blob: 171120de7c846f51e7aa62341080466b87a0ca66 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * fs/f2fs/super.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/module.h>
12#include <linux/init.h>
13#include <linux/fs.h>
14#include <linux/statfs.h>
15#include <linux/buffer_head.h>
16#include <linux/backing-dev.h>
17#include <linux/kthread.h>
18#include <linux/parser.h>
19#include <linux/mount.h>
20#include <linux/seq_file.h>
21#include <linux/proc_fs.h>
22#include <linux/random.h>
23#include <linux/exportfs.h>
24#include <linux/blkdev.h>
25#include <linux/quotaops.h>
26#include <linux/f2fs_fs.h>
27#include <linux/sysfs.h>
28#include <linux/quota.h>
29
30#include "f2fs.h"
31#include "node.h"
32#include "segment.h"
33#include "xattr.h"
34#include "gc.h"
35#include "trace.h"
36
37#define CREATE_TRACE_POINTS
38#include <trace/events/f2fs.h>
39
40static struct kmem_cache *f2fs_inode_cachep;
41
42#ifdef CONFIG_F2FS_FAULT_INJECTION
43
44char *fault_name[FAULT_MAX] = {
45 [FAULT_KMALLOC] = "kmalloc",
46 [FAULT_KVMALLOC] = "kvmalloc",
47 [FAULT_PAGE_ALLOC] = "page alloc",
48 [FAULT_PAGE_GET] = "page get",
49 [FAULT_ALLOC_BIO] = "alloc bio",
50 [FAULT_ALLOC_NID] = "alloc nid",
51 [FAULT_ORPHAN] = "orphan",
52 [FAULT_BLOCK] = "no more block",
53 [FAULT_DIR_DEPTH] = "too big dir depth",
54 [FAULT_EVICT_INODE] = "evict_inode fail",
55 [FAULT_TRUNCATE] = "truncate fail",
56 [FAULT_IO] = "IO error",
57 [FAULT_CHECKPOINT] = "checkpoint error",
58};
59
60static void f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
61 unsigned int rate)
62{
63 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
64
65 if (rate) {
66 atomic_set(&ffi->inject_ops, 0);
67 ffi->inject_rate = rate;
68 ffi->inject_type = (1 << FAULT_MAX) - 1;
69 } else {
70 memset(ffi, 0, sizeof(struct f2fs_fault_info));
71 }
72}
73#endif
74
75/* f2fs-wide shrinker description */
76static struct shrinker f2fs_shrinker_info = {
77 .scan_objects = f2fs_shrink_scan,
78 .count_objects = f2fs_shrink_count,
79 .seeks = DEFAULT_SEEKS,
80};
81
82enum {
83 Opt_gc_background,
84 Opt_disable_roll_forward,
85 Opt_norecovery,
86 Opt_discard,
87 Opt_nodiscard,
88 Opt_noheap,
89 Opt_heap,
90 Opt_user_xattr,
91 Opt_nouser_xattr,
92 Opt_acl,
93 Opt_noacl,
94 Opt_active_logs,
95 Opt_disable_ext_identify,
96 Opt_inline_xattr,
97 Opt_noinline_xattr,
98 Opt_inline_xattr_size,
99 Opt_inline_data,
100 Opt_inline_dentry,
101 Opt_noinline_dentry,
102 Opt_flush_merge,
103 Opt_noflush_merge,
104 Opt_nobarrier,
105 Opt_fastboot,
106 Opt_extent_cache,
107 Opt_noextent_cache,
108 Opt_noinline_data,
109 Opt_data_flush,
110 Opt_reserve_root,
111 Opt_resgid,
112 Opt_resuid,
113 Opt_mode,
114 Opt_io_size_bits,
115 Opt_fault_injection,
116 Opt_lazytime,
117 Opt_nolazytime,
118 Opt_quota,
119 Opt_noquota,
120 Opt_usrquota,
121 Opt_grpquota,
122 Opt_prjquota,
123 Opt_usrjquota,
124 Opt_grpjquota,
125 Opt_prjjquota,
126 Opt_offusrjquota,
127 Opt_offgrpjquota,
128 Opt_offprjjquota,
129 Opt_jqfmt_vfsold,
130 Opt_jqfmt_vfsv0,
131 Opt_jqfmt_vfsv1,
132 Opt_whint,
133 Opt_alloc,
134 Opt_fsync,
135 Opt_test_dummy_encryption,
136 Opt_err,
137};
138
139static match_table_t f2fs_tokens = {
140 {Opt_gc_background, "background_gc=%s"},
141 {Opt_disable_roll_forward, "disable_roll_forward"},
142 {Opt_norecovery, "norecovery"},
143 {Opt_discard, "discard"},
144 {Opt_nodiscard, "nodiscard"},
145 {Opt_noheap, "no_heap"},
146 {Opt_heap, "heap"},
147 {Opt_user_xattr, "user_xattr"},
148 {Opt_nouser_xattr, "nouser_xattr"},
149 {Opt_acl, "acl"},
150 {Opt_noacl, "noacl"},
151 {Opt_active_logs, "active_logs=%u"},
152 {Opt_disable_ext_identify, "disable_ext_identify"},
153 {Opt_inline_xattr, "inline_xattr"},
154 {Opt_noinline_xattr, "noinline_xattr"},
155 {Opt_inline_xattr_size, "inline_xattr_size=%u"},
156 {Opt_inline_data, "inline_data"},
157 {Opt_inline_dentry, "inline_dentry"},
158 {Opt_noinline_dentry, "noinline_dentry"},
159 {Opt_flush_merge, "flush_merge"},
160 {Opt_noflush_merge, "noflush_merge"},
161 {Opt_nobarrier, "nobarrier"},
162 {Opt_fastboot, "fastboot"},
163 {Opt_extent_cache, "extent_cache"},
164 {Opt_noextent_cache, "noextent_cache"},
165 {Opt_noinline_data, "noinline_data"},
166 {Opt_data_flush, "data_flush"},
167 {Opt_reserve_root, "reserve_root=%u"},
168 {Opt_resgid, "resgid=%u"},
169 {Opt_resuid, "resuid=%u"},
170 {Opt_mode, "mode=%s"},
171 {Opt_io_size_bits, "io_bits=%u"},
172 {Opt_fault_injection, "fault_injection=%u"},
173 {Opt_lazytime, "lazytime"},
174 {Opt_nolazytime, "nolazytime"},
175 {Opt_quota, "quota"},
176 {Opt_noquota, "noquota"},
177 {Opt_usrquota, "usrquota"},
178 {Opt_grpquota, "grpquota"},
179 {Opt_prjquota, "prjquota"},
180 {Opt_usrjquota, "usrjquota=%s"},
181 {Opt_grpjquota, "grpjquota=%s"},
182 {Opt_prjjquota, "prjjquota=%s"},
183 {Opt_offusrjquota, "usrjquota="},
184 {Opt_offgrpjquota, "grpjquota="},
185 {Opt_offprjjquota, "prjjquota="},
186 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
187 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
188 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
189 {Opt_whint, "whint_mode=%s"},
190 {Opt_alloc, "alloc_mode=%s"},
191 {Opt_fsync, "fsync_mode=%s"},
192 {Opt_test_dummy_encryption, "test_dummy_encryption"},
193 {Opt_err, NULL},
194};
195
196void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
197{
198 struct va_format vaf;
199 va_list args;
200
201 va_start(args, fmt);
202 vaf.fmt = fmt;
203 vaf.va = &args;
204 printk_ratelimited("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
205 va_end(args);
206}
207
208static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
209{
210 block_t limit = (sbi->user_block_count << 1) / 1000;
211
212 /* limit is 0.2% */
213 if (test_opt(sbi, RESERVE_ROOT) &&
214 F2FS_OPTION(sbi).root_reserved_blocks > limit) {
215 F2FS_OPTION(sbi).root_reserved_blocks = limit;
216 f2fs_msg(sbi->sb, KERN_INFO,
217 "Reduce reserved blocks for root = %u",
218 F2FS_OPTION(sbi).root_reserved_blocks);
219 }
220 if (!test_opt(sbi, RESERVE_ROOT) &&
221 (!uid_eq(F2FS_OPTION(sbi).s_resuid,
222 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
223 !gid_eq(F2FS_OPTION(sbi).s_resgid,
224 make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
225 f2fs_msg(sbi->sb, KERN_INFO,
226 "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
227 from_kuid_munged(&init_user_ns,
228 F2FS_OPTION(sbi).s_resuid),
229 from_kgid_munged(&init_user_ns,
230 F2FS_OPTION(sbi).s_resgid));
231}
232
233static void init_once(void *foo)
234{
235 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
236
237 inode_init_once(&fi->vfs_inode);
238}
239
240#ifdef CONFIG_QUOTA
241static const char * const quotatypes[] = INITQFNAMES;
242#define QTYPE2NAME(t) (quotatypes[t])
243static int f2fs_set_qf_name(struct super_block *sb, int qtype,
244 substring_t *args)
245{
246 struct f2fs_sb_info *sbi = F2FS_SB(sb);
247 char *qname;
248 int ret = -EINVAL;
249
250 if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
251 f2fs_msg(sb, KERN_ERR,
252 "Cannot change journaled "
253 "quota options when quota turned on");
254 return -EINVAL;
255 }
256 if (f2fs_sb_has_quota_ino(sb)) {
257 f2fs_msg(sb, KERN_INFO,
258 "QUOTA feature is enabled, so ignore qf_name");
259 return 0;
260 }
261
262 qname = match_strdup(args);
263 if (!qname) {
264 f2fs_msg(sb, KERN_ERR,
265 "Not enough memory for storing quotafile name");
266 return -EINVAL;
267 }
268 if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
269 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
270 ret = 0;
271 else
272 f2fs_msg(sb, KERN_ERR,
273 "%s quota file already specified",
274 QTYPE2NAME(qtype));
275 goto errout;
276 }
277 if (strchr(qname, '/')) {
278 f2fs_msg(sb, KERN_ERR,
279 "quotafile must be on filesystem root");
280 goto errout;
281 }
282 F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
283 set_opt(sbi, QUOTA);
284 return 0;
285errout:
286 kfree(qname);
287 return ret;
288}
289
290static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
291{
292 struct f2fs_sb_info *sbi = F2FS_SB(sb);
293
294 if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
295 f2fs_msg(sb, KERN_ERR, "Cannot change journaled quota options"
296 " when quota turned on");
297 return -EINVAL;
298 }
299 kfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
300 F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
301 return 0;
302}
303
304static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
305{
306 /*
307 * We do the test below only for project quotas. 'usrquota' and
308 * 'grpquota' mount options are allowed even without quota feature
309 * to support legacy quotas in quota files.
310 */
311 if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi->sb)) {
312 f2fs_msg(sbi->sb, KERN_ERR, "Project quota feature not enabled. "
313 "Cannot enable project quota enforcement.");
314 return -1;
315 }
316 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
317 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
318 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
319 if (test_opt(sbi, USRQUOTA) &&
320 F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
321 clear_opt(sbi, USRQUOTA);
322
323 if (test_opt(sbi, GRPQUOTA) &&
324 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
325 clear_opt(sbi, GRPQUOTA);
326
327 if (test_opt(sbi, PRJQUOTA) &&
328 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
329 clear_opt(sbi, PRJQUOTA);
330
331 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
332 test_opt(sbi, PRJQUOTA)) {
333 f2fs_msg(sbi->sb, KERN_ERR, "old and new quota "
334 "format mixing");
335 return -1;
336 }
337
338 if (!F2FS_OPTION(sbi).s_jquota_fmt) {
339 f2fs_msg(sbi->sb, KERN_ERR, "journaled quota format "
340 "not specified");
341 return -1;
342 }
343 }
344
345 if (f2fs_sb_has_quota_ino(sbi->sb) && F2FS_OPTION(sbi).s_jquota_fmt) {
346 f2fs_msg(sbi->sb, KERN_INFO,
347 "QUOTA feature is enabled, so ignore jquota_fmt");
348 F2FS_OPTION(sbi).s_jquota_fmt = 0;
349 }
350 if (f2fs_sb_has_quota_ino(sbi->sb) && f2fs_readonly(sbi->sb)) {
351 f2fs_msg(sbi->sb, KERN_INFO,
352 "Filesystem with quota feature cannot be mounted RDWR "
353 "without CONFIG_QUOTA");
354 return -1;
355 }
356 return 0;
357}
358#endif
359
360static int parse_options(struct super_block *sb, char *options)
361{
362 struct f2fs_sb_info *sbi = F2FS_SB(sb);
363 struct request_queue *q;
364 substring_t args[MAX_OPT_ARGS];
365 char *p, *name;
366 int arg = 0;
367 kuid_t uid;
368 kgid_t gid;
369#ifdef CONFIG_QUOTA
370 int ret;
371#endif
372
373 if (!options)
374 return 0;
375
376 while ((p = strsep(&options, ",")) != NULL) {
377 int token;
378 if (!*p)
379 continue;
380 /*
381 * Initialize args struct so we know whether arg was
382 * found; some options take optional arguments.
383 */
384 args[0].to = args[0].from = NULL;
385 token = match_token(p, f2fs_tokens, args);
386
387 switch (token) {
388 case Opt_gc_background:
389 name = match_strdup(&args[0]);
390
391 if (!name)
392 return -ENOMEM;
393 if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
394 set_opt(sbi, BG_GC);
395 clear_opt(sbi, FORCE_FG_GC);
396 } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
397 clear_opt(sbi, BG_GC);
398 clear_opt(sbi, FORCE_FG_GC);
399 } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
400 set_opt(sbi, BG_GC);
401 set_opt(sbi, FORCE_FG_GC);
402 } else {
403 kfree(name);
404 return -EINVAL;
405 }
406 kfree(name);
407 break;
408 case Opt_disable_roll_forward:
409 set_opt(sbi, DISABLE_ROLL_FORWARD);
410 break;
411 case Opt_norecovery:
412 /* this option mounts f2fs with ro */
413 set_opt(sbi, DISABLE_ROLL_FORWARD);
414 if (!f2fs_readonly(sb))
415 return -EINVAL;
416 break;
417 case Opt_discard:
418 q = bdev_get_queue(sb->s_bdev);
419 if (blk_queue_discard(q)) {
420 set_opt(sbi, DISCARD);
421 } else if (!f2fs_sb_has_blkzoned(sb)) {
422 f2fs_msg(sb, KERN_WARNING,
423 "mounting with \"discard\" option, but "
424 "the device does not support discard");
425 }
426 break;
427 case Opt_nodiscard:
428 if (f2fs_sb_has_blkzoned(sb)) {
429 f2fs_msg(sb, KERN_WARNING,
430 "discard is required for zoned block devices");
431 return -EINVAL;
432 }
433 clear_opt(sbi, DISCARD);
434 break;
435 case Opt_noheap:
436 set_opt(sbi, NOHEAP);
437 break;
438 case Opt_heap:
439 clear_opt(sbi, NOHEAP);
440 break;
441#ifdef CONFIG_F2FS_FS_XATTR
442 case Opt_user_xattr:
443 set_opt(sbi, XATTR_USER);
444 break;
445 case Opt_nouser_xattr:
446 clear_opt(sbi, XATTR_USER);
447 break;
448 case Opt_inline_xattr:
449 set_opt(sbi, INLINE_XATTR);
450 break;
451 case Opt_noinline_xattr:
452 clear_opt(sbi, INLINE_XATTR);
453 break;
454 case Opt_inline_xattr_size:
455 if (args->from && match_int(args, &arg))
456 return -EINVAL;
457 set_opt(sbi, INLINE_XATTR_SIZE);
458 F2FS_OPTION(sbi).inline_xattr_size = arg;
459 break;
460#else
461 case Opt_user_xattr:
462 f2fs_msg(sb, KERN_INFO,
463 "user_xattr options not supported");
464 break;
465 case Opt_nouser_xattr:
466 f2fs_msg(sb, KERN_INFO,
467 "nouser_xattr options not supported");
468 break;
469 case Opt_inline_xattr:
470 f2fs_msg(sb, KERN_INFO,
471 "inline_xattr options not supported");
472 break;
473 case Opt_noinline_xattr:
474 f2fs_msg(sb, KERN_INFO,
475 "noinline_xattr options not supported");
476 break;
477#endif
478#ifdef CONFIG_F2FS_FS_POSIX_ACL
479 case Opt_acl:
480 set_opt(sbi, POSIX_ACL);
481 break;
482 case Opt_noacl:
483 clear_opt(sbi, POSIX_ACL);
484 break;
485#else
486 case Opt_acl:
487 f2fs_msg(sb, KERN_INFO, "acl options not supported");
488 break;
489 case Opt_noacl:
490 f2fs_msg(sb, KERN_INFO, "noacl options not supported");
491 break;
492#endif
493 case Opt_active_logs:
494 if (args->from && match_int(args, &arg))
495 return -EINVAL;
496 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
497 return -EINVAL;
498 F2FS_OPTION(sbi).active_logs = arg;
499 break;
500 case Opt_disable_ext_identify:
501 set_opt(sbi, DISABLE_EXT_IDENTIFY);
502 break;
503 case Opt_inline_data:
504 set_opt(sbi, INLINE_DATA);
505 break;
506 case Opt_inline_dentry:
507 set_opt(sbi, INLINE_DENTRY);
508 break;
509 case Opt_noinline_dentry:
510 clear_opt(sbi, INLINE_DENTRY);
511 break;
512 case Opt_flush_merge:
513 set_opt(sbi, FLUSH_MERGE);
514 break;
515 case Opt_noflush_merge:
516 clear_opt(sbi, FLUSH_MERGE);
517 break;
518 case Opt_nobarrier:
519 set_opt(sbi, NOBARRIER);
520 break;
521 case Opt_fastboot:
522 set_opt(sbi, FASTBOOT);
523 break;
524 case Opt_extent_cache:
525 set_opt(sbi, EXTENT_CACHE);
526 break;
527 case Opt_noextent_cache:
528 clear_opt(sbi, EXTENT_CACHE);
529 break;
530 case Opt_noinline_data:
531 clear_opt(sbi, INLINE_DATA);
532 break;
533 case Opt_data_flush:
534 set_opt(sbi, DATA_FLUSH);
535 break;
536 case Opt_reserve_root:
537 if (args->from && match_int(args, &arg))
538 return -EINVAL;
539 if (test_opt(sbi, RESERVE_ROOT)) {
540 f2fs_msg(sb, KERN_INFO,
541 "Preserve previous reserve_root=%u",
542 F2FS_OPTION(sbi).root_reserved_blocks);
543 } else {
544 F2FS_OPTION(sbi).root_reserved_blocks = arg;
545 set_opt(sbi, RESERVE_ROOT);
546 }
547 break;
548 case Opt_resuid:
549 if (args->from && match_int(args, &arg))
550 return -EINVAL;
551 uid = make_kuid(current_user_ns(), arg);
552 if (!uid_valid(uid)) {
553 f2fs_msg(sb, KERN_ERR,
554 "Invalid uid value %d", arg);
555 return -EINVAL;
556 }
557 F2FS_OPTION(sbi).s_resuid = uid;
558 break;
559 case Opt_resgid:
560 if (args->from && match_int(args, &arg))
561 return -EINVAL;
562 gid = make_kgid(current_user_ns(), arg);
563 if (!gid_valid(gid)) {
564 f2fs_msg(sb, KERN_ERR,
565 "Invalid gid value %d", arg);
566 return -EINVAL;
567 }
568 F2FS_OPTION(sbi).s_resgid = gid;
569 break;
570 case Opt_mode:
571 name = match_strdup(&args[0]);
572
573 if (!name)
574 return -ENOMEM;
575 if (strlen(name) == 8 &&
576 !strncmp(name, "adaptive", 8)) {
577 if (f2fs_sb_has_blkzoned(sb)) {
578 f2fs_msg(sb, KERN_WARNING,
579 "adaptive mode is not allowed with "
580 "zoned block device feature");
581 kfree(name);
582 return -EINVAL;
583 }
584 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
585 } else if (strlen(name) == 3 &&
586 !strncmp(name, "lfs", 3)) {
587 set_opt_mode(sbi, F2FS_MOUNT_LFS);
588 } else {
589 kfree(name);
590 return -EINVAL;
591 }
592 kfree(name);
593 break;
594 case Opt_io_size_bits:
595 if (args->from && match_int(args, &arg))
596 return -EINVAL;
597 if (arg > __ilog2_u32(BIO_MAX_PAGES)) {
598 f2fs_msg(sb, KERN_WARNING,
599 "Not support %d, larger than %d",
600 1 << arg, BIO_MAX_PAGES);
601 return -EINVAL;
602 }
603 F2FS_OPTION(sbi).write_io_size_bits = arg;
604 break;
605 case Opt_fault_injection:
606 if (args->from && match_int(args, &arg))
607 return -EINVAL;
608#ifdef CONFIG_F2FS_FAULT_INJECTION
609 f2fs_build_fault_attr(sbi, arg);
610 set_opt(sbi, FAULT_INJECTION);
611#else
612 f2fs_msg(sb, KERN_INFO,
613 "FAULT_INJECTION was not selected");
614#endif
615 break;
616 case Opt_lazytime:
617 sb->s_flags |= MS_LAZYTIME;
618 break;
619 case Opt_nolazytime:
620 sb->s_flags &= ~MS_LAZYTIME;
621 break;
622#ifdef CONFIG_QUOTA
623 case Opt_quota:
624 case Opt_usrquota:
625 set_opt(sbi, USRQUOTA);
626 break;
627 case Opt_grpquota:
628 set_opt(sbi, GRPQUOTA);
629 break;
630 case Opt_prjquota:
631 set_opt(sbi, PRJQUOTA);
632 break;
633 case Opt_usrjquota:
634 ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
635 if (ret)
636 return ret;
637 break;
638 case Opt_grpjquota:
639 ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
640 if (ret)
641 return ret;
642 break;
643 case Opt_prjjquota:
644 ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
645 if (ret)
646 return ret;
647 break;
648 case Opt_offusrjquota:
649 ret = f2fs_clear_qf_name(sb, USRQUOTA);
650 if (ret)
651 return ret;
652 break;
653 case Opt_offgrpjquota:
654 ret = f2fs_clear_qf_name(sb, GRPQUOTA);
655 if (ret)
656 return ret;
657 break;
658 case Opt_offprjjquota:
659 ret = f2fs_clear_qf_name(sb, PRJQUOTA);
660 if (ret)
661 return ret;
662 break;
663 case Opt_jqfmt_vfsold:
664 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
665 break;
666 case Opt_jqfmt_vfsv0:
667 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
668 break;
669 case Opt_jqfmt_vfsv1:
670 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
671 break;
672 case Opt_noquota:
673 clear_opt(sbi, QUOTA);
674 clear_opt(sbi, USRQUOTA);
675 clear_opt(sbi, GRPQUOTA);
676 clear_opt(sbi, PRJQUOTA);
677 break;
678#else
679 case Opt_quota:
680 case Opt_usrquota:
681 case Opt_grpquota:
682 case Opt_prjquota:
683 case Opt_usrjquota:
684 case Opt_grpjquota:
685 case Opt_prjjquota:
686 case Opt_offusrjquota:
687 case Opt_offgrpjquota:
688 case Opt_offprjjquota:
689 case Opt_jqfmt_vfsold:
690 case Opt_jqfmt_vfsv0:
691 case Opt_jqfmt_vfsv1:
692 case Opt_noquota:
693 f2fs_msg(sb, KERN_INFO,
694 "quota operations not supported");
695 break;
696#endif
697 case Opt_whint:
698 name = match_strdup(&args[0]);
699 if (!name)
700 return -ENOMEM;
701 if (strlen(name) == 10 &&
702 !strncmp(name, "user-based", 10)) {
703 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER;
704 } else if (strlen(name) == 3 &&
705 !strncmp(name, "off", 3)) {
706 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
707 } else if (strlen(name) == 8 &&
708 !strncmp(name, "fs-based", 8)) {
709 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS;
710 } else {
711 kfree(name);
712 return -EINVAL;
713 }
714 kfree(name);
715 break;
716 case Opt_alloc:
717 name = match_strdup(&args[0]);
718 if (!name)
719 return -ENOMEM;
720
721 if (strlen(name) == 7 &&
722 !strncmp(name, "default", 7)) {
723 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
724 } else if (strlen(name) == 5 &&
725 !strncmp(name, "reuse", 5)) {
726 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
727 } else {
728 kfree(name);
729 return -EINVAL;
730 }
731 kfree(name);
732 break;
733 case Opt_fsync:
734 name = match_strdup(&args[0]);
735 if (!name)
736 return -ENOMEM;
737 if (strlen(name) == 5 &&
738 !strncmp(name, "posix", 5)) {
739 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
740 } else if (strlen(name) == 6 &&
741 !strncmp(name, "strict", 6)) {
742 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
743 } else if (strlen(name) == 9 &&
744 !strncmp(name, "nobarrier", 9)) {
745 F2FS_OPTION(sbi).fsync_mode =
746 FSYNC_MODE_NOBARRIER;
747 } else {
748 kfree(name);
749 return -EINVAL;
750 }
751 kfree(name);
752 break;
753 case Opt_test_dummy_encryption:
754#ifdef CONFIG_F2FS_FS_ENCRYPTION
755 if (!f2fs_sb_has_encrypt(sb)) {
756 f2fs_msg(sb, KERN_ERR, "Encrypt feature is off");
757 return -EINVAL;
758 }
759
760 F2FS_OPTION(sbi).test_dummy_encryption = true;
761 f2fs_msg(sb, KERN_INFO,
762 "Test dummy encryption mode enabled");
763#else
764 f2fs_msg(sb, KERN_INFO,
765 "Test dummy encryption mount option ignored");
766#endif
767 break;
768 default:
769 f2fs_msg(sb, KERN_ERR,
770 "Unrecognized mount option \"%s\" or missing value",
771 p);
772 return -EINVAL;
773 }
774 }
775#ifdef CONFIG_QUOTA
776 if (f2fs_check_quota_options(sbi))
777 return -EINVAL;
778#endif
779
780 if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) {
781 f2fs_msg(sb, KERN_ERR,
782 "Should set mode=lfs with %uKB-sized IO",
783 F2FS_IO_SIZE_KB(sbi));
784 return -EINVAL;
785 }
786
787 if (test_opt(sbi, INLINE_XATTR_SIZE)) {
788 if (!f2fs_sb_has_extra_attr(sb) ||
789 !f2fs_sb_has_flexible_inline_xattr(sb)) {
790 f2fs_msg(sb, KERN_ERR,
791 "extra_attr or flexible_inline_xattr "
792 "feature is off");
793 return -EINVAL;
794 }
795 if (!test_opt(sbi, INLINE_XATTR)) {
796 f2fs_msg(sb, KERN_ERR,
797 "inline_xattr_size option should be "
798 "set with inline_xattr option");
799 return -EINVAL;
800 }
801 if (!F2FS_OPTION(sbi).inline_xattr_size ||
802 F2FS_OPTION(sbi).inline_xattr_size >=
803 DEF_ADDRS_PER_INODE -
804 F2FS_TOTAL_EXTRA_ATTR_SIZE -
805 DEF_INLINE_RESERVED_SIZE -
806 DEF_MIN_INLINE_SIZE) {
807 f2fs_msg(sb, KERN_ERR,
808 "inline xattr size is out of range");
809 return -EINVAL;
810 }
811 }
812
813 /* Not pass down write hints if the number of active logs is lesser
814 * than NR_CURSEG_TYPE.
815 */
816 if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE)
817 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
818 return 0;
819}
820
821static struct inode *f2fs_alloc_inode(struct super_block *sb)
822{
823 struct f2fs_inode_info *fi;
824
825 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
826 if (!fi)
827 return NULL;
828
829 init_once((void *) fi);
830
831 /* Initialize f2fs-specific inode info */
832 atomic_set(&fi->dirty_pages, 0);
833 fi->i_current_depth = 1;
834 init_rwsem(&fi->i_sem);
835 INIT_LIST_HEAD(&fi->dirty_list);
836 INIT_LIST_HEAD(&fi->gdirty_list);
837 INIT_LIST_HEAD(&fi->inmem_ilist);
838 INIT_LIST_HEAD(&fi->inmem_pages);
839 mutex_init(&fi->inmem_lock);
840 init_rwsem(&fi->dio_rwsem[READ]);
841 init_rwsem(&fi->dio_rwsem[WRITE]);
842 init_rwsem(&fi->i_mmap_sem);
843 init_rwsem(&fi->i_xattr_sem);
844
845 /* Will be used by directory only */
846 fi->i_dir_level = F2FS_SB(sb)->dir_level;
847
848 return &fi->vfs_inode;
849}
850
851static int f2fs_drop_inode(struct inode *inode)
852{
853 int ret;
854 /*
855 * This is to avoid a deadlock condition like below.
856 * writeback_single_inode(inode)
857 * - f2fs_write_data_page
858 * - f2fs_gc -> iput -> evict
859 * - inode_wait_for_writeback(inode)
860 */
861 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
862 if (!inode->i_nlink && !is_bad_inode(inode)) {
863 /* to avoid evict_inode call simultaneously */
864 atomic_inc(&inode->i_count);
865 spin_unlock(&inode->i_lock);
866
867 /* some remained atomic pages should discarded */
868 if (f2fs_is_atomic_file(inode))
869 drop_inmem_pages(inode);
870
871 /* should remain fi->extent_tree for writepage */
872 f2fs_destroy_extent_node(inode);
873
874 sb_start_intwrite(inode->i_sb);
875 f2fs_i_size_write(inode, 0);
876
877 if (F2FS_HAS_BLOCKS(inode))
878 f2fs_truncate(inode);
879
880 sb_end_intwrite(inode->i_sb);
881
882 spin_lock(&inode->i_lock);
883 atomic_dec(&inode->i_count);
884 }
885 trace_f2fs_drop_inode(inode, 0);
886 return 0;
887 }
888 ret = generic_drop_inode(inode);
889 trace_f2fs_drop_inode(inode, ret);
890 return ret;
891}
892
893int f2fs_inode_dirtied(struct inode *inode, bool sync)
894{
895 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
896 int ret = 0;
897
898 spin_lock(&sbi->inode_lock[DIRTY_META]);
899 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
900 ret = 1;
901 } else {
902 set_inode_flag(inode, FI_DIRTY_INODE);
903 stat_inc_dirty_inode(sbi, DIRTY_META);
904 }
905 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
906 list_add_tail(&F2FS_I(inode)->gdirty_list,
907 &sbi->inode_list[DIRTY_META]);
908 inc_page_count(sbi, F2FS_DIRTY_IMETA);
909 }
910 spin_unlock(&sbi->inode_lock[DIRTY_META]);
911 return ret;
912}
913
914void f2fs_inode_synced(struct inode *inode)
915{
916 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
917
918 spin_lock(&sbi->inode_lock[DIRTY_META]);
919 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
920 spin_unlock(&sbi->inode_lock[DIRTY_META]);
921 return;
922 }
923 if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
924 list_del_init(&F2FS_I(inode)->gdirty_list);
925 dec_page_count(sbi, F2FS_DIRTY_IMETA);
926 }
927 clear_inode_flag(inode, FI_DIRTY_INODE);
928 clear_inode_flag(inode, FI_AUTO_RECOVER);
929 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
930 spin_unlock(&sbi->inode_lock[DIRTY_META]);
931}
932
933/*
934 * f2fs_dirty_inode() is called from __mark_inode_dirty()
935 *
936 * We should call set_dirty_inode to write the dirty inode through write_inode.
937 */
938static void f2fs_dirty_inode(struct inode *inode, int flags)
939{
940 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
941
942 if (inode->i_ino == F2FS_NODE_INO(sbi) ||
943 inode->i_ino == F2FS_META_INO(sbi))
944 return;
945
946 if (flags == I_DIRTY_TIME)
947 return;
948
949 if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
950 clear_inode_flag(inode, FI_AUTO_RECOVER);
951
952 f2fs_inode_dirtied(inode, false);
953}
954
955static void f2fs_i_callback(struct rcu_head *head)
956{
957 struct inode *inode = container_of(head, struct inode, i_rcu);
958 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
959}
960
961static void f2fs_destroy_inode(struct inode *inode)
962{
963 call_rcu(&inode->i_rcu, f2fs_i_callback);
964}
965
966static void destroy_percpu_info(struct f2fs_sb_info *sbi)
967{
968 percpu_counter_destroy(&sbi->alloc_valid_block_count);
969 percpu_counter_destroy(&sbi->total_valid_inode_count);
970}
971
972static void destroy_device_list(struct f2fs_sb_info *sbi)
973{
974 int i;
975
976 for (i = 0; i < sbi->s_ndevs; i++) {
977 blkdev_put(FDEV(i).bdev, FMODE_EXCL);
978#ifdef CONFIG_BLK_DEV_ZONED
979 kfree(FDEV(i).blkz_type);
980#endif
981 }
982 kfree(sbi->devs);
983}
984
985static void f2fs_put_super(struct super_block *sb)
986{
987 struct f2fs_sb_info *sbi = F2FS_SB(sb);
988 int i;
989 bool dropped;
990
991 /* unregister procfs/sysfs entries in advance to avoid race case */
992 f2fs_unregister_sysfs(sbi);
993
994 f2fs_quota_off_umount(sb);
995
996 /* prevent remaining shrinker jobs */
997 mutex_lock(&sbi->umount_mutex);
998
999 /*
1000 * We don't need to do checkpoint when superblock is clean.
1001 * But, the previous checkpoint was not done by umount, it needs to do
1002 * clean checkpoint again.
1003 */
1004 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1005 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
1006 struct cp_control cpc = {
1007 .reason = CP_UMOUNT,
1008 };
1009 write_checkpoint(sbi, &cpc);
1010 }
1011
1012 /* be sure to wait for any on-going discard commands */
1013 dropped = f2fs_wait_discard_bios(sbi);
1014
1015 if (f2fs_discard_en(sbi) && !sbi->discard_blks && !dropped) {
1016 struct cp_control cpc = {
1017 .reason = CP_UMOUNT | CP_TRIMMED,
1018 };
1019 write_checkpoint(sbi, &cpc);
1020 }
1021
1022 /* write_checkpoint can update stat informaion */
1023 f2fs_destroy_stats(sbi);
1024
1025 /*
1026 * normally superblock is clean, so we need to release this.
1027 * In addition, EIO will skip do checkpoint, we need this as well.
1028 */
1029 release_ino_entry(sbi, true);
1030
1031 f2fs_leave_shrinker(sbi);
1032 mutex_unlock(&sbi->umount_mutex);
1033
1034 /* our cp_error case, we can wait for any writeback page */
1035 f2fs_flush_merged_writes(sbi);
1036
1037 iput(sbi->node_inode);
1038 iput(sbi->meta_inode);
1039
1040 /* destroy f2fs internal modules */
1041 destroy_node_manager(sbi);
1042 destroy_segment_manager(sbi);
1043
1044 kfree(sbi->ckpt);
1045
1046 sb->s_fs_info = NULL;
1047 if (sbi->s_chksum_driver)
1048 crypto_free_shash(sbi->s_chksum_driver);
1049 kfree(sbi->raw_super);
1050
1051 destroy_device_list(sbi);
1052 mempool_destroy(sbi->write_io_dummy);
1053#ifdef CONFIG_QUOTA
1054 for (i = 0; i < MAXQUOTAS; i++)
1055 kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1056#endif
1057 destroy_percpu_info(sbi);
1058 for (i = 0; i < NR_PAGE_TYPE; i++)
1059 kfree(sbi->write_io[i]);
1060 kfree(sbi);
1061}
1062
1063int f2fs_sync_fs(struct super_block *sb, int sync)
1064{
1065 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1066 int err = 0;
1067
1068 if (unlikely(f2fs_cp_error(sbi)))
1069 return 0;
1070
1071 trace_f2fs_sync_fs(sb, sync);
1072
1073 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1074 return -EAGAIN;
1075
1076 if (sync) {
1077 struct cp_control cpc;
1078
1079 cpc.reason = __get_cp_reason(sbi);
1080
1081 mutex_lock(&sbi->gc_mutex);
1082 err = write_checkpoint(sbi, &cpc);
1083 mutex_unlock(&sbi->gc_mutex);
1084 }
1085 f2fs_trace_ios(NULL, 1);
1086
1087 return err;
1088}
1089
1090static int f2fs_freeze(struct super_block *sb)
1091{
1092 if (f2fs_readonly(sb))
1093 return 0;
1094
1095 /* IO error happened before */
1096 if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1097 return -EIO;
1098
1099 /* must be clean, since sync_filesystem() was already called */
1100 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1101 return -EINVAL;
1102 return 0;
1103}
1104
1105static int f2fs_unfreeze(struct super_block *sb)
1106{
1107 return 0;
1108}
1109
1110#ifdef CONFIG_QUOTA
1111static int f2fs_statfs_project(struct super_block *sb,
1112 kprojid_t projid, struct kstatfs *buf)
1113{
1114 struct kqid qid;
1115 struct dquot *dquot;
1116 u64 limit;
1117 u64 curblock;
1118
1119 qid = make_kqid_projid(projid);
1120 dquot = dqget(sb, qid);
1121 if (IS_ERR(dquot))
1122 return PTR_ERR(dquot);
1123 spin_lock(&dq_data_lock);
1124
1125 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
1126 dquot->dq_dqb.dqb_bhardlimit);
1127 if (limit)
1128 limit >>= sb->s_blocksize_bits;
1129
1130 if (limit && buf->f_blocks > limit) {
1131 curblock = (dquot->dq_dqb.dqb_curspace +
1132 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
1133 buf->f_blocks = limit;
1134 buf->f_bfree = buf->f_bavail =
1135 (buf->f_blocks > curblock) ?
1136 (buf->f_blocks - curblock) : 0;
1137 }
1138
1139 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
1140 dquot->dq_dqb.dqb_ihardlimit);
1141
1142 if (limit && buf->f_files > limit) {
1143 buf->f_files = limit;
1144 buf->f_ffree =
1145 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1146 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1147 }
1148
1149 spin_unlock(&dq_data_lock);
1150 dqput(dquot);
1151 return 0;
1152}
1153#endif
1154
1155static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1156{
1157 struct super_block *sb = dentry->d_sb;
1158 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1159 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1160 block_t total_count, user_block_count, start_count;
1161 u64 avail_node_count;
1162
1163 total_count = le64_to_cpu(sbi->raw_super->block_count);
1164 user_block_count = sbi->user_block_count;
1165 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1166 buf->f_type = F2FS_SUPER_MAGIC;
1167 buf->f_bsize = sbi->blocksize;
1168
1169 buf->f_blocks = total_count - start_count;
1170 buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1171 sbi->current_reserved_blocks;
1172 if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1173 buf->f_bavail = buf->f_bfree -
1174 F2FS_OPTION(sbi).root_reserved_blocks;
1175 else
1176 buf->f_bavail = 0;
1177
1178 avail_node_count = sbi->total_node_count - sbi->nquota_files -
1179 F2FS_RESERVED_NODE_NUM;
1180
1181 if (avail_node_count > user_block_count) {
1182 buf->f_files = user_block_count;
1183 buf->f_ffree = buf->f_bavail;
1184 } else {
1185 buf->f_files = avail_node_count;
1186 buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1187 buf->f_bavail);
1188 }
1189
1190 buf->f_namelen = F2FS_NAME_LEN;
1191 buf->f_fsid.val[0] = (u32)id;
1192 buf->f_fsid.val[1] = (u32)(id >> 32);
1193
1194#ifdef CONFIG_QUOTA
1195 if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1196 sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1197 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1198 }
1199#endif
1200 return 0;
1201}
1202
1203static inline void f2fs_show_quota_options(struct seq_file *seq,
1204 struct super_block *sb)
1205{
1206#ifdef CONFIG_QUOTA
1207 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1208
1209 if (F2FS_OPTION(sbi).s_jquota_fmt) {
1210 char *fmtname = "";
1211
1212 switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1213 case QFMT_VFS_OLD:
1214 fmtname = "vfsold";
1215 break;
1216 case QFMT_VFS_V0:
1217 fmtname = "vfsv0";
1218 break;
1219 case QFMT_VFS_V1:
1220 fmtname = "vfsv1";
1221 break;
1222 }
1223 seq_printf(seq, ",jqfmt=%s", fmtname);
1224 }
1225
1226 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1227 seq_show_option(seq, "usrjquota",
1228 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1229
1230 if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1231 seq_show_option(seq, "grpjquota",
1232 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1233
1234 if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1235 seq_show_option(seq, "prjjquota",
1236 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1237#endif
1238}
1239
1240static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1241{
1242 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1243
1244 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
1245 if (test_opt(sbi, FORCE_FG_GC))
1246 seq_printf(seq, ",background_gc=%s", "sync");
1247 else
1248 seq_printf(seq, ",background_gc=%s", "on");
1249 } else {
1250 seq_printf(seq, ",background_gc=%s", "off");
1251 }
1252 if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1253 seq_puts(seq, ",disable_roll_forward");
1254 if (test_opt(sbi, DISCARD))
1255 seq_puts(seq, ",discard");
1256 if (test_opt(sbi, NOHEAP))
1257 seq_puts(seq, ",no_heap");
1258 else
1259 seq_puts(seq, ",heap");
1260#ifdef CONFIG_F2FS_FS_XATTR
1261 if (test_opt(sbi, XATTR_USER))
1262 seq_puts(seq, ",user_xattr");
1263 else
1264 seq_puts(seq, ",nouser_xattr");
1265 if (test_opt(sbi, INLINE_XATTR))
1266 seq_puts(seq, ",inline_xattr");
1267 else
1268 seq_puts(seq, ",noinline_xattr");
1269 if (test_opt(sbi, INLINE_XATTR_SIZE))
1270 seq_printf(seq, ",inline_xattr_size=%u",
1271 F2FS_OPTION(sbi).inline_xattr_size);
1272#endif
1273#ifdef CONFIG_F2FS_FS_POSIX_ACL
1274 if (test_opt(sbi, POSIX_ACL))
1275 seq_puts(seq, ",acl");
1276 else
1277 seq_puts(seq, ",noacl");
1278#endif
1279 if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1280 seq_puts(seq, ",disable_ext_identify");
1281 if (test_opt(sbi, INLINE_DATA))
1282 seq_puts(seq, ",inline_data");
1283 else
1284 seq_puts(seq, ",noinline_data");
1285 if (test_opt(sbi, INLINE_DENTRY))
1286 seq_puts(seq, ",inline_dentry");
1287 else
1288 seq_puts(seq, ",noinline_dentry");
1289 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1290 seq_puts(seq, ",flush_merge");
1291 if (test_opt(sbi, NOBARRIER))
1292 seq_puts(seq, ",nobarrier");
1293 if (test_opt(sbi, FASTBOOT))
1294 seq_puts(seq, ",fastboot");
1295 if (test_opt(sbi, EXTENT_CACHE))
1296 seq_puts(seq, ",extent_cache");
1297 else
1298 seq_puts(seq, ",noextent_cache");
1299 if (test_opt(sbi, DATA_FLUSH))
1300 seq_puts(seq, ",data_flush");
1301
1302 seq_puts(seq, ",mode=");
1303 if (test_opt(sbi, ADAPTIVE))
1304 seq_puts(seq, "adaptive");
1305 else if (test_opt(sbi, LFS))
1306 seq_puts(seq, "lfs");
1307 seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1308 if (test_opt(sbi, RESERVE_ROOT))
1309 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1310 F2FS_OPTION(sbi).root_reserved_blocks,
1311 from_kuid_munged(&init_user_ns,
1312 F2FS_OPTION(sbi).s_resuid),
1313 from_kgid_munged(&init_user_ns,
1314 F2FS_OPTION(sbi).s_resgid));
1315 if (F2FS_IO_SIZE_BITS(sbi))
1316 seq_printf(seq, ",io_size=%uKB", F2FS_IO_SIZE_KB(sbi));
1317#ifdef CONFIG_F2FS_FAULT_INJECTION
1318 if (test_opt(sbi, FAULT_INJECTION))
1319 seq_printf(seq, ",fault_injection=%u",
1320 F2FS_OPTION(sbi).fault_info.inject_rate);
1321#endif
1322#ifdef CONFIG_QUOTA
1323 if (test_opt(sbi, QUOTA))
1324 seq_puts(seq, ",quota");
1325 if (test_opt(sbi, USRQUOTA))
1326 seq_puts(seq, ",usrquota");
1327 if (test_opt(sbi, GRPQUOTA))
1328 seq_puts(seq, ",grpquota");
1329 if (test_opt(sbi, PRJQUOTA))
1330 seq_puts(seq, ",prjquota");
1331#endif
1332 f2fs_show_quota_options(seq, sbi->sb);
1333 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER)
1334 seq_printf(seq, ",whint_mode=%s", "user-based");
1335 else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS)
1336 seq_printf(seq, ",whint_mode=%s", "fs-based");
1337#ifdef CONFIG_F2FS_FS_ENCRYPTION
1338 if (F2FS_OPTION(sbi).test_dummy_encryption)
1339 seq_puts(seq, ",test_dummy_encryption");
1340#endif
1341
1342 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
1343 seq_printf(seq, ",alloc_mode=%s", "default");
1344 else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
1345 seq_printf(seq, ",alloc_mode=%s", "reuse");
1346
1347 if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
1348 seq_printf(seq, ",fsync_mode=%s", "posix");
1349 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
1350 seq_printf(seq, ",fsync_mode=%s", "strict");
1351 return 0;
1352}
1353
1354static void default_options(struct f2fs_sb_info *sbi)
1355{
1356 /* init some FS parameters */
1357 F2FS_OPTION(sbi).active_logs = NR_CURSEG_TYPE;
1358 F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1359 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1360 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1361 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1362 F2FS_OPTION(sbi).test_dummy_encryption = false;
1363 sbi->readdir_ra = 1;
1364
1365 set_opt(sbi, BG_GC);
1366 set_opt(sbi, INLINE_XATTR);
1367 set_opt(sbi, INLINE_DATA);
1368 set_opt(sbi, INLINE_DENTRY);
1369 set_opt(sbi, EXTENT_CACHE);
1370 set_opt(sbi, NOHEAP);
1371 sbi->sb->s_flags |= MS_LAZYTIME;
1372 set_opt(sbi, FLUSH_MERGE);
1373 if (f2fs_sb_has_blkzoned(sbi->sb)) {
1374 set_opt_mode(sbi, F2FS_MOUNT_LFS);
1375 set_opt(sbi, DISCARD);
1376 } else {
1377 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
1378 }
1379
1380#ifdef CONFIG_F2FS_FS_XATTR
1381 set_opt(sbi, XATTR_USER);
1382#endif
1383#ifdef CONFIG_F2FS_FS_POSIX_ACL
1384 set_opt(sbi, POSIX_ACL);
1385#endif
1386
1387#ifdef CONFIG_F2FS_FAULT_INJECTION
1388 f2fs_build_fault_attr(sbi, 0);
1389#endif
1390}
1391
1392#ifdef CONFIG_QUOTA
1393static int f2fs_enable_quotas(struct super_block *sb);
1394#endif
1395static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1396{
1397 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1398 struct f2fs_mount_info org_mount_opt;
1399 unsigned long old_sb_flags;
1400 int err;
1401 bool need_restart_gc = false;
1402 bool need_stop_gc = false;
1403 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1404#ifdef CONFIG_QUOTA
1405 int i, j;
1406#endif
1407
1408 /*
1409 * Save the old mount options in case we
1410 * need to restore them.
1411 */
1412 org_mount_opt = sbi->mount_opt;
1413 old_sb_flags = sb->s_flags;
1414
1415#ifdef CONFIG_QUOTA
1416 org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
1417 for (i = 0; i < MAXQUOTAS; i++) {
1418 if (F2FS_OPTION(sbi).s_qf_names[i]) {
1419 org_mount_opt.s_qf_names[i] =
1420 kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
1421 GFP_KERNEL);
1422 if (!org_mount_opt.s_qf_names[i]) {
1423 for (j = 0; j < i; j++)
1424 kfree(org_mount_opt.s_qf_names[j]);
1425 return -ENOMEM;
1426 }
1427 } else {
1428 org_mount_opt.s_qf_names[i] = NULL;
1429 }
1430 }
1431#endif
1432
1433 /* recover superblocks we couldn't write due to previous RO mount */
1434 if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1435 err = f2fs_commit_super(sbi, false);
1436 f2fs_msg(sb, KERN_INFO,
1437 "Try to recover all the superblocks, ret: %d", err);
1438 if (!err)
1439 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1440 }
1441
1442 default_options(sbi);
1443
1444 /* parse mount options */
1445 err = parse_options(sb, data);
1446 if (err)
1447 goto restore_opts;
1448
1449 /*
1450 * Previous and new state of filesystem is RO,
1451 * so skip checking GC and FLUSH_MERGE conditions.
1452 */
1453 if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
1454 goto skip;
1455
1456#ifdef CONFIG_QUOTA
1457 if (!f2fs_readonly(sb) && (*flags & MS_RDONLY)) {
1458 err = dquot_suspend(sb, -1);
1459 if (err < 0)
1460 goto restore_opts;
1461 } else if (f2fs_readonly(sb) && !(*flags & MS_RDONLY)) {
1462 /* dquot_resume needs RW */
1463 sb->s_flags &= ~MS_RDONLY;
1464 if (sb_any_quota_suspended(sb)) {
1465 dquot_resume(sb, -1);
1466 } else if (f2fs_sb_has_quota_ino(sb)) {
1467 err = f2fs_enable_quotas(sb);
1468 if (err)
1469 goto restore_opts;
1470 }
1471 }
1472#endif
1473 /* disallow enable/disable extent_cache dynamically */
1474 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1475 err = -EINVAL;
1476 f2fs_msg(sbi->sb, KERN_WARNING,
1477 "switch extent_cache option is not allowed");
1478 goto restore_opts;
1479 }
1480
1481 /*
1482 * We stop the GC thread if FS is mounted as RO
1483 * or if background_gc = off is passed in mount
1484 * option. Also sync the filesystem.
1485 */
1486 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
1487 if (sbi->gc_thread) {
1488 stop_gc_thread(sbi);
1489 need_restart_gc = true;
1490 }
1491 } else if (!sbi->gc_thread) {
1492 err = start_gc_thread(sbi);
1493 if (err)
1494 goto restore_opts;
1495 need_stop_gc = true;
1496 }
1497
1498 if (*flags & MS_RDONLY ||
1499 F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) {
1500 writeback_inodes_sb(sb, WB_REASON_SYNC);
1501 sync_inodes_sb(sb);
1502
1503 set_sbi_flag(sbi, SBI_IS_DIRTY);
1504 set_sbi_flag(sbi, SBI_IS_CLOSE);
1505 f2fs_sync_fs(sb, 1);
1506 clear_sbi_flag(sbi, SBI_IS_CLOSE);
1507 }
1508
1509 /*
1510 * We stop issue flush thread if FS is mounted as RO
1511 * or if flush_merge is not passed in mount option.
1512 */
1513 if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1514 clear_opt(sbi, FLUSH_MERGE);
1515 destroy_flush_cmd_control(sbi, false);
1516 } else {
1517 err = create_flush_cmd_control(sbi);
1518 if (err)
1519 goto restore_gc;
1520 }
1521skip:
1522#ifdef CONFIG_QUOTA
1523 /* Release old quota file names */
1524 for (i = 0; i < MAXQUOTAS; i++)
1525 kfree(org_mount_opt.s_qf_names[i]);
1526#endif
1527 /* Update the POSIXACL Flag */
1528 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1529 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1530
1531 limit_reserve_root(sbi);
1532 return 0;
1533restore_gc:
1534 if (need_restart_gc) {
1535 if (start_gc_thread(sbi))
1536 f2fs_msg(sbi->sb, KERN_WARNING,
1537 "background gc thread has stopped");
1538 } else if (need_stop_gc) {
1539 stop_gc_thread(sbi);
1540 }
1541restore_opts:
1542#ifdef CONFIG_QUOTA
1543 F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
1544 for (i = 0; i < MAXQUOTAS; i++) {
1545 kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1546 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
1547 }
1548#endif
1549 sbi->mount_opt = org_mount_opt;
1550 sb->s_flags = old_sb_flags;
1551 return err;
1552}
1553
1554#ifdef CONFIG_QUOTA
1555/* Read data from quotafile */
1556static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
1557 size_t len, loff_t off)
1558{
1559 struct inode *inode = sb_dqopt(sb)->files[type];
1560 struct address_space *mapping = inode->i_mapping;
1561 block_t blkidx = F2FS_BYTES_TO_BLK(off);
1562 int offset = off & (sb->s_blocksize - 1);
1563 int tocopy;
1564 size_t toread;
1565 loff_t i_size = i_size_read(inode);
1566 struct page *page;
1567 char *kaddr;
1568
1569 if (off > i_size)
1570 return 0;
1571
1572 if (off + len > i_size)
1573 len = i_size - off;
1574 toread = len;
1575 while (toread > 0) {
1576 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
1577repeat:
1578 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
1579 if (IS_ERR(page)) {
1580 if (PTR_ERR(page) == -ENOMEM) {
1581 congestion_wait(BLK_RW_ASYNC, HZ/50);
1582 goto repeat;
1583 }
1584 return PTR_ERR(page);
1585 }
1586
1587 lock_page(page);
1588
1589 if (unlikely(page->mapping != mapping)) {
1590 f2fs_put_page(page, 1);
1591 goto repeat;
1592 }
1593 if (unlikely(!PageUptodate(page))) {
1594 f2fs_put_page(page, 1);
1595 return -EIO;
1596 }
1597
1598 kaddr = kmap_atomic(page);
1599 memcpy(data, kaddr + offset, tocopy);
1600 kunmap_atomic(kaddr);
1601 f2fs_put_page(page, 1);
1602
1603 offset = 0;
1604 toread -= tocopy;
1605 data += tocopy;
1606 blkidx++;
1607 }
1608 return len;
1609}
1610
1611/* Write to quotafile */
1612static ssize_t f2fs_quota_write(struct super_block *sb, int type,
1613 const char *data, size_t len, loff_t off)
1614{
1615 struct inode *inode = sb_dqopt(sb)->files[type];
1616 struct address_space *mapping = inode->i_mapping;
1617 const struct address_space_operations *a_ops = mapping->a_ops;
1618 int offset = off & (sb->s_blocksize - 1);
1619 size_t towrite = len;
1620 struct page *page;
1621 char *kaddr;
1622 int err = 0;
1623 int tocopy;
1624
1625 while (towrite > 0) {
1626 tocopy = min_t(unsigned long, sb->s_blocksize - offset,
1627 towrite);
1628retry:
1629 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
1630 &page, NULL);
1631 if (unlikely(err)) {
1632 if (err == -ENOMEM) {
1633 congestion_wait(BLK_RW_ASYNC, HZ/50);
1634 goto retry;
1635 }
1636 break;
1637 }
1638
1639 kaddr = kmap_atomic(page);
1640 memcpy(kaddr + offset, data, tocopy);
1641 kunmap_atomic(kaddr);
1642 flush_dcache_page(page);
1643
1644 a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
1645 page, NULL);
1646 offset = 0;
1647 towrite -= tocopy;
1648 off += tocopy;
1649 data += tocopy;
1650 cond_resched();
1651 }
1652
1653 if (len == towrite)
1654 return err;
1655 inode->i_mtime = inode->i_ctime = current_time(inode);
1656 f2fs_mark_inode_dirty_sync(inode, false);
1657 return len - towrite;
1658}
1659
1660static struct dquot **f2fs_get_dquots(struct inode *inode)
1661{
1662 return F2FS_I(inode)->i_dquot;
1663}
1664
1665static qsize_t *f2fs_get_reserved_space(struct inode *inode)
1666{
1667 return &F2FS_I(inode)->i_reserved_quota;
1668}
1669
1670static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
1671{
1672 return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
1673 F2FS_OPTION(sbi).s_jquota_fmt, type);
1674}
1675
1676int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
1677{
1678 int enabled = 0;
1679 int i, err;
1680
1681 if (f2fs_sb_has_quota_ino(sbi->sb) && rdonly) {
1682 err = f2fs_enable_quotas(sbi->sb);
1683 if (err) {
1684 f2fs_msg(sbi->sb, KERN_ERR,
1685 "Cannot turn on quota_ino: %d", err);
1686 return 0;
1687 }
1688 return 1;
1689 }
1690
1691 for (i = 0; i < MAXQUOTAS; i++) {
1692 if (F2FS_OPTION(sbi).s_qf_names[i]) {
1693 err = f2fs_quota_on_mount(sbi, i);
1694 if (!err) {
1695 enabled = 1;
1696 continue;
1697 }
1698 f2fs_msg(sbi->sb, KERN_ERR,
1699 "Cannot turn on quotas: %d on %d", err, i);
1700 }
1701 }
1702 return enabled;
1703}
1704
1705static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
1706 unsigned int flags)
1707{
1708 struct inode *qf_inode;
1709 unsigned long qf_inum;
1710 int err;
1711
1712 BUG_ON(!f2fs_sb_has_quota_ino(sb));
1713
1714 qf_inum = f2fs_qf_ino(sb, type);
1715 if (!qf_inum)
1716 return -EPERM;
1717
1718 qf_inode = f2fs_iget(sb, qf_inum);
1719 if (IS_ERR(qf_inode)) {
1720 f2fs_msg(sb, KERN_ERR,
1721 "Bad quota inode %u:%lu", type, qf_inum);
1722 return PTR_ERR(qf_inode);
1723 }
1724
1725 /* Don't account quota for quota files to avoid recursion */
1726 qf_inode->i_flags |= S_NOQUOTA;
1727 err = dquot_enable(qf_inode, type, format_id, flags);
1728 iput(qf_inode);
1729 return err;
1730}
1731
1732static int f2fs_enable_quotas(struct super_block *sb)
1733{
1734 int type, err = 0;
1735 unsigned long qf_inum;
1736 bool quota_mopt[MAXQUOTAS] = {
1737 test_opt(F2FS_SB(sb), USRQUOTA),
1738 test_opt(F2FS_SB(sb), GRPQUOTA),
1739 test_opt(F2FS_SB(sb), PRJQUOTA),
1740 };
1741
1742 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
1743 for (type = 0; type < MAXQUOTAS; type++) {
1744 qf_inum = f2fs_qf_ino(sb, type);
1745 if (qf_inum) {
1746 err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
1747 DQUOT_USAGE_ENABLED |
1748 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
1749 if (err) {
1750 f2fs_msg(sb, KERN_ERR,
1751 "Failed to enable quota tracking "
1752 "(type=%d, err=%d). Please run "
1753 "fsck to fix.", type, err);
1754 for (type--; type >= 0; type--)
1755 dquot_quota_off(sb, type);
1756 return err;
1757 }
1758 }
1759 }
1760 return 0;
1761}
1762
1763static int f2fs_quota_sync(struct super_block *sb, int type)
1764{
1765 struct quota_info *dqopt = sb_dqopt(sb);
1766 int cnt;
1767 int ret;
1768
1769 ret = dquot_writeback_dquots(sb, type);
1770 if (ret)
1771 return ret;
1772
1773 /*
1774 * Now when everything is written we can discard the pagecache so
1775 * that userspace sees the changes.
1776 */
1777 for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
1778 if (type != -1 && cnt != type)
1779 continue;
1780 if (!sb_has_quota_active(sb, cnt))
1781 continue;
1782
1783 ret = filemap_write_and_wait(dqopt->files[cnt]->i_mapping);
1784 if (ret)
1785 return ret;
1786
1787 inode_lock(dqopt->files[cnt]);
1788 truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
1789 inode_unlock(dqopt->files[cnt]);
1790 }
1791 return 0;
1792}
1793
1794static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
1795 const struct path *path)
1796{
1797 struct inode *inode;
1798 int err;
1799
1800 err = f2fs_quota_sync(sb, type);
1801 if (err)
1802 return err;
1803
1804 err = dquot_quota_on(sb, type, format_id, path);
1805 if (err)
1806 return err;
1807
1808 inode = d_inode(path->dentry);
1809
1810 inode_lock(inode);
1811 F2FS_I(inode)->i_flags |= FS_NOATIME_FL | FS_IMMUTABLE_FL;
1812 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
1813 S_NOATIME | S_IMMUTABLE);
1814 inode_unlock(inode);
1815 f2fs_mark_inode_dirty_sync(inode, false);
1816
1817 return 0;
1818}
1819
1820static int f2fs_quota_off(struct super_block *sb, int type)
1821{
1822 struct inode *inode = sb_dqopt(sb)->files[type];
1823 int err;
1824
1825 if (!inode || !igrab(inode))
1826 return dquot_quota_off(sb, type);
1827
1828 err = f2fs_quota_sync(sb, type);
1829 if (err)
1830 goto out_put;
1831
1832 err = dquot_quota_off(sb, type);
1833 if (err || f2fs_sb_has_quota_ino(sb))
1834 goto out_put;
1835
1836 inode_lock(inode);
1837 F2FS_I(inode)->i_flags &= ~(FS_NOATIME_FL | FS_IMMUTABLE_FL);
1838 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
1839 inode_unlock(inode);
1840 f2fs_mark_inode_dirty_sync(inode, false);
1841out_put:
1842 iput(inode);
1843 return err;
1844}
1845
1846void f2fs_quota_off_umount(struct super_block *sb)
1847{
1848 int type;
1849 int err;
1850
1851 for (type = 0; type < MAXQUOTAS; type++) {
1852 err = f2fs_quota_off(sb, type);
1853 if (err) {
1854 int ret = dquot_quota_off(sb, type);
1855
1856 f2fs_msg(sb, KERN_ERR,
1857 "Fail to turn off disk quota "
1858 "(type: %d, err: %d, ret:%d), Please "
1859 "run fsck to fix it.", type, err, ret);
1860 set_sbi_flag(F2FS_SB(sb), SBI_NEED_FSCK);
1861 }
1862 }
1863 /*
1864 * In case of checkpoint=disable, we must flush quota blocks.
1865 * This can cause NULL exception for node_inode in end_io, since
1866 * put_super already dropped it.
1867 */
1868 sync_filesystem(sb);
1869}
1870
1871static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
1872{
1873 *projid = F2FS_I(inode)->i_projid;
1874 return 0;
1875}
1876
1877static const struct dquot_operations f2fs_quota_operations = {
1878 .get_reserved_space = f2fs_get_reserved_space,
1879 .write_dquot = dquot_commit,
1880 .acquire_dquot = dquot_acquire,
1881 .release_dquot = dquot_release,
1882 .mark_dirty = dquot_mark_dquot_dirty,
1883 .write_info = dquot_commit_info,
1884 .alloc_dquot = dquot_alloc,
1885 .destroy_dquot = dquot_destroy,
1886 .get_projid = f2fs_get_projid,
1887 .get_next_id = dquot_get_next_id,
1888};
1889
1890static const struct quotactl_ops f2fs_quotactl_ops = {
1891 .quota_on = f2fs_quota_on,
1892 .quota_off = f2fs_quota_off,
1893 .quota_sync = f2fs_quota_sync,
1894 .get_state = dquot_get_state,
1895 .set_info = dquot_set_dqinfo,
1896 .get_dqblk = dquot_get_dqblk,
1897 .set_dqblk = dquot_set_dqblk,
1898 .get_nextdqblk = dquot_get_next_dqblk,
1899};
1900#else
1901void f2fs_quota_off_umount(struct super_block *sb)
1902{
1903}
1904#endif
1905
1906static const struct super_operations f2fs_sops = {
1907 .alloc_inode = f2fs_alloc_inode,
1908 .drop_inode = f2fs_drop_inode,
1909 .destroy_inode = f2fs_destroy_inode,
1910 .write_inode = f2fs_write_inode,
1911 .dirty_inode = f2fs_dirty_inode,
1912 .show_options = f2fs_show_options,
1913#ifdef CONFIG_QUOTA
1914 .quota_read = f2fs_quota_read,
1915 .quota_write = f2fs_quota_write,
1916 .get_dquots = f2fs_get_dquots,
1917#endif
1918 .evict_inode = f2fs_evict_inode,
1919 .put_super = f2fs_put_super,
1920 .sync_fs = f2fs_sync_fs,
1921 .freeze_fs = f2fs_freeze,
1922 .unfreeze_fs = f2fs_unfreeze,
1923 .statfs = f2fs_statfs,
1924 .remount_fs = f2fs_remount,
1925};
1926
1927#ifdef CONFIG_F2FS_FS_ENCRYPTION
1928static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1929{
1930 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1931 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1932 ctx, len, NULL);
1933}
1934
1935static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1936 void *fs_data)
1937{
1938 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1939
1940 /*
1941 * Encrypting the root directory is not allowed because fsck
1942 * expects lost+found directory to exist and remain unencrypted
1943 * if LOST_FOUND feature is enabled.
1944 *
1945 */
1946 if (f2fs_sb_has_lost_found(sbi->sb) &&
1947 inode->i_ino == F2FS_ROOT_INO(sbi))
1948 return -EPERM;
1949
1950 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1951 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1952 ctx, len, fs_data, XATTR_CREATE);
1953}
1954
1955static bool f2fs_dummy_context(struct inode *inode)
1956{
1957 return DUMMY_ENCRYPTION_ENABLED(F2FS_I_SB(inode));
1958}
1959
1960static unsigned f2fs_max_namelen(struct inode *inode)
1961{
1962 return S_ISLNK(inode->i_mode) ?
1963 inode->i_sb->s_blocksize : F2FS_NAME_LEN;
1964}
1965
1966static const struct fscrypt_operations f2fs_cryptops = {
1967 .key_prefix = "f2fs:",
1968 .get_context = f2fs_get_context,
1969 .set_context = f2fs_set_context,
1970 .dummy_context = f2fs_dummy_context,
1971 .empty_dir = f2fs_empty_dir,
1972 .max_namelen = f2fs_max_namelen,
1973};
1974#endif
1975
1976static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1977 u64 ino, u32 generation)
1978{
1979 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1980 struct inode *inode;
1981
1982 if (check_nid_range(sbi, ino))
1983 return ERR_PTR(-ESTALE);
1984
1985 /*
1986 * f2fs_iget isn't quite right if the inode is currently unallocated!
1987 * However f2fs_iget currently does appropriate checks to handle stale
1988 * inodes so everything is OK.
1989 */
1990 inode = f2fs_iget(sb, ino);
1991 if (IS_ERR(inode))
1992 return ERR_CAST(inode);
1993 if (unlikely(generation && inode->i_generation != generation)) {
1994 /* we didn't find the right inode.. */
1995 iput(inode);
1996 return ERR_PTR(-ESTALE);
1997 }
1998 return inode;
1999}
2000
2001static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
2002 int fh_len, int fh_type)
2003{
2004 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
2005 f2fs_nfs_get_inode);
2006}
2007
2008static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
2009 int fh_len, int fh_type)
2010{
2011 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
2012 f2fs_nfs_get_inode);
2013}
2014
2015static const struct export_operations f2fs_export_ops = {
2016 .fh_to_dentry = f2fs_fh_to_dentry,
2017 .fh_to_parent = f2fs_fh_to_parent,
2018 .get_parent = f2fs_get_parent,
2019};
2020
2021static loff_t max_file_blocks(void)
2022{
2023 loff_t result = 0;
2024 loff_t leaf_count = ADDRS_PER_BLOCK;
2025
2026 /*
2027 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
2028 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
2029 * space in inode.i_addr, it will be more safe to reassign
2030 * result as zero.
2031 */
2032
2033 /* two direct node blocks */
2034 result += (leaf_count * 2);
2035
2036 /* two indirect node blocks */
2037 leaf_count *= NIDS_PER_BLOCK;
2038 result += (leaf_count * 2);
2039
2040 /* one double indirect node block */
2041 leaf_count *= NIDS_PER_BLOCK;
2042 result += leaf_count;
2043
2044 return result;
2045}
2046
2047static int __f2fs_commit_super(struct buffer_head *bh,
2048 struct f2fs_super_block *super)
2049{
2050 lock_buffer(bh);
2051 if (super)
2052 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
2053 set_buffer_dirty(bh);
2054 unlock_buffer(bh);
2055
2056 /* it's rare case, we can do fua all the time */
2057 return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2058}
2059
2060static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
2061 struct buffer_head *bh)
2062{
2063 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2064 (bh->b_data + F2FS_SUPER_OFFSET);
2065 struct super_block *sb = sbi->sb;
2066 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2067 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
2068 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
2069 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
2070 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2071 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2072 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
2073 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
2074 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
2075 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
2076 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2077 u32 segment_count = le32_to_cpu(raw_super->segment_count);
2078 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2079 u64 main_end_blkaddr = main_blkaddr +
2080 (segment_count_main << log_blocks_per_seg);
2081 u64 seg_end_blkaddr = segment0_blkaddr +
2082 (segment_count << log_blocks_per_seg);
2083
2084 if (segment0_blkaddr != cp_blkaddr) {
2085 f2fs_msg(sb, KERN_INFO,
2086 "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
2087 segment0_blkaddr, cp_blkaddr);
2088 return true;
2089 }
2090
2091 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
2092 sit_blkaddr) {
2093 f2fs_msg(sb, KERN_INFO,
2094 "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
2095 cp_blkaddr, sit_blkaddr,
2096 segment_count_ckpt << log_blocks_per_seg);
2097 return true;
2098 }
2099
2100 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
2101 nat_blkaddr) {
2102 f2fs_msg(sb, KERN_INFO,
2103 "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
2104 sit_blkaddr, nat_blkaddr,
2105 segment_count_sit << log_blocks_per_seg);
2106 return true;
2107 }
2108
2109 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
2110 ssa_blkaddr) {
2111 f2fs_msg(sb, KERN_INFO,
2112 "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
2113 nat_blkaddr, ssa_blkaddr,
2114 segment_count_nat << log_blocks_per_seg);
2115 return true;
2116 }
2117
2118 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
2119 main_blkaddr) {
2120 f2fs_msg(sb, KERN_INFO,
2121 "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
2122 ssa_blkaddr, main_blkaddr,
2123 segment_count_ssa << log_blocks_per_seg);
2124 return true;
2125 }
2126
2127 if (main_end_blkaddr > seg_end_blkaddr) {
2128 f2fs_msg(sb, KERN_INFO,
2129 "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
2130 main_blkaddr,
2131 segment0_blkaddr +
2132 (segment_count << log_blocks_per_seg),
2133 segment_count_main << log_blocks_per_seg);
2134 return true;
2135 } else if (main_end_blkaddr < seg_end_blkaddr) {
2136 int err = 0;
2137 char *res;
2138
2139 /* fix in-memory information all the time */
2140 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
2141 segment0_blkaddr) >> log_blocks_per_seg);
2142
2143 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
2144 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2145 res = "internally";
2146 } else {
2147 err = __f2fs_commit_super(bh, NULL);
2148 res = err ? "failed" : "done";
2149 }
2150 f2fs_msg(sb, KERN_INFO,
2151 "Fix alignment : %s, start(%u) end(%u) block(%u)",
2152 res, main_blkaddr,
2153 segment0_blkaddr +
2154 (segment_count << log_blocks_per_seg),
2155 segment_count_main << log_blocks_per_seg);
2156 if (err)
2157 return true;
2158 }
2159 return false;
2160}
2161
2162static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
2163 struct buffer_head *bh)
2164{
2165 block_t segment_count, segs_per_sec, secs_per_zone;
2166 block_t total_sections, blocks_per_seg;
2167 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2168 (bh->b_data + F2FS_SUPER_OFFSET);
2169 struct super_block *sb = sbi->sb;
2170 unsigned int blocksize;
2171
2172 if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) {
2173 f2fs_msg(sb, KERN_INFO,
2174 "Magic Mismatch, valid(0x%x) - read(0x%x)",
2175 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
2176 return -EINVAL;
2177 }
2178
2179 /* Currently, support only 4KB page cache size */
2180 if (F2FS_BLKSIZE != PAGE_SIZE) {
2181 f2fs_msg(sb, KERN_INFO,
2182 "Invalid page_cache_size (%lu), supports only 4KB\n",
2183 PAGE_SIZE);
2184 return -EFSCORRUPTED;
2185 }
2186
2187 /* Currently, support only 4KB block size */
2188 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
2189 if (blocksize != F2FS_BLKSIZE) {
2190 f2fs_msg(sb, KERN_INFO,
2191 "Invalid blocksize (%u), supports only 4KB\n",
2192 blocksize);
2193 return -EFSCORRUPTED;
2194 }
2195
2196 /* check log blocks per segment */
2197 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
2198 f2fs_msg(sb, KERN_INFO,
2199 "Invalid log blocks per segment (%u)\n",
2200 le32_to_cpu(raw_super->log_blocks_per_seg));
2201 return -EFSCORRUPTED;
2202 }
2203
2204 /* Currently, support 512/1024/2048/4096 bytes sector size */
2205 if (le32_to_cpu(raw_super->log_sectorsize) >
2206 F2FS_MAX_LOG_SECTOR_SIZE ||
2207 le32_to_cpu(raw_super->log_sectorsize) <
2208 F2FS_MIN_LOG_SECTOR_SIZE) {
2209 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
2210 le32_to_cpu(raw_super->log_sectorsize));
2211 return -EFSCORRUPTED;
2212 }
2213 if (le32_to_cpu(raw_super->log_sectors_per_block) +
2214 le32_to_cpu(raw_super->log_sectorsize) !=
2215 F2FS_MAX_LOG_SECTOR_SIZE) {
2216 f2fs_msg(sb, KERN_INFO,
2217 "Invalid log sectors per block(%u) log sectorsize(%u)",
2218 le32_to_cpu(raw_super->log_sectors_per_block),
2219 le32_to_cpu(raw_super->log_sectorsize));
2220 return -EFSCORRUPTED;
2221 }
2222
2223 segment_count = le32_to_cpu(raw_super->segment_count);
2224 segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2225 secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2226 total_sections = le32_to_cpu(raw_super->section_count);
2227
2228 /* blocks_per_seg should be 512, given the above check */
2229 blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg);
2230
2231 if (segment_count > F2FS_MAX_SEGMENT ||
2232 segment_count < F2FS_MIN_SEGMENTS) {
2233 f2fs_msg(sb, KERN_INFO,
2234 "Invalid segment count (%u)",
2235 segment_count);
2236 return -EFSCORRUPTED;
2237 }
2238
2239 if (total_sections > segment_count ||
2240 total_sections < F2FS_MIN_SEGMENTS ||
2241 segs_per_sec > segment_count || !segs_per_sec) {
2242 f2fs_msg(sb, KERN_INFO,
2243 "Invalid segment/section count (%u, %u x %u)",
2244 segment_count, total_sections, segs_per_sec);
2245 return -EFSCORRUPTED;
2246 }
2247
2248 if ((segment_count / segs_per_sec) < total_sections) {
2249 f2fs_msg(sb, KERN_INFO,
2250 "Small segment_count (%u < %u * %u)",
2251 segment_count, segs_per_sec, total_sections);
2252 return -EFSCORRUPTED;
2253 }
2254
2255 if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) {
2256 f2fs_msg(sb, KERN_INFO,
2257 "Wrong segment_count / block_count (%u > %llu)",
2258 segment_count, le64_to_cpu(raw_super->block_count));
2259 return -EFSCORRUPTED;
2260 }
2261
2262 if (secs_per_zone > total_sections || !secs_per_zone) {
2263 f2fs_msg(sb, KERN_INFO,
2264 "Wrong secs_per_zone / total_sections (%u, %u)",
2265 secs_per_zone, total_sections);
2266 return -EFSCORRUPTED;
2267 }
2268 if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION) {
2269 f2fs_msg(sb, KERN_INFO,
2270 "Corrupted extension count (%u > %u)",
2271 le32_to_cpu(raw_super->extension_count),
2272 F2FS_MAX_EXTENSION);
2273 return -EFSCORRUPTED;
2274 }
2275
2276 if (le32_to_cpu(raw_super->cp_payload) >
2277 (blocks_per_seg - F2FS_CP_PACKS)) {
2278 f2fs_msg(sb, KERN_INFO,
2279 "Insane cp_payload (%u > %u)",
2280 le32_to_cpu(raw_super->cp_payload),
2281 blocks_per_seg - F2FS_CP_PACKS);
2282 return -EFSCORRUPTED;
2283 }
2284
2285 /* check reserved ino info */
2286 if (le32_to_cpu(raw_super->node_ino) != 1 ||
2287 le32_to_cpu(raw_super->meta_ino) != 2 ||
2288 le32_to_cpu(raw_super->root_ino) != 3) {
2289 f2fs_msg(sb, KERN_INFO,
2290 "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
2291 le32_to_cpu(raw_super->node_ino),
2292 le32_to_cpu(raw_super->meta_ino),
2293 le32_to_cpu(raw_super->root_ino));
2294 return -EFSCORRUPTED;
2295 }
2296
2297 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
2298 if (sanity_check_area_boundary(sbi, bh))
2299 return -EFSCORRUPTED;
2300
2301 return 0;
2302}
2303
2304int sanity_check_ckpt(struct f2fs_sb_info *sbi)
2305{
2306 unsigned int total, fsmeta;
2307 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2308 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2309 unsigned int ovp_segments, reserved_segments;
2310 unsigned int main_segs, blocks_per_seg;
2311 unsigned int sit_segs, nat_segs;
2312 unsigned int sit_bitmap_size, nat_bitmap_size;
2313 unsigned int log_blocks_per_seg;
2314 unsigned int segment_count_main;
2315 unsigned int cp_pack_start_sum, cp_payload;
2316 block_t user_block_count;
2317 int i, j;
2318
2319 total = le32_to_cpu(raw_super->segment_count);
2320 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
2321 sit_segs = le32_to_cpu(raw_super->segment_count_sit);
2322 fsmeta += sit_segs;
2323 nat_segs = le32_to_cpu(raw_super->segment_count_nat);
2324 fsmeta += nat_segs;
2325 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
2326 fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
2327
2328 if (unlikely(fsmeta >= total))
2329 return 1;
2330
2331 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2332 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2333
2334 if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
2335 ovp_segments == 0 || reserved_segments == 0)) {
2336 f2fs_msg(sbi->sb, KERN_ERR,
2337 "Wrong layout: check mkfs.f2fs version");
2338 return 1;
2339 }
2340
2341 user_block_count = le64_to_cpu(ckpt->user_block_count);
2342 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2343 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2344 if (!user_block_count || user_block_count >=
2345 segment_count_main << log_blocks_per_seg) {
2346 f2fs_msg(sbi->sb, KERN_ERR,
2347 "Wrong user_block_count: %u", user_block_count);
2348 return 1;
2349 }
2350
2351 main_segs = le32_to_cpu(raw_super->segment_count_main);
2352 blocks_per_seg = sbi->blocks_per_seg;
2353
2354 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2355 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
2356 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
2357 return 1;
2358 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
2359 if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2360 le32_to_cpu(ckpt->cur_node_segno[j])) {
2361 f2fs_msg(sbi->sb, KERN_ERR,
2362 "Node segment (%u, %u) has the same "
2363 "segno: %u", i, j,
2364 le32_to_cpu(ckpt->cur_node_segno[i]));
2365 return 1;
2366 }
2367 }
2368 }
2369 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
2370 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
2371 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
2372 return 1;
2373 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
2374 if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
2375 le32_to_cpu(ckpt->cur_data_segno[j])) {
2376 f2fs_msg(sbi->sb, KERN_ERR,
2377 "Data segment (%u, %u) has the same "
2378 "segno: %u", i, j,
2379 le32_to_cpu(ckpt->cur_data_segno[i]));
2380 return 1;
2381 }
2382 }
2383 }
2384 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2385 for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) {
2386 if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2387 le32_to_cpu(ckpt->cur_data_segno[j])) {
2388 f2fs_msg(sbi->sb, KERN_ERR,
2389 "Node segment (%u) and Data segment (%u)"
2390 " has the same segno: %u", i, j,
2391 le32_to_cpu(ckpt->cur_node_segno[i]));
2392 return 1;
2393 }
2394 }
2395 }
2396
2397 sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2398 nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2399
2400 if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
2401 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
2402 f2fs_msg(sbi->sb, KERN_ERR,
2403 "Wrong bitmap size: sit: %u, nat:%u",
2404 sit_bitmap_size, nat_bitmap_size);
2405 return 1;
2406 }
2407
2408 cp_pack_start_sum = __start_sum_addr(sbi);
2409 cp_payload = __cp_payload(sbi);
2410 if (cp_pack_start_sum < cp_payload + 1 ||
2411 cp_pack_start_sum > blocks_per_seg - 1 -
2412 NR_CURSEG_TYPE) {
2413 f2fs_msg(sbi->sb, KERN_ERR,
2414 "Wrong cp_pack_start_sum: %u",
2415 cp_pack_start_sum);
2416 return 1;
2417 }
2418
2419 if (unlikely(f2fs_cp_error(sbi))) {
2420 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
2421 return 1;
2422 }
2423 return 0;
2424}
2425
2426static void init_sb_info(struct f2fs_sb_info *sbi)
2427{
2428 struct f2fs_super_block *raw_super = sbi->raw_super;
2429 int i, j;
2430
2431 sbi->log_sectors_per_block =
2432 le32_to_cpu(raw_super->log_sectors_per_block);
2433 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
2434 sbi->blocksize = 1 << sbi->log_blocksize;
2435 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2436 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
2437 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2438 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2439 sbi->total_sections = le32_to_cpu(raw_super->section_count);
2440 sbi->total_node_count =
2441 (le32_to_cpu(raw_super->segment_count_nat) / 2)
2442 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
2443 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
2444 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
2445 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
2446 sbi->cur_victim_sec = NULL_SECNO;
2447 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
2448
2449 sbi->dir_level = DEF_DIR_LEVEL;
2450 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
2451 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
2452 clear_sbi_flag(sbi, SBI_NEED_FSCK);
2453
2454 for (i = 0; i < NR_COUNT_TYPE; i++)
2455 atomic_set(&sbi->nr_pages[i], 0);
2456
2457 atomic_set(&sbi->wb_sync_req, 0);
2458
2459 INIT_LIST_HEAD(&sbi->s_list);
2460 mutex_init(&sbi->umount_mutex);
2461 for (i = 0; i < NR_PAGE_TYPE - 1; i++)
2462 for (j = HOT; j < NR_TEMP_TYPE; j++)
2463 mutex_init(&sbi->wio_mutex[i][j]);
2464 spin_lock_init(&sbi->cp_lock);
2465
2466 sbi->dirty_device = 0;
2467 spin_lock_init(&sbi->dev_lock);
2468
2469 init_rwsem(&sbi->sb_lock);
2470}
2471
2472static int init_percpu_info(struct f2fs_sb_info *sbi)
2473{
2474 int err;
2475
2476 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
2477 if (err)
2478 return err;
2479
2480 err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
2481 GFP_KERNEL);
2482 if (err)
2483 percpu_counter_destroy(&sbi->alloc_valid_block_count);
2484
2485 return err;
2486}
2487
2488#ifdef CONFIG_BLK_DEV_ZONED
2489static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
2490{
2491 struct block_device *bdev = FDEV(devi).bdev;
2492 sector_t nr_sectors = bdev->bd_part->nr_sects;
2493 sector_t sector = 0;
2494 struct blk_zone *zones;
2495 unsigned int i, nr_zones;
2496 unsigned int n = 0;
2497 int err = -EIO;
2498
2499 if (!f2fs_sb_has_blkzoned(sbi->sb))
2500 return 0;
2501
2502 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
2503 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
2504 return -EINVAL;
2505 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
2506 if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
2507 __ilog2_u32(sbi->blocks_per_blkz))
2508 return -EINVAL;
2509 sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
2510 FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
2511 sbi->log_blocks_per_blkz;
2512 if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
2513 FDEV(devi).nr_blkz++;
2514
2515 FDEV(devi).blkz_type = f2fs_kmalloc(sbi, FDEV(devi).nr_blkz,
2516 GFP_KERNEL);
2517 if (!FDEV(devi).blkz_type)
2518 return -ENOMEM;
2519
2520#define F2FS_REPORT_NR_ZONES 4096
2521
2522 zones = f2fs_kzalloc(sbi, sizeof(struct blk_zone) *
2523 F2FS_REPORT_NR_ZONES, GFP_KERNEL);
2524 if (!zones)
2525 return -ENOMEM;
2526
2527 /* Get block zones type */
2528 while (zones && sector < nr_sectors) {
2529
2530 nr_zones = F2FS_REPORT_NR_ZONES;
2531 err = blkdev_report_zones(bdev, sector,
2532 zones, &nr_zones,
2533 GFP_KERNEL);
2534 if (err)
2535 break;
2536 if (!nr_zones) {
2537 err = -EIO;
2538 break;
2539 }
2540
2541 for (i = 0; i < nr_zones; i++) {
2542 FDEV(devi).blkz_type[n] = zones[i].type;
2543 sector += zones[i].len;
2544 n++;
2545 }
2546 }
2547
2548 kfree(zones);
2549
2550 return err;
2551}
2552#endif
2553
2554/*
2555 * Read f2fs raw super block.
2556 * Because we have two copies of super block, so read both of them
2557 * to get the first valid one. If any one of them is broken, we pass
2558 * them recovery flag back to the caller.
2559 */
2560static int read_raw_super_block(struct f2fs_sb_info *sbi,
2561 struct f2fs_super_block **raw_super,
2562 int *valid_super_block, int *recovery)
2563{
2564 struct super_block *sb = sbi->sb;
2565 int block;
2566 struct buffer_head *bh;
2567 struct f2fs_super_block *super;
2568 int err = 0;
2569
2570 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
2571 if (!super)
2572 return -ENOMEM;
2573
2574 for (block = 0; block < 2; block++) {
2575 bh = sb_bread(sb, block);
2576 if (!bh) {
2577 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
2578 block + 1);
2579 err = -EIO;
2580 continue;
2581 }
2582
2583 /* sanity checking of raw super */
2584 err = sanity_check_raw_super(sbi, bh);
2585 if (err) {
2586 f2fs_msg(sb, KERN_ERR,
2587 "Can't find valid F2FS filesystem in %dth superblock",
2588 block + 1);
2589 brelse(bh);
2590 continue;
2591 }
2592
2593 if (!*raw_super) {
2594 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
2595 sizeof(*super));
2596 *valid_super_block = block;
2597 *raw_super = super;
2598 }
2599 brelse(bh);
2600 }
2601
2602 /* Fail to read any one of the superblocks*/
2603 if (err < 0)
2604 *recovery = 1;
2605
2606 /* No valid superblock */
2607 if (!*raw_super)
2608 kfree(super);
2609 else
2610 err = 0;
2611
2612 return err;
2613}
2614
2615int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
2616{
2617 struct buffer_head *bh;
2618 int err;
2619
2620 if ((recover && f2fs_readonly(sbi->sb)) ||
2621 bdev_read_only(sbi->sb->s_bdev)) {
2622 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2623 return -EROFS;
2624 }
2625
2626 /* write back-up superblock first */
2627 bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
2628 if (!bh)
2629 return -EIO;
2630 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2631 brelse(bh);
2632
2633 /* if we are in recovery path, skip writing valid superblock */
2634 if (recover || err)
2635 return err;
2636
2637 /* write current valid superblock */
2638 bh = sb_bread(sbi->sb, sbi->valid_super_block);
2639 if (!bh)
2640 return -EIO;
2641 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2642 brelse(bh);
2643 return err;
2644}
2645
2646static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
2647{
2648 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2649 unsigned int max_devices = MAX_DEVICES;
2650 int i;
2651
2652 /* Initialize single device information */
2653 if (!RDEV(0).path[0]) {
2654 if (!bdev_is_zoned(sbi->sb->s_bdev))
2655 return 0;
2656 max_devices = 1;
2657 }
2658
2659 /*
2660 * Initialize multiple devices information, or single
2661 * zoned block device information.
2662 */
2663 sbi->devs = f2fs_kzalloc(sbi, sizeof(struct f2fs_dev_info) *
2664 max_devices, GFP_KERNEL);
2665 if (!sbi->devs)
2666 return -ENOMEM;
2667
2668 for (i = 0; i < max_devices; i++) {
2669
2670 if (i > 0 && !RDEV(i).path[0])
2671 break;
2672
2673 if (max_devices == 1) {
2674 /* Single zoned block device mount */
2675 FDEV(0).bdev =
2676 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
2677 sbi->sb->s_mode, sbi->sb->s_type);
2678 } else {
2679 /* Multi-device mount */
2680 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
2681 FDEV(i).total_segments =
2682 le32_to_cpu(RDEV(i).total_segments);
2683 if (i == 0) {
2684 FDEV(i).start_blk = 0;
2685 FDEV(i).end_blk = FDEV(i).start_blk +
2686 (FDEV(i).total_segments <<
2687 sbi->log_blocks_per_seg) - 1 +
2688 le32_to_cpu(raw_super->segment0_blkaddr);
2689 } else {
2690 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
2691 FDEV(i).end_blk = FDEV(i).start_blk +
2692 (FDEV(i).total_segments <<
2693 sbi->log_blocks_per_seg) - 1;
2694 }
2695 FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
2696 sbi->sb->s_mode, sbi->sb->s_type);
2697 }
2698 if (IS_ERR(FDEV(i).bdev))
2699 return PTR_ERR(FDEV(i).bdev);
2700
2701 /* to release errored devices */
2702 sbi->s_ndevs = i + 1;
2703
2704#ifdef CONFIG_BLK_DEV_ZONED
2705 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
2706 !f2fs_sb_has_blkzoned(sbi->sb)) {
2707 f2fs_msg(sbi->sb, KERN_ERR,
2708 "Zoned block device feature not enabled\n");
2709 return -EINVAL;
2710 }
2711 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
2712 if (init_blkz_info(sbi, i)) {
2713 f2fs_msg(sbi->sb, KERN_ERR,
2714 "Failed to initialize F2FS blkzone information");
2715 return -EINVAL;
2716 }
2717 if (max_devices == 1)
2718 break;
2719 f2fs_msg(sbi->sb, KERN_INFO,
2720 "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
2721 i, FDEV(i).path,
2722 FDEV(i).total_segments,
2723 FDEV(i).start_blk, FDEV(i).end_blk,
2724 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
2725 "Host-aware" : "Host-managed");
2726 continue;
2727 }
2728#endif
2729 f2fs_msg(sbi->sb, KERN_INFO,
2730 "Mount Device [%2d]: %20s, %8u, %8x - %8x",
2731 i, FDEV(i).path,
2732 FDEV(i).total_segments,
2733 FDEV(i).start_blk, FDEV(i).end_blk);
2734 }
2735 f2fs_msg(sbi->sb, KERN_INFO,
2736 "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
2737 return 0;
2738}
2739
2740static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
2741{
2742 struct f2fs_sm_info *sm_i = SM_I(sbi);
2743
2744 /* adjust parameters according to the volume size */
2745 if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
2746 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
2747 sm_i->dcc_info->discard_granularity = 1;
2748 sm_i->ipu_policy = 1 << F2FS_IPU_FORCE;
2749 }
2750}
2751
2752static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
2753{
2754 struct f2fs_sb_info *sbi;
2755 struct f2fs_super_block *raw_super;
2756 struct inode *root;
2757 int err;
2758 bool retry = true, need_fsck = false;
2759 char *options = NULL;
2760 int recovery, i, valid_super_block;
2761 struct curseg_info *seg_i;
2762
2763try_onemore:
2764 err = -EINVAL;
2765 raw_super = NULL;
2766 valid_super_block = -1;
2767 recovery = 0;
2768
2769 /* allocate memory for f2fs-specific super block info */
2770 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
2771 if (!sbi)
2772 return -ENOMEM;
2773
2774 sbi->sb = sb;
2775
2776 /* Load the checksum driver */
2777 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
2778 if (IS_ERR(sbi->s_chksum_driver)) {
2779 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
2780 err = PTR_ERR(sbi->s_chksum_driver);
2781 sbi->s_chksum_driver = NULL;
2782 goto free_sbi;
2783 }
2784
2785 /* set a block size */
2786 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
2787 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
2788 goto free_sbi;
2789 }
2790
2791 err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
2792 &recovery);
2793 if (err)
2794 goto free_sbi;
2795
2796 sb->s_fs_info = sbi;
2797 sbi->raw_super = raw_super;
2798
2799 F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
2800 F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
2801
2802 /* precompute checksum seed for metadata */
2803 if (f2fs_sb_has_inode_chksum(sb))
2804 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
2805 sizeof(raw_super->uuid));
2806
2807 /*
2808 * The BLKZONED feature indicates that the drive was formatted with
2809 * zone alignment optimization. This is optional for host-aware
2810 * devices, but mandatory for host-managed zoned block devices.
2811 */
2812#ifndef CONFIG_BLK_DEV_ZONED
2813 if (f2fs_sb_has_blkzoned(sb)) {
2814 f2fs_msg(sb, KERN_ERR,
2815 "Zoned block device support is not enabled\n");
2816 err = -EOPNOTSUPP;
2817 goto free_sb_buf;
2818 }
2819#endif
2820 default_options(sbi);
2821 /* parse mount options */
2822 options = kstrdup((const char *)data, GFP_KERNEL);
2823 if (data && !options) {
2824 err = -ENOMEM;
2825 goto free_sb_buf;
2826 }
2827
2828 err = parse_options(sb, options);
2829 if (err)
2830 goto free_options;
2831
2832 sbi->max_file_blocks = max_file_blocks();
2833 sb->s_maxbytes = sbi->max_file_blocks <<
2834 le32_to_cpu(raw_super->log_blocksize);
2835 sb->s_max_links = F2FS_LINK_MAX;
2836 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
2837
2838#ifdef CONFIG_QUOTA
2839 sb->dq_op = &f2fs_quota_operations;
2840 if (f2fs_sb_has_quota_ino(sb))
2841 sb->s_qcop = &dquot_quotactl_sysfile_ops;
2842 else
2843 sb->s_qcop = &f2fs_quotactl_ops;
2844 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
2845
2846 if (f2fs_sb_has_quota_ino(sbi->sb)) {
2847 for (i = 0; i < MAXQUOTAS; i++) {
2848 if (f2fs_qf_ino(sbi->sb, i))
2849 sbi->nquota_files++;
2850 }
2851 }
2852#endif
2853
2854 sb->s_op = &f2fs_sops;
2855#ifdef CONFIG_F2FS_FS_ENCRYPTION
2856 sb->s_cop = &f2fs_cryptops;
2857#endif
2858 sb->s_xattr = f2fs_xattr_handlers;
2859 sb->s_export_op = &f2fs_export_ops;
2860 sb->s_magic = F2FS_SUPER_MAGIC;
2861 sb->s_time_gran = 1;
2862 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
2863 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
2864 memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
2865 sb->s_iflags |= SB_I_CGROUPWB;
2866
2867 /* init f2fs-specific super block info */
2868 sbi->valid_super_block = valid_super_block;
2869 mutex_init(&sbi->gc_mutex);
2870 mutex_init(&sbi->cp_mutex);
2871 init_rwsem(&sbi->node_write);
2872 init_rwsem(&sbi->node_change);
2873
2874 /* disallow all the data/node/meta page writes */
2875 set_sbi_flag(sbi, SBI_POR_DOING);
2876 spin_lock_init(&sbi->stat_lock);
2877
2878 /* init iostat info */
2879 spin_lock_init(&sbi->iostat_lock);
2880 sbi->iostat_enable = false;
2881
2882 for (i = 0; i < NR_PAGE_TYPE; i++) {
2883 int n = (i == META) ? 1: NR_TEMP_TYPE;
2884 int j;
2885
2886 sbi->write_io[i] = f2fs_kmalloc(sbi,
2887 n * sizeof(struct f2fs_bio_info),
2888 GFP_KERNEL);
2889 if (!sbi->write_io[i]) {
2890 err = -ENOMEM;
2891 goto free_options;
2892 }
2893
2894 for (j = HOT; j < n; j++) {
2895 init_rwsem(&sbi->write_io[i][j].io_rwsem);
2896 sbi->write_io[i][j].sbi = sbi;
2897 sbi->write_io[i][j].bio = NULL;
2898 spin_lock_init(&sbi->write_io[i][j].io_lock);
2899 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
2900 }
2901 }
2902
2903 init_rwsem(&sbi->cp_rwsem);
2904 init_waitqueue_head(&sbi->cp_wait);
2905 init_sb_info(sbi);
2906
2907 err = init_percpu_info(sbi);
2908 if (err)
2909 goto free_bio_info;
2910
2911 if (F2FS_IO_SIZE(sbi) > 1) {
2912 sbi->write_io_dummy =
2913 mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
2914 if (!sbi->write_io_dummy) {
2915 err = -ENOMEM;
2916 goto free_percpu;
2917 }
2918 }
2919
2920 /* get an inode for meta space */
2921 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
2922 if (IS_ERR(sbi->meta_inode)) {
2923 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
2924 err = PTR_ERR(sbi->meta_inode);
2925 goto free_io_dummy;
2926 }
2927
2928 err = get_valid_checkpoint(sbi);
2929 if (err) {
2930 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
2931 goto free_meta_inode;
2932 }
2933
2934 /* Initialize device list */
2935 err = f2fs_scan_devices(sbi);
2936 if (err) {
2937 f2fs_msg(sb, KERN_ERR, "Failed to find devices");
2938 goto free_devices;
2939 }
2940
2941 sbi->total_valid_node_count =
2942 le32_to_cpu(sbi->ckpt->valid_node_count);
2943 percpu_counter_set(&sbi->total_valid_inode_count,
2944 le32_to_cpu(sbi->ckpt->valid_inode_count));
2945 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
2946 sbi->total_valid_block_count =
2947 le64_to_cpu(sbi->ckpt->valid_block_count);
2948 sbi->last_valid_block_count = sbi->total_valid_block_count;
2949 sbi->reserved_blocks = 0;
2950 sbi->current_reserved_blocks = 0;
2951 limit_reserve_root(sbi);
2952
2953 for (i = 0; i < NR_INODE_TYPE; i++) {
2954 INIT_LIST_HEAD(&sbi->inode_list[i]);
2955 spin_lock_init(&sbi->inode_lock[i]);
2956 }
2957
2958 init_extent_cache_info(sbi);
2959
2960 init_ino_entry_info(sbi);
2961
2962 /* setup f2fs internal modules */
2963 err = build_segment_manager(sbi);
2964 if (err) {
2965 f2fs_msg(sb, KERN_ERR,
2966 "Failed to initialize F2FS segment manager");
2967 goto free_sm;
2968 }
2969 err = build_node_manager(sbi);
2970 if (err) {
2971 f2fs_msg(sb, KERN_ERR,
2972 "Failed to initialize F2FS node manager");
2973 goto free_nm;
2974 }
2975
2976 /* For write statistics */
2977 if (sb->s_bdev->bd_part)
2978 sbi->sectors_written_start =
2979 (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
2980
2981 /* Read accumulated write IO statistics if exists */
2982 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
2983 if (__exist_node_summaries(sbi))
2984 sbi->kbytes_written =
2985 le64_to_cpu(seg_i->journal->info.kbytes_written);
2986
2987 build_gc_manager(sbi);
2988
2989 /* get an inode for node space */
2990 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
2991 if (IS_ERR(sbi->node_inode)) {
2992 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
2993 err = PTR_ERR(sbi->node_inode);
2994 goto free_nm;
2995 }
2996
2997 err = f2fs_build_stats(sbi);
2998 if (err)
2999 goto free_node_inode;
3000
3001 /* read root inode and dentry */
3002 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
3003 if (IS_ERR(root)) {
3004 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
3005 err = PTR_ERR(root);
3006 goto free_stats;
3007 }
3008 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3009 iput(root);
3010 err = -EINVAL;
3011 goto free_node_inode;
3012 }
3013
3014 sb->s_root = d_make_root(root); /* allocate root dentry */
3015 if (!sb->s_root) {
3016 err = -ENOMEM;
3017 goto free_root_inode;
3018 }
3019
3020 err = f2fs_register_sysfs(sbi);
3021 if (err)
3022 goto free_root_inode;
3023
3024#ifdef CONFIG_QUOTA
3025 /*
3026 * Turn on quotas which were not enabled for read-only mounts if
3027 * filesystem has quota feature, so that they are updated correctly.
3028 */
3029 if (f2fs_sb_has_quota_ino(sb) && !f2fs_readonly(sb)) {
3030 err = f2fs_enable_quotas(sb);
3031 if (err) {
3032 f2fs_msg(sb, KERN_ERR,
3033 "Cannot turn on quotas: error %d", err);
3034 goto free_sysfs;
3035 }
3036 }
3037#endif
3038 /* if there are nt orphan nodes free them */
3039 err = recover_orphan_inodes(sbi);
3040 if (err)
3041 goto free_meta;
3042
3043 /* recover fsynced data */
3044 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
3045 /*
3046 * mount should be failed, when device has readonly mode, and
3047 * previous checkpoint was not done by clean system shutdown.
3048 */
3049 if (bdev_read_only(sb->s_bdev) &&
3050 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3051 err = -EROFS;
3052 goto free_meta;
3053 }
3054
3055 if (need_fsck)
3056 set_sbi_flag(sbi, SBI_NEED_FSCK);
3057
3058 if (!retry)
3059 goto skip_recovery;
3060
3061 err = recover_fsync_data(sbi, false);
3062 if (err < 0) {
3063 need_fsck = true;
3064 f2fs_msg(sb, KERN_ERR,
3065 "Cannot recover all fsync data errno=%d", err);
3066 goto free_meta;
3067 }
3068 } else {
3069 err = recover_fsync_data(sbi, true);
3070
3071 if (!f2fs_readonly(sb) && err > 0) {
3072 err = -EINVAL;
3073 f2fs_msg(sb, KERN_ERR,
3074 "Need to recover fsync data");
3075 goto free_meta;
3076 }
3077 }
3078skip_recovery:
3079 /* recover_fsync_data() cleared this already */
3080 clear_sbi_flag(sbi, SBI_POR_DOING);
3081
3082 /*
3083 * If filesystem is not mounted as read-only then
3084 * do start the gc_thread.
3085 */
3086 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
3087 /* After POR, we can run background GC thread.*/
3088 err = start_gc_thread(sbi);
3089 if (err)
3090 goto free_meta;
3091 }
3092 kfree(options);
3093
3094 /* recover broken superblock */
3095 if (recovery) {
3096 err = f2fs_commit_super(sbi, true);
3097 f2fs_msg(sb, KERN_INFO,
3098 "Try to recover %dth superblock, ret: %d",
3099 sbi->valid_super_block ? 1 : 2, err);
3100 }
3101
3102 f2fs_join_shrinker(sbi);
3103
3104 f2fs_tuning_parameters(sbi);
3105
3106 f2fs_msg(sbi->sb, KERN_NOTICE, "Mounted with checkpoint version = %llx",
3107 cur_cp_version(F2FS_CKPT(sbi)));
3108 f2fs_update_time(sbi, CP_TIME);
3109 f2fs_update_time(sbi, REQ_TIME);
3110 return 0;
3111
3112free_meta:
3113#ifdef CONFIG_QUOTA
3114 if (f2fs_sb_has_quota_ino(sb) && !f2fs_readonly(sb))
3115 f2fs_quota_off_umount(sbi->sb);
3116#endif
3117 f2fs_sync_inode_meta(sbi);
3118 /*
3119 * Some dirty meta pages can be produced by recover_orphan_inodes()
3120 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
3121 * followed by write_checkpoint() through f2fs_write_node_pages(), which
3122 * falls into an infinite loop in sync_meta_pages().
3123 */
3124 truncate_inode_pages_final(META_MAPPING(sbi));
3125#ifdef CONFIG_QUOTA
3126free_sysfs:
3127#endif
3128 f2fs_unregister_sysfs(sbi);
3129free_root_inode:
3130 dput(sb->s_root);
3131 sb->s_root = NULL;
3132free_stats:
3133 f2fs_destroy_stats(sbi);
3134free_node_inode:
3135 release_ino_entry(sbi, true);
3136 truncate_inode_pages_final(NODE_MAPPING(sbi));
3137 iput(sbi->node_inode);
3138free_nm:
3139 destroy_node_manager(sbi);
3140free_sm:
3141 destroy_segment_manager(sbi);
3142free_devices:
3143 destroy_device_list(sbi);
3144 kfree(sbi->ckpt);
3145free_meta_inode:
3146 make_bad_inode(sbi->meta_inode);
3147 iput(sbi->meta_inode);
3148free_io_dummy:
3149 mempool_destroy(sbi->write_io_dummy);
3150free_percpu:
3151 destroy_percpu_info(sbi);
3152free_bio_info:
3153 for (i = 0; i < NR_PAGE_TYPE; i++)
3154 kfree(sbi->write_io[i]);
3155free_options:
3156#ifdef CONFIG_QUOTA
3157 for (i = 0; i < MAXQUOTAS; i++)
3158 kfree(F2FS_OPTION(sbi).s_qf_names[i]);
3159#endif
3160 kfree(options);
3161free_sb_buf:
3162 kfree(raw_super);
3163free_sbi:
3164 if (sbi->s_chksum_driver)
3165 crypto_free_shash(sbi->s_chksum_driver);
3166 kfree(sbi);
3167
3168 /* give only one another chance */
3169 if (retry) {
3170 retry = false;
3171 shrink_dcache_sb(sb);
3172 goto try_onemore;
3173 }
3174 return err;
3175}
3176
3177static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
3178 const char *dev_name, void *data)
3179{
3180 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
3181}
3182
3183static void kill_f2fs_super(struct super_block *sb)
3184{
3185 if (sb->s_root) {
3186 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
3187 stop_gc_thread(F2FS_SB(sb));
3188 stop_discard_thread(F2FS_SB(sb));
3189 }
3190 kill_block_super(sb);
3191}
3192
3193static struct file_system_type f2fs_fs_type = {
3194 .owner = THIS_MODULE,
3195 .name = "f2fs",
3196 .mount = f2fs_mount,
3197 .kill_sb = kill_f2fs_super,
3198 .fs_flags = FS_REQUIRES_DEV,
3199};
3200MODULE_ALIAS_FS("f2fs");
3201
3202static int __init init_inodecache(void)
3203{
3204 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
3205 sizeof(struct f2fs_inode_info), 0,
3206 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
3207 if (!f2fs_inode_cachep)
3208 return -ENOMEM;
3209 return 0;
3210}
3211
3212static void destroy_inodecache(void)
3213{
3214 /*
3215 * Make sure all delayed rcu free inodes are flushed before we
3216 * destroy cache.
3217 */
3218 rcu_barrier();
3219 kmem_cache_destroy(f2fs_inode_cachep);
3220}
3221
3222static int __init init_f2fs_fs(void)
3223{
3224 int err;
3225
3226 if (PAGE_SIZE != F2FS_BLKSIZE) {
3227 printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
3228 PAGE_SIZE, F2FS_BLKSIZE);
3229 return -EINVAL;
3230 }
3231
3232 f2fs_build_trace_ios();
3233
3234 err = init_inodecache();
3235 if (err)
3236 goto fail;
3237 err = create_node_manager_caches();
3238 if (err)
3239 goto free_inodecache;
3240 err = create_segment_manager_caches();
3241 if (err)
3242 goto free_node_manager_caches;
3243 err = create_checkpoint_caches();
3244 if (err)
3245 goto free_segment_manager_caches;
3246 err = create_extent_cache();
3247 if (err)
3248 goto free_checkpoint_caches;
3249 err = f2fs_init_sysfs();
3250 if (err)
3251 goto free_extent_cache;
3252 err = register_shrinker(&f2fs_shrinker_info);
3253 if (err)
3254 goto free_sysfs;
3255 err = register_filesystem(&f2fs_fs_type);
3256 if (err)
3257 goto free_shrinker;
3258 err = f2fs_create_root_stats();
3259 if (err)
3260 goto free_filesystem;
3261 err = f2fs_init_post_read_processing();
3262 if (err)
3263 goto free_root_stats;
3264 return 0;
3265
3266free_root_stats:
3267 f2fs_destroy_root_stats();
3268free_filesystem:
3269 unregister_filesystem(&f2fs_fs_type);
3270free_shrinker:
3271 unregister_shrinker(&f2fs_shrinker_info);
3272free_sysfs:
3273 f2fs_exit_sysfs();
3274free_extent_cache:
3275 destroy_extent_cache();
3276free_checkpoint_caches:
3277 destroy_checkpoint_caches();
3278free_segment_manager_caches:
3279 destroy_segment_manager_caches();
3280free_node_manager_caches:
3281 destroy_node_manager_caches();
3282free_inodecache:
3283 destroy_inodecache();
3284fail:
3285 return err;
3286}
3287
3288static void __exit exit_f2fs_fs(void)
3289{
3290 f2fs_destroy_post_read_processing();
3291 f2fs_destroy_root_stats();
3292 unregister_filesystem(&f2fs_fs_type);
3293 unregister_shrinker(&f2fs_shrinker_info);
3294 f2fs_exit_sysfs();
3295 destroy_extent_cache();
3296 destroy_checkpoint_caches();
3297 destroy_segment_manager_caches();
3298 destroy_node_manager_caches();
3299 destroy_inodecache();
3300 f2fs_destroy_trace_ios();
3301}
3302
3303module_init(init_f2fs_fs)
3304module_exit(exit_f2fs_fs)
3305
3306MODULE_AUTHOR("Samsung Electronics's Praesto Team");
3307MODULE_DESCRIPTION("Flash Friendly File System");
3308MODULE_LICENSE("GPL");
3309