blob: 5019058e0f6ab42006796afa22a893463ac16280 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * fs/kernfs/mount.c - kernfs mount implementation
3 *
4 * Copyright (c) 2001-3 Patrick Mochel
5 * Copyright (c) 2007 SUSE Linux Products GmbH
6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7 *
8 * This file is released under the GPLv2.
9 */
10
11#include <linux/fs.h>
12#include <linux/mount.h>
13#include <linux/init.h>
14#include <linux/magic.h>
15#include <linux/slab.h>
16#include <linux/pagemap.h>
17#include <linux/namei.h>
18#include <linux/seq_file.h>
19#include <linux/exportfs.h>
20
21#include "kernfs-internal.h"
22
23struct kmem_cache *kernfs_node_cache;
24
25static int kernfs_sop_remount_fs(struct super_block *sb, int *flags, char *data)
26{
27 struct kernfs_root *root = kernfs_info(sb)->root;
28 struct kernfs_syscall_ops *scops = root->syscall_ops;
29
30 if (scops && scops->remount_fs)
31 return scops->remount_fs(root, flags, data);
32 return 0;
33}
34
35static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry)
36{
37 struct kernfs_root *root = kernfs_root(kernfs_dentry_node(dentry));
38 struct kernfs_syscall_ops *scops = root->syscall_ops;
39
40 if (scops && scops->show_options)
41 return scops->show_options(sf, root);
42 return 0;
43}
44
45static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry)
46{
47 struct kernfs_node *node = kernfs_dentry_node(dentry);
48 struct kernfs_root *root = kernfs_root(node);
49 struct kernfs_syscall_ops *scops = root->syscall_ops;
50
51 if (scops && scops->show_path)
52 return scops->show_path(sf, node, root);
53
54 seq_dentry(sf, dentry, " \t\n\\");
55 return 0;
56}
57
58const struct super_operations kernfs_sops = {
59 .statfs = simple_statfs,
60 .drop_inode = generic_delete_inode,
61 .evict_inode = kernfs_evict_inode,
62
63 .remount_fs = kernfs_sop_remount_fs,
64 .show_options = kernfs_sop_show_options,
65 .show_path = kernfs_sop_show_path,
66};
67
68/*
69 * Similar to kernfs_fh_get_inode, this one gets kernfs node from inode
70 * number and generation
71 */
72struct kernfs_node *kernfs_get_node_by_id(struct kernfs_root *root,
73 const union kernfs_node_id *id)
74{
75 struct kernfs_node *kn;
76
77 kn = kernfs_find_and_get_node_by_ino(root, id->ino);
78 if (!kn)
79 return NULL;
80 if (kn->id.generation != id->generation) {
81 kernfs_put(kn);
82 return NULL;
83 }
84 return kn;
85}
86
87static struct inode *kernfs_fh_get_inode(struct super_block *sb,
88 u64 ino, u32 generation)
89{
90 struct kernfs_super_info *info = kernfs_info(sb);
91 struct inode *inode;
92 struct kernfs_node *kn;
93
94 if (ino == 0)
95 return ERR_PTR(-ESTALE);
96
97 kn = kernfs_find_and_get_node_by_ino(info->root, ino);
98 if (!kn)
99 return ERR_PTR(-ESTALE);
100 inode = kernfs_get_inode(sb, kn);
101 kernfs_put(kn);
102 if (!inode)
103 return ERR_PTR(-ESTALE);
104
105 if (generation && inode->i_generation != generation) {
106 /* we didn't find the right inode.. */
107 iput(inode);
108 return ERR_PTR(-ESTALE);
109 }
110 return inode;
111}
112
113static struct dentry *kernfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
114 int fh_len, int fh_type)
115{
116 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
117 kernfs_fh_get_inode);
118}
119
120static struct dentry *kernfs_fh_to_parent(struct super_block *sb, struct fid *fid,
121 int fh_len, int fh_type)
122{
123 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
124 kernfs_fh_get_inode);
125}
126
127static struct dentry *kernfs_get_parent_dentry(struct dentry *child)
128{
129 struct kernfs_node *kn = kernfs_dentry_node(child);
130
131 return d_obtain_alias(kernfs_get_inode(child->d_sb, kn->parent));
132}
133
134static const struct export_operations kernfs_export_ops = {
135 .fh_to_dentry = kernfs_fh_to_dentry,
136 .fh_to_parent = kernfs_fh_to_parent,
137 .get_parent = kernfs_get_parent_dentry,
138};
139
140/**
141 * kernfs_root_from_sb - determine kernfs_root associated with a super_block
142 * @sb: the super_block in question
143 *
144 * Return the kernfs_root associated with @sb. If @sb is not a kernfs one,
145 * %NULL is returned.
146 */
147struct kernfs_root *kernfs_root_from_sb(struct super_block *sb)
148{
149 if (sb->s_op == &kernfs_sops)
150 return kernfs_info(sb)->root;
151 return NULL;
152}
153
154/*
155 * find the next ancestor in the path down to @child, where @parent was the
156 * ancestor whose descendant we want to find.
157 *
158 * Say the path is /a/b/c/d. @child is d, @parent is NULL. We return the root
159 * node. If @parent is b, then we return the node for c.
160 * Passing in d as @parent is not ok.
161 */
162static struct kernfs_node *find_next_ancestor(struct kernfs_node *child,
163 struct kernfs_node *parent)
164{
165 if (child == parent) {
166 pr_crit_once("BUG in find_next_ancestor: called with parent == child");
167 return NULL;
168 }
169
170 while (child->parent != parent) {
171 if (!child->parent)
172 return NULL;
173 child = child->parent;
174 }
175
176 return child;
177}
178
179/**
180 * kernfs_node_dentry - get a dentry for the given kernfs_node
181 * @kn: kernfs_node for which a dentry is needed
182 * @sb: the kernfs super_block
183 */
184struct dentry *kernfs_node_dentry(struct kernfs_node *kn,
185 struct super_block *sb)
186{
187 struct dentry *dentry;
188 struct kernfs_node *knparent = NULL;
189
190 BUG_ON(sb->s_op != &kernfs_sops);
191
192 dentry = dget(sb->s_root);
193
194 /* Check if this is the root kernfs_node */
195 if (!kn->parent)
196 return dentry;
197
198 knparent = find_next_ancestor(kn, NULL);
199 if (WARN_ON(!knparent)) {
200 dput(dentry);
201 return ERR_PTR(-EINVAL);
202 }
203
204 do {
205 struct dentry *dtmp;
206 struct kernfs_node *kntmp;
207
208 if (kn == knparent)
209 return dentry;
210 kntmp = find_next_ancestor(kn, knparent);
211 if (WARN_ON(!kntmp)) {
212 dput(dentry);
213 return ERR_PTR(-EINVAL);
214 }
215 dtmp = lookup_one_len_unlocked(kntmp->name, dentry,
216 strlen(kntmp->name));
217 dput(dentry);
218 if (IS_ERR(dtmp))
219 return dtmp;
220 knparent = kntmp;
221 dentry = dtmp;
222 } while (true);
223}
224
225static int kernfs_fill_super(struct super_block *sb, unsigned long magic)
226{
227 struct kernfs_super_info *info = kernfs_info(sb);
228 struct inode *inode;
229 struct dentry *root;
230
231 info->sb = sb;
232 /* Userspace would break if executables or devices appear on sysfs */
233 sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
234 sb->s_blocksize = PAGE_SIZE;
235 sb->s_blocksize_bits = PAGE_SHIFT;
236 sb->s_magic = magic;
237 sb->s_op = &kernfs_sops;
238 sb->s_xattr = kernfs_xattr_handlers;
239 if (info->root->flags & KERNFS_ROOT_SUPPORT_EXPORTOP)
240 sb->s_export_op = &kernfs_export_ops;
241 sb->s_time_gran = 1;
242
243 /* get root inode, initialize and unlock it */
244 mutex_lock(&kernfs_mutex);
245 inode = kernfs_get_inode(sb, info->root->kn);
246 mutex_unlock(&kernfs_mutex);
247 if (!inode) {
248 pr_debug("kernfs: could not get root inode\n");
249 return -ENOMEM;
250 }
251
252 /* instantiate and link root dentry */
253 root = d_make_root(inode);
254 if (!root) {
255 pr_debug("%s: could not get root dentry!\n", __func__);
256 return -ENOMEM;
257 }
258 sb->s_root = root;
259 sb->s_d_op = &kernfs_dops;
260 return 0;
261}
262
263static int kernfs_test_super(struct super_block *sb, void *data)
264{
265 struct kernfs_super_info *sb_info = kernfs_info(sb);
266 struct kernfs_super_info *info = data;
267
268 return sb_info->root == info->root && sb_info->ns == info->ns;
269}
270
271static int kernfs_set_super(struct super_block *sb, void *data)
272{
273 int error;
274 error = set_anon_super(sb, data);
275 if (!error)
276 sb->s_fs_info = data;
277 return error;
278}
279
280/**
281 * kernfs_super_ns - determine the namespace tag of a kernfs super_block
282 * @sb: super_block of interest
283 *
284 * Return the namespace tag associated with kernfs super_block @sb.
285 */
286const void *kernfs_super_ns(struct super_block *sb)
287{
288 struct kernfs_super_info *info = kernfs_info(sb);
289
290 return info->ns;
291}
292
293/**
294 * kernfs_mount_ns - kernfs mount helper
295 * @fs_type: file_system_type of the fs being mounted
296 * @flags: mount flags specified for the mount
297 * @root: kernfs_root of the hierarchy being mounted
298 * @magic: file system specific magic number
299 * @new_sb_created: tell the caller if we allocated a new superblock
300 * @ns: optional namespace tag of the mount
301 *
302 * This is to be called from each kernfs user's file_system_type->mount()
303 * implementation, which should pass through the specified @fs_type and
304 * @flags, and specify the hierarchy and namespace tag to mount via @root
305 * and @ns, respectively.
306 *
307 * The return value can be passed to the vfs layer verbatim.
308 */
309struct dentry *kernfs_mount_ns(struct file_system_type *fs_type, int flags,
310 struct kernfs_root *root, unsigned long magic,
311 bool *new_sb_created, const void *ns)
312{
313 struct super_block *sb;
314 struct kernfs_super_info *info;
315 int error;
316
317 info = kzalloc(sizeof(*info), GFP_KERNEL);
318 if (!info)
319 return ERR_PTR(-ENOMEM);
320
321 info->root = root;
322 info->ns = ns;
323
324 sb = sget_userns(fs_type, kernfs_test_super, kernfs_set_super, flags,
325 &init_user_ns, info);
326 if (IS_ERR(sb) || sb->s_fs_info != info)
327 kfree(info);
328 if (IS_ERR(sb))
329 return ERR_CAST(sb);
330
331 if (new_sb_created)
332 *new_sb_created = !sb->s_root;
333
334 if (!sb->s_root) {
335 struct kernfs_super_info *info = kernfs_info(sb);
336
337 error = kernfs_fill_super(sb, magic);
338 if (error) {
339 deactivate_locked_super(sb);
340 return ERR_PTR(error);
341 }
342 sb->s_flags |= MS_ACTIVE;
343
344 mutex_lock(&kernfs_mutex);
345 list_add(&info->node, &root->supers);
346 mutex_unlock(&kernfs_mutex);
347 }
348
349 return dget(sb->s_root);
350}
351
352/**
353 * kernfs_kill_sb - kill_sb for kernfs
354 * @sb: super_block being killed
355 *
356 * This can be used directly for file_system_type->kill_sb(). If a kernfs
357 * user needs extra cleanup, it can implement its own kill_sb() and call
358 * this function at the end.
359 */
360void kernfs_kill_sb(struct super_block *sb)
361{
362 struct kernfs_super_info *info = kernfs_info(sb);
363
364 mutex_lock(&kernfs_mutex);
365 list_del(&info->node);
366 mutex_unlock(&kernfs_mutex);
367
368 /*
369 * Remove the superblock from fs_supers/s_instances
370 * so we can't find it, before freeing kernfs_super_info.
371 */
372 kill_anon_super(sb);
373 kfree(info);
374}
375
376/**
377 * kernfs_pin_sb: try to pin the superblock associated with a kernfs_root
378 * @kernfs_root: the kernfs_root in question
379 * @ns: the namespace tag
380 *
381 * Pin the superblock so the superblock won't be destroyed in subsequent
382 * operations. This can be used to block ->kill_sb() which may be useful
383 * for kernfs users which dynamically manage superblocks.
384 *
385 * Returns NULL if there's no superblock associated to this kernfs_root, or
386 * -EINVAL if the superblock is being freed.
387 */
388struct super_block *kernfs_pin_sb(struct kernfs_root *root, const void *ns)
389{
390 struct kernfs_super_info *info;
391 struct super_block *sb = NULL;
392
393 mutex_lock(&kernfs_mutex);
394 list_for_each_entry(info, &root->supers, node) {
395 if (info->ns == ns) {
396 sb = info->sb;
397 if (!atomic_inc_not_zero(&info->sb->s_active))
398 sb = ERR_PTR(-EINVAL);
399 break;
400 }
401 }
402 mutex_unlock(&kernfs_mutex);
403 return sb;
404}
405
406void __init kernfs_init(void)
407{
408
409 /*
410 * the slab is freed in RCU context, so kernfs_find_and_get_node_by_ino
411 * can access the slab lock free. This could introduce stale nodes,
412 * please see how kernfs_find_and_get_node_by_ino filters out stale
413 * nodes.
414 */
415 kernfs_node_cache = kmem_cache_create("kernfs_node_cache",
416 sizeof(struct kernfs_node),
417 0,
418 SLAB_PANIC | SLAB_TYPESAFE_BY_RCU,
419 NULL);
420}