 | #include "node.h" |
| 21 | #include "segment.h" |
| 22 | #include "xattr.h" |
| 23 | #include "trace.h" |
| 24 | #include <trace/events/f2fs.h> |
| 25 | |
| 26 | #define on_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock) |
| 27 | |
| 28 | static struct kmem_cache *nat_entry_slab; |
| 29 | static struct kmem_cache *free_nid_slab; |
| 30 | static struct kmem_cache *nat_entry_set_slab; |
| 31 | |
| 32 | /* |
| 33 | * Check whether the given nid is within node id range. |
| 34 | */ |
| 35 | int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) |
| 36 | { |
| 37 | if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) { |
| 38 | set_sbi_flag(sbi, SBI_NEED_FSCK); |
| 39 | f2fs_msg(sbi->sb, KERN_WARNING, |
| 40 | "%s: out-of-range nid=%x, run fsck to fix.", |
| 41 | __func__, nid); |
| 42 | return -EFSCORRUPTED; |
| 43 | } |
| 44 | return 0; |
| 45 | } |
| 46 | |
| 47 | bool available_free_memory(struct f2fs_sb_info *sbi, int type) |
| 48 | { |
| 49 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 50 | struct sysinfo val; |
| 51 | unsigned long avail_ram; |
| 52 | unsigned long mem_size = 0; |
| 53 | bool res = false; |
| 54 | |
| 55 | si_meminfo(&val); |
| 56 | |
| 57 | /* only uses low memory */ |
| 58 | avail_ram = val.totalram - val.totalhigh; |
| 59 | |
| 60 | /* |
| 61 | * give 25%, 25%, 50%, 50%, 50% memory for each components respectively |
| 62 | */ |
| 63 | if (type == FREE_NIDS) { |
| 64 | mem_size = (nm_i->nid_cnt[FREE_NID] * |
| 65 | sizeof(struct free_nid)) >> PAGE_SHIFT; |
| 66 | res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); |
| 67 | } else if (type == NAT_ENTRIES) { |
| 68 | mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >> |
| 69 | PAGE_SHIFT; |
| 70 | res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); |
| 71 | if (excess_cached_nats(sbi)) |
| 72 | res = false; |
| 73 | } else if (type == DIRTY_DENTS) { |
| 74 | if (sbi->sb->s_bdi->wb.dirty_exceeded) |
| 75 | return false; |
| 76 | mem_size = get_pages(sbi, F2FS_DIRTY_DENTS); |
| 77 | res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); |
| 78 | } else if (type == INO_ENTRIES) { |
| 79 | int i; |
| 80 | |
| 81 | for (i = 0; i < MAX_INO_ENTRY; i++) |
| 82 | mem_size += sbi->im[i].ino_num * |
| 83 | sizeof(struct ino_entry); |
| 84 | mem_size >>= PAGE_SHIFT; |
| 85 | res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); |
| 86 | } else if (type == EXTENT_CACHE) { |
| 87 | mem_size = (atomic_read(&sbi->total_ext_tree) * |
| 88 | sizeof(struct extent_tree) + |
| 89 | atomic_read(&sbi->total_ext_node) * |
| 90 | sizeof(struct extent_node)) >> PAGE_SHIFT; |
| 91 | res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); |
| 92 | } else if (type == INMEM_PAGES) { |
| 93 | /* it allows 20% / total_ram for inmemory pages */ |
| 94 | mem_size = get_pages(sbi, F2FS_INMEM_PAGES); |
| 95 | res = mem_size < (val.totalram / 5); |
| 96 | } else { |
| 97 | if (!sbi->sb->s_bdi->wb.dirty_exceeded) |
| 98 | return true; |
| 99 | } |
| 100 | return res; |
| 101 | } |
| 102 | |
| 103 | static void clear_node_page_dirty(struct page *page) |
| 104 | { |
| 105 | struct address_space *mapping = page->mapping; |
| 106 | unsigned int long flags; |
| 107 | |
| 108 | if (PageDirty(page)) { |
| 109 | spin_lock_irqsave(&mapping->tree_lock, flags); |
| 110 | radix_tree_tag_clear(&mapping->page_tree, |
| 111 | page_index(page), |
| 112 | PAGECACHE_TAG_DIRTY); |
| 113 | spin_unlock_irqrestore(&mapping->tree_lock, flags); |
| 114 | |
| 115 | clear_page_dirty_for_io(page); |
| 116 | dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES); |
| 117 | } |
| 118 | ClearPageUptodate(page); |
| 119 | } |
| 120 | |
| 121 | static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) |
| 122 | { |
| 123 | pgoff_t index = current_nat_addr(sbi, nid); |
| 124 | return get_meta_page(sbi, index); |
| 125 | } |
| 126 | |
| 127 | static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) |
| 128 | { |
| 129 | struct page *src_page; |
| 130 | struct page *dst_page; |
| 131 | pgoff_t src_off; |
| 132 | pgoff_t dst_off; |
| 133 | void *src_addr; |
| 134 | void *dst_addr; |
| 135 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 136 | |
| 137 | src_off = current_nat_addr(sbi, nid); |
| 138 | dst_off = next_nat_addr(sbi, src_off); |
| 139 | |
| 140 | /* get current nat block page with lock */ |
| 141 | src_page = get_meta_page(sbi, src_off); |
| 142 | dst_page = grab_meta_page(sbi, dst_off); |
| 143 | f2fs_bug_on(sbi, PageDirty(src_page)); |
| 144 | |
| 145 | src_addr = page_address(src_page); |
| 146 | dst_addr = page_address(dst_page); |
| 147 | memcpy(dst_addr, src_addr, PAGE_SIZE); |
| 148 | set_page_dirty(dst_page); |
| 149 | f2fs_put_page(src_page, 1); |
| 150 | |
| 151 | set_to_next_nat(nm_i, nid); |
| 152 | |
| 153 | return dst_page; |
| 154 | } |
| 155 | |
| 156 | static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail) |
| 157 | { |
| 158 | struct nat_entry *new; |
| 159 | |
| 160 | if (no_fail) |
| 161 | new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO); |
| 162 | else |
| 163 | new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO); |
| 164 | if (new) { |
| 165 | nat_set_nid(new, nid); |
| 166 | nat_reset_flag(new); |
| 167 | } |
| 168 | return new; |
| 169 | } |
| 170 | |
| 171 | static void __free_nat_entry(struct nat_entry *e) |
| 172 | { |
| 173 | kmem_cache_free(nat_entry_slab, e); |
| 174 | } |
| 175 | |
| 176 | /* must be locked by nat_tree_lock */ |
| 177 | static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i, |
| 178 | struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail) |
| 179 | { |
| 180 | if (no_fail) |
| 181 | f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne); |
| 182 | else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne)) |
| 183 | return NULL; |
| 184 | |
| 185 | if (raw_ne) |
| 186 | node_info_from_raw_nat(&ne->ni, raw_ne); |
| 187 | list_add_tail(&ne->list, &nm_i->nat_entries); |
| 188 | nm_i->nat_cnt++; |
| 189 | return ne; |
| 190 | } |
| 191 | |
| 192 | static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) |
| 193 | { |
| 194 | return radix_tree_lookup(&nm_i->nat_root, n); |
| 195 | } |
| 196 | |
| 197 | static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, |
| 198 | nid_t start, unsigned int nr, struct nat_entry **ep) |
| 199 | { |
| 200 | return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); |
| 201 | } |
| 202 | |
| 203 | static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) |
| 204 | { |
| 205 | list_del(&e->list); |
| 206 | radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); |
| 207 | nm_i->nat_cnt--; |
| 208 | __free_nat_entry(e); |
| 209 | } |
| 210 | |
| 211 | static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i, |
| 212 | struct nat_entry *ne) |
| 213 | { |
| 214 | nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); |
| 215 | struct nat_entry_set *head; |
| 216 | |
| 217 | head = radix_tree_lookup(&nm_i->nat_set_root, set); |
| 218 | if (!head) { |
| 219 | head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS); |
| 220 | |
| 221 | INIT_LIST_HEAD(&head->entry_list); |
| 222 | INIT_LIST_HEAD(&head->set_list); |
| 223 | head->set = set; |
| 224 | head->entry_cnt = 0; |
| 225 | f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head); |
| 226 | } |
| 227 | return head; |
| 228 | } |
| 229 | |
| 230 | static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i, |
| 231 | struct nat_entry *ne) |
| 232 | { |
| 233 | struct nat_entry_set *head; |
| 234 | bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR; |
| 235 | |
| 236 | if (!new_ne) |
| 237 | head = __grab_nat_entry_set(nm_i, ne); |
| 238 | |
| 239 | /* |
| 240 | * update entry_cnt in below condition: |
| 241 | * 1. update NEW_ADDR to valid block address; |
| 242 | * 2. update old block address to new one; |
| 243 | */ |
| 244 | if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) || |
| 245 | !get_nat_flag(ne, IS_DIRTY))) |
| 246 | head->entry_cnt++; |
| 247 | |
| 248 | set_nat_flag(ne, IS_PREALLOC, new_ne); |
| 249 | |
| 250 | if (get_nat_flag(ne, IS_DIRTY)) |
| 251 | goto refresh_list; |
| 252 | |
| 253 | nm_i->dirty_nat_cnt++; |
| 254 | set_nat_flag(ne, IS_DIRTY, true); |
| 255 | refresh_list: |
| 256 | if (new_ne) |
| 257 | list_del_init(&ne->list); |
| 258 | else |
| 259 | list_move_tail(&ne->list, &head->entry_list); |
| 260 | } |
| 261 | |
| 262 | static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i, |
| 263 | struct nat_entry_set *set, struct nat_entry *ne) |
| 264 | { |
| 265 | list_move_tail(&ne->list, &nm_i->nat_entries); |
| 266 | set_nat_flag(ne, IS_DIRTY, false); |
| 267 | set->entry_cnt--; |
| 268 | nm_i->dirty_nat_cnt--; |
| 269 | } |
| 270 | |
| 271 | static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i, |
| 272 | nid_t start, unsigned int nr, struct nat_entry_set **ep) |
| 273 | { |
| 274 | return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep, |
| 275 | start, nr); |
| 276 | } |
| 277 | |
| 278 | int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid) |
| 279 | { |
| 280 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 281 | struct nat_entry *e; |
| 282 | bool need = false; |
| 283 | |
| 284 | down_read(&nm_i->nat_tree_lock); |
| 285 | e = __lookup_nat_cache(nm_i, nid); |
| 286 | if (e) { |
| 287 | if (!get_nat_flag(e, IS_CHECKPOINTED) && |
| 288 | !get_nat_flag(e, HAS_FSYNCED_INODE)) |
| 289 | need = true; |
| 290 | } |
| 291 | up_read(&nm_i->nat_tree_lock); |
| 292 | return need; |
| 293 | } |
| 294 | |
| 295 | bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) |
| 296 | { |
| 297 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 298 | struct nat_entry *e; |
| 299 | bool is_cp = true; |
| 300 | |
| 301 | down_read(&nm_i->nat_tree_lock); |
| 302 | e = __lookup_nat_cache(nm_i, nid); |
| 303 | if (e && !get_nat_flag(e, IS_CHECKPOINTED)) |
| 304 | is_cp = false; |
| 305 | up_read(&nm_i->nat_tree_lock); |
| 306 | return is_cp; |
| 307 | } |
| 308 | |
| 309 | bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino) |
| 310 | { |
| 311 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 312 | struct nat_entry *e; |
| 313 | bool need_update = true; |
| 314 | |
| 315 | down_read(&nm_i->nat_tree_lock); |
| 316 | e = __lookup_nat_cache(nm_i, ino); |
| 317 | if (e && get_nat_flag(e, HAS_LAST_FSYNC) && |
| 318 | (get_nat_flag(e, IS_CHECKPOINTED) || |
| 319 | get_nat_flag(e, HAS_FSYNCED_INODE))) |
| 320 | need_update = false; |
| 321 | up_read(&nm_i->nat_tree_lock); |
| 322 | return need_update; |
| 323 | } |
| 324 | |
| 325 | /* must be locked by nat_tree_lock */ |
| 326 | static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid, |
| 327 | struct f2fs_nat_entry *ne) |
| 328 | { |
| 329 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 330 | struct nat_entry *new, *e; |
| 331 | |
| 332 | new = __alloc_nat_entry(nid, false); |
| 333 | if (!new) |
| 334 | return; |
| 335 | |
| 336 | down_write(&nm_i->nat_tree_lock); |
| 337 | e = __lookup_nat_cache(nm_i, nid); |
| 338 | if (!e) |
| 339 | e = __init_nat_entry(nm_i, new, ne, false); |
| 340 | else |
| 341 | f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) || |
| 342 | nat_get_blkaddr(e) != |
| 343 | le32_to_cpu(ne->block_addr) || |
| 344 | nat_get_version(e) != ne->version); |
| 345 | up_write(&nm_i->nat_tree_lock); |
| 346 | if (e != new) |
| 347 | __free_nat_entry(new); |
| 348 | } |
| 349 | |
| 350 | static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, |
| 351 | block_t new_blkaddr, bool fsync_done) |
| 352 | { |
| 353 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 354 | struct nat_entry *e; |
| 355 | struct nat_entry *new = __alloc_nat_entry(ni->nid, true); |
| 356 | |
| 357 | down_write(&nm_i->nat_tree_lock); |
| 358 | e = __lookup_nat_cache(nm_i, ni->nid); |
| 359 | if (!e) { |
| 360 | e = __init_nat_entry(nm_i, new, NULL, true); |
| 361 | copy_node_info(&e->ni, ni); |
| 362 | f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR); |
| 363 | } else if (new_blkaddr == NEW_ADDR) { |
| 364 | /* |
| 365 | * when nid is reallocated, |
| 366 | * previous nat entry can be remained in nat cache. |
| 367 | * So, reinitialize it with new information. |
| 368 | */ |
| 369 | copy_node_info(&e->ni, ni); |
| 370 | f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR); |
| 371 | } |
| 372 | /* let's free early to reduce memory consumption */ |
| 373 | if (e != new) |
| 374 | __free_nat_entry(new); |
| 375 | |
| 376 | /* sanity check */ |
| 377 | f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr); |
| 378 | f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR && |
| 379 | new_blkaddr == NULL_ADDR); |
| 380 | f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR && |
| 381 | new_blkaddr == NEW_ADDR); |
| 382 | f2fs_bug_on(sbi, is_valid_data_blkaddr(sbi, nat_get_blkaddr(e)) && |
| 383 | new_blkaddr == NEW_ADDR); |
| 384 | |
| 385 | /* increment version no as node is removed */ |
| 386 | if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { |
| 387 | unsigned char version = nat_get_version(e); |
| 388 | nat_set_version(e, inc_node_version(version)); |
| 389 | } |
| 390 | |
| 391 | /* change address */ |
| 392 | nat_set_blkaddr(e, new_blkaddr); |
| 393 | if (!is_valid_data_blkaddr(sbi, new_blkaddr)) |
| 394 | set_nat_flag(e, IS_CHECKPOINTED, false); |
| 395 | __set_nat_cache_dirty(nm_i, e); |
| 396 | |
| 397 | /* update fsync_mark if its inode nat entry is still alive */ |
| 398 | if (ni->nid != ni->ino) |
| 399 | e = __lookup_nat_cache(nm_i, ni->ino); |
| 400 | if (e) { |
| 401 | if (fsync_done && ni->nid == ni->ino) |
| 402 | set_nat_flag(e, HAS_FSYNCED_INODE, true); |
| 403 | set_nat_flag(e, HAS_LAST_FSYNC, fsync_done); |
| 404 | } |
| 405 | up_write(&nm_i->nat_tree_lock); |
| 406 | } |
| 407 | |
| 408 | int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) |
| 409 | { |
| 410 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 411 | int nr = nr_shrink; |
| 412 | |
| 413 | if (!down_write_trylock(&nm_i->nat_tree_lock)) |
| 414 | return 0; |
| 415 | |
| 416 | while (nr_shrink && !list_empty(&nm_i->nat_entries)) { |
| 417 | struct nat_entry *ne; |
| 418 | ne = list_first_entry(&nm_i->nat_entries, |
| 419 | struct nat_entry, list); |
| 420 | __del_from_nat_cache(nm_i, ne); |
| 421 | nr_shrink--; |
| 422 | } |
| 423 | up_write(&nm_i->nat_tree_lock); |
| 424 | return nr - nr_shrink; |
| 425 | } |
| 426 | |
| 427 | /* |
| 428 | * This function always returns success |
| 429 | */ |
| 430 | void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni) |
| 431 | { |
| 432 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 433 | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); |
| 434 | struct f2fs_journal *journal = curseg->journal; |
| 435 | nid_t start_nid = START_NID(nid); |
| 436 | struct f2fs_nat_block *nat_blk; |
| 437 | struct page *page = NULL; |
| 438 | struct f2fs_nat_entry ne; |
| 439 | struct nat_entry *e; |
| 440 | pgoff_t index; |
| 441 | int i; |
| 442 | |
| 443 | ni->nid = nid; |
| 444 | |
| 445 | /* Check nat cache */ |
| 446 | down_read(&nm_i->nat_tree_lock); |
| 447 | e = __lookup_nat_cache(nm_i, nid); |
| 448 | if (e) { |
| 449 | ni->ino = nat_get_ino(e); |
| 450 | ni->blk_addr = nat_get_blkaddr(e); |
| 451 | ni->version = nat_get_version(e); |
| 452 | up_read(&nm_i->nat_tree_lock); |
| 453 | return; |
| 454 | } |
| 455 | |
| 456 | memset(&ne, 0, sizeof(struct f2fs_nat_entry)); |
| 457 | |
| 458 | /* Check current segment summary */ |
| 459 | down_read(&curseg->journal_rwsem); |
| 460 | i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0); |
| 461 | if (i >= 0) { |
| 462 | ne = nat_in_journal(journal, i); |
| 463 | node_info_from_raw_nat(ni, &ne); |
| 464 | } |
| 465 | up_read(&curseg->journal_rwsem); |
| 466 | if (i >= 0) { |
| 467 | up_read(&nm_i->nat_tree_lock); |
| 468 | goto cache; |
| 469 | } |
| 470 | |
| 471 | /* Fill node_info from nat page */ |
| 472 | index = current_nat_addr(sbi, nid); |
| 473 | up_read(&nm_i->nat_tree_lock); |
| 474 | |
| 475 | page = get_meta_page(sbi, index); |
| 476 | nat_blk = (struct f2fs_nat_block *)page_address(page); |
| 477 | ne = nat_blk->entries[nid - start_nid]; |
| 478 | node_info_from_raw_nat(ni, &ne); |
| 479 | f2fs_put_page(page, 1); |
| 480 | cache: |
| 481 | /* cache nat entry */ |
| 482 | cache_nat_entry(sbi, nid, &ne); |
| 483 | } |
| 484 | |
| 485 | /* |
| 486 | * readahead MAX_RA_NODE number of node pages. |
| 487 | */ |
| 488 | static void ra_node_pages(struct page *parent, int start, int n) |
| 489 | { |
| 490 | struct f2fs_sb_info *sbi = F2FS_P_SB(parent); |
| 491 | struct blk_plug plug; |
| 492 | int i, end; |
| 493 | nid_t nid; |
| 494 | |
| 495 | blk_start_plug(&plug); |
| 496 | |
| 497 | /* Then, try readahead for siblings of the desired node */ |
| 498 | end = start + n; |
| 499 | end = min(end, NIDS_PER_BLOCK); |
| 500 | for (i = start; i < end; i++) { |
| 501 | nid = get_nid(parent, i, false); |
| 502 | ra_node_page(sbi, nid); |
| 503 | } |
| 504 | |
| 505 | blk_finish_plug(&plug); |
| 506 | } |
| 507 | |
| 508 | pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs) |
| 509 | { |
| 510 | const long direct_index = ADDRS_PER_INODE(dn->inode); |
| 511 | const long direct_blks = ADDRS_PER_BLOCK; |
| 512 | const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK; |
| 513 | unsigned int skipped_unit = ADDRS_PER_BLOCK; |
| 514 | int cur_level = dn->cur_level; |
| 515 | int max_level = dn->max_level; |
| 516 | pgoff_t base = 0; |
| 517 | |
| 518 | if (!dn->max_level) |
| 519 | return pgofs + 1; |
| 520 | |
| 521 | while (max_level-- > cur_level) |
| 522 | skipped_unit *= NIDS_PER_BLOCK; |
| 523 | |
| 524 | switch (dn->max_level) { |
| 525 | case 3: |
| 526 | base += 2 * indirect_blks; |
| 527 | case 2: |
| 528 | base += 2 * direct_blks; |
| 529 | case 1: |
| 530 | base += direct_index; |
| 531 | break; |
| 532 | default: |
| 533 | f2fs_bug_on(F2FS_I_SB(dn->inode), 1); |
| 534 | } |
| 535 | |
| 536 | return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base; |
| 537 | } |
| 538 | |
| 539 | /* |
| 540 | * The maximum depth is four. |
| 541 | * Offset[0] will have raw inode offset. |
| 542 | */ |
| 543 | static int get_node_path(struct inode *inode, long block, |
| 544 | int offset[4], unsigned int noffset[4]) |
| 545 | { |
| 546 | const long direct_index = ADDRS_PER_INODE(inode); |
| 547 | const long direct_blks = ADDRS_PER_BLOCK; |
| 548 | const long dptrs_per_blk = NIDS_PER_BLOCK; |
| 549 | const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK; |
| 550 | const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; |
| 551 | int n = 0; |
| 552 | int level = 0; |
| 553 | |
| 554 | noffset[0] = 0; |
| 555 | |
| 556 | if (block < direct_index) { |
| 557 | offset[n] = block; |
| 558 | goto got; |
| 559 | } |
| 560 | block -= direct_index; |
| 561 | if (block < direct_blks) { |
| 562 | offset[n++] = NODE_DIR1_BLOCK; |
| 563 | noffset[n] = 1; |
| 564 | offset[n] = block; |
| 565 | level = 1; |
| 566 | goto got; |
| 567 | } |
| 568 | block -= direct_blks; |
| 569 | if (block < direct_blks) { |
| 570 | offset[n++] = NODE_DIR2_BLOCK; |
| 571 | noffset[n] = 2; |
| 572 | offset[n] = block; |
| 573 | level = 1; |
| 574 | goto got; |
| 575 | } |
| 576 | block -= direct_blks; |
| 577 | if (block < indirect_blks) { |
| 578 | offset[n++] = NODE_IND1_BLOCK; |
| 579 | noffset[n] = 3; |
| 580 | offset[n++] = block / direct_blks; |
| 581 | noffset[n] = 4 + offset[n - 1]; |
| 582 | offset[n] = block % direct_blks; |
| 583 | level = 2; |
| 584 | goto got; |
| 585 | } |
| 586 | block -= indirect_blks; |
| 587 | if (block < indirect_blks) { |
| 588 | offset[n++] = NODE_IND2_BLOCK; |
| 589 | noffset[n] = 4 + dptrs_per_blk; |
| 590 | offset[n++] = block / direct_blks; |
| 591 | noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; |
| 592 | offset[n] = block % direct_blks; |
| 593 | level = 2; |
| 594 | goto got; |
| 595 | } |
| 596 | block -= indirect_blks; |
| 597 | if (block < dindirect_blks) { |
| 598 | offset[n++] = NODE_DIND_BLOCK; |
| 599 | noffset[n] = 5 + (dptrs_per_blk * 2); |
| 600 | offset[n++] = block / indirect_blks; |
| 601 | noffset[n] = 6 + (dptrs_per_blk * 2) + |
| 602 | offset[n - 1] * (dptrs_per_blk + 1); |
| 603 | offset[n++] = (block / direct_blks) % dptrs_per_blk; |
| 604 | noffset[n] = 7 + (dptrs_per_blk * 2) + |
| 605 | offset[n - 2] * (dptrs_per_blk + 1) + |
| 606 | offset[n - 1]; |
| 607 | offset[n] = block % direct_blks; |
| 608 | level = 3; |
| 609 | goto got; |
| 610 | } else { |
| 611 | return -E2BIG; |
| 612 | } |
| 613 | got: |
| 614 | return level; |
| 615 | } |
| 616 | |
| 617 | /* |
| 618 | * Caller should call f2fs_put_dnode(dn). |
| 619 | * Also, it should grab and release a rwsem by calling f2fs_lock_op() and |
| 620 | * f2fs_unlock_op() only if ro is not set RDONLY_NODE. |
| 621 | * In the case of RDONLY_NODE, we don't need to care about mutex. |
| 622 | */ |
| 623 | int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) |
| 624 | { |
| 625 | struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); |
| 626 | struct page *npage[4]; |
| 627 | struct page *parent = NULL; |
| 628 | int offset[4]; |
| 629 | unsigned int noffset[4]; |
| 630 | nid_t nids[4]; |
| 631 | int level, i = 0; |
| 632 | int err = 0; |
| 633 | |
| 634 | level = get_node_path(dn->inode, index, offset, noffset); |
| 635 | if (level < 0) |
| 636 | return level; |
| 637 | |
| 638 | nids[0] = dn->inode->i_ino; |
| 639 | npage[0] = dn->inode_page; |
| 640 | |
| 641 | if (!npage[0]) { |
| 642 | npage[0] = get_node_page(sbi, nids[0]); |
| 643 | if (IS_ERR(npage[0])) |
| 644 | return PTR_ERR(npage[0]); |
| 645 | } |
| 646 | |
| 647 | /* if inline_data is set, should not report any block indices */ |
| 648 | if (f2fs_has_inline_data(dn->inode) && index) { |
| 649 | err = -ENOENT; |
| 650 | f2fs_put_page(npage[0], 1); |
| 651 | goto release_out; |
| 652 | } |
| 653 | |
| 654 | parent = npage[0]; |
| 655 | if (level != 0) |
| 656 | nids[1] = get_nid(parent, offset[0], true); |
| 657 | dn->inode_page = npage[0]; |
| 658 | dn->inode_page_locked = true; |
| 659 | |
| 660 | /* get indirect or direct nodes */ |
| 661 | for (i = 1; i <= level; i++) { |
| 662 | bool done = false; |
| 663 | |
| 664 | if (!nids[i] && mode == ALLOC_NODE) { |
| 665 | /* alloc new node */ |
| 666 | if (!alloc_nid(sbi, &(nids[i]))) { |
| 667 | err = -ENOSPC; |
| 668 | goto release_pages; |
| 669 | } |
| 670 | |
| 671 | dn->nid = nids[i]; |
| 672 | npage[i] = new_node_page(dn, noffset[i]); |
| 673 | if (IS_ERR(npage[i])) { |
| 674 | alloc_nid_failed(sbi, nids[i]); |
| 675 | err = PTR_ERR(npage[i]); |
| 676 | goto release_pages; |
| 677 | } |
| 678 | |
| 679 | set_nid(parent, offset[i - 1], nids[i], i == 1); |
| 680 | alloc_nid_done(sbi, nids[i]); |
| 681 | done = true; |
| 682 | } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) { |
| 683 | npage[i] = get_node_page_ra(parent, offset[i - 1]); |
| 684 | if (IS_ERR(npage[i])) { |
| 685 | err = PTR_ERR(npage[i]); |
| 686 | goto release_pages; |
| 687 | } |
| 688 | done = true; |
| 689 | } |
| 690 | if (i == 1) { |
| 691 | dn->inode_page_locked = false; |
| 692 | unlock_page(parent); |
| 693 | } else { |
| 694 | f2fs_put_page(parent, 1); |
| 695 | } |
| 696 | |
| 697 | if (!done) { |
| 698 | npage[i] = get_node_page(sbi, nids[i]); |
| 699 | if (IS_ERR(npage[i])) { |
| 700 | err = PTR_ERR(npage[i]); |
| 701 | f2fs_put_page(npage[0], 0); |
| 702 | goto release_out; |
| 703 | } |
| 704 | } |
| 705 | if (i < level) { |
| 706 | parent = npage[i]; |
| 707 | nids[i + 1] = get_nid(parent, offset[i], false); |
| 708 | } |
| 709 | } |
| 710 | dn->nid = nids[level]; |
| 711 | dn->ofs_in_node = offset[level]; |
| 712 | dn->node_page = npage[level]; |
| 713 | dn->data_blkaddr = datablock_addr(dn->inode, |
| 714 | dn->node_page, dn->ofs_in_node); |
| 715 | return 0; |
| 716 | |
| 717 | release_pages: |
| 718 | f2fs_put_page(parent, 1); |
| 719 | if (i > 1) |
| 720 | f2fs_put_page(npage[0], 0); |
| 721 | release_out: |
| 722 | dn->inode_page = NULL; |
| 723 | dn->node_page = NULL; |
| 724 | if (err == -ENOENT) { |
| 725 | dn->cur_level = i; |
| 726 | dn->max_level = level; |
| 727 | dn->ofs_in_node = offset[level]; |
| 728 | } |
| 729 | return err; |
| 730 | } |
| 731 | |
| 732 | static void truncate_node(struct dnode_of_data *dn) |
| 733 | { |
| 734 | struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); |
| 735 | struct node_info ni; |
| 736 | pgoff_t index; |
| 737 | |
| 738 | get_node_info(sbi, dn->nid, &ni); |
| 739 | |
| 740 | /* Deallocate node address */ |
| 741 | invalidate_blocks(sbi, ni.blk_addr); |
| 742 | dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino); |
| 743 | set_node_addr(sbi, &ni, NULL_ADDR, false); |
| 744 | |
| 745 | if (dn->nid == dn->inode->i_ino) { |
| 746 | remove_orphan_inode(sbi, dn->nid); |
| 747 | dec_valid_inode_count(sbi); |
| 748 | f2fs_inode_synced(dn->inode); |
| 749 | } |
| 750 | |
| 751 | clear_node_page_dirty(dn->node_page); |
| 752 | set_sbi_flag(sbi, SBI_IS_DIRTY); |
| 753 | |
| 754 | index = dn->node_page->index; |
| 755 | f2fs_put_page(dn->node_page, 1); |
| 756 | |
| 757 | invalidate_mapping_pages(NODE_MAPPING(sbi), |
| 758 | index, index); |
| 759 | |
| 760 | dn->node_page = NULL; |
| 761 | trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); |
| 762 | } |
| 763 | |
| 764 | static int truncate_dnode(struct dnode_of_data *dn) |
| 765 | { |
| 766 | struct page *page; |
| 767 | |
| 768 | if (dn->nid == 0) |
| 769 | return 1; |
| 770 | |
| 771 | /* get direct node */ |
| 772 | page = get_node_page(F2FS_I_SB(dn->inode), dn->nid); |
| 773 | if (IS_ERR(page) && PTR_ERR(page) == -ENOENT) |
| 774 | return 1; |
| 775 | else if (IS_ERR(page)) |
| 776 | return PTR_ERR(page); |
| 777 | |
| 778 | /* Make dnode_of_data for parameter */ |
| 779 | dn->node_page = page; |
| 780 | dn->ofs_in_node = 0; |
| 781 | truncate_data_blocks(dn); |
| 782 | truncate_node(dn); |
| 783 | return 1; |
| 784 | } |
| 785 | |
| 786 | static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, |
| 787 | int ofs, int depth) |
| 788 | { |
| 789 | struct dnode_of_data rdn = *dn; |
| 790 | struct page *page; |
| 791 | struct f2fs_node *rn; |
| 792 | nid_t child_nid; |
| 793 | unsigned int child_nofs; |
| 794 | int freed = 0; |
| 795 | int i, ret; |
| 796 | |
| 797 | if (dn->nid == 0) |
| 798 | return NIDS_PER_BLOCK + 1; |
| 799 | |
| 800 | trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); |
| 801 | |
| 802 | page = get_node_page(F2FS_I_SB(dn->inode), dn->nid); |
| 803 | if (IS_ERR(page)) { |
| 804 | trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page)); |
| 805 | return PTR_ERR(page); |
| 806 | } |
| 807 | |
| 808 | ra_node_pages(page, ofs, NIDS_PER_BLOCK); |
| 809 | |
| 810 | rn = F2FS_NODE(page); |
| 811 | if (depth < 3) { |
| 812 | for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { |
| 813 | child_nid = le32_to_cpu(rn->in.nid[i]); |
| 814 | if (child_nid == 0) |
| 815 | continue; |
| 816 | rdn.nid = child_nid; |
| 817 | ret = truncate_dnode(&rdn); |
| 818 | if (ret < 0) |
| 819 | goto out_err; |
| 820 | if (set_nid(page, i, 0, false)) |
| 821 | dn->node_changed = true; |
| 822 | } |
| 823 | } else { |
| 824 | child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; |
| 825 | for (i = ofs; i < NIDS_PER_BLOCK; i++) { |
| 826 | child_nid = le32_to_cpu(rn->in.nid[i]); |
| 827 | if (child_nid == 0) { |
| 828 | child_nofs += NIDS_PER_BLOCK + 1; |
| 829 | continue; |
| 830 | } |
| 831 | rdn.nid = child_nid; |
| 832 | ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); |
| 833 | if (ret == (NIDS_PER_BLOCK + 1)) { |
| 834 | if (set_nid(page, i, 0, false)) |
| 835 | dn->node_changed = true; |
| 836 | child_nofs += ret; |
| 837 | } else if (ret < 0 && ret != -ENOENT) { |
| 838 | goto out_err; |
| 839 | } |
| 840 | } |
| 841 | freed = child_nofs; |
| 842 | } |
| 843 | |
| 844 | if (!ofs) { |
| 845 | /* remove current indirect node */ |
| 846 | dn->node_page = page; |
| 847 | truncate_node(dn); |
| 848 | freed++; |
| 849 | } else { |
| 850 | f2fs_put_page(page, 1); |
| 851 | } |
| 852 | trace_f2fs_truncate_nodes_exit(dn->inode, freed); |
| 853 | return freed; |
| 854 | |
| 855 | out_err: |
| 856 | f2fs_put_page(page, 1); |
| 857 | trace_f2fs_truncate_nodes_exit(dn->inode, ret); |
| 858 | return ret; |
| 859 | } |
| 860 | |
| 861 | static int truncate_partial_nodes(struct dnode_of_data *dn, |
| 862 | struct f2fs_inode *ri, int *offset, int depth) |
| 863 | { |
| 864 | struct page *pages[2]; |
| 865 | nid_t nid[3]; |
| 866 | nid_t child_nid; |
| 867 | int err = 0; |
| 868 | int i; |
| 869 | int idx = depth - 2; |
| 870 | |
| 871 | nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); |
| 872 | if (!nid[0]) |
| 873 | return 0; |
| 874 | |
| 875 | /* get indirect nodes in the path */ |
| 876 | for (i = 0; i < idx + 1; i++) { |
| 877 | /* reference count'll be increased */ |
| 878 | pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]); |
| 879 | if (IS_ERR(pages[i])) { |
| 880 | err = PTR_ERR(pages[i]); |
| 881 | idx = i - 1; |
| 882 | goto fail; |
| 883 | } |
| 884 | nid[i + 1] = get_nid(pages[i], offset[i + 1], false); |
| 885 | } |
| 886 | |
| 887 | ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK); |
| 888 | |
| 889 | /* free direct nodes linked to a partial indirect node */ |
| 890 | for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) { |
| 891 | child_nid = get_nid(pages[idx], i, false); |
| 892 | if (!child_nid) |
| 893 | continue; |
| 894 | dn->nid = child_nid; |
| 895 | err = truncate_dnode(dn); |
| 896 | if (err < 0) |
| 897 | goto fail; |
| 898 | if (set_nid(pages[idx], i, 0, false)) |
| 899 | dn->node_changed = true; |
| 900 | } |
| 901 | |
| 902 | if (offset[idx + 1] == 0) { |
| 903 | dn->node_page = pages[idx]; |
| 904 | dn->nid = nid[idx]; |
| 905 | truncate_node(dn); |
| 906 | } else { |
| 907 | f2fs_put_page(pages[idx], 1); |
| 908 | } |
| 909 | offset[idx]++; |
| 910 | offset[idx + 1] = 0; |
| 911 | idx--; |
| 912 | fail: |
| 913 | for (i = idx; i >= 0; i--) |
| 914 | f2fs_put_page(pages[i], 1); |
| 915 | |
| 916 | trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err); |
| 917 | |
| 918 | return err; |
| 919 | } |
| 920 | |
| 921 | /* |
| 922 | * All the block addresses of data and nodes should be nullified. |
| 923 | */ |
| 924 | int truncate_inode_blocks(struct inode *inode, pgoff_t from) |
| 925 | { |
| 926 | struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| 927 | int err = 0, cont = 1; |
| 928 | int level, offset[4], noffset[4]; |
| 929 | unsigned int nofs = 0; |
| 930 | struct f2fs_inode *ri; |
| 931 | struct dnode_of_data dn; |
| 932 | struct page *page; |
| 933 | |
| 934 | trace_f2fs_truncate_inode_blocks_enter(inode, from); |
| 935 | |
| 936 | level = get_node_path(inode, from, offset, noffset); |
| 937 | if (level < 0) |
| 938 | return level; |
| 939 | |
| 940 | page = get_node_page(sbi, inode->i_ino); |
| 941 | if (IS_ERR(page)) { |
| 942 | trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page)); |
| 943 | return PTR_ERR(page); |
| 944 | } |
| 945 | |
| 946 | set_new_dnode(&dn, inode, page, NULL, 0); |
| 947 | unlock_page(page); |
| 948 | |
| 949 | ri = F2FS_INODE(page); |
| 950 | switch (level) { |
| 951 | case 0: |
| 952 | case 1: |
| 953 | nofs = noffset[1]; |
| 954 | break; |
| 955 | case 2: |
| 956 | nofs = noffset[1]; |
| 957 | if (!offset[level - 1]) |
| 958 | goto skip_partial; |
| 959 | err = truncate_partial_nodes(&dn, ri, offset, level); |
| 960 | if (err < 0 && err != -ENOENT) |
| 961 | goto fail; |
| 962 | nofs += 1 + NIDS_PER_BLOCK; |
| 963 | break; |
| 964 | case 3: |
| 965 | nofs = 5 + 2 * NIDS_PER_BLOCK; |
| 966 | if (!offset[level - 1]) |
| 967 | goto skip_partial; |
| 968 | err = truncate_partial_nodes(&dn, ri, offset, level); |
| 969 | if (err < 0 && err != -ENOENT) |
| 970 | goto fail; |
| 971 | break; |
| 972 | default: |
| 973 | BUG(); |
| 974 | } |
| 975 | |
| 976 | skip_partial: |
| 977 | while (cont) { |
| 978 | dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); |
| 979 | switch (offset[0]) { |
| 980 | case NODE_DIR1_BLOCK: |
| 981 | case NODE_DIR2_BLOCK: |
| 982 | err = truncate_dnode(&dn); |
| 983 | break; |
| 984 | |
| 985 | case NODE_IND1_BLOCK: |
| 986 | case NODE_IND2_BLOCK: |
| 987 | err = truncate_nodes(&dn, nofs, offset[1], 2); |
| 988 | break; |
| 989 | |
| 990 | case NODE_DIND_BLOCK: |
| 991 | err = truncate_nodes(&dn, nofs, offset[1], 3); |
| 992 | cont = 0; |
| 993 | break; |
| 994 | |
| 995 | default: |
| 996 | BUG(); |
| 997 | } |
| 998 | if (err < 0 && err != -ENOENT) |
| 999 | goto fail; |
| 1000 | if (offset[1] == 0 && |
| 1001 | ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) { |
| 1002 | lock_page(page); |
| 1003 | BUG_ON(page->mapping != NODE_MAPPING(sbi)); |
| 1004 | f2fs_wait_on_page_writeback(page, NODE, true); |
| 1005 | ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; |
| 1006 | set_page_dirty(page); |
| 1007 | unlock_page(page); |
| 1008 | } |
| 1009 | offset[1] = 0; |
| 1010 | offset[0]++; |
| 1011 | nofs += err; |
| 1012 | } |
| 1013 | fail: |
| 1014 | f2fs_put_page(page, 0); |
| 1015 | trace_f2fs_truncate_inode_blocks_exit(inode, err); |
| 1016 | return err > 0 ? 0 : err; |
| 1017 | } |
| 1018 | |
| 1019 | /* caller must lock inode page */ |
| 1020 | int truncate_xattr_node(struct inode *inode) |
| 1021 | { |
| 1022 | struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| 1023 | nid_t nid = F2FS_I(inode)->i_xattr_nid; |
| 1024 | struct dnode_of_data dn; |
| 1025 | struct page *npage; |
| 1026 | |
| 1027 | if (!nid) |
| 1028 | return 0; |
| 1029 | |
| 1030 | npage = get_node_page(sbi, nid); |
| 1031 | if (IS_ERR(npage)) |
| 1032 | return PTR_ERR(npage); |
| 1033 | |
| 1034 | f2fs_i_xnid_write(inode, 0); |
| 1035 | |
| 1036 | set_new_dnode(&dn, inode, NULL, npage, nid); |
| 1037 | truncate_node(&dn); |
| 1038 | return 0; |
| 1039 | } |
| 1040 | |
| 1041 | /* |
| 1042 | * Caller should grab and release a rwsem by calling f2fs_lock_op() and |
| 1043 | * f2fs_unlock_op(). |
| 1044 | */ |
| 1045 | int remove_inode_page(struct inode *inode) |
| 1046 | { |
| 1047 | struct dnode_of_data dn; |
| 1048 | int err; |
| 1049 | |
| 1050 | set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); |
| 1051 | err = get_dnode_of_data(&dn, 0, LOOKUP_NODE); |
| 1052 | if (err) |
| 1053 | return err; |
| 1054 | |
| 1055 | err = truncate_xattr_node(inode); |
| 1056 | if (err) { |
| 1057 | f2fs_put_dnode(&dn); |
| 1058 | return err; |
| 1059 | } |
| 1060 | |
| 1061 | /* remove potential inline_data blocks */ |
| 1062 | if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || |
| 1063 | S_ISLNK(inode->i_mode)) |
| 1064 | truncate_data_blocks_range(&dn, 1); |
| 1065 | |
| 1066 | /* 0 is possible, after f2fs_new_inode() has failed */ |
| 1067 | f2fs_bug_on(F2FS_I_SB(inode), |
| 1068 | inode->i_blocks != 0 && inode->i_blocks != 8); |
| 1069 | |
| 1070 | /* will put inode & node pages */ |
| 1071 | truncate_node(&dn); |
| 1072 | return 0; |
| 1073 | } |
| 1074 | |
| 1075 | struct page *new_inode_page(struct inode *inode) |
| 1076 | { |
| 1077 | struct dnode_of_data dn; |
| 1078 | |
| 1079 | /* allocate inode page for new inode */ |
| 1080 | set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); |
| 1081 | |
| 1082 | /* caller should f2fs_put_page(page, 1); */ |
| 1083 | return new_node_page(&dn, 0); |
| 1084 | } |
| 1085 | |
| 1086 | struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs) |
| 1087 | { |
| 1088 | struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); |
| 1089 | struct node_info new_ni; |
| 1090 | struct page *page; |
| 1091 | int err; |
| 1092 | |
| 1093 | if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) |
| 1094 | return ERR_PTR(-EPERM); |
| 1095 | |
| 1096 | page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false); |
| 1097 | if (!page) |
| 1098 | return ERR_PTR(-ENOMEM); |
| 1099 | |
| 1100 | if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs)))) |
| 1101 | goto fail; |
| 1102 | |
| 1103 | #ifdef CONFIG_F2FS_CHECK_FS |
| 1104 | get_node_info(sbi, dn->nid, &new_ni); |
| 1105 | f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR); |
| 1106 | #endif |
| 1107 | new_ni.nid = dn->nid; |
| 1108 | new_ni.ino = dn->inode->i_ino; |
| 1109 | new_ni.blk_addr = NULL_ADDR; |
| 1110 | new_ni.flag = 0; |
| 1111 | new_ni.version = 0; |
| 1112 | set_node_addr(sbi, &new_ni, NEW_ADDR, false); |
| 1113 | |
| 1114 | f2fs_wait_on_page_writeback(page, NODE, true); |
| 1115 | fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); |
| 1116 | set_cold_node(page, S_ISDIR(dn->inode->i_mode)); |
| 1117 | if (!PageUptodate(page)) |
| 1118 | SetPageUptodate(page); |
| 1119 | if (set_page_dirty(page)) |
| 1120 | dn->node_changed = true; |
| 1121 | |
| 1122 | if (f2fs_has_xattr_block(ofs)) |
| 1123 | f2fs_i_xnid_write(dn->inode, dn->nid); |
| 1124 | |
| 1125 | if (ofs == 0) |
| 1126 | inc_valid_inode_count(sbi); |
| 1127 | return page; |
| 1128 | |
| 1129 | fail: |
| 1130 | clear_node_page_dirty(page); |
| 1131 | f2fs_put_page(page, 1); |
| 1132 | return ERR_PTR(err); |
| 1133 | } |
| 1134 | |
| 1135 | /* |
| 1136 | * Caller should do after getting the following values. |
| 1137 | * 0: f2fs_put_page(page, 0) |
| 1138 | * LOCKED_PAGE or error: f2fs_put_page(page, 1) |
| 1139 | */ |
| 1140 | static int read_node_page(struct page *page, int op_flags) |
| 1141 | { |
| 1142 | struct f2fs_sb_info *sbi = F2FS_P_SB(page); |
| 1143 | struct node_info ni; |
| 1144 | struct f2fs_io_info fio = { |
| 1145 | .sbi = sbi, |
| 1146 | .type = NODE, |
| 1147 | .op = REQ_OP_READ, |
| 1148 | .op_flags = op_flags, |
| 1149 | .page = page, |
| 1150 | .encrypted_page = NULL, |
| 1151 | }; |
| 1152 | |
| 1153 | if (PageUptodate(page)) |
| 1154 | return LOCKED_PAGE; |
| 1155 | |
| 1156 | get_node_info(sbi, page->index, &ni); |
| 1157 | |
| 1158 | if (unlikely(ni.blk_addr == NULL_ADDR)) { |
| 1159 | ClearPageUptodate(page); |
| 1160 | return -ENOENT; |
| 1161 | } |
| 1162 | |
| 1163 | fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr; |
| 1164 | return f2fs_submit_page_bio(&fio); |
| 1165 | } |
| 1166 | |
| 1167 | /* |
| 1168 | * Readahead a node page |
| 1169 | */ |
| 1170 | void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) |
| 1171 | { |
| 1172 | struct page *apage; |
| 1173 | int err; |
| 1174 | |
| 1175 | if (!nid) |
| 1176 | return; |
| 1177 | if (check_nid_range(sbi, nid)) |
| 1178 | return; |
| 1179 | |
| 1180 | rcu_read_lock(); |
| 1181 | apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid); |
| 1182 | rcu_read_unlock(); |
| 1183 | if (apage) |
| 1184 | return; |
| 1185 | |
| 1186 | apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); |
| 1187 | if (!apage) |
| 1188 | return; |
| 1189 | |
| 1190 | err = read_node_page(apage, REQ_RAHEAD); |
| 1191 | f2fs_put_page(apage, err ? 1 : 0); |
| 1192 | } |
| 1193 | |
| 1194 | static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid, |
| 1195 | struct page *parent, int start) |
| 1196 | { |
| 1197 | struct page *page; |
| 1198 | int err; |
| 1199 | |
| 1200 | if (!nid) |
| 1201 | return ERR_PTR(-ENOENT); |
| 1202 | if (check_nid_range(sbi, nid)) |
| 1203 | return ERR_PTR(-EINVAL); |
| 1204 | repeat: |
| 1205 | page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); |
| 1206 | if (!page) |
| 1207 | return ERR_PTR(-ENOMEM); |
| 1208 | |
| 1209 | err = read_node_page(page, 0); |
| 1210 | if (err < 0) { |
| 1211 | f2fs_put_page(page, 1); |
| 1212 | return ERR_PTR(err); |
| 1213 | } else if (err == LOCKED_PAGE) { |
| 1214 | err = 0; |
| 1215 | goto page_hit; |
| 1216 | } |
| 1217 | |
| 1218 | if (parent) |
| 1219 | ra_node_pages(parent, start + 1, MAX_RA_NODE); |
| 1220 | |
| 1221 | lock_page(page); |
| 1222 | |
| 1223 | if (unlikely(page->mapping != NODE_MAPPING(sbi))) { |
| 1224 | f2fs_put_page(page, 1); |
| 1225 | goto repeat; |
| 1226 | } |
| 1227 | |
| 1228 | if (unlikely(!PageUptodate(page))) { |
| 1229 | err = -EIO; |
| 1230 | goto out_err; |
| 1231 | } |
| 1232 | |
| 1233 | if (!f2fs_inode_chksum_verify(sbi, page)) { |
| 1234 | err = -EFSBADCRC; |
| 1235 | goto out_err; |
| 1236 | } |
| 1237 | page_hit: |
| 1238 | if(unlikely(nid != nid_of_node(page))) { |
| 1239 | f2fs_msg(sbi->sb, KERN_WARNING, "inconsistent node block, " |
| 1240 | "nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]", |
| 1241 | nid, nid_of_node(page), ino_of_node(page), |
| 1242 | ofs_of_node(page), cpver_of_node(page), |
| 1243 | next_blkaddr_of_node(page)); |
| 1244 | err = -EINVAL; |
| 1245 | out_err: |
| 1246 | ClearPageUptodate(page); |
| 1247 | f2fs_put_page(page, 1); |
| 1248 | return ERR_PTR(err); |
| 1249 | } |
| 1250 | return page; |
| 1251 | } |
| 1252 | |
| 1253 | struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) |
| 1254 | { |
| 1255 | return __get_node_page(sbi, nid, NULL, 0); |
| 1256 | } |
| 1257 | |
| 1258 | struct page *get_node_page_ra(struct page *parent, int start) |
| 1259 | { |
| 1260 | struct f2fs_sb_info *sbi = F2FS_P_SB(parent); |
| 1261 | nid_t nid = get_nid(parent, start, false); |
| 1262 | |
| 1263 | return __get_node_page(sbi, nid, parent, start); |
| 1264 | } |
| 1265 | |
| 1266 | static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino) |
| 1267 | { |
| 1268 | struct inode *inode; |
| 1269 | struct page *page; |
| 1270 | int ret; |
| 1271 | |
| 1272 | /* should flush inline_data before evict_inode */ |
| 1273 | inode = ilookup(sbi->sb, ino); |
| 1274 | if (!inode) |
| 1275 | return; |
| 1276 | |
| 1277 | page = f2fs_pagecache_get_page(inode->i_mapping, 0, |
| 1278 | FGP_LOCK|FGP_NOWAIT, 0); |
| 1279 | if (!page) |
| 1280 | goto iput_out; |
| 1281 | |
| 1282 | if (!PageUptodate(page)) |
| 1283 | goto page_out; |
| 1284 | |
| 1285 | if (!PageDirty(page)) |
| 1286 | goto page_out; |
| 1287 | |
| 1288 | if (!clear_page_dirty_for_io(page)) |
| 1289 | goto page_out; |
| 1290 | |
| 1291 | ret = f2fs_write_inline_data(inode, page); |
| 1292 | inode_dec_dirty_pages(inode); |
| 1293 | remove_dirty_inode(inode); |
| 1294 | if (ret) |
| 1295 | set_page_dirty(page); |
| 1296 | page_out: |
| 1297 | f2fs_put_page(page, 1); |
| 1298 | iput_out: |
| 1299 | iput(inode); |
| 1300 | } |
| 1301 | |
| 1302 | static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino) |
| 1303 | { |
| 1304 | pgoff_t index, end; |
| 1305 | struct pagevec pvec; |
| 1306 | struct page *last_page = NULL; |
| 1307 | |
| 1308 | pagevec_init(&pvec, 0); |
| 1309 | index = 0; |
| 1310 | end = ULONG_MAX; |
| 1311 | |
| 1312 | while (index <= end) { |
| 1313 | int i, nr_pages; |
| 1314 | nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, |
| 1315 | PAGECACHE_TAG_DIRTY, |
| 1316 | min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); |
| 1317 | if (nr_pages == 0) |
| 1318 | break; |
| 1319 | |
| 1320 | for (i = 0; i < nr_pages; i++) { |
| 1321 | struct page *page = pvec.pages[i]; |
| 1322 | |
| 1323 | if (unlikely(f2fs_cp_error(sbi))) { |
| 1324 | f2fs_put_page(last_page, 0); |
| 1325 | pagevec_release(&pvec); |
| 1326 | return ERR_PTR(-EIO); |
| 1327 | } |
| 1328 | |
| 1329 | if (!IS_DNODE(page) || !is_cold_node(page)) |
| 1330 | continue; |
| 1331 | if (ino_of_node(page) != ino) |
| 1332 | continue; |
| 1333 | |
| 1334 | lock_page(page); |
| 1335 | |
| 1336 | if (unlikely(page->mapping != NODE_MAPPING(sbi))) { |
| 1337 | continue_unlock: |
| 1338 | unlock_page(page); |
| 1339 | continue; |
| 1340 | } |
| 1341 | if (ino_of_node(page) != ino) |
| 1342 | goto continue_unlock; |
| 1343 | |
| 1344 | if (!PageDirty(page)) { |
| 1345 | /* someone wrote it for us */ |
| 1346 | goto continue_unlock; |
| 1347 | } |
| 1348 | |
| 1349 | if (last_page) |
| 1350 | f2fs_put_page(last_page, 0); |
| 1351 | |
| 1352 | get_page(page); |
| 1353 | last_page = page; |
| 1354 | unlock_page(page); |
| 1355 | } |
| 1356 | pagevec_release(&pvec); |
| 1357 | cond_resched(); |
| 1358 | } |
| 1359 | return last_page; |
| 1360 | } |
| 1361 | |
| 1362 | static int __write_node_page(struct page *page, bool atomic, bool *submitted, |
| 1363 | struct writeback_control *wbc, bool do_balance, |
| 1364 | enum iostat_type io_type) |
| 1365 | { |
| 1366 | struct f2fs_sb_info *sbi = F2FS_P_SB(page); |
| 1367 | nid_t nid; |
| 1368 | struct node_info ni; |
| 1369 | struct f2fs_io_info fio = { |
| 1370 | .sbi = sbi, |
| 1371 | .ino = ino_of_node(page), |
| 1372 | .type = NODE, |
| 1373 | .op = REQ_OP_WRITE, |
| 1374 | .op_flags = wbc_to_write_flags(wbc), |
| 1375 | .page = page, |
| 1376 | .encrypted_page = NULL, |
| 1377 | .submitted = false, |
| 1378 | .io_type = io_type, |
| 1379 | .io_wbc = wbc, |
| 1380 | }; |
| 1381 | |
| 1382 | trace_f2fs_writepage(page, NODE); |
| 1383 | |
| 1384 | if (unlikely(f2fs_cp_error(sbi))) { |
| 1385 | dec_page_count(sbi, F2FS_DIRTY_NODES); |
| 1386 | unlock_page(page); |
| 1387 | return 0; |
| 1388 | } |
| 1389 | |
| 1390 | if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) |
| 1391 | goto redirty_out; |
| 1392 | |
| 1393 | /* get old block addr of this node page */ |
| 1394 | nid = nid_of_node(page); |
| 1395 | f2fs_bug_on(sbi, page->index != nid); |
| 1396 | |
| 1397 | if (wbc->for_reclaim) { |
| 1398 | if (!down_read_trylock(&sbi->node_write)) |
| 1399 | goto redirty_out; |
| 1400 | } else { |
| 1401 | down_read(&sbi->node_write); |
| 1402 | } |
| 1403 | |
| 1404 | get_node_info(sbi, nid, &ni); |
| 1405 | |
| 1406 | /* This page is already truncated */ |
| 1407 | if (unlikely(ni.blk_addr == NULL_ADDR)) { |
| 1408 | ClearPageUptodate(page); |
| 1409 | dec_page_count(sbi, F2FS_DIRTY_NODES); |
| 1410 | up_read(&sbi->node_write); |
| 1411 | unlock_page(page); |
| 1412 | return 0; |
| 1413 | } |
| 1414 | |
| 1415 | if (__is_valid_data_blkaddr(ni.blk_addr) && |
| 1416 | !f2fs_is_valid_blkaddr(sbi, ni.blk_addr, DATA_GENERIC)) { |
| 1417 | up_read(&sbi->node_write); |
| 1418 | goto redirty_out; |
| 1419 | } |
| 1420 | |
| 1421 | if (atomic && !test_opt(sbi, NOBARRIER)) |
| 1422 | fio.op_flags |= REQ_PREFLUSH | REQ_FUA; |
| 1423 | |
| 1424 | set_page_writeback(page); |
| 1425 | ClearPageError(page); |
| 1426 | fio.old_blkaddr = ni.blk_addr; |
| 1427 | write_node_page(nid, &fio); |
| 1428 | set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page)); |
| 1429 | dec_page_count(sbi, F2FS_DIRTY_NODES); |
| 1430 | up_read(&sbi->node_write); |
| 1431 | |
| 1432 | if (wbc->for_reclaim) { |
| 1433 | f2fs_submit_merged_write_cond(sbi, page->mapping->host, 0, |
| 1434 | page->index, NODE); |
| 1435 | submitted = NULL; |
| 1436 | } |
| 1437 | |
| 1438 | unlock_page(page); |
| 1439 | |
| 1440 | if (unlikely(f2fs_cp_error(sbi))) { |
| 1441 | f2fs_submit_merged_write(sbi, NODE); |
| 1442 | submitted = NULL; |
| 1443 | } |
| 1444 | if (submitted) |
| 1445 | *submitted = fio.submitted; |
| 1446 | |
| 1447 | if (do_balance) |
| 1448 | f2fs_balance_fs(sbi, false); |
| 1449 | return 0; |
| 1450 | |
| 1451 | redirty_out: |
| 1452 | redirty_page_for_writepage(wbc, page); |
| 1453 | return AOP_WRITEPAGE_ACTIVATE; |
| 1454 | } |
| 1455 | |
| 1456 | void move_node_page(struct page *node_page, int gc_type) |
| 1457 | { |
| 1458 | if (gc_type == FG_GC) { |
| 1459 | struct writeback_control wbc = { |
| 1460 | .sync_mode = WB_SYNC_ALL, |
| 1461 | .nr_to_write = 1, |
| 1462 | .for_reclaim = 0, |
| 1463 | }; |
| 1464 | |
| 1465 | set_page_dirty(node_page); |
| 1466 | f2fs_wait_on_page_writeback(node_page, NODE, true); |
| 1467 | |
| 1468 | f2fs_bug_on(F2FS_P_SB(node_page), PageWriteback(node_page)); |
| 1469 | if (!clear_page_dirty_for_io(node_page)) |
| 1470 | goto out_page; |
| 1471 | |
| 1472 | if (__write_node_page(node_page, false, NULL, |
| 1473 | &wbc, false, FS_GC_NODE_IO)) |
| 1474 | unlock_page(node_page); |
| 1475 | goto release_page; |
| 1476 | } else { |
| 1477 | /* set page dirty and write it */ |
| 1478 | if (!PageWriteback(node_page)) |
| 1479 | set_page_dirty(node_page); |
| 1480 | } |
| 1481 | out_page: |
| 1482 | unlock_page(node_page); |
| 1483 | release_page: |
| 1484 | f2fs_put_page(node_page, 0); |
| 1485 | } |
| 1486 | |
| 1487 | static int f2fs_write_node_page(struct page *page, |
| 1488 | struct writeback_control *wbc) |
| 1489 | { |
| 1490 | return __write_node_page(page, false, NULL, wbc, false, FS_NODE_IO); |
| 1491 | } |
| 1492 | |
| 1493 | int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, |
| 1494 | struct writeback_control *wbc, bool atomic) |
| 1495 | { |
| 1496 | pgoff_t index, end; |
| 1497 | pgoff_t last_idx = ULONG_MAX; |
| 1498 | struct pagevec pvec; |
| 1499 | int ret = 0; |
| 1500 | struct page *last_page = NULL; |
| 1501 | bool marked = false; |
| 1502 | nid_t ino = inode->i_ino; |
| 1503 | |
| 1504 | if (atomic) { |
| 1505 | last_page = last_fsync_dnode(sbi, ino); |
| 1506 | if (IS_ERR_OR_NULL(last_page)) |
| 1507 | return PTR_ERR_OR_ZERO(last_page); |
| 1508 | } |
| 1509 | retry: |
| 1510 | pagevec_init(&pvec, 0); |
| 1511 | index = 0; |
| 1512 | end = ULONG_MAX; |
| 1513 | |
| 1514 | while (index <= end) { |
| 1515 | int i, nr_pages; |
| 1516 | nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, |
| 1517 | PAGECACHE_TAG_DIRTY, |
| 1518 | min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); |
| 1519 | if (nr_pages == 0) |
| 1520 | break; |
| 1521 | |
| 1522 | for (i = 0; i < nr_pages; i++) { |
| 1523 | struct page *page = pvec.pages[i]; |
| 1524 | bool submitted = false; |
| 1525 | |
| 1526 | if (unlikely(f2fs_cp_error(sbi))) { |
| 1527 | f2fs_put_page(last_page, 0); |
| 1528 | pagevec_release(&pvec); |
| 1529 | ret = -EIO; |
| 1530 | goto out; |
| 1531 | } |
| 1532 | |
| 1533 | if (!IS_DNODE(page) || !is_cold_node(page)) |
| 1534 | continue; |
| 1535 | if (ino_of_node(page) != ino) |
| 1536 | continue; |
| 1537 | |
| 1538 | lock_page(page); |
| 1539 | |
| 1540 | if (unlikely(page->mapping != NODE_MAPPING(sbi))) { |
| 1541 | continue_unlock: |
| 1542 | unlock_page(page); |
| 1543 | continue; |
| 1544 | } |
| 1545 | if (ino_of_node(page) != ino) |
| 1546 | goto continue_unlock; |
| 1547 | |
| 1548 | if (!PageDirty(page) && page != last_page) { |
| 1549 | /* someone wrote it for us */ |
| 1550 | goto continue_unlock; |
| 1551 | } |
| 1552 | |
| 1553 | f2fs_wait_on_page_writeback(page, NODE, true); |
| 1554 | BUG_ON(PageWriteback(page)); |
| 1555 | |
| 1556 | set_fsync_mark(page, 0); |
| 1557 | set_dentry_mark(page, 0); |
| 1558 | |
| 1559 | if (!atomic || page == last_page) { |
| 1560 | set_fsync_mark(page, 1); |
| 1561 | if (IS_INODE(page)) { |
| 1562 | if (is_inode_flag_set(inode, |
| 1563 | FI_DIRTY_INODE)) |
| 1564 | update_inode(inode, page); |
| 1565 | set_dentry_mark(page, |
| 1566 | need_dentry_mark(sbi, ino)); |
| 1567 | } |
| 1568 | /* may be written by other thread */ |
| 1569 | if (!PageDirty(page)) |
| 1570 | set_page_dirty(page); |
| 1571 | } |
| 1572 | |
| 1573 | if (!clear_page_dirty_for_io(page)) |
| 1574 | goto continue_unlock; |
| 1575 | |
| 1576 | ret = __write_node_page(page, atomic && |
| 1577 | page == last_page, |
| 1578 | &submitted, wbc, true, |
| 1579 | FS_NODE_IO); |
| 1580 | if (ret) { |
| 1581 | unlock_page(page); |
| 1582 | f2fs_put_page(last_page, 0); |
| 1583 | break; |
| 1584 | } else if (submitted) { |
| 1585 | last_idx = page->index; |
| 1586 | } |
| 1587 | |
| 1588 | if (page == last_page) { |
| 1589 | f2fs_put_page(page, 0); |
| 1590 | marked = true; |
| 1591 | break; |
| 1592 | } |
| 1593 | } |
| 1594 | pagevec_release(&pvec); |
| 1595 | cond_resched(); |
| 1596 | |
| 1597 | if (ret || marked) |
| 1598 | break; |
| 1599 | } |
| 1600 | if (!ret && atomic && !marked) { |
| 1601 | f2fs_msg(sbi->sb, KERN_DEBUG, |
| 1602 | "Retry to write fsync mark: ino=%u, idx=%lx", |
| 1603 | ino, last_page->index); |
| 1604 | lock_page(last_page); |
| 1605 | f2fs_wait_on_page_writeback(last_page, NODE, true); |
| 1606 | set_page_dirty(last_page); |
| 1607 | unlock_page(last_page); |
| 1608 | goto retry; |
| 1609 | } |
| 1610 | out: |
| 1611 | if (last_idx != ULONG_MAX) |
| 1612 | f2fs_submit_merged_write_cond(sbi, NULL, ino, last_idx, NODE); |
| 1613 | return ret ? -EIO: 0; |
| 1614 | } |
| 1615 | |
| 1616 | int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc, |
| 1617 | bool do_balance, enum iostat_type io_type) |
| 1618 | { |
| 1619 | pgoff_t index, end; |
| 1620 | struct pagevec pvec; |
| 1621 | int step = 0; |
| 1622 | int nwritten = 0; |
| 1623 | int ret = 0; |
| 1624 | |
| 1625 | pagevec_init(&pvec, 0); |
| 1626 | |
| 1627 | next_step: |
| 1628 | index = 0; |
| 1629 | end = ULONG_MAX; |
| 1630 | |
| 1631 | while (index <= end) { |
| 1632 | int i, nr_pages; |
| 1633 | nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, |
| 1634 | PAGECACHE_TAG_DIRTY, |
| 1635 | min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); |
| 1636 | if (nr_pages == 0) |
| 1637 | break; |
| 1638 | |
| 1639 | for (i = 0; i < nr_pages; i++) { |
| 1640 | struct page *page = pvec.pages[i]; |
| 1641 | bool submitted = false; |
| 1642 | |
| 1643 | /* |
| 1644 | * flushing sequence with step: |
| 1645 | * 0. indirect nodes |
| 1646 | * 1. dentry dnodes |
| 1647 | * 2. file dnodes |
| 1648 | */ |
| 1649 | if (step == 0 && IS_DNODE(page)) |
| 1650 | continue; |
| 1651 | if (step == 1 && (!IS_DNODE(page) || |
| 1652 | is_cold_node(page))) |
| 1653 | continue; |
| 1654 | if (step == 2 && (!IS_DNODE(page) || |
| 1655 | !is_cold_node(page))) |
| 1656 | continue; |
| 1657 | lock_node: |
| 1658 | if (wbc->sync_mode == WB_SYNC_ALL) |
| 1659 | lock_page(page); |
| 1660 | else if (!trylock_page(page)) |
| 1661 | continue; |
| 1662 | |
| 1663 | if (unlikely(page->mapping != NODE_MAPPING(sbi))) { |
| 1664 | continue_unlock: |
| 1665 | unlock_page(page); |
| 1666 | continue; |
| 1667 | } |
| 1668 | |
| 1669 | if (!PageDirty(page)) { |
| 1670 | /* someone wrote it for us */ |
| 1671 | goto continue_unlock; |
| 1672 | } |
| 1673 | |
| 1674 | /* flush inline_data */ |
| 1675 | if (is_inline_node(page)) { |
| 1676 | clear_inline_node(page); |
| 1677 | unlock_page(page); |
| 1678 | flush_inline_data(sbi, ino_of_node(page)); |
| 1679 | goto lock_node; |
| 1680 | } |
| 1681 | |
| 1682 | f2fs_wait_on_page_writeback(page, NODE, true); |
| 1683 | |
| 1684 | BUG_ON(PageWriteback(page)); |
| 1685 | if (!clear_page_dirty_for_io(page)) |
| 1686 | goto continue_unlock; |
| 1687 | |
| 1688 | set_fsync_mark(page, 0); |
| 1689 | set_dentry_mark(page, 0); |
| 1690 | |
| 1691 | ret = __write_node_page(page, false, &submitted, |
| 1692 | wbc, do_balance, io_type); |
| 1693 | if (ret) |
| 1694 | unlock_page(page); |
| 1695 | else if (submitted) |
| 1696 | nwritten++; |
| 1697 | |
| 1698 | if (--wbc->nr_to_write == 0) |
| 1699 | break; |
| 1700 | } |
| 1701 | pagevec_release(&pvec); |
| 1702 | cond_resched(); |
| 1703 | |
| 1704 | if (wbc->nr_to_write == 0) { |
| 1705 | step = 2; |
| 1706 | break; |
| 1707 | } |
| 1708 | } |
| 1709 | |
| 1710 | if (step < 2) { |
| 1711 | step++; |
| 1712 | goto next_step; |
| 1713 | } |
| 1714 | |
| 1715 | if (nwritten) |
| 1716 | f2fs_submit_merged_write(sbi, NODE); |
| 1717 | |
| 1718 | if (unlikely(f2fs_cp_error(sbi))) |
| 1719 | return -EIO; |
| 1720 | return ret; |
| 1721 | } |
| 1722 | |
| 1723 | int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino) |
| 1724 | { |
| 1725 | pgoff_t index = 0, end = ULONG_MAX; |
| 1726 | struct pagevec pvec; |
| 1727 | int ret2, ret = 0; |
| 1728 | |
| 1729 | pagevec_init(&pvec, 0); |
| 1730 | |
| 1731 | while (index <= end) { |
| 1732 | int i, nr_pages; |
| 1733 | nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, |
| 1734 | PAGECACHE_TAG_WRITEBACK, |
| 1735 | min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); |
| 1736 | if (nr_pages == 0) |
| 1737 | break; |
| 1738 | |
| 1739 | for (i = 0; i < nr_pages; i++) { |
| 1740 | struct page *page = pvec.pages[i]; |
| 1741 | |
| 1742 | /* until radix tree lookup accepts end_index */ |
| 1743 | if (unlikely(page->index > end)) |
| 1744 | continue; |
| 1745 | |
| 1746 | if (ino && ino_of_node(page) == ino) { |
| 1747 | f2fs_wait_on_page_writeback(page, NODE, true); |
| 1748 | if (TestClearPageError(page)) |
| 1749 | ret = -EIO; |
| 1750 | } |
| 1751 | } |
| 1752 | pagevec_release(&pvec); |
| 1753 | cond_resched(); |
| 1754 | } |
| 1755 | |
| 1756 | ret2 = filemap_check_errors(NODE_MAPPING(sbi)); |
| 1757 | if (!ret) |
| 1758 | ret = ret2; |
| 1759 | return ret; |
| 1760 | } |
| 1761 | |
| 1762 | static int f2fs_write_node_pages(struct address_space *mapping, |
| 1763 | struct writeback_control *wbc) |
| 1764 | { |
| 1765 | struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); |
| 1766 | struct blk_plug plug; |
| 1767 | long diff; |
| 1768 | |
| 1769 | if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) |
| 1770 | goto skip_write; |
| 1771 | |
| 1772 | /* balancing f2fs's metadata in background */ |
| 1773 | f2fs_balance_fs_bg(sbi); |
| 1774 | |
| 1775 | /* collect a number of dirty node pages and write together */ |
| 1776 | if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE)) |
| 1777 | goto skip_write; |
| 1778 | |
| 1779 | trace_f2fs_writepages(mapping->host, wbc, NODE); |
| 1780 | |
| 1781 | diff = nr_pages_to_write(sbi, NODE, wbc); |
| 1782 | wbc->sync_mode = WB_SYNC_NONE; |
| 1783 | blk_start_plug(&plug); |
| 1784 | sync_node_pages(sbi, wbc, true, FS_NODE_IO); |
| 1785 | blk_finish_plug(&plug); |
| 1786 | wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff); |
| 1787 | return 0; |
| 1788 | |
| 1789 | skip_write: |
| 1790 | wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES); |
| 1791 | trace_f2fs_writepages(mapping->host, wbc, NODE); |
| 1792 | return 0; |
| 1793 | } |
| 1794 | |
| 1795 | static int f2fs_set_node_page_dirty(struct page *page) |
| 1796 | { |
| 1797 | trace_f2fs_set_page_dirty(page, NODE); |
| 1798 | |
| 1799 | if (!PageUptodate(page)) |
| 1800 | SetPageUptodate(page); |
| 1801 | if (!PageDirty(page)) { |
| 1802 | __set_page_dirty_nobuffers(page); |
| 1803 | inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES); |
| 1804 | SetPagePrivate(page); |
| 1805 | f2fs_trace_pid(page); |
| 1806 | return 1; |
| 1807 | } |
| 1808 | return 0; |
| 1809 | } |
| 1810 | |
| 1811 | /* |
| 1812 | * Structure of the f2fs node operations |
| 1813 | */ |
| 1814 | const struct address_space_operations f2fs_node_aops = { |
| 1815 | .writepage = f2fs_write_node_page, |
| 1816 | .writepages = f2fs_write_node_pages, |
| 1817 | .set_page_dirty = f2fs_set_node_page_dirty, |
| 1818 | .invalidatepage = f2fs_invalidate_page, |
| 1819 | .releasepage = f2fs_release_page, |
| 1820 | #ifdef CONFIG_MIGRATION |
| 1821 | .migratepage = f2fs_migrate_page, |
| 1822 | #endif |
| 1823 | }; |
| 1824 | |
| 1825 | static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i, |
| 1826 | nid_t n) |
| 1827 | { |
| 1828 | return radix_tree_lookup(&nm_i->free_nid_root, n); |
| 1829 | } |
| 1830 | |
| 1831 | static int __insert_free_nid(struct f2fs_sb_info *sbi, |
| 1832 | struct free_nid *i, enum nid_state state) |
| 1833 | { |
| 1834 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 1835 | |
| 1836 | int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i); |
| 1837 | if (err) |
| 1838 | return err; |
| 1839 | |
| 1840 | f2fs_bug_on(sbi, state != i->state); |
| 1841 | nm_i->nid_cnt[state]++; |
| 1842 | if (state == FREE_NID) |
| 1843 | list_add_tail(&i->list, &nm_i->free_nid_list); |
| 1844 | return 0; |
| 1845 | } |
| 1846 | |
| 1847 | static void __remove_free_nid(struct f2fs_sb_info *sbi, |
| 1848 | struct free_nid *i, enum nid_state state) |
| 1849 | { |
| 1850 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 1851 | |
| 1852 | f2fs_bug_on(sbi, state != i->state); |
| 1853 | nm_i->nid_cnt[state]--; |
| 1854 | if (state == FREE_NID) |
| 1855 | list_del(&i->list); |
| 1856 | radix_tree_delete(&nm_i->free_nid_root, i->nid); |
| 1857 | } |
| 1858 | |
| 1859 | static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i, |
| 1860 | enum nid_state org_state, enum nid_state dst_state) |
| 1861 | { |
| 1862 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 1863 | |
| 1864 | f2fs_bug_on(sbi, org_state != i->state); |
| 1865 | i->state = dst_state; |
| 1866 | nm_i->nid_cnt[org_state]--; |
| 1867 | nm_i->nid_cnt[dst_state]++; |
| 1868 | |
| 1869 | switch (dst_state) { |
| 1870 | case PREALLOC_NID: |
| 1871 | list_del(&i->list); |
| 1872 | break; |
| 1873 | case FREE_NID: |
| 1874 | list_add_tail(&i->list, &nm_i->free_nid_list); |
| 1875 | break; |
| 1876 | default: |
| 1877 | BUG_ON(1); |
| 1878 | } |
| 1879 | } |
| 1880 | |
| 1881 | static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid, |
| 1882 | bool set, bool build) |
| 1883 | { |
| 1884 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 1885 | unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid); |
| 1886 | unsigned int nid_ofs = nid - START_NID(nid); |
| 1887 | |
| 1888 | if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap)) |
| 1889 | return; |
| 1890 | |
| 1891 | if (set) { |
| 1892 | if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) |
| 1893 | return; |
| 1894 | __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); |
| 1895 | nm_i->free_nid_count[nat_ofs]++; |
| 1896 | } else { |
| 1897 | if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) |
| 1898 | return; |
| 1899 | __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); |
| 1900 | if (!build) |
| 1901 | nm_i->free_nid_count[nat_ofs]--; |
| 1902 | } |
| 1903 | } |
| 1904 | |
| 1905 | /* return if the nid is recognized as free */ |
| 1906 | static bool add_free_nid(struct f2fs_sb_info *sbi, |
| 1907 | nid_t nid, bool build, bool update) |
| 1908 | { |
| 1909 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 1910 | struct free_nid *i, *e; |
| 1911 | struct nat_entry *ne; |
| 1912 | int err = -EINVAL; |
| 1913 | bool ret = false; |
| 1914 | |
| 1915 | /* 0 nid should not be used */ |
| 1916 | if (unlikely(nid == 0)) |
| 1917 | return false; |
| 1918 | |
| 1919 | i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS); |
| 1920 | i->nid = nid; |
| 1921 | i->state = FREE_NID; |
| 1922 | |
| 1923 | radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); |
| 1924 | |
| 1925 | spin_lock(&nm_i->nid_list_lock); |
| 1926 | |
| 1927 | if (build) { |
| 1928 | /* |
| 1929 | * Thread A Thread B |
| 1930 | * - f2fs_create |
| 1931 | * - f2fs_new_inode |
| 1932 | * - alloc_nid |
| 1933 | * - __insert_nid_to_list(PREALLOC_NID) |
| 1934 | * - f2fs_balance_fs_bg |
| 1935 | * - build_free_nids |
| 1936 | * - __build_free_nids |
| 1937 | * - scan_nat_page |
| 1938 | * - add_free_nid |
| 1939 | * - __lookup_nat_cache |
| 1940 | * - f2fs_add_link |
| 1941 | * - init_inode_metadata |
| 1942 | * - new_inode_page |
| 1943 | * - new_node_page |
| 1944 | * - set_node_addr |
| 1945 | * - alloc_nid_done |
| 1946 | * - __remove_nid_from_list(PREALLOC_NID) |
| 1947 | * - __insert_nid_to_list(FREE_NID) |
| 1948 | */ |
| 1949 | ne = __lookup_nat_cache(nm_i, nid); |
| 1950 | if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) || |
| 1951 | nat_get_blkaddr(ne) != NULL_ADDR)) |
| 1952 | goto err_out; |
| 1953 | |
| 1954 | e = __lookup_free_nid_list(nm_i, nid); |
| 1955 | if (e) { |
| 1956 | if (e->state == FREE_NID) |
| 1957 | ret = true; |
| 1958 | goto err_out; |
| 1959 | } |
| 1960 | } |
| 1961 | ret = true; |
| 1962 | err = __insert_free_nid(sbi, i, FREE_NID); |
| 1963 | err_out: |
| 1964 | if (update) { |
| 1965 | update_free_nid_bitmap(sbi, nid, ret, build); |
| 1966 | if (!build) |
| 1967 | nm_i->available_nids++; |
| 1968 | } |
| 1969 | spin_unlock(&nm_i->nid_list_lock); |
| 1970 | radix_tree_preload_end(); |
| 1971 | |
| 1972 | if (err) |
| 1973 | kmem_cache_free(free_nid_slab, i); |
| 1974 | return ret; |
| 1975 | } |
| 1976 | |
| 1977 | static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid) |
| 1978 | { |
| 1979 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 1980 | struct free_nid *i; |
| 1981 | bool need_free = false; |
| 1982 | |
| 1983 | spin_lock(&nm_i->nid_list_lock); |
| 1984 | i = __lookup_free_nid_list(nm_i, nid); |
| 1985 | if (i && i->state == FREE_NID) { |
| 1986 | __remove_free_nid(sbi, i, FREE_NID); |
| 1987 | need_free = true; |
| 1988 | } |
| 1989 | spin_unlock(&nm_i->nid_list_lock); |
| 1990 | |
| 1991 | if (need_free) |
| 1992 | kmem_cache_free(free_nid_slab, i); |
| 1993 | } |
| 1994 | |
| 1995 | static void scan_nat_page(struct f2fs_sb_info *sbi, |
| 1996 | struct page *nat_page, nid_t start_nid) |
| 1997 | { |
| 1998 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 1999 | struct f2fs_nat_block *nat_blk = page_address(nat_page); |
| 2000 | block_t blk_addr; |
| 2001 | unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid); |
| 2002 | int i; |
| 2003 | |
| 2004 | __set_bit_le(nat_ofs, nm_i->nat_block_bitmap); |
| 2005 | |
| 2006 | i = start_nid % NAT_ENTRY_PER_BLOCK; |
| 2007 | |
| 2008 | for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { |
| 2009 | if (unlikely(start_nid >= nm_i->max_nid)) |
| 2010 | break; |
| 2011 | |
| 2012 | blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); |
| 2013 | f2fs_bug_on(sbi, blk_addr == NEW_ADDR); |
| 2014 | if (blk_addr == NULL_ADDR) { |
| 2015 | add_free_nid(sbi, start_nid, true, true); |
| 2016 | } else { |
| 2017 | spin_lock(&NM_I(sbi)->nid_list_lock); |
| 2018 | update_free_nid_bitmap(sbi, start_nid, false, true); |
| 2019 | spin_unlock(&NM_I(sbi)->nid_list_lock); |
| 2020 | } |
| 2021 | } |
| 2022 | } |
| 2023 | |
| 2024 | static void scan_curseg_cache(struct f2fs_sb_info *sbi) |
| 2025 | { |
| 2026 | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); |
| 2027 | struct f2fs_journal *journal = curseg->journal; |
| 2028 | int i; |
| 2029 | |
| 2030 | down_read(&curseg->journal_rwsem); |
| 2031 | for (i = 0; i < nats_in_cursum(journal); i++) { |
| 2032 | block_t addr; |
| 2033 | nid_t nid; |
| 2034 | |
| 2035 | addr = le32_to_cpu(nat_in_journal(journal, i).block_addr); |
| 2036 | nid = le32_to_cpu(nid_in_journal(journal, i)); |
| 2037 | if (addr == NULL_ADDR) |
| 2038 | add_free_nid(sbi, nid, true, false); |
| 2039 | else |
| 2040 | remove_free_nid(sbi, nid); |
| 2041 | } |
| 2042 | up_read(&curseg->journal_rwsem); |
| 2043 | } |
| 2044 | |
| 2045 | static void scan_free_nid_bits(struct f2fs_sb_info *sbi) |
| 2046 | { |
| 2047 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 2048 | unsigned int i, idx; |
| 2049 | nid_t nid; |
| 2050 | |
| 2051 | down_read(&nm_i->nat_tree_lock); |
| 2052 | |
| 2053 | for (i = 0; i < nm_i->nat_blocks; i++) { |
| 2054 | if (!test_bit_le(i, nm_i->nat_block_bitmap)) |
| 2055 | continue; |
| 2056 | if (!nm_i->free_nid_count[i]) |
| 2057 | continue; |
| 2058 | for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) { |
| 2059 | idx = find_next_bit_le(nm_i->free_nid_bitmap[i], |
| 2060 | NAT_ENTRY_PER_BLOCK, idx); |
| 2061 | if (idx >= NAT_ENTRY_PER_BLOCK) |
| 2062 | break; |
| 2063 | |
| 2064 | nid = i * NAT_ENTRY_PER_BLOCK + idx; |
| 2065 | add_free_nid(sbi, nid, true, false); |
| 2066 | |
| 2067 | if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS) |
| 2068 | goto out; |
| 2069 | } |
| 2070 | } |
| 2071 | out: |
| 2072 | scan_curseg_cache(sbi); |
| 2073 | |
| 2074 | up_read(&nm_i->nat_tree_lock); |
| 2075 | } |
| 2076 | |
| 2077 | static void __build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount) |
| 2078 | { |
| 2079 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 2080 | int i = 0; |
| 2081 | nid_t nid = nm_i->next_scan_nid; |
| 2082 | |
| 2083 | if (unlikely(nid >= nm_i->max_nid)) |
| 2084 | nid = 0; |
| 2085 | |
| 2086 | if (unlikely(nid % NAT_ENTRY_PER_BLOCK)) |
| 2087 | nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK; |
| 2088 | |
| 2089 | /* Enough entries */ |
| 2090 | if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) |
| 2091 | return; |
| 2092 | |
| 2093 | if (!sync && !available_free_memory(sbi, FREE_NIDS)) |
| 2094 | return; |
| 2095 | |
| 2096 | if (!mount) { |
| 2097 | /* try to find free nids in free_nid_bitmap */ |
| 2098 | scan_free_nid_bits(sbi); |
| 2099 | |
| 2100 | if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) |
| 2101 | return; |
| 2102 | } |
| 2103 | |
| 2104 | /* readahead nat pages to be scanned */ |
| 2105 | ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, |
| 2106 | META_NAT, true); |
| 2107 | |
| 2108 | down_read(&nm_i->nat_tree_lock); |
| 2109 | |
| 2110 | while (1) { |
| 2111 | if (!test_bit_le(NAT_BLOCK_OFFSET(nid), |
| 2112 | nm_i->nat_block_bitmap)) { |
| 2113 | struct page *page = get_current_nat_page(sbi, nid); |
| 2114 | |
| 2115 | scan_nat_page(sbi, page, nid); |
| 2116 | f2fs_put_page(page, 1); |
| 2117 | } |
| 2118 | |
| 2119 | nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); |
| 2120 | if (unlikely(nid >= nm_i->max_nid)) |
| 2121 | nid = 0; |
| 2122 | |
| 2123 | if (++i >= FREE_NID_PAGES) |
| 2124 | break; |
| 2125 | } |
| 2126 | |
| 2127 | /* go to the next free nat pages to find free nids abundantly */ |
| 2128 | nm_i->next_scan_nid = nid; |
| 2129 | |
| 2130 | /* find free nids from current sum_pages */ |
| 2131 | scan_curseg_cache(sbi); |
| 2132 | |
| 2133 | up_read(&nm_i->nat_tree_lock); |
| 2134 | |
| 2135 | ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid), |
| 2136 | nm_i->ra_nid_pages, META_NAT, false); |
| 2137 | } |
| 2138 | |
| 2139 | void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount) |
| 2140 | { |
| 2141 | mutex_lock(&NM_I(sbi)->build_lock); |
| 2142 | __build_free_nids(sbi, sync, mount); |
| 2143 | mutex_unlock(&NM_I(sbi)->build_lock); |
| 2144 | } |
| 2145 | |
| 2146 | /* |
| 2147 | * If this function returns success, caller can obtain a new nid |
| 2148 | * from second parameter of this function. |
| 2149 | * The returned nid could be used ino as well as nid when inode is created. |
| 2150 | */ |
| 2151 | bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) |
| 2152 | { |
| 2153 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 2154 | struct free_nid *i = NULL; |
| 2155 | retry: |
| 2156 | #ifdef CONFIG_F2FS_FAULT_INJECTION |
| 2157 | if (time_to_inject(sbi, FAULT_ALLOC_NID)) { |
| 2158 | f2fs_show_injection_info(FAULT_ALLOC_NID); |
| 2159 | return false; |
| 2160 | } |
| 2161 | #endif |
| 2162 | spin_lock(&nm_i->nid_list_lock); |
| 2163 | |
| 2164 | if (unlikely(nm_i->available_nids == 0)) { |
| 2165 | spin_unlock(&nm_i->nid_list_lock); |
| 2166 | return false; |
| 2167 | } |
| 2168 | |
| 2169 | /* We should not use stale free nids created by build_free_nids */ |
| 2170 | if (nm_i->nid_cnt[FREE_NID] && !on_build_free_nids(nm_i)) { |
| 2171 | f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list)); |
| 2172 | i = list_first_entry(&nm_i->free_nid_list, |
| 2173 | struct free_nid, list); |
| 2174 | *nid = i->nid; |
| 2175 | |
| 2176 | __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID); |
| 2177 | nm_i->available_nids--; |
| 2178 | |
| 2179 | update_free_nid_bitmap(sbi, *nid, false, false); |
| 2180 | |
| 2181 | spin_unlock(&nm_i->nid_list_lock); |
| 2182 | return true; |
| 2183 | } |
| 2184 | spin_unlock(&nm_i->nid_list_lock); |
| 2185 | |
| 2186 | /* Let's scan nat pages and its caches to get free nids */ |
| 2187 | build_free_nids(sbi, true, false); |
| 2188 | goto retry; |
| 2189 | } |
| 2190 | |
| 2191 | /* |
| 2192 | * alloc_nid() should be called prior to this function. |
| 2193 | */ |
| 2194 | void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) |
| 2195 | { |
| 2196 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 2197 | struct free_nid *i; |
| 2198 | |
| 2199 | spin_lock(&nm_i->nid_list_lock); |
| 2200 | i = __lookup_free_nid_list(nm_i, nid); |
| 2201 | f2fs_bug_on(sbi, !i); |
| 2202 | __remove_free_nid(sbi, i, PREALLOC_NID); |
| 2203 | spin_unlock(&nm_i->nid_list_lock); |
| 2204 | |
| 2205 | kmem_cache_free(free_nid_slab, i); |
| 2206 | } |
| 2207 | |
| 2208 | /* |
| 2209 | * alloc_nid() should be called prior to this function. |
| 2210 | */ |
| 2211 | void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) |
| 2212 | { |
| 2213 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 2214 | struct free_nid *i; |
| 2215 | bool need_free = false; |
| 2216 | |
| 2217 | if (!nid) |
| 2218 | return; |
| 2219 | |
| 2220 | spin_lock(&nm_i->nid_list_lock); |
| 2221 | i = __lookup_free_nid_list(nm_i, nid); |
| 2222 | f2fs_bug_on(sbi, !i); |
| 2223 | |
| 2224 | if (!available_free_memory(sbi, FREE_NIDS)) { |
| 2225 | __remove_free_nid(sbi, i, PREALLOC_NID); |
| 2226 | need_free = true; |
| 2227 | } else { |
| 2228 | __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID); |
| 2229 | } |
| 2230 | |
| 2231 | nm_i->available_nids++; |
| 2232 | |
| 2233 | update_free_nid_bitmap(sbi, nid, true, false); |
| 2234 | |
| 2235 | spin_unlock(&nm_i->nid_list_lock); |
| 2236 | |
| 2237 | if (need_free) |
| 2238 | kmem_cache_free(free_nid_slab, i); |
| 2239 | } |
| 2240 | |
| 2241 | int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink) |
| 2242 | { |
| 2243 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 2244 | struct free_nid *i, *next; |
| 2245 | int nr = nr_shrink; |
| 2246 | |
| 2247 | if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) |
| 2248 | return 0; |
| 2249 | |
| 2250 | if (!mutex_trylock(&nm_i->build_lock)) |
| 2251 | return 0; |
| 2252 | |
| 2253 | spin_lock(&nm_i->nid_list_lock); |
| 2254 | list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) { |
| 2255 | if (nr_shrink <= 0 || |
| 2256 | nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) |
| 2257 | break; |
| 2258 | |
| 2259 | __remove_free_nid(sbi, i, FREE_NID); |
| 2260 | kmem_cache_free(free_nid_slab, i); |
| 2261 | nr_shrink--; |
| 2262 | } |
| 2263 | spin_unlock(&nm_i->nid_list_lock); |
| 2264 | mutex_unlock(&nm_i->build_lock); |
| 2265 | |
| 2266 | return nr - nr_shrink; |
| 2267 | } |
| 2268 | |
| 2269 | void recover_inline_xattr(struct inode *inode, struct page *page) |
| 2270 | { |
| 2271 | void *src_addr, *dst_addr; |
| 2272 | size_t inline_size; |
| 2273 | struct page *ipage; |
| 2274 | struct f2fs_inode *ri; |
| 2275 | |
| 2276 | ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino); |
| 2277 | f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage)); |
| 2278 | |
| 2279 | ri = F2FS_INODE(page); |
| 2280 | if (ri->i_inline & F2FS_INLINE_XATTR) { |
| 2281 | set_inode_flag(inode, FI_INLINE_XATTR); |
| 2282 | } else { |
| 2283 | clear_inode_flag(inode, FI_INLINE_XATTR); |
| 2284 | goto update_inode; |
| 2285 | } |
| 2286 | |
| 2287 | dst_addr = inline_xattr_addr(inode, ipage); |
| 2288 | src_addr = inline_xattr_addr(inode, page); |
| 2289 | inline_size = inline_xattr_size(inode); |
| 2290 | |
| 2291 | f2fs_wait_on_page_writeback(ipage, NODE, true); |
| 2292 | memcpy(dst_addr, src_addr, inline_size); |
| 2293 | update_inode: |
| 2294 | update_inode(inode, ipage); |
| 2295 | f2fs_put_page(ipage, 1); |
| 2296 | } |
| 2297 | |
| 2298 | int recover_xattr_data(struct inode *inode, struct page *page) |
| 2299 | { |
| 2300 | struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| 2301 | nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid; |
| 2302 | nid_t new_xnid; |
| 2303 | struct dnode_of_data dn; |
| 2304 | struct node_info ni; |
| 2305 | struct page *xpage; |
| 2306 | |
| 2307 | if (!prev_xnid) |
| 2308 | goto recover_xnid; |
| 2309 | |
| 2310 | /* 1: invalidate the previous xattr nid */ |
| 2311 | get_node_info(sbi, prev_xnid, &ni); |
| 2312 | invalidate_blocks(sbi, ni.blk_addr); |
| 2313 | dec_valid_node_count(sbi, inode, false); |
| 2314 | set_node_addr(sbi, &ni, NULL_ADDR, false); |
| 2315 | |
| 2316 | recover_xnid: |
| 2317 | /* 2: update xattr nid in inode */ |
| 2318 | if (!alloc_nid(sbi, &new_xnid)) |
| 2319 | return -ENOSPC; |
| 2320 | |
| 2321 | set_new_dnode(&dn, inode, NULL, NULL, new_xnid); |
| 2322 | xpage = new_node_page(&dn, XATTR_NODE_OFFSET); |
| 2323 | if (IS_ERR(xpage)) { |
| 2324 | alloc_nid_failed(sbi, new_xnid); |
| 2325 | return PTR_ERR(xpage); |
| 2326 | } |
| 2327 | |
| 2328 | alloc_nid_done(sbi, new_xnid); |
| 2329 | update_inode_page(inode); |
| 2330 | |
| 2331 | /* 3: update and set xattr node page dirty */ |
| 2332 | memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE); |
| 2333 | |
| 2334 | set_page_dirty(xpage); |
| 2335 | f2fs_put_page(xpage, 1); |
| 2336 | |
| 2337 | return 0; |
| 2338 | } |
| 2339 | |
| 2340 | int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) |
| 2341 | { |
| 2342 | struct f2fs_inode *src, *dst; |
| 2343 | nid_t ino = ino_of_node(page); |
| 2344 | struct node_info old_ni, new_ni; |
| 2345 | struct page *ipage; |
| 2346 | |
| 2347 | get_node_info(sbi, ino, &old_ni); |
| 2348 | |
| 2349 | if (unlikely(old_ni.blk_addr != NULL_ADDR)) |
| 2350 | return -EINVAL; |
| 2351 | retry: |
| 2352 | ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false); |
| 2353 | if (!ipage) { |
| 2354 | congestion_wait(BLK_RW_ASYNC, HZ/50); |
| 2355 | goto retry; |
| 2356 | } |
| 2357 | |
| 2358 | /* Should not use this inode from free nid list */ |
| 2359 | remove_free_nid(sbi, ino); |
| 2360 | |
| 2361 | if (!PageUptodate(ipage)) |
| 2362 | SetPageUptodate(ipage); |
| 2363 | fill_node_footer(ipage, ino, ino, 0, true); |
| 2364 | set_cold_node(page, false); |
| 2365 | |
| 2366 | src = F2FS_INODE(page); |
| 2367 | dst = F2FS_INODE(ipage); |
| 2368 | |
| 2369 | memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src); |
| 2370 | dst->i_size = 0; |
| 2371 | dst->i_blocks = cpu_to_le64(1); |
| 2372 | dst->i_links = cpu_to_le32(1); |
| 2373 | dst->i_xattr_nid = 0; |
| 2374 | dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR); |
| 2375 | if (dst->i_inline & F2FS_EXTRA_ATTR) { |
| 2376 | dst->i_extra_isize = src->i_extra_isize; |
| 2377 | |
| 2378 | if (f2fs_sb_has_flexible_inline_xattr(sbi->sb) && |
| 2379 | F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), |
| 2380 | i_inline_xattr_size)) |
| 2381 | dst->i_inline_xattr_size = src->i_inline_xattr_size; |
| 2382 | |
| 2383 | if (f2fs_sb_has_project_quota(sbi->sb) && |
| 2384 | F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), |
| 2385 | i_projid)) |
| 2386 | dst->i_projid = src->i_projid; |
| 2387 | } |
| 2388 | |
| 2389 | new_ni = old_ni; |
| 2390 | new_ni.ino = ino; |
| 2391 | |
| 2392 | if (unlikely(inc_valid_node_count(sbi, NULL, true))) |
| 2393 | WARN_ON(1); |
| 2394 | set_node_addr(sbi, &new_ni, NEW_ADDR, false); |
| 2395 | inc_valid_inode_count(sbi); |
| 2396 | set_page_dirty(ipage); |
| 2397 | f2fs_put_page(ipage, 1); |
| 2398 | return 0; |
| 2399 | } |
| 2400 | |
| 2401 | void restore_node_summary(struct f2fs_sb_info *sbi, |
| 2402 | unsigned int segno, struct f2fs_summary_block *sum) |
| 2403 | { |
| 2404 | struct f2fs_node *rn; |
| 2405 | struct f2fs_summary *sum_entry; |
| 2406 | block_t addr; |
| 2407 | int i, idx, last_offset, nrpages; |
| 2408 | |
| 2409 | /* scan the node segment */ |
| 2410 | last_offset = sbi->blocks_per_seg; |
| 2411 | addr = START_BLOCK(sbi, segno); |
| 2412 | sum_entry = &sum->entries[0]; |
| 2413 | |
| 2414 | for (i = 0; i < last_offset; i += nrpages, addr += nrpages) { |
| 2415 | nrpages = min(last_offset - i, BIO_MAX_PAGES); |
| 2416 | |
| 2417 | /* readahead node pages */ |
| 2418 | ra_meta_pages(sbi, addr, nrpages, META_POR, true); |
| 2419 | |
| 2420 | for (idx = addr; idx < addr + nrpages; idx++) { |
| 2421 | struct page *page = get_tmp_page(sbi, idx); |
| 2422 | |
| 2423 | rn = F2FS_NODE(page); |
| 2424 | sum_entry->nid = rn->footer.nid; |
| 2425 | sum_entry->version = 0; |
| 2426 | sum_entry->ofs_in_node = 0; |
| 2427 | sum_entry++; |
| 2428 | f2fs_put_page(page, 1); |
| 2429 | } |
| 2430 | |
| 2431 | invalidate_mapping_pages(META_MAPPING(sbi), addr, |
| 2432 | addr + nrpages); |
| 2433 | } |
| 2434 | } |
| 2435 | |
| 2436 | static void remove_nats_in_journal(struct f2fs_sb_info *sbi) |
| 2437 | { |
| 2438 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 2439 | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); |
| 2440 | struct f2fs_journal *journal = curseg->journal; |
| 2441 | int i; |
| 2442 | |
| 2443 | down_write(&curseg->journal_rwsem); |
| 2444 | for (i = 0; i < nats_in_cursum(journal); i++) { |
| 2445 | struct nat_entry *ne; |
| 2446 | struct f2fs_nat_entry raw_ne; |
| 2447 | nid_t nid = le32_to_cpu(nid_in_journal(journal, i)); |
| 2448 | |
| 2449 | raw_ne = nat_in_journal(journal, i); |
| 2450 | |
| 2451 | ne = __lookup_nat_cache(nm_i, nid); |
| 2452 | if (!ne) { |
| 2453 | ne = __alloc_nat_entry(nid, true); |
| 2454 | __init_nat_entry(nm_i, ne, &raw_ne, true); |
| 2455 | } |
| 2456 | |
| 2457 | /* |
| 2458 | * if a free nat in journal has not been used after last |
| 2459 | * checkpoint, we should remove it from available nids, |
| 2460 | * since later we will add it again. |
| 2461 | */ |
| 2462 | if (!get_nat_flag(ne, IS_DIRTY) && |
| 2463 | le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) { |
| 2464 | spin_lock(&nm_i->nid_list_lock); |
| 2465 | nm_i->available_nids--; |
| 2466 | spin_unlock(&nm_i->nid_list_lock); |
| 2467 | } |
| 2468 | |
| 2469 | __set_nat_cache_dirty(nm_i, ne); |
| 2470 | } |
| 2471 | update_nats_in_cursum(journal, -i); |
| 2472 | up_write(&curseg->journal_rwsem); |
| 2473 | } |
| 2474 | |
| 2475 | static void __adjust_nat_entry_set(struct nat_entry_set *nes, |
| 2476 | struct list_head *head, int max) |
| 2477 | { |
| 2478 | struct nat_entry_set *cur; |
| 2479 | |
| 2480 | if (nes->entry_cnt >= max) |
| 2481 | goto add_out; |
| 2482 | |
| 2483 | list_for_each_entry(cur, head, set_list) { |
| 2484 | if (cur->entry_cnt >= nes->entry_cnt) { |
| 2485 | list_add(&nes->set_list, cur->set_list.prev); |
| 2486 | return; |
| 2487 | } |
| 2488 | } |
| 2489 | add_out: |
| 2490 | list_add_tail(&nes->set_list, head); |
| 2491 | } |
| 2492 | |
| 2493 | static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid, |
| 2494 | struct page *page) |
| 2495 | { |
| 2496 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 2497 | unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK; |
| 2498 | struct f2fs_nat_block *nat_blk = page_address(page); |
| 2499 | int valid = 0; |
| 2500 | int i = 0; |
| 2501 | |
| 2502 | if (!enabled_nat_bits(sbi, NULL)) |
| 2503 | return; |
| 2504 | |
| 2505 | if (nat_index == 0) { |
| 2506 | valid = 1; |
| 2507 | i = 1; |
| 2508 | } |
| 2509 | for (; i < NAT_ENTRY_PER_BLOCK; i++) { |
| 2510 | if (nat_blk->entries[i].block_addr != NULL_ADDR) |
| 2511 | valid++; |
| 2512 | } |
| 2513 | if (valid == 0) { |
| 2514 | __set_bit_le(nat_index, nm_i->empty_nat_bits); |
| 2515 | __clear_bit_le(nat_index, nm_i->full_nat_bits); |
| 2516 | return; |
| 2517 | } |
| 2518 | |
| 2519 | __clear_bit_le(nat_index, nm_i->empty_nat_bits); |
| 2520 | if (valid == NAT_ENTRY_PER_BLOCK) |
| 2521 | __set_bit_le(nat_index, nm_i->full_nat_bits); |
| 2522 | else |
| 2523 | __clear_bit_le(nat_index, nm_i->full_nat_bits); |
| 2524 | } |
| 2525 | |
| 2526 | static void __flush_nat_entry_set(struct f2fs_sb_info *sbi, |
| 2527 | struct nat_entry_set *set, struct cp_control *cpc) |
| 2528 | { |
| 2529 | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); |
| 2530 | struct f2fs_journal *journal = curseg->journal; |
| 2531 | nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK; |
| 2532 | bool to_journal = true; |
| 2533 | struct f2fs_nat_block *nat_blk; |
| 2534 | struct nat_entry *ne, *cur; |
| 2535 | struct page *page = NULL; |
| 2536 | |
| 2537 | /* |
| 2538 | * there are two steps to flush nat entries: |
| 2539 | * #1, flush nat entries to journal in current hot data summary block. |
| 2540 | * #2, flush nat entries to nat page. |
| 2541 | */ |
| 2542 | if (enabled_nat_bits(sbi, cpc) || |
| 2543 | !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL)) |
| 2544 | to_journal = false; |
| 2545 | |
| 2546 | if (to_journal) { |
| 2547 | down_write(&curseg->journal_rwsem); |
| 2548 | } else { |
| 2549 | page = get_next_nat_page(sbi, start_nid); |
| 2550 | nat_blk = page_address(page); |
| 2551 | f2fs_bug_on(sbi, !nat_blk); |
| 2552 | } |
| 2553 | |
| 2554 | /* flush dirty nats in nat entry set */ |
| 2555 | list_for_each_entry_safe(ne, cur, &set->entry_list, list) { |
| 2556 | struct f2fs_nat_entry *raw_ne; |
| 2557 | nid_t nid = nat_get_nid(ne); |
| 2558 | int offset; |
| 2559 | |
| 2560 | f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR); |
| 2561 | |
| 2562 | if (to_journal) { |
| 2563 | offset = lookup_journal_in_cursum(journal, |
| 2564 | NAT_JOURNAL, nid, 1); |
| 2565 | f2fs_bug_on(sbi, offset < 0); |
| 2566 | raw_ne = &nat_in_journal(journal, offset); |
| 2567 | nid_in_journal(journal, offset) = cpu_to_le32(nid); |
| 2568 | } else { |
| 2569 | raw_ne = &nat_blk->entries[nid - start_nid]; |
| 2570 | } |
| 2571 | raw_nat_from_node_info(raw_ne, &ne->ni); |
| 2572 | nat_reset_flag(ne); |
| 2573 | __clear_nat_cache_dirty(NM_I(sbi), set, ne); |
| 2574 | if (nat_get_blkaddr(ne) == NULL_ADDR) { |
| 2575 | add_free_nid(sbi, nid, false, true); |
| 2576 | } else { |
| 2577 | spin_lock(&NM_I(sbi)->nid_list_lock); |
| 2578 | update_free_nid_bitmap(sbi, nid, false, false); |
| 2579 | spin_unlock(&NM_I(sbi)->nid_list_lock); |
| 2580 | } |
| 2581 | } |
| 2582 | |
| 2583 | if (to_journal) { |
| 2584 | up_write(&curseg->journal_rwsem); |
| 2585 | } else { |
| 2586 | __update_nat_bits(sbi, start_nid, page); |
| 2587 | f2fs_put_page(page, 1); |
| 2588 | } |
| 2589 | |
| 2590 | /* Allow dirty nats by node block allocation in write_begin */ |
| 2591 | if (!set->entry_cnt) { |
| 2592 | radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set); |
| 2593 | kmem_cache_free(nat_entry_set_slab, set); |
| 2594 | } |
| 2595 | } |
| 2596 | |
| 2597 | /* |
| 2598 | * This function is called during the checkpointing process. |
| 2599 | */ |
| 2600 | void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) |
| 2601 | { |
| 2602 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 2603 | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); |
| 2604 | struct f2fs_journal *journal = curseg->journal; |
| 2605 | struct nat_entry_set *setvec[SETVEC_SIZE]; |
| 2606 | struct nat_entry_set *set, *tmp; |
| 2607 | unsigned int found; |
| 2608 | nid_t set_idx = 0; |
| 2609 | LIST_HEAD(sets); |
| 2610 | |
| 2611 | if (!nm_i->dirty_nat_cnt) |
| 2612 | return; |
| 2613 | |
| 2614 | down_write(&nm_i->nat_tree_lock); |
| 2615 | |
| 2616 | /* |
| 2617 | * if there are no enough space in journal to store dirty nat |
| 2618 | * entries, remove all entries from journal and merge them |
| 2619 | * into nat entry set. |
| 2620 | */ |
| 2621 | if (enabled_nat_bits(sbi, cpc) || |
| 2622 | !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL)) |
| 2623 | remove_nats_in_journal(sbi); |
| 2624 | |
| 2625 | while ((found = __gang_lookup_nat_set(nm_i, |
| 2626 | set_idx, SETVEC_SIZE, setvec))) { |
| 2627 | unsigned idx; |
| 2628 | set_idx = setvec[found - 1]->set + 1; |
| 2629 | for (idx = 0; idx < found; idx++) |
| 2630 | __adjust_nat_entry_set(setvec[idx], &sets, |
| 2631 | MAX_NAT_JENTRIES(journal)); |
| 2632 | } |
| 2633 | |
| 2634 | /* flush dirty nats in nat entry set */ |
| 2635 | list_for_each_entry_safe(set, tmp, &sets, set_list) |
| 2636 | __flush_nat_entry_set(sbi, set, cpc); |
| 2637 | |
| 2638 | up_write(&nm_i->nat_tree_lock); |
| 2639 | /* Allow dirty nats by node block allocation in write_begin */ |
| 2640 | } |
| 2641 | |
| 2642 | static int __get_nat_bitmaps(struct f2fs_sb_info *sbi) |
| 2643 | { |
| 2644 | struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); |
| 2645 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 2646 | unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE; |
| 2647 | unsigned int i; |
| 2648 | __u64 cp_ver = cur_cp_version(ckpt); |
| 2649 | block_t nat_bits_addr; |
| 2650 | |
| 2651 | if (!enabled_nat_bits(sbi, NULL)) |
| 2652 | return 0; |
| 2653 | |
| 2654 | nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8); |
| 2655 | nm_i->nat_bits = f2fs_kzalloc(sbi, |
| 2656 | nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL); |
| 2657 | if (!nm_i->nat_bits) |
| 2658 | return -ENOMEM; |
| 2659 | |
| 2660 | nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg - |
| 2661 | nm_i->nat_bits_blocks; |
| 2662 | for (i = 0; i < nm_i->nat_bits_blocks; i++) { |
| 2663 | struct page *page = get_meta_page(sbi, nat_bits_addr++); |
| 2664 | |
| 2665 | memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS), |
| 2666 | page_address(page), F2FS_BLKSIZE); |
| 2667 | f2fs_put_page(page, 1); |
| 2668 | } |
| 2669 | |
| 2670 | cp_ver |= (cur_cp_crc(ckpt) << 32); |
| 2671 | if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) { |
| 2672 | disable_nat_bits(sbi, true); |
| 2673 | return 0; |
| 2674 | } |
| 2675 | |
| 2676 | nm_i->full_nat_bits = nm_i->nat_bits + 8; |
| 2677 | nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes; |
| 2678 | |
| 2679 | f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint"); |
| 2680 | return 0; |
| 2681 | } |
| 2682 | |
| 2683 | static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi) |
| 2684 | { |
| 2685 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 2686 | unsigned int i = 0; |
| 2687 | nid_t nid, last_nid; |
| 2688 | |
| 2689 | if (!enabled_nat_bits(sbi, NULL)) |
| 2690 | return; |
| 2691 | |
| 2692 | for (i = 0; i < nm_i->nat_blocks; i++) { |
| 2693 | i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i); |
| 2694 | if (i >= nm_i->nat_blocks) |
| 2695 | break; |
| 2696 | |
| 2697 | __set_bit_le(i, nm_i->nat_block_bitmap); |
| 2698 | |
| 2699 | nid = i * NAT_ENTRY_PER_BLOCK; |
| 2700 | last_nid = nid + NAT_ENTRY_PER_BLOCK; |
| 2701 | |
| 2702 | spin_lock(&NM_I(sbi)->nid_list_lock); |
| 2703 | for (; nid < last_nid; nid++) |
| 2704 | update_free_nid_bitmap(sbi, nid, true, true); |
| 2705 | spin_unlock(&NM_I(sbi)->nid_list_lock); |
| 2706 | } |
| 2707 | |
| 2708 | for (i = 0; i < nm_i->nat_blocks; i++) { |
| 2709 | i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i); |
| 2710 | if (i >= nm_i->nat_blocks) |
| 2711 | break; |
| 2712 | |
| 2713 | __set_bit_le(i, nm_i->nat_block_bitmap); |
| 2714 | } |
| 2715 | } |
| 2716 | |
| 2717 | static int init_node_manager(struct f2fs_sb_info *sbi) |
| 2718 | { |
| 2719 | struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); |
| 2720 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 2721 | unsigned char *version_bitmap; |
| 2722 | unsigned int nat_segs; |
| 2723 | int err; |
| 2724 | |
| 2725 | nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); |
| 2726 | |
| 2727 | /* segment_count_nat includes pair segment so divide to 2. */ |
| 2728 | nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; |
| 2729 | nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); |
| 2730 | nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks; |
| 2731 | |
| 2732 | /* not used nids: 0, node, meta, (and root counted as valid node) */ |
| 2733 | nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count - |
| 2734 | sbi->nquota_files - F2FS_RESERVED_NODE_NUM; |
| 2735 | nm_i->nid_cnt[FREE_NID] = 0; |
| 2736 | nm_i->nid_cnt[PREALLOC_NID] = 0; |
| 2737 | nm_i->nat_cnt = 0; |
| 2738 | nm_i->ram_thresh = DEF_RAM_THRESHOLD; |
| 2739 | nm_i->ra_nid_pages = DEF_RA_NID_PAGES; |
| 2740 | nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD; |
| 2741 | |
| 2742 | INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC); |
| 2743 | INIT_LIST_HEAD(&nm_i->free_nid_list); |
| 2744 | INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO); |
| 2745 | INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO); |
| 2746 | INIT_LIST_HEAD(&nm_i->nat_entries); |
| 2747 | |
| 2748 | mutex_init(&nm_i->build_lock); |
| 2749 | spin_lock_init(&nm_i->nid_list_lock); |
| 2750 | init_rwsem(&nm_i->nat_tree_lock); |
| 2751 | |
| 2752 | nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); |
| 2753 | nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); |
| 2754 | version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); |
| 2755 | if (!version_bitmap) |
| 2756 | return -EFAULT; |
| 2757 | |
| 2758 | nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size, |
| 2759 | GFP_KERNEL); |
| 2760 | if (!nm_i->nat_bitmap) |
| 2761 | return -ENOMEM; |
| 2762 | |
| 2763 | err = __get_nat_bitmaps(sbi); |
| 2764 | if (err) |
| 2765 | return err; |
| 2766 | |
| 2767 | #ifdef CONFIG_F2FS_CHECK_FS |
| 2768 | nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size, |
| 2769 | GFP_KERNEL); |
| 2770 | if (!nm_i->nat_bitmap_mir) |
| 2771 | return -ENOMEM; |
| 2772 | #endif |
| 2773 | |
| 2774 | return 0; |
| 2775 | } |
| 2776 | |
| 2777 | static int init_free_nid_cache(struct f2fs_sb_info *sbi) |
| 2778 | { |
| 2779 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 2780 | int i; |
| 2781 | |
| 2782 | nm_i->free_nid_bitmap = f2fs_kzalloc(sbi, nm_i->nat_blocks * |
| 2783 | sizeof(unsigned char *), GFP_KERNEL); |
| 2784 | if (!nm_i->free_nid_bitmap) |
| 2785 | return -ENOMEM; |
| 2786 | |
| 2787 | for (i = 0; i < nm_i->nat_blocks; i++) { |
| 2788 | nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi, |
| 2789 | NAT_ENTRY_BITMAP_SIZE_ALIGNED, GFP_KERNEL); |
| 2790 | if (!nm_i->free_nid_bitmap) |
| 2791 | return -ENOMEM; |
| 2792 | } |
| 2793 | |
| 2794 | nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8, |
| 2795 | GFP_KERNEL); |
| 2796 | if (!nm_i->nat_block_bitmap) |
| 2797 | return -ENOMEM; |
| 2798 | |
| 2799 | nm_i->free_nid_count = f2fs_kvzalloc(sbi, nm_i->nat_blocks * |
| 2800 | sizeof(unsigned short), GFP_KERNEL); |
| 2801 | if (!nm_i->free_nid_count) |
| 2802 | return -ENOMEM; |
| 2803 | return 0; |
| 2804 | } |
| 2805 | |
| 2806 | int build_node_manager(struct f2fs_sb_info *sbi) |
| 2807 | { |
| 2808 | int err; |
| 2809 | |
| 2810 | sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info), |
| 2811 | GFP_KERNEL); |
| 2812 | if (!sbi->nm_info) |
| 2813 | return -ENOMEM; |
| 2814 | |
| 2815 | err = init_node_manager(sbi); |
| 2816 | if (err) |
| 2817 | return err; |
| 2818 | |
| 2819 | err = init_free_nid_cache(sbi); |
| 2820 | if (err) |
| 2821 | return err; |
| 2822 | |
| 2823 | /* load free nid status from nat_bits table */ |
| 2824 | load_free_nid_bitmap(sbi); |
| 2825 | |
| 2826 | build_free_nids(sbi, true, true); |
| 2827 | return 0; |
| 2828 | } |
| 2829 | |
| 2830 | void destroy_node_manager(struct f2fs_sb_info *sbi) |
| 2831 | { |
| 2832 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 2833 | struct free_nid *i, *next_i; |
| 2834 | struct nat_entry *natvec[NATVEC_SIZE]; |
| 2835 | struct nat_entry_set *setvec[SETVEC_SIZE]; |
| 2836 | nid_t nid = 0; |
| 2837 | unsigned int found; |
| 2838 | |
| 2839 | if (!nm_i) |
| 2840 | return; |
| 2841 | |
| 2842 | /* destroy free nid list */ |
| 2843 | spin_lock(&nm_i->nid_list_lock); |
| 2844 | list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) { |
| 2845 | __remove_free_nid(sbi, i, FREE_NID); |
| 2846 | spin_unlock(&nm_i->nid_list_lock); |
| 2847 | kmem_cache_free(free_nid_slab, i); |
| 2848 | spin_lock(&nm_i->nid_list_lock); |
| 2849 | } |
| 2850 | f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]); |
| 2851 | f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]); |
| 2852 | f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list)); |
| 2853 | spin_unlock(&nm_i->nid_list_lock); |
| 2854 | |
| 2855 | /* destroy nat cache */ |
| 2856 | down_write(&nm_i->nat_tree_lock); |
| 2857 | while ((found = __gang_lookup_nat_cache(nm_i, |
| 2858 | nid, NATVEC_SIZE, natvec))) { |
| 2859 | unsigned idx; |
| 2860 | |
| 2861 | nid = nat_get_nid(natvec[found - 1]) + 1; |
| 2862 | for (idx = 0; idx < found; idx++) |
| 2863 | __del_from_nat_cache(nm_i, natvec[idx]); |
| 2864 | } |
| 2865 | f2fs_bug_on(sbi, nm_i->nat_cnt); |
| 2866 | |
| 2867 | /* destroy nat set cache */ |
| 2868 | nid = 0; |
| 2869 | while ((found = __gang_lookup_nat_set(nm_i, |
| 2870 | nid, SETVEC_SIZE, setvec))) { |
| 2871 | unsigned idx; |
| 2872 | |
| 2873 | nid = setvec[found - 1]->set + 1; |
| 2874 | for (idx = 0; idx < found; idx++) { |
| 2875 | /* entry_cnt is not zero, when cp_error was occurred */ |
| 2876 | f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list)); |
| 2877 | radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set); |
| 2878 | kmem_cache_free(nat_entry_set_slab, setvec[idx]); |
| 2879 | } |
| 2880 | } |
| 2881 | up_write(&nm_i->nat_tree_lock); |
| 2882 | |
| 2883 | kvfree(nm_i->nat_block_bitmap); |
| 2884 | if (nm_i->free_nid_bitmap) { |
| 2885 | int i; |
| 2886 | |
| 2887 | for (i = 0; i < nm_i->nat_blocks; i++) |
| 2888 | kvfree(nm_i->free_nid_bitmap[i]); |
| 2889 | kfree(nm_i->free_nid_bitmap); |
| 2890 | } |
| 2891 | kvfree(nm_i->free_nid_count); |
| 2892 | |
| 2893 | kfree(nm_i->nat_bitmap); |
| 2894 | kfree(nm_i->nat_bits); |
| 2895 | #ifdef CONFIG_F2FS_CHECK_FS |
| 2896 | kfree(nm_i->nat_bitmap_mir); |
| 2897 | #endif |
| 2898 | sbi->nm_info = NULL; |
| 2899 | kfree(nm_i); |
| 2900 | } |
| 2901 | |
| 2902 | int __init create_node_manager_caches(void) |
| 2903 | { |
| 2904 | nat_entry_slab = f2fs_kmem_cache_create("nat_entry", |
| 2905 | sizeof(struct nat_entry)); |
| 2906 | if (!nat_entry_slab) |
| 2907 | goto fail; |
| 2908 | |
| 2909 | free_nid_slab = f2fs_kmem_cache_create("free_nid", |
| 2910 | sizeof(struct free_nid)); |
| 2911 | if (!free_nid_slab) |
| 2912 | goto destroy_nat_entry; |
| 2913 | |
| 2914 | nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set", |
| 2915 | sizeof(struct nat_entry_set)); |
| 2916 | if (!nat_entry_set_slab) |
| 2917 | goto destroy_free_nid; |
| 2918 | return 0; |
| 2919 | |
| 2920 | destroy_free_nid: |
| 2921 | kmem_cache_destroy(free_nid_slab); |
| 2922 | destroy_nat_entry: |
| 2923 | kmem_cache_destroy(nat_entry_slab); |
| 2924 | fail: |
| 2925 | return -ENOMEM; |
| 2926 | } |
| 2927 | |
| 2928 | void destroy_node_manager_caches(void) |
| 2929 | { |
| 2930 | kmem_cache_destroy(nat_entry_set_slab); |
| 2931 | kmem_cache_destroy(free_nid_slab); |
| 2932 | kmem_cache_destroy(nat_entry_slab); |
| 2933 | } |