rjw | 1f88458 | 2022-01-06 17:20:42 +0800 | [diff] [blame^] | 1 | /* |
| 2 | * JFFS2 -- Journalling Flash File System, Version 2. |
| 3 | * |
| 4 | * Copyright © 2001-2007 Red Hat, Inc. |
| 5 | * Copyright © 2004 Thomas Gleixner <tglx@linutronix.de> |
| 6 | * |
| 7 | * Created by David Woodhouse <dwmw2@infradead.org> |
| 8 | * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de> |
| 9 | * |
| 10 | * For licensing information, see the file 'LICENCE' in this directory. |
| 11 | * |
| 12 | */ |
| 13 | |
| 14 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| 15 | |
| 16 | #include <linux/kernel.h> |
| 17 | #include <linux/slab.h> |
| 18 | #include <linux/mtd/mtd.h> |
| 19 | #include <linux/crc32.h> |
| 20 | #include <linux/mtd/rawnand.h> |
| 21 | #include <linux/jiffies.h> |
| 22 | #include <linux/sched.h> |
| 23 | #include <linux/writeback.h> |
| 24 | |
| 25 | #include "nodelist.h" |
| 26 | |
| 27 | /* For testing write failures */ |
| 28 | #undef BREAKME |
| 29 | #undef BREAKMEHEADER |
| 30 | |
| 31 | #ifdef BREAKME |
| 32 | static unsigned char *brokenbuf; |
| 33 | #endif |
| 34 | |
| 35 | #define PAGE_DIV(x) ( ((unsigned long)(x) / (unsigned long)(c->wbuf_pagesize)) * (unsigned long)(c->wbuf_pagesize) ) |
| 36 | #define PAGE_MOD(x) ( (unsigned long)(x) % (unsigned long)(c->wbuf_pagesize) ) |
| 37 | |
| 38 | /* max. erase failures before we mark a block bad */ |
| 39 | #define MAX_ERASE_FAILURES 2 |
| 40 | |
| 41 | struct jffs2_inodirty { |
| 42 | uint32_t ino; |
| 43 | struct jffs2_inodirty *next; |
| 44 | }; |
| 45 | |
| 46 | static struct jffs2_inodirty inodirty_nomem; |
| 47 | |
| 48 | static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino) |
| 49 | { |
| 50 | struct jffs2_inodirty *this = c->wbuf_inodes; |
| 51 | |
| 52 | /* If a malloc failed, consider _everything_ dirty */ |
| 53 | if (this == &inodirty_nomem) |
| 54 | return 1; |
| 55 | |
| 56 | /* If ino == 0, _any_ non-GC writes mean 'yes' */ |
| 57 | if (this && !ino) |
| 58 | return 1; |
| 59 | |
| 60 | /* Look to see if the inode in question is pending in the wbuf */ |
| 61 | while (this) { |
| 62 | if (this->ino == ino) |
| 63 | return 1; |
| 64 | this = this->next; |
| 65 | } |
| 66 | return 0; |
| 67 | } |
| 68 | |
| 69 | static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c) |
| 70 | { |
| 71 | struct jffs2_inodirty *this; |
| 72 | |
| 73 | this = c->wbuf_inodes; |
| 74 | |
| 75 | if (this != &inodirty_nomem) { |
| 76 | while (this) { |
| 77 | struct jffs2_inodirty *next = this->next; |
| 78 | kfree(this); |
| 79 | this = next; |
| 80 | } |
| 81 | } |
| 82 | c->wbuf_inodes = NULL; |
| 83 | } |
| 84 | |
| 85 | static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino) |
| 86 | { |
| 87 | struct jffs2_inodirty *new; |
| 88 | |
| 89 | /* Schedule delayed write-buffer write-out */ |
| 90 | jffs2_dirty_trigger(c); |
| 91 | |
| 92 | if (jffs2_wbuf_pending_for_ino(c, ino)) |
| 93 | return; |
| 94 | |
| 95 | new = kmalloc(sizeof(*new), GFP_KERNEL); |
| 96 | if (!new) { |
| 97 | jffs2_dbg(1, "No memory to allocate inodirty. Fallback to all considered dirty\n"); |
| 98 | jffs2_clear_wbuf_ino_list(c); |
| 99 | c->wbuf_inodes = &inodirty_nomem; |
| 100 | return; |
| 101 | } |
| 102 | new->ino = ino; |
| 103 | new->next = c->wbuf_inodes; |
| 104 | c->wbuf_inodes = new; |
| 105 | return; |
| 106 | } |
| 107 | |
| 108 | static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c) |
| 109 | { |
| 110 | struct list_head *this, *next; |
| 111 | static int n; |
| 112 | |
| 113 | if (list_empty(&c->erasable_pending_wbuf_list)) |
| 114 | return; |
| 115 | |
| 116 | list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) { |
| 117 | struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); |
| 118 | |
| 119 | jffs2_dbg(1, "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n", |
| 120 | jeb->offset); |
| 121 | list_del(this); |
| 122 | if ((jiffies + (n++)) & 127) { |
| 123 | /* Most of the time, we just erase it immediately. Otherwise we |
| 124 | spend ages scanning it on mount, etc. */ |
| 125 | jffs2_dbg(1, "...and adding to erase_pending_list\n"); |
| 126 | list_add_tail(&jeb->list, &c->erase_pending_list); |
| 127 | c->nr_erasing_blocks++; |
| 128 | jffs2_garbage_collect_trigger(c); |
| 129 | } else { |
| 130 | /* Sometimes, however, we leave it elsewhere so it doesn't get |
| 131 | immediately reused, and we spread the load a bit. */ |
| 132 | jffs2_dbg(1, "...and adding to erasable_list\n"); |
| 133 | list_add_tail(&jeb->list, &c->erasable_list); |
| 134 | } |
| 135 | } |
| 136 | } |
| 137 | |
| 138 | #define REFILE_NOTEMPTY 0 |
| 139 | #define REFILE_ANYWAY 1 |
| 140 | |
| 141 | static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty) |
| 142 | { |
| 143 | jffs2_dbg(1, "About to refile bad block at %08x\n", jeb->offset); |
| 144 | |
| 145 | /* File the existing block on the bad_used_list.... */ |
| 146 | if (c->nextblock == jeb) |
| 147 | c->nextblock = NULL; |
| 148 | else /* Not sure this should ever happen... need more coffee */ |
| 149 | list_del(&jeb->list); |
| 150 | if (jeb->first_node) { |
| 151 | jffs2_dbg(1, "Refiling block at %08x to bad_used_list\n", |
| 152 | jeb->offset); |
| 153 | list_add(&jeb->list, &c->bad_used_list); |
| 154 | } else { |
| 155 | BUG_ON(allow_empty == REFILE_NOTEMPTY); |
| 156 | /* It has to have had some nodes or we couldn't be here */ |
| 157 | jffs2_dbg(1, "Refiling block at %08x to erase_pending_list\n", |
| 158 | jeb->offset); |
| 159 | list_add(&jeb->list, &c->erase_pending_list); |
| 160 | c->nr_erasing_blocks++; |
| 161 | jffs2_garbage_collect_trigger(c); |
| 162 | } |
| 163 | |
| 164 | if (!jffs2_prealloc_raw_node_refs(c, jeb, 1)) { |
| 165 | uint32_t oldfree = jeb->free_size; |
| 166 | |
| 167 | jffs2_link_node_ref(c, jeb, |
| 168 | (jeb->offset+c->sector_size-oldfree) | REF_OBSOLETE, |
| 169 | oldfree, NULL); |
| 170 | /* convert to wasted */ |
| 171 | c->wasted_size += oldfree; |
| 172 | jeb->wasted_size += oldfree; |
| 173 | c->dirty_size -= oldfree; |
| 174 | jeb->dirty_size -= oldfree; |
| 175 | } |
| 176 | |
| 177 | jffs2_dbg_dump_block_lists_nolock(c); |
| 178 | jffs2_dbg_acct_sanity_check_nolock(c,jeb); |
| 179 | jffs2_dbg_acct_paranoia_check_nolock(c, jeb); |
| 180 | } |
| 181 | |
| 182 | static struct jffs2_raw_node_ref **jffs2_incore_replace_raw(struct jffs2_sb_info *c, |
| 183 | struct jffs2_inode_info *f, |
| 184 | struct jffs2_raw_node_ref *raw, |
| 185 | union jffs2_node_union *node) |
| 186 | { |
| 187 | struct jffs2_node_frag *frag; |
| 188 | struct jffs2_full_dirent *fd; |
| 189 | |
| 190 | dbg_noderef("incore_replace_raw: node at %p is {%04x,%04x}\n", |
| 191 | node, je16_to_cpu(node->u.magic), je16_to_cpu(node->u.nodetype)); |
| 192 | |
| 193 | BUG_ON(je16_to_cpu(node->u.magic) != 0x1985 && |
| 194 | je16_to_cpu(node->u.magic) != 0); |
| 195 | |
| 196 | switch (je16_to_cpu(node->u.nodetype)) { |
| 197 | case JFFS2_NODETYPE_INODE: |
| 198 | if (f->metadata && f->metadata->raw == raw) { |
| 199 | dbg_noderef("Will replace ->raw in f->metadata at %p\n", f->metadata); |
| 200 | return &f->metadata->raw; |
| 201 | } |
| 202 | frag = jffs2_lookup_node_frag(&f->fragtree, je32_to_cpu(node->i.offset)); |
| 203 | BUG_ON(!frag); |
| 204 | /* Find a frag which refers to the full_dnode we want to modify */ |
| 205 | while (!frag->node || frag->node->raw != raw) { |
| 206 | frag = frag_next(frag); |
| 207 | BUG_ON(!frag); |
| 208 | } |
| 209 | dbg_noderef("Will replace ->raw in full_dnode at %p\n", frag->node); |
| 210 | return &frag->node->raw; |
| 211 | |
| 212 | case JFFS2_NODETYPE_DIRENT: |
| 213 | for (fd = f->dents; fd; fd = fd->next) { |
| 214 | if (fd->raw == raw) { |
| 215 | dbg_noderef("Will replace ->raw in full_dirent at %p\n", fd); |
| 216 | return &fd->raw; |
| 217 | } |
| 218 | } |
| 219 | BUG(); |
| 220 | |
| 221 | default: |
| 222 | dbg_noderef("Don't care about replacing raw for nodetype %x\n", |
| 223 | je16_to_cpu(node->u.nodetype)); |
| 224 | break; |
| 225 | } |
| 226 | return NULL; |
| 227 | } |
| 228 | |
| 229 | #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY |
| 230 | static int jffs2_verify_write(struct jffs2_sb_info *c, unsigned char *buf, |
| 231 | uint32_t ofs) |
| 232 | { |
| 233 | int ret; |
| 234 | size_t retlen; |
| 235 | char *eccstr; |
| 236 | |
| 237 | ret = mtd_read(c->mtd, ofs, c->wbuf_pagesize, &retlen, c->wbuf_verify); |
| 238 | if (ret && ret != -EUCLEAN && ret != -EBADMSG) { |
| 239 | pr_warn("%s(): Read back of page at %08x failed: %d\n", |
| 240 | __func__, c->wbuf_ofs, ret); |
| 241 | return ret; |
| 242 | } else if (retlen != c->wbuf_pagesize) { |
| 243 | pr_warn("%s(): Read back of page at %08x gave short read: %zd not %d\n", |
| 244 | __func__, ofs, retlen, c->wbuf_pagesize); |
| 245 | return -EIO; |
| 246 | } |
| 247 | if (!memcmp(buf, c->wbuf_verify, c->wbuf_pagesize)) |
| 248 | return 0; |
| 249 | |
| 250 | if (ret == -EUCLEAN) |
| 251 | eccstr = "corrected"; |
| 252 | else if (ret == -EBADMSG) |
| 253 | eccstr = "correction failed"; |
| 254 | else |
| 255 | eccstr = "OK or unused"; |
| 256 | |
| 257 | pr_warn("Write verify error (ECC %s) at %08x. Wrote:\n", |
| 258 | eccstr, c->wbuf_ofs); |
| 259 | print_hex_dump(KERN_WARNING, "", DUMP_PREFIX_OFFSET, 16, 1, |
| 260 | c->wbuf, c->wbuf_pagesize, 0); |
| 261 | |
| 262 | pr_warn("Read back:\n"); |
| 263 | print_hex_dump(KERN_WARNING, "", DUMP_PREFIX_OFFSET, 16, 1, |
| 264 | c->wbuf_verify, c->wbuf_pagesize, 0); |
| 265 | |
| 266 | return -EIO; |
| 267 | } |
| 268 | #else |
| 269 | #define jffs2_verify_write(c,b,o) (0) |
| 270 | #endif |
| 271 | |
| 272 | /* Recover from failure to write wbuf. Recover the nodes up to the |
| 273 | * wbuf, not the one which we were starting to try to write. */ |
| 274 | |
| 275 | static void jffs2_wbuf_recover(struct jffs2_sb_info *c) |
| 276 | { |
| 277 | struct jffs2_eraseblock *jeb, *new_jeb; |
| 278 | struct jffs2_raw_node_ref *raw, *next, *first_raw = NULL; |
| 279 | size_t retlen; |
| 280 | int ret; |
| 281 | int nr_refile = 0; |
| 282 | unsigned char *buf; |
| 283 | uint32_t start, end, ofs, len; |
| 284 | |
| 285 | jeb = &c->blocks[c->wbuf_ofs / c->sector_size]; |
| 286 | |
| 287 | spin_lock(&c->erase_completion_lock); |
| 288 | if (c->wbuf_ofs % c->mtd->erasesize) |
| 289 | jffs2_block_refile(c, jeb, REFILE_NOTEMPTY); |
| 290 | else |
| 291 | jffs2_block_refile(c, jeb, REFILE_ANYWAY); |
| 292 | spin_unlock(&c->erase_completion_lock); |
| 293 | |
| 294 | BUG_ON(!ref_obsolete(jeb->last_node)); |
| 295 | |
| 296 | /* Find the first node to be recovered, by skipping over every |
| 297 | node which ends before the wbuf starts, or which is obsolete. */ |
| 298 | for (next = raw = jeb->first_node; next; raw = next) { |
| 299 | next = ref_next(raw); |
| 300 | |
| 301 | if (ref_obsolete(raw) || |
| 302 | (next && ref_offset(next) <= c->wbuf_ofs)) { |
| 303 | dbg_noderef("Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n", |
| 304 | ref_offset(raw), ref_flags(raw), |
| 305 | (ref_offset(raw) + ref_totlen(c, jeb, raw)), |
| 306 | c->wbuf_ofs); |
| 307 | continue; |
| 308 | } |
| 309 | dbg_noderef("First node to be recovered is at 0x%08x(%d)-0x%08x\n", |
| 310 | ref_offset(raw), ref_flags(raw), |
| 311 | (ref_offset(raw) + ref_totlen(c, jeb, raw))); |
| 312 | |
| 313 | first_raw = raw; |
| 314 | break; |
| 315 | } |
| 316 | |
| 317 | if (!first_raw) { |
| 318 | /* All nodes were obsolete. Nothing to recover. */ |
| 319 | jffs2_dbg(1, "No non-obsolete nodes to be recovered. Just filing block bad\n"); |
| 320 | c->wbuf_len = 0; |
| 321 | return; |
| 322 | } |
| 323 | |
| 324 | start = ref_offset(first_raw); |
| 325 | end = ref_offset(jeb->last_node); |
| 326 | nr_refile = 1; |
| 327 | |
| 328 | /* Count the number of refs which need to be copied */ |
| 329 | while ((raw = ref_next(raw)) != jeb->last_node) |
| 330 | nr_refile++; |
| 331 | |
| 332 | dbg_noderef("wbuf recover %08x-%08x (%d bytes in %d nodes)\n", |
| 333 | start, end, end - start, nr_refile); |
| 334 | |
| 335 | buf = NULL; |
| 336 | if (start < c->wbuf_ofs) { |
| 337 | /* First affected node was already partially written. |
| 338 | * Attempt to reread the old data into our buffer. */ |
| 339 | |
| 340 | buf = kmalloc(end - start, GFP_KERNEL); |
| 341 | if (!buf) { |
| 342 | pr_crit("Malloc failure in wbuf recovery. Data loss ensues.\n"); |
| 343 | |
| 344 | goto read_failed; |
| 345 | } |
| 346 | |
| 347 | /* Do the read... */ |
| 348 | ret = mtd_read(c->mtd, start, c->wbuf_ofs - start, &retlen, |
| 349 | buf); |
| 350 | |
| 351 | /* ECC recovered ? */ |
| 352 | if ((ret == -EUCLEAN || ret == -EBADMSG) && |
| 353 | (retlen == c->wbuf_ofs - start)) |
| 354 | ret = 0; |
| 355 | |
| 356 | if (ret || retlen != c->wbuf_ofs - start) { |
| 357 | pr_crit("Old data are already lost in wbuf recovery. Data loss ensues.\n"); |
| 358 | |
| 359 | kfree(buf); |
| 360 | buf = NULL; |
| 361 | read_failed: |
| 362 | first_raw = ref_next(first_raw); |
| 363 | nr_refile--; |
| 364 | while (first_raw && ref_obsolete(first_raw)) { |
| 365 | first_raw = ref_next(first_raw); |
| 366 | nr_refile--; |
| 367 | } |
| 368 | |
| 369 | /* If this was the only node to be recovered, give up */ |
| 370 | if (!first_raw) { |
| 371 | c->wbuf_len = 0; |
| 372 | return; |
| 373 | } |
| 374 | |
| 375 | /* It wasn't. Go on and try to recover nodes complete in the wbuf */ |
| 376 | start = ref_offset(first_raw); |
| 377 | dbg_noderef("wbuf now recover %08x-%08x (%d bytes in %d nodes)\n", |
| 378 | start, end, end - start, nr_refile); |
| 379 | |
| 380 | } else { |
| 381 | /* Read succeeded. Copy the remaining data from the wbuf */ |
| 382 | memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs); |
| 383 | } |
| 384 | } |
| 385 | /* OK... we're to rewrite (end-start) bytes of data from first_raw onwards. |
| 386 | Either 'buf' contains the data, or we find it in the wbuf */ |
| 387 | |
| 388 | /* ... and get an allocation of space from a shiny new block instead */ |
| 389 | ret = jffs2_reserve_space_gc(c, end-start, &len, JFFS2_SUMMARY_NOSUM_SIZE); |
| 390 | if (ret) { |
| 391 | pr_warn("Failed to allocate space for wbuf recovery. Data loss ensues.\n"); |
| 392 | kfree(buf); |
| 393 | return; |
| 394 | } |
| 395 | |
| 396 | /* The summary is not recovered, so it must be disabled for this erase block */ |
| 397 | jffs2_sum_disable_collecting(c->summary); |
| 398 | |
| 399 | ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, nr_refile); |
| 400 | if (ret) { |
| 401 | pr_warn("Failed to allocate node refs for wbuf recovery. Data loss ensues.\n"); |
| 402 | kfree(buf); |
| 403 | return; |
| 404 | } |
| 405 | |
| 406 | ofs = write_ofs(c); |
| 407 | |
| 408 | if (end-start >= c->wbuf_pagesize) { |
| 409 | /* Need to do another write immediately, but it's possible |
| 410 | that this is just because the wbuf itself is completely |
| 411 | full, and there's nothing earlier read back from the |
| 412 | flash. Hence 'buf' isn't necessarily what we're writing |
| 413 | from. */ |
| 414 | unsigned char *rewrite_buf = buf?:c->wbuf; |
| 415 | uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize); |
| 416 | |
| 417 | jffs2_dbg(1, "Write 0x%x bytes at 0x%08x in wbuf recover\n", |
| 418 | towrite, ofs); |
| 419 | |
| 420 | #ifdef BREAKMEHEADER |
| 421 | static int breakme; |
| 422 | if (breakme++ == 20) { |
| 423 | pr_notice("Faking write error at 0x%08x\n", ofs); |
| 424 | breakme = 0; |
| 425 | mtd_write(c->mtd, ofs, towrite, &retlen, brokenbuf); |
| 426 | ret = -EIO; |
| 427 | } else |
| 428 | #endif |
| 429 | ret = mtd_write(c->mtd, ofs, towrite, &retlen, |
| 430 | rewrite_buf); |
| 431 | |
| 432 | if (ret || retlen != towrite || jffs2_verify_write(c, rewrite_buf, ofs)) { |
| 433 | /* Argh. We tried. Really we did. */ |
| 434 | pr_crit("Recovery of wbuf failed due to a second write error\n"); |
| 435 | kfree(buf); |
| 436 | |
| 437 | if (retlen) |
| 438 | jffs2_add_physical_node_ref(c, ofs | REF_OBSOLETE, ref_totlen(c, jeb, first_raw), NULL); |
| 439 | |
| 440 | return; |
| 441 | } |
| 442 | pr_notice("Recovery of wbuf succeeded to %08x\n", ofs); |
| 443 | |
| 444 | c->wbuf_len = (end - start) - towrite; |
| 445 | c->wbuf_ofs = ofs + towrite; |
| 446 | memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len); |
| 447 | /* Don't muck about with c->wbuf_inodes. False positives are harmless. */ |
| 448 | } else { |
| 449 | /* OK, now we're left with the dregs in whichever buffer we're using */ |
| 450 | if (buf) { |
| 451 | memcpy(c->wbuf, buf, end-start); |
| 452 | } else { |
| 453 | memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start); |
| 454 | } |
| 455 | c->wbuf_ofs = ofs; |
| 456 | c->wbuf_len = end - start; |
| 457 | } |
| 458 | |
| 459 | /* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */ |
| 460 | new_jeb = &c->blocks[ofs / c->sector_size]; |
| 461 | |
| 462 | spin_lock(&c->erase_completion_lock); |
| 463 | for (raw = first_raw; raw != jeb->last_node; raw = ref_next(raw)) { |
| 464 | uint32_t rawlen = ref_totlen(c, jeb, raw); |
| 465 | struct jffs2_inode_cache *ic; |
| 466 | struct jffs2_raw_node_ref *new_ref; |
| 467 | struct jffs2_raw_node_ref **adjust_ref = NULL; |
| 468 | struct jffs2_inode_info *f = NULL; |
| 469 | |
| 470 | jffs2_dbg(1, "Refiling block of %08x at %08x(%d) to %08x\n", |
| 471 | rawlen, ref_offset(raw), ref_flags(raw), ofs); |
| 472 | |
| 473 | ic = jffs2_raw_ref_to_ic(raw); |
| 474 | |
| 475 | /* Ick. This XATTR mess should be fixed shortly... */ |
| 476 | if (ic && ic->class == RAWNODE_CLASS_XATTR_DATUM) { |
| 477 | struct jffs2_xattr_datum *xd = (void *)ic; |
| 478 | BUG_ON(xd->node != raw); |
| 479 | adjust_ref = &xd->node; |
| 480 | raw->next_in_ino = NULL; |
| 481 | ic = NULL; |
| 482 | } else if (ic && ic->class == RAWNODE_CLASS_XATTR_REF) { |
| 483 | struct jffs2_xattr_datum *xr = (void *)ic; |
| 484 | BUG_ON(xr->node != raw); |
| 485 | adjust_ref = &xr->node; |
| 486 | raw->next_in_ino = NULL; |
| 487 | ic = NULL; |
| 488 | } else if (ic && ic->class == RAWNODE_CLASS_INODE_CACHE) { |
| 489 | struct jffs2_raw_node_ref **p = &ic->nodes; |
| 490 | |
| 491 | /* Remove the old node from the per-inode list */ |
| 492 | while (*p && *p != (void *)ic) { |
| 493 | if (*p == raw) { |
| 494 | (*p) = (raw->next_in_ino); |
| 495 | raw->next_in_ino = NULL; |
| 496 | break; |
| 497 | } |
| 498 | p = &((*p)->next_in_ino); |
| 499 | } |
| 500 | |
| 501 | if (ic->state == INO_STATE_PRESENT && !ref_obsolete(raw)) { |
| 502 | /* If it's an in-core inode, then we have to adjust any |
| 503 | full_dirent or full_dnode structure to point to the |
| 504 | new version instead of the old */ |
| 505 | f = jffs2_gc_fetch_inode(c, ic->ino, !ic->pino_nlink); |
| 506 | if (IS_ERR(f)) { |
| 507 | /* Should never happen; it _must_ be present */ |
| 508 | JFFS2_ERROR("Failed to iget() ino #%u, err %ld\n", |
| 509 | ic->ino, PTR_ERR(f)); |
| 510 | BUG(); |
| 511 | } |
| 512 | /* We don't lock f->sem. There's a number of ways we could |
| 513 | end up in here with it already being locked, and nobody's |
| 514 | going to modify it on us anyway because we hold the |
| 515 | alloc_sem. We're only changing one ->raw pointer too, |
| 516 | which we can get away with without upsetting readers. */ |
| 517 | adjust_ref = jffs2_incore_replace_raw(c, f, raw, |
| 518 | (void *)(buf?:c->wbuf) + (ref_offset(raw) - start)); |
| 519 | } else if (unlikely(ic->state != INO_STATE_PRESENT && |
| 520 | ic->state != INO_STATE_CHECKEDABSENT && |
| 521 | ic->state != INO_STATE_GC)) { |
| 522 | JFFS2_ERROR("Inode #%u is in strange state %d!\n", ic->ino, ic->state); |
| 523 | BUG(); |
| 524 | } |
| 525 | } |
| 526 | |
| 527 | new_ref = jffs2_link_node_ref(c, new_jeb, ofs | ref_flags(raw), rawlen, ic); |
| 528 | |
| 529 | if (adjust_ref) { |
| 530 | BUG_ON(*adjust_ref != raw); |
| 531 | *adjust_ref = new_ref; |
| 532 | } |
| 533 | if (f) |
| 534 | jffs2_gc_release_inode(c, f); |
| 535 | |
| 536 | if (!ref_obsolete(raw)) { |
| 537 | jeb->dirty_size += rawlen; |
| 538 | jeb->used_size -= rawlen; |
| 539 | c->dirty_size += rawlen; |
| 540 | c->used_size -= rawlen; |
| 541 | raw->flash_offset = ref_offset(raw) | REF_OBSOLETE; |
| 542 | BUG_ON(raw->next_in_ino); |
| 543 | } |
| 544 | ofs += rawlen; |
| 545 | } |
| 546 | |
| 547 | kfree(buf); |
| 548 | |
| 549 | /* Fix up the original jeb now it's on the bad_list */ |
| 550 | if (first_raw == jeb->first_node) { |
| 551 | jffs2_dbg(1, "Failing block at %08x is now empty. Moving to erase_pending_list\n", |
| 552 | jeb->offset); |
| 553 | list_move(&jeb->list, &c->erase_pending_list); |
| 554 | c->nr_erasing_blocks++; |
| 555 | jffs2_garbage_collect_trigger(c); |
| 556 | } |
| 557 | |
| 558 | jffs2_dbg_acct_sanity_check_nolock(c, jeb); |
| 559 | jffs2_dbg_acct_paranoia_check_nolock(c, jeb); |
| 560 | |
| 561 | jffs2_dbg_acct_sanity_check_nolock(c, new_jeb); |
| 562 | jffs2_dbg_acct_paranoia_check_nolock(c, new_jeb); |
| 563 | |
| 564 | spin_unlock(&c->erase_completion_lock); |
| 565 | |
| 566 | jffs2_dbg(1, "wbuf recovery completed OK. wbuf_ofs 0x%08x, len 0x%x\n", |
| 567 | c->wbuf_ofs, c->wbuf_len); |
| 568 | |
| 569 | } |
| 570 | |
| 571 | /* Meaning of pad argument: |
| 572 | 0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway. |
| 573 | 1: Pad, do not adjust nextblock free_size |
| 574 | 2: Pad, adjust nextblock free_size |
| 575 | */ |
| 576 | #define NOPAD 0 |
| 577 | #define PAD_NOACCOUNT 1 |
| 578 | #define PAD_ACCOUNTING 2 |
| 579 | |
| 580 | static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad) |
| 581 | { |
| 582 | struct jffs2_eraseblock *wbuf_jeb; |
| 583 | int ret; |
| 584 | size_t retlen; |
| 585 | |
| 586 | /* Nothing to do if not write-buffering the flash. In particular, we shouldn't |
| 587 | del_timer() the timer we never initialised. */ |
| 588 | if (!jffs2_is_writebuffered(c)) |
| 589 | return 0; |
| 590 | |
| 591 | if (!mutex_is_locked(&c->alloc_sem)) { |
| 592 | pr_crit("jffs2_flush_wbuf() called with alloc_sem not locked!\n"); |
| 593 | BUG(); |
| 594 | } |
| 595 | |
| 596 | if (!c->wbuf_len) /* already checked c->wbuf above */ |
| 597 | return 0; |
| 598 | |
| 599 | wbuf_jeb = &c->blocks[c->wbuf_ofs / c->sector_size]; |
| 600 | if (jffs2_prealloc_raw_node_refs(c, wbuf_jeb, c->nextblock->allocated_refs + 1)) |
| 601 | return -ENOMEM; |
| 602 | |
| 603 | /* claim remaining space on the page |
| 604 | this happens, if we have a change to a new block, |
| 605 | or if fsync forces us to flush the writebuffer. |
| 606 | if we have a switch to next page, we will not have |
| 607 | enough remaining space for this. |
| 608 | */ |
| 609 | if (pad ) { |
| 610 | c->wbuf_len = PAD(c->wbuf_len); |
| 611 | |
| 612 | /* Pad with JFFS2_DIRTY_BITMASK initially. this helps out ECC'd NOR |
| 613 | with 8 byte page size */ |
| 614 | memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len); |
| 615 | |
| 616 | if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) { |
| 617 | struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len); |
| 618 | padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); |
| 619 | padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING); |
| 620 | padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len); |
| 621 | padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4)); |
| 622 | } |
| 623 | } |
| 624 | /* else jffs2_flash_writev has actually filled in the rest of the |
| 625 | buffer for us, and will deal with the node refs etc. later. */ |
| 626 | |
| 627 | #ifdef BREAKME |
| 628 | static int breakme; |
| 629 | if (breakme++ == 20) { |
| 630 | pr_notice("Faking write error at 0x%08x\n", c->wbuf_ofs); |
| 631 | breakme = 0; |
| 632 | mtd_write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, |
| 633 | brokenbuf); |
| 634 | ret = -EIO; |
| 635 | } else |
| 636 | #endif |
| 637 | |
| 638 | ret = mtd_write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, |
| 639 | &retlen, c->wbuf); |
| 640 | |
| 641 | if (ret) { |
| 642 | pr_warn("jffs2_flush_wbuf(): Write failed with %d\n", ret); |
| 643 | goto wfail; |
| 644 | } else if (retlen != c->wbuf_pagesize) { |
| 645 | pr_warn("jffs2_flush_wbuf(): Write was short: %zd instead of %d\n", |
| 646 | retlen, c->wbuf_pagesize); |
| 647 | ret = -EIO; |
| 648 | goto wfail; |
| 649 | } else if ((ret = jffs2_verify_write(c, c->wbuf, c->wbuf_ofs))) { |
| 650 | wfail: |
| 651 | jffs2_wbuf_recover(c); |
| 652 | |
| 653 | return ret; |
| 654 | } |
| 655 | |
| 656 | /* Adjust free size of the block if we padded. */ |
| 657 | if (pad) { |
| 658 | uint32_t waste = c->wbuf_pagesize - c->wbuf_len; |
| 659 | |
| 660 | jffs2_dbg(1, "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n", |
| 661 | (wbuf_jeb == c->nextblock) ? "next" : "", |
| 662 | wbuf_jeb->offset); |
| 663 | |
| 664 | /* wbuf_pagesize - wbuf_len is the amount of space that's to be |
| 665 | padded. If there is less free space in the block than that, |
| 666 | something screwed up */ |
| 667 | if (wbuf_jeb->free_size < waste) { |
| 668 | pr_crit("jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n", |
| 669 | c->wbuf_ofs, c->wbuf_len, waste); |
| 670 | pr_crit("jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n", |
| 671 | wbuf_jeb->offset, wbuf_jeb->free_size); |
| 672 | BUG(); |
| 673 | } |
| 674 | |
| 675 | spin_lock(&c->erase_completion_lock); |
| 676 | |
| 677 | jffs2_link_node_ref(c, wbuf_jeb, (c->wbuf_ofs + c->wbuf_len) | REF_OBSOLETE, waste, NULL); |
| 678 | /* FIXME: that made it count as dirty. Convert to wasted */ |
| 679 | wbuf_jeb->dirty_size -= waste; |
| 680 | c->dirty_size -= waste; |
| 681 | wbuf_jeb->wasted_size += waste; |
| 682 | c->wasted_size += waste; |
| 683 | } else |
| 684 | spin_lock(&c->erase_completion_lock); |
| 685 | |
| 686 | /* Stick any now-obsoleted blocks on the erase_pending_list */ |
| 687 | jffs2_refile_wbuf_blocks(c); |
| 688 | jffs2_clear_wbuf_ino_list(c); |
| 689 | spin_unlock(&c->erase_completion_lock); |
| 690 | |
| 691 | memset(c->wbuf,0xff,c->wbuf_pagesize); |
| 692 | /* adjust write buffer offset, else we get a non contiguous write bug */ |
| 693 | c->wbuf_ofs += c->wbuf_pagesize; |
| 694 | c->wbuf_len = 0; |
| 695 | return 0; |
| 696 | } |
| 697 | |
| 698 | /* Trigger garbage collection to flush the write-buffer. |
| 699 | If ino arg is zero, do it if _any_ real (i.e. not GC) writes are |
| 700 | outstanding. If ino arg non-zero, do it only if a write for the |
| 701 | given inode is outstanding. */ |
| 702 | int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino) |
| 703 | { |
| 704 | uint32_t old_wbuf_ofs; |
| 705 | uint32_t old_wbuf_len; |
| 706 | int ret = 0; |
| 707 | |
| 708 | jffs2_dbg(1, "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino); |
| 709 | |
| 710 | if (!c->wbuf) |
| 711 | return 0; |
| 712 | |
| 713 | mutex_lock(&c->alloc_sem); |
| 714 | if (!jffs2_wbuf_pending_for_ino(c, ino)) { |
| 715 | jffs2_dbg(1, "Ino #%d not pending in wbuf. Returning\n", ino); |
| 716 | mutex_unlock(&c->alloc_sem); |
| 717 | return 0; |
| 718 | } |
| 719 | |
| 720 | old_wbuf_ofs = c->wbuf_ofs; |
| 721 | old_wbuf_len = c->wbuf_len; |
| 722 | |
| 723 | if (c->unchecked_size) { |
| 724 | /* GC won't make any progress for a while */ |
| 725 | jffs2_dbg(1, "%s(): padding. Not finished checking\n", |
| 726 | __func__); |
| 727 | down_write(&c->wbuf_sem); |
| 728 | ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); |
| 729 | /* retry flushing wbuf in case jffs2_wbuf_recover |
| 730 | left some data in the wbuf */ |
| 731 | if (ret) |
| 732 | ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); |
| 733 | up_write(&c->wbuf_sem); |
| 734 | } else while (old_wbuf_len && |
| 735 | old_wbuf_ofs == c->wbuf_ofs) { |
| 736 | |
| 737 | mutex_unlock(&c->alloc_sem); |
| 738 | |
| 739 | jffs2_dbg(1, "%s(): calls gc pass\n", __func__); |
| 740 | |
| 741 | ret = jffs2_garbage_collect_pass(c); |
| 742 | if (ret) { |
| 743 | /* GC failed. Flush it with padding instead */ |
| 744 | mutex_lock(&c->alloc_sem); |
| 745 | down_write(&c->wbuf_sem); |
| 746 | ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); |
| 747 | /* retry flushing wbuf in case jffs2_wbuf_recover |
| 748 | left some data in the wbuf */ |
| 749 | if (ret) |
| 750 | ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); |
| 751 | up_write(&c->wbuf_sem); |
| 752 | break; |
| 753 | } |
| 754 | mutex_lock(&c->alloc_sem); |
| 755 | } |
| 756 | |
| 757 | jffs2_dbg(1, "%s(): ends...\n", __func__); |
| 758 | |
| 759 | mutex_unlock(&c->alloc_sem); |
| 760 | return ret; |
| 761 | } |
| 762 | |
| 763 | /* Pad write-buffer to end and write it, wasting space. */ |
| 764 | int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c) |
| 765 | { |
| 766 | int ret; |
| 767 | |
| 768 | if (!c->wbuf) |
| 769 | return 0; |
| 770 | |
| 771 | down_write(&c->wbuf_sem); |
| 772 | ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT); |
| 773 | /* retry - maybe wbuf recover left some data in wbuf. */ |
| 774 | if (ret) |
| 775 | ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT); |
| 776 | up_write(&c->wbuf_sem); |
| 777 | |
| 778 | return ret; |
| 779 | } |
| 780 | |
| 781 | static size_t jffs2_fill_wbuf(struct jffs2_sb_info *c, const uint8_t *buf, |
| 782 | size_t len) |
| 783 | { |
| 784 | if (len && !c->wbuf_len && (len >= c->wbuf_pagesize)) |
| 785 | return 0; |
| 786 | |
| 787 | if (len > (c->wbuf_pagesize - c->wbuf_len)) |
| 788 | len = c->wbuf_pagesize - c->wbuf_len; |
| 789 | memcpy(c->wbuf + c->wbuf_len, buf, len); |
| 790 | c->wbuf_len += (uint32_t) len; |
| 791 | return len; |
| 792 | } |
| 793 | |
| 794 | int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs, |
| 795 | unsigned long count, loff_t to, size_t *retlen, |
| 796 | uint32_t ino) |
| 797 | { |
| 798 | struct jffs2_eraseblock *jeb; |
| 799 | size_t wbuf_retlen, donelen = 0; |
| 800 | uint32_t outvec_to = to; |
| 801 | int ret, invec; |
| 802 | |
| 803 | /* If not writebuffered flash, don't bother */ |
| 804 | if (!jffs2_is_writebuffered(c)) |
| 805 | return jffs2_flash_direct_writev(c, invecs, count, to, retlen); |
| 806 | |
| 807 | down_write(&c->wbuf_sem); |
| 808 | |
| 809 | /* If wbuf_ofs is not initialized, set it to target address */ |
| 810 | if (c->wbuf_ofs == 0xFFFFFFFF) { |
| 811 | c->wbuf_ofs = PAGE_DIV(to); |
| 812 | c->wbuf_len = PAGE_MOD(to); |
| 813 | memset(c->wbuf,0xff,c->wbuf_pagesize); |
| 814 | } |
| 815 | |
| 816 | /* |
| 817 | * Sanity checks on target address. It's permitted to write |
| 818 | * at PAD(c->wbuf_len+c->wbuf_ofs), and it's permitted to |
| 819 | * write at the beginning of a new erase block. Anything else, |
| 820 | * and you die. New block starts at xxx000c (0-b = block |
| 821 | * header) |
| 822 | */ |
| 823 | if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) { |
| 824 | /* It's a write to a new block */ |
| 825 | if (c->wbuf_len) { |
| 826 | jffs2_dbg(1, "%s(): to 0x%lx causes flush of wbuf at 0x%08x\n", |
| 827 | __func__, (unsigned long)to, c->wbuf_ofs); |
| 828 | ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT); |
| 829 | if (ret) |
| 830 | goto outerr; |
| 831 | } |
| 832 | /* set pointer to new block */ |
| 833 | c->wbuf_ofs = PAGE_DIV(to); |
| 834 | c->wbuf_len = PAGE_MOD(to); |
| 835 | } |
| 836 | |
| 837 | if (to != PAD(c->wbuf_ofs + c->wbuf_len)) { |
| 838 | /* We're not writing immediately after the writebuffer. Bad. */ |
| 839 | pr_crit("%s(): Non-contiguous write to %08lx\n", |
| 840 | __func__, (unsigned long)to); |
| 841 | if (c->wbuf_len) |
| 842 | pr_crit("wbuf was previously %08x-%08x\n", |
| 843 | c->wbuf_ofs, c->wbuf_ofs + c->wbuf_len); |
| 844 | BUG(); |
| 845 | } |
| 846 | |
| 847 | /* adjust alignment offset */ |
| 848 | if (c->wbuf_len != PAGE_MOD(to)) { |
| 849 | c->wbuf_len = PAGE_MOD(to); |
| 850 | /* take care of alignment to next page */ |
| 851 | if (!c->wbuf_len) { |
| 852 | c->wbuf_len = c->wbuf_pagesize; |
| 853 | ret = __jffs2_flush_wbuf(c, NOPAD); |
| 854 | if (ret) |
| 855 | goto outerr; |
| 856 | } |
| 857 | } |
| 858 | |
| 859 | for (invec = 0; invec < count; invec++) { |
| 860 | int vlen = invecs[invec].iov_len; |
| 861 | uint8_t *v = invecs[invec].iov_base; |
| 862 | |
| 863 | wbuf_retlen = jffs2_fill_wbuf(c, v, vlen); |
| 864 | |
| 865 | if (c->wbuf_len == c->wbuf_pagesize) { |
| 866 | ret = __jffs2_flush_wbuf(c, NOPAD); |
| 867 | if (ret) |
| 868 | goto outerr; |
| 869 | } |
| 870 | vlen -= wbuf_retlen; |
| 871 | outvec_to += wbuf_retlen; |
| 872 | donelen += wbuf_retlen; |
| 873 | v += wbuf_retlen; |
| 874 | |
| 875 | if (vlen >= c->wbuf_pagesize) { |
| 876 | ret = mtd_write(c->mtd, outvec_to, PAGE_DIV(vlen), |
| 877 | &wbuf_retlen, v); |
| 878 | if (ret < 0 || wbuf_retlen != PAGE_DIV(vlen)) |
| 879 | goto outfile; |
| 880 | |
| 881 | vlen -= wbuf_retlen; |
| 882 | outvec_to += wbuf_retlen; |
| 883 | c->wbuf_ofs = outvec_to; |
| 884 | donelen += wbuf_retlen; |
| 885 | v += wbuf_retlen; |
| 886 | } |
| 887 | |
| 888 | wbuf_retlen = jffs2_fill_wbuf(c, v, vlen); |
| 889 | if (c->wbuf_len == c->wbuf_pagesize) { |
| 890 | ret = __jffs2_flush_wbuf(c, NOPAD); |
| 891 | if (ret) |
| 892 | goto outerr; |
| 893 | } |
| 894 | |
| 895 | outvec_to += wbuf_retlen; |
| 896 | donelen += wbuf_retlen; |
| 897 | } |
| 898 | |
| 899 | /* |
| 900 | * If there's a remainder in the wbuf and it's a non-GC write, |
| 901 | * remember that the wbuf affects this ino |
| 902 | */ |
| 903 | *retlen = donelen; |
| 904 | |
| 905 | if (jffs2_sum_active()) { |
| 906 | int res = jffs2_sum_add_kvec(c, invecs, count, (uint32_t) to); |
| 907 | if (res) |
| 908 | return res; |
| 909 | } |
| 910 | |
| 911 | if (c->wbuf_len && ino) |
| 912 | jffs2_wbuf_dirties_inode(c, ino); |
| 913 | |
| 914 | ret = 0; |
| 915 | up_write(&c->wbuf_sem); |
| 916 | return ret; |
| 917 | |
| 918 | outfile: |
| 919 | /* |
| 920 | * At this point we have no problem, c->wbuf is empty. However |
| 921 | * refile nextblock to avoid writing again to same address. |
| 922 | */ |
| 923 | |
| 924 | spin_lock(&c->erase_completion_lock); |
| 925 | |
| 926 | jeb = &c->blocks[outvec_to / c->sector_size]; |
| 927 | jffs2_block_refile(c, jeb, REFILE_ANYWAY); |
| 928 | |
| 929 | spin_unlock(&c->erase_completion_lock); |
| 930 | |
| 931 | outerr: |
| 932 | *retlen = 0; |
| 933 | up_write(&c->wbuf_sem); |
| 934 | return ret; |
| 935 | } |
| 936 | |
| 937 | /* |
| 938 | * This is the entry for flash write. |
| 939 | * Check, if we work on NAND FLASH, if so build an kvec and write it via vritev |
| 940 | */ |
| 941 | int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len, |
| 942 | size_t *retlen, const u_char *buf) |
| 943 | { |
| 944 | struct kvec vecs[1]; |
| 945 | |
| 946 | if (!jffs2_is_writebuffered(c)) |
| 947 | return jffs2_flash_direct_write(c, ofs, len, retlen, buf); |
| 948 | |
| 949 | vecs[0].iov_base = (unsigned char *) buf; |
| 950 | vecs[0].iov_len = len; |
| 951 | return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0); |
| 952 | } |
| 953 | |
| 954 | /* |
| 955 | Handle readback from writebuffer and ECC failure return |
| 956 | */ |
| 957 | int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf) |
| 958 | { |
| 959 | loff_t orbf = 0, owbf = 0, lwbf = 0; |
| 960 | int ret; |
| 961 | |
| 962 | if (!jffs2_is_writebuffered(c)) |
| 963 | return mtd_read(c->mtd, ofs, len, retlen, buf); |
| 964 | |
| 965 | /* Read flash */ |
| 966 | down_read(&c->wbuf_sem); |
| 967 | ret = mtd_read(c->mtd, ofs, len, retlen, buf); |
| 968 | |
| 969 | if ( (ret == -EBADMSG || ret == -EUCLEAN) && (*retlen == len) ) { |
| 970 | if (ret == -EBADMSG) |
| 971 | pr_warn("mtd->read(0x%zx bytes from 0x%llx) returned ECC error\n", |
| 972 | len, ofs); |
| 973 | /* |
| 974 | * We have the raw data without ECC correction in the buffer, |
| 975 | * maybe we are lucky and all data or parts are correct. We |
| 976 | * check the node. If data are corrupted node check will sort |
| 977 | * it out. We keep this block, it will fail on write or erase |
| 978 | * and the we mark it bad. Or should we do that now? But we |
| 979 | * should give him a chance. Maybe we had a system crash or |
| 980 | * power loss before the ecc write or a erase was completed. |
| 981 | * So we return success. :) |
| 982 | */ |
| 983 | ret = 0; |
| 984 | } |
| 985 | |
| 986 | /* if no writebuffer available or write buffer empty, return */ |
| 987 | if (!c->wbuf_pagesize || !c->wbuf_len) |
| 988 | goto exit; |
| 989 | |
| 990 | /* if we read in a different block, return */ |
| 991 | if (SECTOR_ADDR(ofs) != SECTOR_ADDR(c->wbuf_ofs)) |
| 992 | goto exit; |
| 993 | |
| 994 | if (ofs >= c->wbuf_ofs) { |
| 995 | owbf = (ofs - c->wbuf_ofs); /* offset in write buffer */ |
| 996 | if (owbf > c->wbuf_len) /* is read beyond write buffer ? */ |
| 997 | goto exit; |
| 998 | lwbf = c->wbuf_len - owbf; /* number of bytes to copy */ |
| 999 | if (lwbf > len) |
| 1000 | lwbf = len; |
| 1001 | } else { |
| 1002 | orbf = (c->wbuf_ofs - ofs); /* offset in read buffer */ |
| 1003 | if (orbf > len) /* is write beyond write buffer ? */ |
| 1004 | goto exit; |
| 1005 | lwbf = len - orbf; /* number of bytes to copy */ |
| 1006 | if (lwbf > c->wbuf_len) |
| 1007 | lwbf = c->wbuf_len; |
| 1008 | } |
| 1009 | if (lwbf > 0) |
| 1010 | memcpy(buf+orbf,c->wbuf+owbf,lwbf); |
| 1011 | |
| 1012 | exit: |
| 1013 | up_read(&c->wbuf_sem); |
| 1014 | return ret; |
| 1015 | } |
| 1016 | |
| 1017 | #define NR_OOB_SCAN_PAGES 4 |
| 1018 | |
| 1019 | /* For historical reasons we use only 8 bytes for OOB clean marker */ |
| 1020 | #define OOB_CM_SIZE 8 |
| 1021 | |
| 1022 | static const struct jffs2_unknown_node oob_cleanmarker = |
| 1023 | { |
| 1024 | .magic = constant_cpu_to_je16(JFFS2_MAGIC_BITMASK), |
| 1025 | .nodetype = constant_cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER), |
| 1026 | .totlen = constant_cpu_to_je32(8) |
| 1027 | }; |
| 1028 | |
| 1029 | /* |
| 1030 | * Check, if the out of band area is empty. This function knows about the clean |
| 1031 | * marker and if it is present in OOB, treats the OOB as empty anyway. |
| 1032 | */ |
| 1033 | int jffs2_check_oob_empty(struct jffs2_sb_info *c, |
| 1034 | struct jffs2_eraseblock *jeb, int mode) |
| 1035 | { |
| 1036 | int i, ret; |
| 1037 | int cmlen = min_t(int, c->oobavail, OOB_CM_SIZE); |
| 1038 | struct mtd_oob_ops ops; |
| 1039 | |
| 1040 | ops.mode = MTD_OPS_AUTO_OOB; |
| 1041 | ops.ooblen = NR_OOB_SCAN_PAGES * c->oobavail; |
| 1042 | ops.oobbuf = c->oobbuf; |
| 1043 | ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0; |
| 1044 | ops.datbuf = NULL; |
| 1045 | |
| 1046 | ret = mtd_read_oob(c->mtd, jeb->offset, &ops); |
| 1047 | if ((ret && !mtd_is_bitflip(ret)) || ops.oobretlen != ops.ooblen) { |
| 1048 | pr_err("cannot read OOB for EB at %08x, requested %zd bytes, read %zd bytes, error %d\n", |
| 1049 | jeb->offset, ops.ooblen, ops.oobretlen, ret); |
| 1050 | if (!ret || mtd_is_bitflip(ret)) |
| 1051 | ret = -EIO; |
| 1052 | return ret; |
| 1053 | } |
| 1054 | |
| 1055 | for(i = 0; i < ops.ooblen; i++) { |
| 1056 | if (mode && i < cmlen) |
| 1057 | /* Yeah, we know about the cleanmarker */ |
| 1058 | continue; |
| 1059 | |
| 1060 | if (ops.oobbuf[i] != 0xFF) { |
| 1061 | jffs2_dbg(2, "Found %02x at %x in OOB for " |
| 1062 | "%08x\n", ops.oobbuf[i], i, jeb->offset); |
| 1063 | return 1; |
| 1064 | } |
| 1065 | } |
| 1066 | |
| 1067 | return 0; |
| 1068 | } |
| 1069 | |
| 1070 | /* |
| 1071 | * Check for a valid cleanmarker. |
| 1072 | * Returns: 0 if a valid cleanmarker was found |
| 1073 | * 1 if no cleanmarker was found |
| 1074 | * negative error code if an error occurred |
| 1075 | */ |
| 1076 | int jffs2_check_nand_cleanmarker(struct jffs2_sb_info *c, |
| 1077 | struct jffs2_eraseblock *jeb) |
| 1078 | { |
| 1079 | struct mtd_oob_ops ops; |
| 1080 | int ret, cmlen = min_t(int, c->oobavail, OOB_CM_SIZE); |
| 1081 | |
| 1082 | ops.mode = MTD_OPS_AUTO_OOB; |
| 1083 | ops.ooblen = cmlen; |
| 1084 | ops.oobbuf = c->oobbuf; |
| 1085 | ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0; |
| 1086 | ops.datbuf = NULL; |
| 1087 | |
| 1088 | ret = mtd_read_oob(c->mtd, jeb->offset, &ops); |
| 1089 | if ((ret && !mtd_is_bitflip(ret)) || ops.oobretlen != ops.ooblen) { |
| 1090 | pr_err("cannot read OOB for EB at %08x, requested %zd bytes, read %zd bytes, error %d\n", |
| 1091 | jeb->offset, ops.ooblen, ops.oobretlen, ret); |
| 1092 | if (!ret || mtd_is_bitflip(ret)) |
| 1093 | ret = -EIO; |
| 1094 | return ret; |
| 1095 | } |
| 1096 | |
| 1097 | return !!memcmp(&oob_cleanmarker, c->oobbuf, cmlen); |
| 1098 | } |
| 1099 | |
| 1100 | int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c, |
| 1101 | struct jffs2_eraseblock *jeb) |
| 1102 | { |
| 1103 | int ret; |
| 1104 | struct mtd_oob_ops ops; |
| 1105 | int cmlen = min_t(int, c->oobavail, OOB_CM_SIZE); |
| 1106 | |
| 1107 | ops.mode = MTD_OPS_AUTO_OOB; |
| 1108 | ops.ooblen = cmlen; |
| 1109 | ops.oobbuf = (uint8_t *)&oob_cleanmarker; |
| 1110 | ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0; |
| 1111 | ops.datbuf = NULL; |
| 1112 | |
| 1113 | ret = mtd_write_oob(c->mtd, jeb->offset, &ops); |
| 1114 | if (ret || ops.oobretlen != ops.ooblen) { |
| 1115 | pr_err("cannot write OOB for EB at %08x, requested %zd bytes, read %zd bytes, error %d\n", |
| 1116 | jeb->offset, ops.ooblen, ops.oobretlen, ret); |
| 1117 | if (!ret) |
| 1118 | ret = -EIO; |
| 1119 | return ret; |
| 1120 | } |
| 1121 | |
| 1122 | return 0; |
| 1123 | } |
| 1124 | |
| 1125 | /* |
| 1126 | * On NAND we try to mark this block bad. If the block was erased more |
| 1127 | * than MAX_ERASE_FAILURES we mark it finally bad. |
| 1128 | * Don't care about failures. This block remains on the erase-pending |
| 1129 | * or badblock list as long as nobody manipulates the flash with |
| 1130 | * a bootloader or something like that. |
| 1131 | */ |
| 1132 | |
| 1133 | int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset) |
| 1134 | { |
| 1135 | int ret; |
| 1136 | |
| 1137 | /* if the count is < max, we try to write the counter to the 2nd page oob area */ |
| 1138 | if( ++jeb->bad_count < MAX_ERASE_FAILURES) |
| 1139 | return 0; |
| 1140 | |
| 1141 | pr_warn("marking eraseblock at %08x as bad\n", bad_offset); |
| 1142 | ret = mtd_block_markbad(c->mtd, bad_offset); |
| 1143 | |
| 1144 | if (ret) { |
| 1145 | jffs2_dbg(1, "%s(): Write failed for block at %08x: error %d\n", |
| 1146 | __func__, jeb->offset, ret); |
| 1147 | return ret; |
| 1148 | } |
| 1149 | return 1; |
| 1150 | } |
| 1151 | |
| 1152 | static struct jffs2_sb_info *work_to_sb(struct work_struct *work) |
| 1153 | { |
| 1154 | struct delayed_work *dwork; |
| 1155 | |
| 1156 | dwork = to_delayed_work(work); |
| 1157 | return container_of(dwork, struct jffs2_sb_info, wbuf_dwork); |
| 1158 | } |
| 1159 | |
| 1160 | static void delayed_wbuf_sync(struct work_struct *work) |
| 1161 | { |
| 1162 | struct jffs2_sb_info *c = work_to_sb(work); |
| 1163 | struct super_block *sb = OFNI_BS_2SFFJ(c); |
| 1164 | |
| 1165 | if (!sb_rdonly(sb)) { |
| 1166 | jffs2_dbg(1, "%s()\n", __func__); |
| 1167 | jffs2_flush_wbuf_gc(c, 0); |
| 1168 | } |
| 1169 | } |
| 1170 | |
| 1171 | void jffs2_dirty_trigger(struct jffs2_sb_info *c) |
| 1172 | { |
| 1173 | struct super_block *sb = OFNI_BS_2SFFJ(c); |
| 1174 | unsigned long delay; |
| 1175 | |
| 1176 | if (sb_rdonly(sb)) |
| 1177 | return; |
| 1178 | |
| 1179 | delay = msecs_to_jiffies(dirty_writeback_interval * 10); |
| 1180 | if (queue_delayed_work(system_long_wq, &c->wbuf_dwork, delay)) |
| 1181 | jffs2_dbg(1, "%s()\n", __func__); |
| 1182 | } |
| 1183 | |
| 1184 | int jffs2_nand_flash_setup(struct jffs2_sb_info *c) |
| 1185 | { |
| 1186 | if (!c->mtd->oobsize) |
| 1187 | return 0; |
| 1188 | |
| 1189 | /* Cleanmarker is out-of-band, so inline size zero */ |
| 1190 | c->cleanmarker_size = 0; |
| 1191 | |
| 1192 | if (c->mtd->oobavail == 0) { |
| 1193 | pr_err("inconsistent device description\n"); |
| 1194 | return -EINVAL; |
| 1195 | } |
| 1196 | |
| 1197 | jffs2_dbg(1, "using OOB on NAND\n"); |
| 1198 | |
| 1199 | c->oobavail = c->mtd->oobavail; |
| 1200 | |
| 1201 | /* Initialise write buffer */ |
| 1202 | init_rwsem(&c->wbuf_sem); |
| 1203 | INIT_DELAYED_WORK(&c->wbuf_dwork, delayed_wbuf_sync); |
| 1204 | c->wbuf_pagesize = c->mtd->writesize; |
| 1205 | c->wbuf_ofs = 0xFFFFFFFF; |
| 1206 | |
| 1207 | c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); |
| 1208 | if (!c->wbuf) |
| 1209 | return -ENOMEM; |
| 1210 | |
| 1211 | c->oobbuf = kmalloc(NR_OOB_SCAN_PAGES * c->oobavail, GFP_KERNEL); |
| 1212 | if (!c->oobbuf) { |
| 1213 | kfree(c->wbuf); |
| 1214 | return -ENOMEM; |
| 1215 | } |
| 1216 | |
| 1217 | #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY |
| 1218 | c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL); |
| 1219 | if (!c->wbuf_verify) { |
| 1220 | kfree(c->oobbuf); |
| 1221 | kfree(c->wbuf); |
| 1222 | return -ENOMEM; |
| 1223 | } |
| 1224 | #endif |
| 1225 | return 0; |
| 1226 | } |
| 1227 | |
| 1228 | void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c) |
| 1229 | { |
| 1230 | #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY |
| 1231 | kfree(c->wbuf_verify); |
| 1232 | #endif |
| 1233 | kfree(c->wbuf); |
| 1234 | kfree(c->oobbuf); |
| 1235 | } |
| 1236 | |
| 1237 | int jffs2_dataflash_setup(struct jffs2_sb_info *c) { |
| 1238 | c->cleanmarker_size = 0; /* No cleanmarkers needed */ |
| 1239 | |
| 1240 | /* Initialize write buffer */ |
| 1241 | init_rwsem(&c->wbuf_sem); |
| 1242 | INIT_DELAYED_WORK(&c->wbuf_dwork, delayed_wbuf_sync); |
| 1243 | c->wbuf_pagesize = c->mtd->erasesize; |
| 1244 | |
| 1245 | /* Find a suitable c->sector_size |
| 1246 | * - Not too much sectors |
| 1247 | * - Sectors have to be at least 4 K + some bytes |
| 1248 | * - All known dataflashes have erase sizes of 528 or 1056 |
| 1249 | * - we take at least 8 eraseblocks and want to have at least 8K size |
| 1250 | * - The concatenation should be a power of 2 |
| 1251 | */ |
| 1252 | |
| 1253 | c->sector_size = 8 * c->mtd->erasesize; |
| 1254 | |
| 1255 | while (c->sector_size < 8192) { |
| 1256 | c->sector_size *= 2; |
| 1257 | } |
| 1258 | |
| 1259 | /* It may be necessary to adjust the flash size */ |
| 1260 | c->flash_size = c->mtd->size; |
| 1261 | |
| 1262 | if ((c->flash_size % c->sector_size) != 0) { |
| 1263 | c->flash_size = (c->flash_size / c->sector_size) * c->sector_size; |
| 1264 | pr_warn("flash size adjusted to %dKiB\n", c->flash_size); |
| 1265 | } |
| 1266 | |
| 1267 | c->wbuf_ofs = 0xFFFFFFFF; |
| 1268 | c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); |
| 1269 | if (!c->wbuf) |
| 1270 | return -ENOMEM; |
| 1271 | |
| 1272 | #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY |
| 1273 | c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL); |
| 1274 | if (!c->wbuf_verify) { |
| 1275 | kfree(c->wbuf); |
| 1276 | return -ENOMEM; |
| 1277 | } |
| 1278 | #endif |
| 1279 | |
| 1280 | pr_info("write-buffering enabled buffer (%d) erasesize (%d)\n", |
| 1281 | c->wbuf_pagesize, c->sector_size); |
| 1282 | |
| 1283 | return 0; |
| 1284 | } |
| 1285 | |
| 1286 | void jffs2_dataflash_cleanup(struct jffs2_sb_info *c) { |
| 1287 | #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY |
| 1288 | kfree(c->wbuf_verify); |
| 1289 | #endif |
| 1290 | kfree(c->wbuf); |
| 1291 | } |
| 1292 | |
| 1293 | int jffs2_nor_wbuf_flash_setup(struct jffs2_sb_info *c) { |
| 1294 | /* Cleanmarker currently occupies whole programming regions, |
| 1295 | * either one or 2 for 8Byte STMicro flashes. */ |
| 1296 | c->cleanmarker_size = max(16u, c->mtd->writesize); |
| 1297 | |
| 1298 | /* Initialize write buffer */ |
| 1299 | init_rwsem(&c->wbuf_sem); |
| 1300 | INIT_DELAYED_WORK(&c->wbuf_dwork, delayed_wbuf_sync); |
| 1301 | |
| 1302 | c->wbuf_pagesize = c->mtd->writesize; |
| 1303 | c->wbuf_ofs = 0xFFFFFFFF; |
| 1304 | |
| 1305 | c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); |
| 1306 | if (!c->wbuf) |
| 1307 | return -ENOMEM; |
| 1308 | |
| 1309 | #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY |
| 1310 | c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL); |
| 1311 | if (!c->wbuf_verify) { |
| 1312 | kfree(c->wbuf); |
| 1313 | return -ENOMEM; |
| 1314 | } |
| 1315 | #endif |
| 1316 | return 0; |
| 1317 | } |
| 1318 | |
| 1319 | void jffs2_nor_wbuf_flash_cleanup(struct jffs2_sb_info *c) { |
| 1320 | #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY |
| 1321 | kfree(c->wbuf_verify); |
| 1322 | #endif |
| 1323 | kfree(c->wbuf); |
| 1324 | } |
| 1325 | |
| 1326 | int jffs2_ubivol_setup(struct jffs2_sb_info *c) { |
| 1327 | c->cleanmarker_size = 0; |
| 1328 | |
| 1329 | if (c->mtd->writesize == 1) |
| 1330 | /* We do not need write-buffer */ |
| 1331 | return 0; |
| 1332 | |
| 1333 | init_rwsem(&c->wbuf_sem); |
| 1334 | INIT_DELAYED_WORK(&c->wbuf_dwork, delayed_wbuf_sync); |
| 1335 | |
| 1336 | c->wbuf_pagesize = c->mtd->writesize; |
| 1337 | c->wbuf_ofs = 0xFFFFFFFF; |
| 1338 | c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); |
| 1339 | if (!c->wbuf) |
| 1340 | return -ENOMEM; |
| 1341 | |
| 1342 | pr_info("write-buffering enabled buffer (%d) erasesize (%d)\n", |
| 1343 | c->wbuf_pagesize, c->sector_size); |
| 1344 | |
| 1345 | return 0; |
| 1346 | } |
| 1347 | |
| 1348 | void jffs2_ubivol_cleanup(struct jffs2_sb_info *c) { |
| 1349 | kfree(c->wbuf); |
| 1350 | } |