blob: 7dba2594421eab1e993d323430eea6d04eef610e [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20#include <linux/module.h>
21#include <linux/time.h>
22#include <linux/errno.h>
23#include <linux/stat.h>
24#include <linux/fcntl.h>
25#include <linux/string.h>
26#include <linux/kernel.h>
27#include <linux/slab.h>
28#include <linux/mm.h>
29#include <linux/sunrpc/clnt.h>
30#include <linux/nfs_fs.h>
31#include <linux/nfs_mount.h>
32#include <linux/pagemap.h>
33#include <linux/pagevec.h>
34#include <linux/namei.h>
35#include <linux/mount.h>
36#include <linux/swap.h>
37#include <linux/sched.h>
38#include <linux/kmemleak.h>
39#include <linux/xattr.h>
40
41#include "delegation.h"
42#include "iostat.h"
43#include "internal.h"
44#include "fscache.h"
45
46#include "nfstrace.h"
47
48/* #define NFS_DEBUG_VERBOSE 1 */
49
50static int nfs_opendir(struct inode *, struct file *);
51static int nfs_closedir(struct inode *, struct file *);
52static int nfs_readdir(struct file *, struct dir_context *);
53static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55static void nfs_readdir_clear_array(struct page*);
56
57const struct file_operations nfs_dir_operations = {
58 .llseek = nfs_llseek_dir,
59 .read = generic_read_dir,
60 .iterate = nfs_readdir,
61 .open = nfs_opendir,
62 .release = nfs_closedir,
63 .fsync = nfs_fsync_dir,
64};
65
66const struct address_space_operations nfs_dir_aops = {
67 .freepage = nfs_readdir_clear_array,
68};
69
70static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
71{
72 struct nfs_inode *nfsi = NFS_I(dir);
73 struct nfs_open_dir_context *ctx;
74 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
75 if (ctx != NULL) {
76 ctx->duped = 0;
77 ctx->attr_gencount = nfsi->attr_gencount;
78 ctx->dir_cookie = 0;
79 ctx->dup_cookie = 0;
80 ctx->cred = get_rpccred(cred);
81 spin_lock(&dir->i_lock);
82 list_add(&ctx->list, &nfsi->open_files);
83 spin_unlock(&dir->i_lock);
84 return ctx;
85 }
86 return ERR_PTR(-ENOMEM);
87}
88
89static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
90{
91 spin_lock(&dir->i_lock);
92 list_del(&ctx->list);
93 spin_unlock(&dir->i_lock);
94 put_rpccred(ctx->cred);
95 kfree(ctx);
96}
97
98/*
99 * Open file
100 */
101static int
102nfs_opendir(struct inode *inode, struct file *filp)
103{
104 int res = 0;
105 struct nfs_open_dir_context *ctx;
106 struct rpc_cred *cred;
107
108 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
109
110 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
111
112 cred = rpc_lookup_cred();
113 if (IS_ERR(cred))
114 return PTR_ERR(cred);
115 ctx = alloc_nfs_open_dir_context(inode, cred);
116 if (IS_ERR(ctx)) {
117 res = PTR_ERR(ctx);
118 goto out;
119 }
120 filp->private_data = ctx;
121 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
122 /* This is a mountpoint, so d_revalidate will never
123 * have been called, so we need to refresh the
124 * inode (for close-open consistency) ourselves.
125 */
126 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
127 }
128out:
129 put_rpccred(cred);
130 return res;
131}
132
133static int
134nfs_closedir(struct inode *inode, struct file *filp)
135{
136 put_nfs_open_dir_context(file_inode(filp), filp->private_data);
137 return 0;
138}
139
140struct nfs_cache_array_entry {
141 u64 cookie;
142 u64 ino;
143 struct qstr string;
144 unsigned char d_type;
145};
146
147struct nfs_cache_array {
148 int size;
149 int eof_index;
150 u64 last_cookie;
151 struct nfs_cache_array_entry array[0];
152};
153
154typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, bool);
155typedef struct {
156 struct file *file;
157 struct page *page;
158 struct dir_context *ctx;
159 unsigned long page_index;
160 u64 *dir_cookie;
161 u64 last_cookie;
162 loff_t current_index;
163 decode_dirent_t decode;
164
165 unsigned long timestamp;
166 unsigned long gencount;
167 unsigned int cache_entry_index;
168 bool plus;
169 bool eof;
170} nfs_readdir_descriptor_t;
171
172static
173void nfs_readdir_init_array(struct page *page)
174{
175 struct nfs_cache_array *array;
176
177 array = kmap_atomic(page);
178 memset(array, 0, sizeof(struct nfs_cache_array));
179 array->eof_index = -1;
180 kunmap_atomic(array);
181}
182
183/*
184 * we are freeing strings created by nfs_add_to_readdir_array()
185 */
186static
187void nfs_readdir_clear_array(struct page *page)
188{
189 struct nfs_cache_array *array;
190 int i;
191
192 array = kmap_atomic(page);
193 for (i = 0; i < array->size; i++)
194 kfree(array->array[i].string.name);
195 array->size = 0;
196 kunmap_atomic(array);
197}
198
199/*
200 * the caller is responsible for freeing qstr.name
201 * when called by nfs_readdir_add_to_array, the strings will be freed in
202 * nfs_clear_readdir_array()
203 */
204static
205int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
206{
207 string->len = len;
208 string->name = kmemdup(name, len, GFP_KERNEL);
209 if (string->name == NULL)
210 return -ENOMEM;
211 /*
212 * Avoid a kmemleak false positive. The pointer to the name is stored
213 * in a page cache page which kmemleak does not scan.
214 */
215 kmemleak_not_leak(string->name);
216 string->hash = full_name_hash(NULL, name, len);
217 return 0;
218}
219
220static
221int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
222{
223 struct nfs_cache_array *array = kmap(page);
224 struct nfs_cache_array_entry *cache_entry;
225 int ret;
226
227 cache_entry = &array->array[array->size];
228
229 /* Check that this entry lies within the page bounds */
230 ret = -ENOSPC;
231 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
232 goto out;
233
234 cache_entry->cookie = entry->prev_cookie;
235 cache_entry->ino = entry->ino;
236 cache_entry->d_type = entry->d_type;
237 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
238 if (ret)
239 goto out;
240 array->last_cookie = entry->cookie;
241 array->size++;
242 if (entry->eof != 0)
243 array->eof_index = array->size;
244out:
245 kunmap(page);
246 return ret;
247}
248
249static
250int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
251{
252 loff_t diff = desc->ctx->pos - desc->current_index;
253 unsigned int index;
254
255 if (diff < 0)
256 goto out_eof;
257 if (diff >= array->size) {
258 if (array->eof_index >= 0)
259 goto out_eof;
260 return -EAGAIN;
261 }
262
263 index = (unsigned int)diff;
264 *desc->dir_cookie = array->array[index].cookie;
265 desc->cache_entry_index = index;
266 return 0;
267out_eof:
268 desc->eof = 1;
269 return -EBADCOOKIE;
270}
271
272static bool
273nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
274{
275 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
276 return false;
277 smp_rmb();
278 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
279}
280
281static
282int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
283{
284 int i;
285 loff_t new_pos;
286 int status = -EAGAIN;
287
288 for (i = 0; i < array->size; i++) {
289 if (array->array[i].cookie == *desc->dir_cookie) {
290 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
291 struct nfs_open_dir_context *ctx = desc->file->private_data;
292
293 new_pos = desc->current_index + i;
294 if (ctx->attr_gencount != nfsi->attr_gencount ||
295 !nfs_readdir_inode_mapping_valid(nfsi)) {
296 ctx->duped = 0;
297 ctx->attr_gencount = nfsi->attr_gencount;
298 } else if (new_pos < desc->ctx->pos) {
299 if (ctx->duped > 0
300 && ctx->dup_cookie == *desc->dir_cookie) {
301 if (printk_ratelimit()) {
302 pr_notice("NFS: directory %pD2 contains a readdir loop."
303 "Please contact your server vendor. "
304 "The file: %.*s has duplicate cookie %llu\n",
305 desc->file, array->array[i].string.len,
306 array->array[i].string.name, *desc->dir_cookie);
307 }
308 status = -ELOOP;
309 goto out;
310 }
311 ctx->dup_cookie = *desc->dir_cookie;
312 ctx->duped = -1;
313 }
314 desc->ctx->pos = new_pos;
315 desc->cache_entry_index = i;
316 return 0;
317 }
318 }
319 if (array->eof_index >= 0) {
320 status = -EBADCOOKIE;
321 if (*desc->dir_cookie == array->last_cookie)
322 desc->eof = 1;
323 }
324out:
325 return status;
326}
327
328static
329int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
330{
331 struct nfs_cache_array *array;
332 int status;
333
334 array = kmap(desc->page);
335
336 if (*desc->dir_cookie == 0)
337 status = nfs_readdir_search_for_pos(array, desc);
338 else
339 status = nfs_readdir_search_for_cookie(array, desc);
340
341 if (status == -EAGAIN) {
342 desc->last_cookie = array->last_cookie;
343 desc->current_index += array->size;
344 desc->page_index++;
345 }
346 kunmap(desc->page);
347 return status;
348}
349
350/* Fill a page with xdr information before transferring to the cache page */
351static
352int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
353 struct nfs_entry *entry, struct file *file, struct inode *inode)
354{
355 struct nfs_open_dir_context *ctx = file->private_data;
356 struct rpc_cred *cred = ctx->cred;
357 unsigned long timestamp, gencount;
358 int error;
359
360 again:
361 timestamp = jiffies;
362 gencount = nfs_inc_attr_generation_counter();
363 error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
364 NFS_SERVER(inode)->dtsize, desc->plus);
365 if (error < 0) {
366 /* We requested READDIRPLUS, but the server doesn't grok it */
367 if (error == -ENOTSUPP && desc->plus) {
368 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
369 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
370 desc->plus = false;
371 goto again;
372 }
373 goto error;
374 }
375 desc->timestamp = timestamp;
376 desc->gencount = gencount;
377error:
378 return error;
379}
380
381static int xdr_decode(nfs_readdir_descriptor_t *desc,
382 struct nfs_entry *entry, struct xdr_stream *xdr)
383{
384 int error;
385
386 error = desc->decode(xdr, entry, desc->plus);
387 if (error)
388 return error;
389 entry->fattr->time_start = desc->timestamp;
390 entry->fattr->gencount = desc->gencount;
391 return 0;
392}
393
394/* Match file and dirent using either filehandle or fileid
395 * Note: caller is responsible for checking the fsid
396 */
397static
398int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
399{
400 struct inode *inode;
401 struct nfs_inode *nfsi;
402
403 if (d_really_is_negative(dentry))
404 return 0;
405
406 inode = d_inode(dentry);
407 if (is_bad_inode(inode) || NFS_STALE(inode))
408 return 0;
409
410 nfsi = NFS_I(inode);
411 if (entry->fattr->fileid != nfsi->fileid)
412 return 0;
413 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
414 return 0;
415 return 1;
416}
417
418static
419bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
420{
421 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
422 return false;
423 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
424 return true;
425 if (ctx->pos == 0)
426 return true;
427 return false;
428}
429
430/*
431 * This function is called by the lookup and getattr code to request the
432 * use of readdirplus to accelerate any future lookups in the same
433 * directory.
434 */
435void nfs_advise_use_readdirplus(struct inode *dir)
436{
437 struct nfs_inode *nfsi = NFS_I(dir);
438
439 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
440 !list_empty(&nfsi->open_files))
441 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
442}
443
444/*
445 * This function is mainly for use by nfs_getattr().
446 *
447 * If this is an 'ls -l', we want to force use of readdirplus.
448 * Do this by checking if there is an active file descriptor
449 * and calling nfs_advise_use_readdirplus, then forcing a
450 * cache flush.
451 */
452void nfs_force_use_readdirplus(struct inode *dir)
453{
454 struct nfs_inode *nfsi = NFS_I(dir);
455
456 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
457 !list_empty(&nfsi->open_files)) {
458 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
459 invalidate_mapping_pages(dir->i_mapping, 0, -1);
460 }
461}
462
463static
464void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
465{
466 struct qstr filename = QSTR_INIT(entry->name, entry->len);
467 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
468 struct dentry *dentry;
469 struct dentry *alias;
470 struct inode *dir = d_inode(parent);
471 struct inode *inode;
472 int status;
473
474 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
475 return;
476 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
477 return;
478 if (filename.len == 0)
479 return;
480 /* Validate that the name doesn't contain any illegal '\0' */
481 if (strnlen(filename.name, filename.len) != filename.len)
482 return;
483 /* ...or '/' */
484 if (strnchr(filename.name, filename.len, '/'))
485 return;
486 if (filename.name[0] == '.') {
487 if (filename.len == 1)
488 return;
489 if (filename.len == 2 && filename.name[1] == '.')
490 return;
491 }
492 filename.hash = full_name_hash(parent, filename.name, filename.len);
493
494 dentry = d_lookup(parent, &filename);
495again:
496 if (!dentry) {
497 dentry = d_alloc_parallel(parent, &filename, &wq);
498 if (IS_ERR(dentry))
499 return;
500 }
501 if (!d_in_lookup(dentry)) {
502 /* Is there a mountpoint here? If so, just exit */
503 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
504 &entry->fattr->fsid))
505 goto out;
506 if (nfs_same_file(dentry, entry)) {
507 if (!entry->fh->size)
508 goto out;
509 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
510 status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
511 if (!status)
512 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
513 goto out;
514 } else {
515 d_invalidate(dentry);
516 dput(dentry);
517 dentry = NULL;
518 goto again;
519 }
520 }
521 if (!entry->fh->size) {
522 d_lookup_done(dentry);
523 goto out;
524 }
525
526 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
527 alias = d_splice_alias(inode, dentry);
528 d_lookup_done(dentry);
529 if (alias) {
530 if (IS_ERR(alias))
531 goto out;
532 dput(dentry);
533 dentry = alias;
534 }
535 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
536out:
537 dput(dentry);
538}
539
540/* Perform conversion from xdr to cache array */
541static
542int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
543 struct page **xdr_pages, struct page *page, unsigned int buflen)
544{
545 struct xdr_stream stream;
546 struct xdr_buf buf;
547 struct page *scratch;
548 struct nfs_cache_array *array;
549 unsigned int count = 0;
550 int status;
551
552 scratch = alloc_page(GFP_KERNEL);
553 if (scratch == NULL)
554 return -ENOMEM;
555
556 if (buflen == 0)
557 goto out_nopages;
558
559 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
560 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
561
562 do {
563 status = xdr_decode(desc, entry, &stream);
564 if (status != 0) {
565 if (status == -EAGAIN)
566 status = 0;
567 break;
568 }
569
570 count++;
571
572 if (desc->plus)
573 nfs_prime_dcache(file_dentry(desc->file), entry);
574
575 status = nfs_readdir_add_to_array(entry, page);
576 if (status != 0)
577 break;
578 } while (!entry->eof);
579
580out_nopages:
581 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
582 array = kmap(page);
583 array->eof_index = array->size;
584 status = 0;
585 kunmap(page);
586 }
587
588 put_page(scratch);
589 return status;
590}
591
592static
593void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
594{
595 unsigned int i;
596 for (i = 0; i < npages; i++)
597 put_page(pages[i]);
598}
599
600/*
601 * nfs_readdir_large_page will allocate pages that must be freed with a call
602 * to nfs_readdir_free_pagearray
603 */
604static
605int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
606{
607 unsigned int i;
608
609 for (i = 0; i < npages; i++) {
610 struct page *page = alloc_page(GFP_KERNEL);
611 if (page == NULL)
612 goto out_freepages;
613 pages[i] = page;
614 }
615 return 0;
616
617out_freepages:
618 nfs_readdir_free_pages(pages, i);
619 return -ENOMEM;
620}
621
622static
623int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
624{
625 struct page *pages[NFS_MAX_READDIR_PAGES];
626 struct nfs_entry entry;
627 struct file *file = desc->file;
628 struct nfs_cache_array *array;
629 int status = -ENOMEM;
630 unsigned int array_size = ARRAY_SIZE(pages);
631
632 nfs_readdir_init_array(page);
633
634 entry.prev_cookie = 0;
635 entry.cookie = desc->last_cookie;
636 entry.eof = 0;
637 entry.fh = nfs_alloc_fhandle();
638 entry.fattr = nfs_alloc_fattr();
639 entry.server = NFS_SERVER(inode);
640 if (entry.fh == NULL || entry.fattr == NULL)
641 goto out;
642
643 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
644 if (IS_ERR(entry.label)) {
645 status = PTR_ERR(entry.label);
646 goto out;
647 }
648
649 array = kmap(page);
650
651 status = nfs_readdir_alloc_pages(pages, array_size);
652 if (status < 0)
653 goto out_release_array;
654 do {
655 unsigned int pglen;
656 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
657
658 if (status < 0)
659 break;
660 pglen = status;
661 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
662 if (status < 0) {
663 if (status == -ENOSPC)
664 status = 0;
665 break;
666 }
667 } while (array->eof_index < 0);
668
669 nfs_readdir_free_pages(pages, array_size);
670out_release_array:
671 kunmap(page);
672 nfs4_label_free(entry.label);
673out:
674 nfs_free_fattr(entry.fattr);
675 nfs_free_fhandle(entry.fh);
676 return status;
677}
678
679/*
680 * Now we cache directories properly, by converting xdr information
681 * to an array that can be used for lookups later. This results in
682 * fewer cache pages, since we can store more information on each page.
683 * We only need to convert from xdr once so future lookups are much simpler
684 */
685static
686int nfs_readdir_filler(struct file *file, struct page* page)
687{
688 nfs_readdir_descriptor_t *desc = (nfs_readdir_descriptor_t *)file;
689 struct inode *inode = file_inode(desc->file);
690 int ret;
691
692 ret = nfs_readdir_xdr_to_array(desc, page, inode);
693 if (ret < 0)
694 goto error;
695 SetPageUptodate(page);
696
697 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
698 /* Should never happen */
699 nfs_zap_mapping(inode, inode->i_mapping);
700 }
701 unlock_page(page);
702 return 0;
703 error:
704 nfs_readdir_clear_array(page);
705 unlock_page(page);
706 return ret;
707}
708
709static
710void cache_page_release(nfs_readdir_descriptor_t *desc)
711{
712 put_page(desc->page);
713 desc->page = NULL;
714}
715
716static
717struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
718{
719 return read_cache_page(desc->file->f_mapping,
720 desc->page_index, nfs_readdir_filler, desc);
721}
722
723/*
724 * Returns 0 if desc->dir_cookie was found on page desc->page_index
725 * and locks the page to prevent removal from the page cache.
726 */
727static
728int find_and_lock_cache_page(nfs_readdir_descriptor_t *desc)
729{
730 int res;
731
732 desc->page = get_cache_page(desc);
733 if (IS_ERR(desc->page))
734 return PTR_ERR(desc->page);
735 res = lock_page_killable(desc->page);
736 if (res != 0)
737 goto error;
738 res = -EAGAIN;
739 if (desc->page->mapping != NULL) {
740 res = nfs_readdir_search_array(desc);
741 if (res == 0)
742 return 0;
743 }
744 unlock_page(desc->page);
745error:
746 cache_page_release(desc);
747 return res;
748}
749
750/* Search for desc->dir_cookie from the beginning of the page cache */
751static inline
752int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
753{
754 int res;
755
756 if (desc->page_index == 0) {
757 desc->current_index = 0;
758 desc->last_cookie = 0;
759 }
760 do {
761 res = find_and_lock_cache_page(desc);
762 } while (res == -EAGAIN);
763 return res;
764}
765
766/*
767 * Once we've found the start of the dirent within a page: fill 'er up...
768 */
769static
770int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
771{
772 struct file *file = desc->file;
773 int i = 0;
774 int res = 0;
775 struct nfs_cache_array *array = NULL;
776 struct nfs_open_dir_context *ctx = file->private_data;
777
778 array = kmap(desc->page);
779 for (i = desc->cache_entry_index; i < array->size; i++) {
780 struct nfs_cache_array_entry *ent;
781
782 ent = &array->array[i];
783 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
784 nfs_compat_user_ino64(ent->ino), ent->d_type)) {
785 desc->eof = 1;
786 break;
787 }
788 desc->ctx->pos++;
789 if (i < (array->size-1))
790 *desc->dir_cookie = array->array[i+1].cookie;
791 else
792 *desc->dir_cookie = array->last_cookie;
793 if (ctx->duped != 0)
794 ctx->duped = 1;
795 }
796 if (array->eof_index >= 0)
797 desc->eof = 1;
798
799 kunmap(desc->page);
800 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
801 (unsigned long long)*desc->dir_cookie, res);
802 return res;
803}
804
805/*
806 * If we cannot find a cookie in our cache, we suspect that this is
807 * because it points to a deleted file, so we ask the server to return
808 * whatever it thinks is the next entry. We then feed this to filldir.
809 * If all goes well, we should then be able to find our way round the
810 * cache on the next call to readdir_search_pagecache();
811 *
812 * NOTE: we cannot add the anonymous page to the pagecache because
813 * the data it contains might not be page aligned. Besides,
814 * we should already have a complete representation of the
815 * directory in the page cache by the time we get here.
816 */
817static inline
818int uncached_readdir(nfs_readdir_descriptor_t *desc)
819{
820 struct page *page = NULL;
821 int status;
822 struct inode *inode = file_inode(desc->file);
823 struct nfs_open_dir_context *ctx = desc->file->private_data;
824
825 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
826 (unsigned long long)*desc->dir_cookie);
827
828 page = alloc_page(GFP_HIGHUSER);
829 if (!page) {
830 status = -ENOMEM;
831 goto out;
832 }
833
834 desc->page_index = 0;
835 desc->last_cookie = *desc->dir_cookie;
836 desc->page = page;
837 ctx->duped = 0;
838
839 status = nfs_readdir_xdr_to_array(desc, page, inode);
840 if (status < 0)
841 goto out_release;
842
843 status = nfs_do_filldir(desc);
844
845 out_release:
846 nfs_readdir_clear_array(desc->page);
847 cache_page_release(desc);
848 out:
849 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
850 __func__, status);
851 return status;
852}
853
854/* The file offset position represents the dirent entry number. A
855 last cookie cache takes care of the common case of reading the
856 whole directory.
857 */
858static int nfs_readdir(struct file *file, struct dir_context *ctx)
859{
860 struct dentry *dentry = file_dentry(file);
861 struct inode *inode = d_inode(dentry);
862 nfs_readdir_descriptor_t my_desc,
863 *desc = &my_desc;
864 struct nfs_open_dir_context *dir_ctx = file->private_data;
865 int res = 0;
866
867 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
868 file, (long long)ctx->pos);
869 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
870
871 /*
872 * ctx->pos points to the dirent entry number.
873 * *desc->dir_cookie has the cookie for the next entry. We have
874 * to either find the entry with the appropriate number or
875 * revalidate the cookie.
876 */
877 memset(desc, 0, sizeof(*desc));
878
879 desc->file = file;
880 desc->ctx = ctx;
881 desc->dir_cookie = &dir_ctx->dir_cookie;
882 desc->decode = NFS_PROTO(inode)->decode_dirent;
883 desc->plus = nfs_use_readdirplus(inode, ctx);
884
885 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
886 res = nfs_revalidate_mapping(inode, file->f_mapping);
887 if (res < 0)
888 goto out;
889
890 do {
891 res = readdir_search_pagecache(desc);
892
893 if (res == -EBADCOOKIE) {
894 res = 0;
895 /* This means either end of directory */
896 if (*desc->dir_cookie && desc->eof == 0) {
897 /* Or that the server has 'lost' a cookie */
898 res = uncached_readdir(desc);
899 if (res == 0)
900 continue;
901 }
902 break;
903 }
904 if (res == -ETOOSMALL && desc->plus) {
905 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
906 nfs_zap_caches(inode);
907 desc->page_index = 0;
908 desc->plus = false;
909 desc->eof = false;
910 continue;
911 }
912 if (res < 0)
913 break;
914
915 res = nfs_do_filldir(desc);
916 unlock_page(desc->page);
917 cache_page_release(desc);
918 if (res < 0)
919 break;
920 } while (!desc->eof);
921out:
922 if (res > 0)
923 res = 0;
924 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
925 return res;
926}
927
928static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
929{
930 struct inode *inode = file_inode(filp);
931 struct nfs_open_dir_context *dir_ctx = filp->private_data;
932
933 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
934 filp, offset, whence);
935
936 inode_lock(inode);
937 switch (whence) {
938 case 1:
939 offset += filp->f_pos;
940 case 0:
941 if (offset >= 0)
942 break;
943 default:
944 offset = -EINVAL;
945 goto out;
946 }
947 if (offset != filp->f_pos) {
948 filp->f_pos = offset;
949 dir_ctx->dir_cookie = 0;
950 dir_ctx->duped = 0;
951 }
952out:
953 inode_unlock(inode);
954 return offset;
955}
956
957/*
958 * All directory operations under NFS are synchronous, so fsync()
959 * is a dummy operation.
960 */
961static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
962 int datasync)
963{
964 struct inode *inode = file_inode(filp);
965
966 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
967
968 inode_lock(inode);
969 nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
970 inode_unlock(inode);
971 return 0;
972}
973
974/**
975 * nfs_force_lookup_revalidate - Mark the directory as having changed
976 * @dir - pointer to directory inode
977 *
978 * This forces the revalidation code in nfs_lookup_revalidate() to do a
979 * full lookup on all child dentries of 'dir' whenever a change occurs
980 * on the server that might have invalidated our dcache.
981 *
982 * The caller should be holding dir->i_lock
983 */
984void nfs_force_lookup_revalidate(struct inode *dir)
985{
986 NFS_I(dir)->cache_change_attribute++;
987}
988EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
989
990/*
991 * A check for whether or not the parent directory has changed.
992 * In the case it has, we assume that the dentries are untrustworthy
993 * and may need to be looked up again.
994 * If rcu_walk prevents us from performing a full check, return 0.
995 */
996static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
997 int rcu_walk)
998{
999 if (IS_ROOT(dentry))
1000 return 1;
1001 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1002 return 0;
1003 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1004 return 0;
1005 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1006 if (nfs_mapping_need_revalidate_inode(dir)) {
1007 if (rcu_walk)
1008 return 0;
1009 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1010 return 0;
1011 }
1012 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1013 return 0;
1014 return 1;
1015}
1016
1017/*
1018 * Use intent information to check whether or not we're going to do
1019 * an O_EXCL create using this path component.
1020 */
1021static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1022{
1023 if (NFS_PROTO(dir)->version == 2)
1024 return 0;
1025 return flags & LOOKUP_EXCL;
1026}
1027
1028/*
1029 * Inode and filehandle revalidation for lookups.
1030 *
1031 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1032 * or if the intent information indicates that we're about to open this
1033 * particular file and the "nocto" mount flag is not set.
1034 *
1035 */
1036static
1037int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1038{
1039 struct nfs_server *server = NFS_SERVER(inode);
1040 int ret;
1041
1042 if (IS_AUTOMOUNT(inode))
1043 return 0;
1044 /* VFS wants an on-the-wire revalidation */
1045 if (flags & LOOKUP_REVAL)
1046 goto out_force;
1047 /* This is an open(2) */
1048 if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1049 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1050 goto out_force;
1051out:
1052 return (inode->i_nlink == 0) ? -ENOENT : 0;
1053out_force:
1054 if (flags & LOOKUP_RCU)
1055 return -ECHILD;
1056 ret = __nfs_revalidate_inode(server, inode);
1057 if (ret != 0)
1058 return ret;
1059 goto out;
1060}
1061
1062/*
1063 * We judge how long we want to trust negative
1064 * dentries by looking at the parent inode mtime.
1065 *
1066 * If parent mtime has changed, we revalidate, else we wait for a
1067 * period corresponding to the parent's attribute cache timeout value.
1068 *
1069 * If LOOKUP_RCU prevents us from performing a full check, return 1
1070 * suggesting a reval is needed.
1071 */
1072static inline
1073int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1074 unsigned int flags)
1075{
1076 /* Don't revalidate a negative dentry if we're creating a new file */
1077 if (flags & LOOKUP_CREATE)
1078 return 0;
1079 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1080 return 1;
1081 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1082}
1083
1084static int
1085nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1086 struct inode *inode, int error)
1087{
1088 switch (error) {
1089 case 1:
1090 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1091 __func__, dentry);
1092 return 1;
1093 case 0:
1094 nfs_mark_for_revalidate(dir);
1095 if (inode && S_ISDIR(inode->i_mode)) {
1096 /* Purge readdir caches. */
1097 nfs_zap_caches(inode);
1098 /*
1099 * We can't d_drop the root of a disconnected tree:
1100 * its d_hash is on the s_anon list and d_drop() would hide
1101 * it from shrink_dcache_for_unmount(), leading to busy
1102 * inodes on unmount and further oopses.
1103 */
1104 if (IS_ROOT(dentry))
1105 return 1;
1106 }
1107 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1108 __func__, dentry);
1109 return 0;
1110 }
1111 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1112 __func__, dentry, error);
1113 return error;
1114}
1115
1116static int
1117nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1118 unsigned int flags)
1119{
1120 int ret = 1;
1121 if (nfs_neg_need_reval(dir, dentry, flags)) {
1122 if (flags & LOOKUP_RCU)
1123 return -ECHILD;
1124 ret = 0;
1125 }
1126 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1127}
1128
1129static int
1130nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1131 struct inode *inode)
1132{
1133 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1134 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1135}
1136
1137static int
1138nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1139 struct inode *inode)
1140{
1141 struct nfs_fh *fhandle;
1142 struct nfs_fattr *fattr;
1143 struct nfs4_label *label;
1144 int ret;
1145
1146 ret = -ENOMEM;
1147 fhandle = nfs_alloc_fhandle();
1148 fattr = nfs_alloc_fattr();
1149 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1150 if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1151 goto out;
1152
1153 ret = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1154 if (ret < 0) {
1155 if (ret == -ESTALE || ret == -ENOENT)
1156 ret = 0;
1157 goto out;
1158 }
1159 ret = 0;
1160 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1161 goto out;
1162 if (nfs_refresh_inode(inode, fattr) < 0)
1163 goto out;
1164
1165 nfs_setsecurity(inode, fattr, label);
1166 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1167
1168 /* set a readdirplus hint that we had a cache miss */
1169 nfs_force_use_readdirplus(dir);
1170 ret = 1;
1171out:
1172 nfs_free_fattr(fattr);
1173 nfs_free_fhandle(fhandle);
1174 nfs4_label_free(label);
1175 return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1176}
1177
1178/*
1179 * This is called every time the dcache has a lookup hit,
1180 * and we should check whether we can really trust that
1181 * lookup.
1182 *
1183 * NOTE! The hit can be a negative hit too, don't assume
1184 * we have an inode!
1185 *
1186 * If the parent directory is seen to have changed, we throw out the
1187 * cached dentry and do a new lookup.
1188 */
1189static int
1190nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1191 unsigned int flags)
1192{
1193 struct inode *inode;
1194 int error;
1195
1196 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1197 inode = d_inode(dentry);
1198
1199 if (!inode)
1200 return nfs_lookup_revalidate_negative(dir, dentry, flags);
1201
1202 if (is_bad_inode(inode)) {
1203 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1204 __func__, dentry);
1205 goto out_bad;
1206 }
1207
1208 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1209 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1210
1211 /* Force a full look up iff the parent directory has changed */
1212 if (!nfs_is_exclusive_create(dir, flags) &&
1213 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1214 error = nfs_lookup_verify_inode(inode, flags);
1215 if (error) {
1216 if (error == -ESTALE)
1217 nfs_zap_caches(dir);
1218 goto out_bad;
1219 }
1220 nfs_advise_use_readdirplus(dir);
1221 goto out_valid;
1222 }
1223
1224 if (flags & LOOKUP_RCU)
1225 return -ECHILD;
1226
1227 if (NFS_STALE(inode))
1228 goto out_bad;
1229
1230 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1231 error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1232 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1233 return error;
1234out_valid:
1235 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1236out_bad:
1237 if (flags & LOOKUP_RCU)
1238 return -ECHILD;
1239 return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1240}
1241
1242static int
1243__nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1244 int (*reval)(struct inode *, struct dentry *, unsigned int))
1245{
1246 struct dentry *parent;
1247 struct inode *dir;
1248 int ret;
1249
1250 if (flags & LOOKUP_RCU) {
1251 parent = ACCESS_ONCE(dentry->d_parent);
1252 dir = d_inode_rcu(parent);
1253 if (!dir)
1254 return -ECHILD;
1255 ret = reval(dir, dentry, flags);
1256 if (parent != ACCESS_ONCE(dentry->d_parent))
1257 return -ECHILD;
1258 } else {
1259 parent = dget_parent(dentry);
1260 ret = reval(d_inode(parent), dentry, flags);
1261 dput(parent);
1262 }
1263 return ret;
1264}
1265
1266static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1267{
1268 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1269}
1270
1271/*
1272 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1273 * when we don't really care about the dentry name. This is called when a
1274 * pathwalk ends on a dentry that was not found via a normal lookup in the
1275 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1276 *
1277 * In this situation, we just want to verify that the inode itself is OK
1278 * since the dentry might have changed on the server.
1279 */
1280static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1281{
1282 struct inode *inode = d_inode(dentry);
1283 int error = 0;
1284
1285 /*
1286 * I believe we can only get a negative dentry here in the case of a
1287 * procfs-style symlink. Just assume it's correct for now, but we may
1288 * eventually need to do something more here.
1289 */
1290 if (!inode) {
1291 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1292 __func__, dentry);
1293 return 1;
1294 }
1295
1296 if (is_bad_inode(inode)) {
1297 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1298 __func__, dentry);
1299 return 0;
1300 }
1301
1302 error = nfs_lookup_verify_inode(inode, flags);
1303 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1304 __func__, inode->i_ino, error ? "invalid" : "valid");
1305 return !error;
1306}
1307
1308/*
1309 * This is called from dput() when d_count is going to 0.
1310 */
1311static int nfs_dentry_delete(const struct dentry *dentry)
1312{
1313 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1314 dentry, dentry->d_flags);
1315
1316 /* Unhash any dentry with a stale inode */
1317 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1318 return 1;
1319
1320 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1321 /* Unhash it, so that ->d_iput() would be called */
1322 return 1;
1323 }
1324 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1325 /* Unhash it, so that ancestors of killed async unlink
1326 * files will be cleaned up during umount */
1327 return 1;
1328 }
1329 return 0;
1330
1331}
1332
1333/* Ensure that we revalidate inode->i_nlink */
1334static void nfs_drop_nlink(struct inode *inode)
1335{
1336 spin_lock(&inode->i_lock);
1337 /* drop the inode if we're reasonably sure this is the last link */
1338 if (inode->i_nlink == 1)
1339 clear_nlink(inode);
1340 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1341 spin_unlock(&inode->i_lock);
1342}
1343
1344/*
1345 * Called when the dentry loses inode.
1346 * We use it to clean up silly-renamed files.
1347 */
1348static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1349{
1350 if (S_ISDIR(inode->i_mode))
1351 /* drop any readdir cache as it could easily be old */
1352 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1353
1354 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1355 nfs_complete_unlink(dentry, inode);
1356 nfs_drop_nlink(inode);
1357 }
1358 iput(inode);
1359}
1360
1361static void nfs_d_release(struct dentry *dentry)
1362{
1363 /* free cached devname value, if it survived that far */
1364 if (unlikely(dentry->d_fsdata)) {
1365 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1366 WARN_ON(1);
1367 else
1368 kfree(dentry->d_fsdata);
1369 }
1370}
1371
1372const struct dentry_operations nfs_dentry_operations = {
1373 .d_revalidate = nfs_lookup_revalidate,
1374 .d_weak_revalidate = nfs_weak_revalidate,
1375 .d_delete = nfs_dentry_delete,
1376 .d_iput = nfs_dentry_iput,
1377 .d_automount = nfs_d_automount,
1378 .d_release = nfs_d_release,
1379};
1380EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1381
1382struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1383{
1384 struct dentry *res;
1385 struct inode *inode = NULL;
1386 struct nfs_fh *fhandle = NULL;
1387 struct nfs_fattr *fattr = NULL;
1388 struct nfs4_label *label = NULL;
1389 int error;
1390
1391 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1392 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1393
1394 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1395 return ERR_PTR(-ENAMETOOLONG);
1396
1397 /*
1398 * If we're doing an exclusive create, optimize away the lookup
1399 * but don't hash the dentry.
1400 */
1401 if (nfs_is_exclusive_create(dir, flags))
1402 return NULL;
1403
1404 res = ERR_PTR(-ENOMEM);
1405 fhandle = nfs_alloc_fhandle();
1406 fattr = nfs_alloc_fattr();
1407 if (fhandle == NULL || fattr == NULL)
1408 goto out;
1409
1410 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1411 if (IS_ERR(label))
1412 goto out;
1413
1414 trace_nfs_lookup_enter(dir, dentry, flags);
1415 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1416 if (error == -ENOENT)
1417 goto no_entry;
1418 if (error < 0) {
1419 res = ERR_PTR(error);
1420 goto out_label;
1421 }
1422 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1423 res = ERR_CAST(inode);
1424 if (IS_ERR(res))
1425 goto out_label;
1426
1427 /* Notify readdir to use READDIRPLUS */
1428 nfs_force_use_readdirplus(dir);
1429
1430no_entry:
1431 res = d_splice_alias(inode, dentry);
1432 if (res != NULL) {
1433 if (IS_ERR(res))
1434 goto out_label;
1435 dentry = res;
1436 }
1437 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1438out_label:
1439 trace_nfs_lookup_exit(dir, dentry, flags, error);
1440 nfs4_label_free(label);
1441out:
1442 nfs_free_fattr(fattr);
1443 nfs_free_fhandle(fhandle);
1444 return res;
1445}
1446EXPORT_SYMBOL_GPL(nfs_lookup);
1447
1448#if IS_ENABLED(CONFIG_NFS_V4)
1449static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1450
1451const struct dentry_operations nfs4_dentry_operations = {
1452 .d_revalidate = nfs4_lookup_revalidate,
1453 .d_weak_revalidate = nfs_weak_revalidate,
1454 .d_delete = nfs_dentry_delete,
1455 .d_iput = nfs_dentry_iput,
1456 .d_automount = nfs_d_automount,
1457 .d_release = nfs_d_release,
1458};
1459EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1460
1461static fmode_t flags_to_mode(int flags)
1462{
1463 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1464 if ((flags & O_ACCMODE) != O_WRONLY)
1465 res |= FMODE_READ;
1466 if ((flags & O_ACCMODE) != O_RDONLY)
1467 res |= FMODE_WRITE;
1468 return res;
1469}
1470
1471static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1472{
1473 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1474}
1475
1476static int do_open(struct inode *inode, struct file *filp)
1477{
1478 nfs_fscache_open_file(inode, filp);
1479 return 0;
1480}
1481
1482static int nfs_finish_open(struct nfs_open_context *ctx,
1483 struct dentry *dentry,
1484 struct file *file, unsigned open_flags,
1485 int *opened)
1486{
1487 int err;
1488
1489 err = finish_open(file, dentry, do_open, opened);
1490 if (err)
1491 goto out;
1492 if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1493 nfs_file_set_open_context(file, ctx);
1494 else
1495 err = -EOPENSTALE;
1496out:
1497 return err;
1498}
1499
1500int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1501 struct file *file, unsigned open_flags,
1502 umode_t mode, int *opened)
1503{
1504 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1505 struct nfs_open_context *ctx;
1506 struct dentry *res;
1507 struct iattr attr = { .ia_valid = ATTR_OPEN };
1508 struct inode *inode;
1509 unsigned int lookup_flags = 0;
1510 bool switched = false;
1511 int err;
1512
1513 /* Expect a negative dentry */
1514 BUG_ON(d_inode(dentry));
1515
1516 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1517 dir->i_sb->s_id, dir->i_ino, dentry);
1518
1519 err = nfs_check_flags(open_flags);
1520 if (err)
1521 return err;
1522
1523 /* NFS only supports OPEN on regular files */
1524 if ((open_flags & O_DIRECTORY)) {
1525 if (!d_in_lookup(dentry)) {
1526 /*
1527 * Hashed negative dentry with O_DIRECTORY: dentry was
1528 * revalidated and is fine, no need to perform lookup
1529 * again
1530 */
1531 return -ENOENT;
1532 }
1533 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1534 goto no_open;
1535 }
1536
1537 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1538 return -ENAMETOOLONG;
1539
1540 if (open_flags & O_CREAT) {
1541 struct nfs_server *server = NFS_SERVER(dir);
1542
1543 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1544 mode &= ~current_umask();
1545
1546 attr.ia_valid |= ATTR_MODE;
1547 attr.ia_mode = mode;
1548 }
1549 if (open_flags & O_TRUNC) {
1550 attr.ia_valid |= ATTR_SIZE;
1551 attr.ia_size = 0;
1552 }
1553
1554 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1555 d_drop(dentry);
1556 switched = true;
1557 dentry = d_alloc_parallel(dentry->d_parent,
1558 &dentry->d_name, &wq);
1559 if (IS_ERR(dentry))
1560 return PTR_ERR(dentry);
1561 if (unlikely(!d_in_lookup(dentry)))
1562 return finish_no_open(file, dentry);
1563 }
1564
1565 ctx = create_nfs_open_context(dentry, open_flags, file);
1566 err = PTR_ERR(ctx);
1567 if (IS_ERR(ctx))
1568 goto out;
1569
1570 trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1571 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened);
1572 if (IS_ERR(inode)) {
1573 err = PTR_ERR(inode);
1574 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1575 put_nfs_open_context(ctx);
1576 d_drop(dentry);
1577 switch (err) {
1578 case -ENOENT:
1579 d_splice_alias(NULL, dentry);
1580 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1581 break;
1582 case -EISDIR:
1583 case -ENOTDIR:
1584 goto no_open;
1585 case -ELOOP:
1586 if (!(open_flags & O_NOFOLLOW))
1587 goto no_open;
1588 break;
1589 /* case -EINVAL: */
1590 default:
1591 break;
1592 }
1593 goto out;
1594 }
1595
1596 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
1597 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1598 put_nfs_open_context(ctx);
1599out:
1600 if (unlikely(switched)) {
1601 d_lookup_done(dentry);
1602 dput(dentry);
1603 }
1604 return err;
1605
1606no_open:
1607 res = nfs_lookup(dir, dentry, lookup_flags);
1608 if (switched) {
1609 d_lookup_done(dentry);
1610 if (!res)
1611 res = dentry;
1612 else
1613 dput(dentry);
1614 }
1615 if (IS_ERR(res))
1616 return PTR_ERR(res);
1617 return finish_no_open(file, res);
1618}
1619EXPORT_SYMBOL_GPL(nfs_atomic_open);
1620
1621static int
1622nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1623 unsigned int flags)
1624{
1625 struct inode *inode;
1626
1627 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1628 goto full_reval;
1629 if (d_mountpoint(dentry))
1630 goto full_reval;
1631
1632 inode = d_inode(dentry);
1633
1634 /* We can't create new files in nfs_open_revalidate(), so we
1635 * optimize away revalidation of negative dentries.
1636 */
1637 if (inode == NULL)
1638 goto full_reval;
1639
1640 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1641 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1642
1643 /* NFS only supports OPEN on regular files */
1644 if (!S_ISREG(inode->i_mode))
1645 goto full_reval;
1646
1647 /* We cannot do exclusive creation on a positive dentry */
1648 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
1649 goto reval_dentry;
1650
1651 /* Check if the directory changed */
1652 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
1653 goto reval_dentry;
1654
1655 /* Let f_op->open() actually open (and revalidate) the file */
1656 return 1;
1657reval_dentry:
1658 if (flags & LOOKUP_RCU)
1659 return -ECHILD;
1660 return nfs_lookup_revalidate_dentry(dir, dentry, inode);;
1661
1662full_reval:
1663 return nfs_do_lookup_revalidate(dir, dentry, flags);
1664}
1665
1666static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1667{
1668 return __nfs_lookup_revalidate(dentry, flags,
1669 nfs4_do_lookup_revalidate);
1670}
1671
1672#endif /* CONFIG_NFSV4 */
1673
1674/*
1675 * Code common to create, mkdir, and mknod.
1676 */
1677int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1678 struct nfs_fattr *fattr,
1679 struct nfs4_label *label)
1680{
1681 struct dentry *parent = dget_parent(dentry);
1682 struct inode *dir = d_inode(parent);
1683 struct inode *inode;
1684 int error = -EACCES;
1685
1686 d_drop(dentry);
1687
1688 /* We may have been initialized further down */
1689 if (d_really_is_positive(dentry))
1690 goto out;
1691 if (fhandle->size == 0) {
1692 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1693 if (error)
1694 goto out_error;
1695 }
1696 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1697 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1698 struct nfs_server *server = NFS_SB(dentry->d_sb);
1699 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
1700 if (error < 0)
1701 goto out_error;
1702 }
1703 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1704 error = PTR_ERR(inode);
1705 if (IS_ERR(inode))
1706 goto out_error;
1707 d_add(dentry, inode);
1708out:
1709 dput(parent);
1710 return 0;
1711out_error:
1712 nfs_mark_for_revalidate(dir);
1713 dput(parent);
1714 return error;
1715}
1716EXPORT_SYMBOL_GPL(nfs_instantiate);
1717
1718/*
1719 * Following a failed create operation, we drop the dentry rather
1720 * than retain a negative dentry. This avoids a problem in the event
1721 * that the operation succeeded on the server, but an error in the
1722 * reply path made it appear to have failed.
1723 */
1724int nfs_create(struct inode *dir, struct dentry *dentry,
1725 umode_t mode, bool excl)
1726{
1727 struct iattr attr;
1728 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1729 int error;
1730
1731 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1732 dir->i_sb->s_id, dir->i_ino, dentry);
1733
1734 attr.ia_mode = mode;
1735 attr.ia_valid = ATTR_MODE;
1736
1737 trace_nfs_create_enter(dir, dentry, open_flags);
1738 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1739 trace_nfs_create_exit(dir, dentry, open_flags, error);
1740 if (error != 0)
1741 goto out_err;
1742 return 0;
1743out_err:
1744 d_drop(dentry);
1745 return error;
1746}
1747EXPORT_SYMBOL_GPL(nfs_create);
1748
1749/*
1750 * See comments for nfs_proc_create regarding failed operations.
1751 */
1752int
1753nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1754{
1755 struct iattr attr;
1756 int status;
1757
1758 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1759 dir->i_sb->s_id, dir->i_ino, dentry);
1760
1761 attr.ia_mode = mode;
1762 attr.ia_valid = ATTR_MODE;
1763
1764 trace_nfs_mknod_enter(dir, dentry);
1765 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1766 trace_nfs_mknod_exit(dir, dentry, status);
1767 if (status != 0)
1768 goto out_err;
1769 return 0;
1770out_err:
1771 d_drop(dentry);
1772 return status;
1773}
1774EXPORT_SYMBOL_GPL(nfs_mknod);
1775
1776/*
1777 * See comments for nfs_proc_create regarding failed operations.
1778 */
1779int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1780{
1781 struct iattr attr;
1782 int error;
1783
1784 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1785 dir->i_sb->s_id, dir->i_ino, dentry);
1786
1787 attr.ia_valid = ATTR_MODE;
1788 attr.ia_mode = mode | S_IFDIR;
1789
1790 trace_nfs_mkdir_enter(dir, dentry);
1791 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1792 trace_nfs_mkdir_exit(dir, dentry, error);
1793 if (error != 0)
1794 goto out_err;
1795 return 0;
1796out_err:
1797 d_drop(dentry);
1798 return error;
1799}
1800EXPORT_SYMBOL_GPL(nfs_mkdir);
1801
1802static void nfs_dentry_handle_enoent(struct dentry *dentry)
1803{
1804 if (simple_positive(dentry))
1805 d_delete(dentry);
1806}
1807
1808int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1809{
1810 int error;
1811
1812 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1813 dir->i_sb->s_id, dir->i_ino, dentry);
1814
1815 trace_nfs_rmdir_enter(dir, dentry);
1816 if (d_really_is_positive(dentry)) {
1817 down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1818 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1819 /* Ensure the VFS deletes this inode */
1820 switch (error) {
1821 case 0:
1822 clear_nlink(d_inode(dentry));
1823 break;
1824 case -ENOENT:
1825 nfs_dentry_handle_enoent(dentry);
1826 }
1827 up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1828 } else
1829 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1830 trace_nfs_rmdir_exit(dir, dentry, error);
1831
1832 return error;
1833}
1834EXPORT_SYMBOL_GPL(nfs_rmdir);
1835
1836/*
1837 * Remove a file after making sure there are no pending writes,
1838 * and after checking that the file has only one user.
1839 *
1840 * We invalidate the attribute cache and free the inode prior to the operation
1841 * to avoid possible races if the server reuses the inode.
1842 */
1843static int nfs_safe_remove(struct dentry *dentry)
1844{
1845 struct inode *dir = d_inode(dentry->d_parent);
1846 struct inode *inode = d_inode(dentry);
1847 int error = -EBUSY;
1848
1849 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1850
1851 /* If the dentry was sillyrenamed, we simply call d_delete() */
1852 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1853 error = 0;
1854 goto out;
1855 }
1856
1857 trace_nfs_remove_enter(dir, dentry);
1858 if (inode != NULL) {
1859 NFS_PROTO(inode)->return_delegation(inode);
1860 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1861 if (error == 0)
1862 nfs_drop_nlink(inode);
1863 } else
1864 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1865 if (error == -ENOENT)
1866 nfs_dentry_handle_enoent(dentry);
1867 trace_nfs_remove_exit(dir, dentry, error);
1868out:
1869 return error;
1870}
1871
1872/* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1873 * belongs to an active ".nfs..." file and we return -EBUSY.
1874 *
1875 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1876 */
1877int nfs_unlink(struct inode *dir, struct dentry *dentry)
1878{
1879 int error;
1880 int need_rehash = 0;
1881
1882 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1883 dir->i_ino, dentry);
1884
1885 trace_nfs_unlink_enter(dir, dentry);
1886 spin_lock(&dentry->d_lock);
1887 if (d_count(dentry) > 1) {
1888 spin_unlock(&dentry->d_lock);
1889 /* Start asynchronous writeout of the inode */
1890 write_inode_now(d_inode(dentry), 0);
1891 error = nfs_sillyrename(dir, dentry);
1892 goto out;
1893 }
1894 if (!d_unhashed(dentry)) {
1895 __d_drop(dentry);
1896 need_rehash = 1;
1897 }
1898 spin_unlock(&dentry->d_lock);
1899 error = nfs_safe_remove(dentry);
1900 if (!error || error == -ENOENT) {
1901 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1902 } else if (need_rehash)
1903 d_rehash(dentry);
1904out:
1905 trace_nfs_unlink_exit(dir, dentry, error);
1906 return error;
1907}
1908EXPORT_SYMBOL_GPL(nfs_unlink);
1909
1910/*
1911 * To create a symbolic link, most file systems instantiate a new inode,
1912 * add a page to it containing the path, then write it out to the disk
1913 * using prepare_write/commit_write.
1914 *
1915 * Unfortunately the NFS client can't create the in-core inode first
1916 * because it needs a file handle to create an in-core inode (see
1917 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1918 * symlink request has completed on the server.
1919 *
1920 * So instead we allocate a raw page, copy the symname into it, then do
1921 * the SYMLINK request with the page as the buffer. If it succeeds, we
1922 * now have a new file handle and can instantiate an in-core NFS inode
1923 * and move the raw page into its mapping.
1924 */
1925int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1926{
1927 struct page *page;
1928 char *kaddr;
1929 struct iattr attr;
1930 unsigned int pathlen = strlen(symname);
1931 int error;
1932
1933 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1934 dir->i_ino, dentry, symname);
1935
1936 if (pathlen > PAGE_SIZE)
1937 return -ENAMETOOLONG;
1938
1939 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1940 attr.ia_valid = ATTR_MODE;
1941
1942 page = alloc_page(GFP_USER);
1943 if (!page)
1944 return -ENOMEM;
1945
1946 kaddr = page_address(page);
1947 memcpy(kaddr, symname, pathlen);
1948 if (pathlen < PAGE_SIZE)
1949 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1950
1951 trace_nfs_symlink_enter(dir, dentry);
1952 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1953 trace_nfs_symlink_exit(dir, dentry, error);
1954 if (error != 0) {
1955 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1956 dir->i_sb->s_id, dir->i_ino,
1957 dentry, symname, error);
1958 d_drop(dentry);
1959 __free_page(page);
1960 return error;
1961 }
1962
1963 /*
1964 * No big deal if we can't add this page to the page cache here.
1965 * READLINK will get the missing page from the server if needed.
1966 */
1967 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
1968 GFP_KERNEL)) {
1969 SetPageUptodate(page);
1970 unlock_page(page);
1971 /*
1972 * add_to_page_cache_lru() grabs an extra page refcount.
1973 * Drop it here to avoid leaking this page later.
1974 */
1975 put_page(page);
1976 } else
1977 __free_page(page);
1978
1979 return 0;
1980}
1981EXPORT_SYMBOL_GPL(nfs_symlink);
1982
1983int
1984nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1985{
1986 struct inode *inode = d_inode(old_dentry);
1987 int error;
1988
1989 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1990 old_dentry, dentry);
1991
1992 trace_nfs_link_enter(inode, dir, dentry);
1993 NFS_PROTO(inode)->return_delegation(inode);
1994
1995 d_drop(dentry);
1996 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1997 if (error == 0) {
1998 ihold(inode);
1999 d_add(dentry, inode);
2000 }
2001 trace_nfs_link_exit(inode, dir, dentry, error);
2002 return error;
2003}
2004EXPORT_SYMBOL_GPL(nfs_link);
2005
2006/*
2007 * RENAME
2008 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2009 * different file handle for the same inode after a rename (e.g. when
2010 * moving to a different directory). A fail-safe method to do so would
2011 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2012 * rename the old file using the sillyrename stuff. This way, the original
2013 * file in old_dir will go away when the last process iput()s the inode.
2014 *
2015 * FIXED.
2016 *
2017 * It actually works quite well. One needs to have the possibility for
2018 * at least one ".nfs..." file in each directory the file ever gets
2019 * moved or linked to which happens automagically with the new
2020 * implementation that only depends on the dcache stuff instead of
2021 * using the inode layer
2022 *
2023 * Unfortunately, things are a little more complicated than indicated
2024 * above. For a cross-directory move, we want to make sure we can get
2025 * rid of the old inode after the operation. This means there must be
2026 * no pending writes (if it's a file), and the use count must be 1.
2027 * If these conditions are met, we can drop the dentries before doing
2028 * the rename.
2029 */
2030int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2031 struct inode *new_dir, struct dentry *new_dentry,
2032 unsigned int flags)
2033{
2034 struct inode *old_inode = d_inode(old_dentry);
2035 struct inode *new_inode = d_inode(new_dentry);
2036 struct dentry *dentry = NULL, *rehash = NULL;
2037 struct rpc_task *task;
2038 int error = -EBUSY;
2039
2040 if (flags)
2041 return -EINVAL;
2042
2043 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2044 old_dentry, new_dentry,
2045 d_count(new_dentry));
2046
2047 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2048 /*
2049 * For non-directories, check whether the target is busy and if so,
2050 * make a copy of the dentry and then do a silly-rename. If the
2051 * silly-rename succeeds, the copied dentry is hashed and becomes
2052 * the new target.
2053 */
2054 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2055 /*
2056 * To prevent any new references to the target during the
2057 * rename, we unhash the dentry in advance.
2058 */
2059 if (!d_unhashed(new_dentry)) {
2060 d_drop(new_dentry);
2061 rehash = new_dentry;
2062 }
2063
2064 if (d_count(new_dentry) > 2) {
2065 int err;
2066
2067 /* copy the target dentry's name */
2068 dentry = d_alloc(new_dentry->d_parent,
2069 &new_dentry->d_name);
2070 if (!dentry)
2071 goto out;
2072
2073 /* silly-rename the existing target ... */
2074 err = nfs_sillyrename(new_dir, new_dentry);
2075 if (err)
2076 goto out;
2077
2078 new_dentry = dentry;
2079 rehash = NULL;
2080 new_inode = NULL;
2081 }
2082 }
2083
2084 NFS_PROTO(old_inode)->return_delegation(old_inode);
2085 if (new_inode != NULL)
2086 NFS_PROTO(new_inode)->return_delegation(new_inode);
2087
2088 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2089 if (IS_ERR(task)) {
2090 error = PTR_ERR(task);
2091 goto out;
2092 }
2093
2094 error = rpc_wait_for_completion_task(task);
2095 if (error != 0) {
2096 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2097 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2098 smp_wmb();
2099 } else
2100 error = task->tk_status;
2101 rpc_put_task(task);
2102 nfs_mark_for_revalidate(old_inode);
2103out:
2104 if (rehash)
2105 d_rehash(rehash);
2106 trace_nfs_rename_exit(old_dir, old_dentry,
2107 new_dir, new_dentry, error);
2108 if (!error) {
2109 if (new_inode != NULL)
2110 nfs_drop_nlink(new_inode);
2111 /*
2112 * The d_move() should be here instead of in an async RPC completion
2113 * handler because we need the proper locks to move the dentry. If
2114 * we're interrupted by a signal, the async RPC completion handler
2115 * should mark the directories for revalidation.
2116 */
2117 d_move(old_dentry, new_dentry);
2118 nfs_set_verifier(old_dentry,
2119 nfs_save_change_attribute(new_dir));
2120 } else if (error == -ENOENT)
2121 nfs_dentry_handle_enoent(old_dentry);
2122
2123 /* new dentry created? */
2124 if (dentry)
2125 dput(dentry);
2126 return error;
2127}
2128EXPORT_SYMBOL_GPL(nfs_rename);
2129
2130static DEFINE_SPINLOCK(nfs_access_lru_lock);
2131static LIST_HEAD(nfs_access_lru_list);
2132static atomic_long_t nfs_access_nr_entries;
2133
2134static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2135module_param(nfs_access_max_cachesize, ulong, 0644);
2136MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2137
2138static void nfs_access_free_entry(struct nfs_access_entry *entry)
2139{
2140 put_rpccred(entry->cred);
2141 kfree_rcu(entry, rcu_head);
2142 smp_mb__before_atomic();
2143 atomic_long_dec(&nfs_access_nr_entries);
2144 smp_mb__after_atomic();
2145}
2146
2147static void nfs_access_free_list(struct list_head *head)
2148{
2149 struct nfs_access_entry *cache;
2150
2151 while (!list_empty(head)) {
2152 cache = list_entry(head->next, struct nfs_access_entry, lru);
2153 list_del(&cache->lru);
2154 nfs_access_free_entry(cache);
2155 }
2156}
2157
2158static unsigned long
2159nfs_do_access_cache_scan(unsigned int nr_to_scan)
2160{
2161 LIST_HEAD(head);
2162 struct nfs_inode *nfsi, *next;
2163 struct nfs_access_entry *cache;
2164 long freed = 0;
2165
2166 spin_lock(&nfs_access_lru_lock);
2167 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2168 struct inode *inode;
2169
2170 if (nr_to_scan-- == 0)
2171 break;
2172 inode = &nfsi->vfs_inode;
2173 spin_lock(&inode->i_lock);
2174 if (list_empty(&nfsi->access_cache_entry_lru))
2175 goto remove_lru_entry;
2176 cache = list_entry(nfsi->access_cache_entry_lru.next,
2177 struct nfs_access_entry, lru);
2178 list_move(&cache->lru, &head);
2179 rb_erase(&cache->rb_node, &nfsi->access_cache);
2180 freed++;
2181 if (!list_empty(&nfsi->access_cache_entry_lru))
2182 list_move_tail(&nfsi->access_cache_inode_lru,
2183 &nfs_access_lru_list);
2184 else {
2185remove_lru_entry:
2186 list_del_init(&nfsi->access_cache_inode_lru);
2187 smp_mb__before_atomic();
2188 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2189 smp_mb__after_atomic();
2190 }
2191 spin_unlock(&inode->i_lock);
2192 }
2193 spin_unlock(&nfs_access_lru_lock);
2194 nfs_access_free_list(&head);
2195 return freed;
2196}
2197
2198unsigned long
2199nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2200{
2201 int nr_to_scan = sc->nr_to_scan;
2202 gfp_t gfp_mask = sc->gfp_mask;
2203
2204 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2205 return SHRINK_STOP;
2206 return nfs_do_access_cache_scan(nr_to_scan);
2207}
2208
2209
2210unsigned long
2211nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2212{
2213 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2214}
2215
2216static void
2217nfs_access_cache_enforce_limit(void)
2218{
2219 long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2220 unsigned long diff;
2221 unsigned int nr_to_scan;
2222
2223 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2224 return;
2225 nr_to_scan = 100;
2226 diff = nr_entries - nfs_access_max_cachesize;
2227 if (diff < nr_to_scan)
2228 nr_to_scan = diff;
2229 nfs_do_access_cache_scan(nr_to_scan);
2230}
2231
2232static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2233{
2234 struct rb_root *root_node = &nfsi->access_cache;
2235 struct rb_node *n;
2236 struct nfs_access_entry *entry;
2237
2238 /* Unhook entries from the cache */
2239 while ((n = rb_first(root_node)) != NULL) {
2240 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2241 rb_erase(n, root_node);
2242 list_move(&entry->lru, head);
2243 }
2244 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2245}
2246
2247void nfs_access_zap_cache(struct inode *inode)
2248{
2249 LIST_HEAD(head);
2250
2251 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2252 return;
2253 /* Remove from global LRU init */
2254 spin_lock(&nfs_access_lru_lock);
2255 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2256 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2257
2258 spin_lock(&inode->i_lock);
2259 __nfs_access_zap_cache(NFS_I(inode), &head);
2260 spin_unlock(&inode->i_lock);
2261 spin_unlock(&nfs_access_lru_lock);
2262 nfs_access_free_list(&head);
2263}
2264EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2265
2266static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2267{
2268 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2269 struct nfs_access_entry *entry;
2270
2271 while (n != NULL) {
2272 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2273
2274 if (cred < entry->cred)
2275 n = n->rb_left;
2276 else if (cred > entry->cred)
2277 n = n->rb_right;
2278 else
2279 return entry;
2280 }
2281 return NULL;
2282}
2283
2284static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res, bool may_block)
2285{
2286 struct nfs_inode *nfsi = NFS_I(inode);
2287 struct nfs_access_entry *cache;
2288 bool retry = true;
2289 int err;
2290
2291 spin_lock(&inode->i_lock);
2292 for(;;) {
2293 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2294 goto out_zap;
2295 cache = nfs_access_search_rbtree(inode, cred);
2296 err = -ENOENT;
2297 if (cache == NULL)
2298 goto out;
2299 /* Found an entry, is our attribute cache valid? */
2300 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2301 break;
2302 err = -ECHILD;
2303 if (!may_block)
2304 goto out;
2305 if (!retry)
2306 goto out_zap;
2307 spin_unlock(&inode->i_lock);
2308 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2309 if (err)
2310 return err;
2311 spin_lock(&inode->i_lock);
2312 retry = false;
2313 }
2314 res->cred = cache->cred;
2315 res->mask = cache->mask;
2316 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2317 err = 0;
2318out:
2319 spin_unlock(&inode->i_lock);
2320 return err;
2321out_zap:
2322 spin_unlock(&inode->i_lock);
2323 nfs_access_zap_cache(inode);
2324 return -ENOENT;
2325}
2326
2327static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2328{
2329 /* Only check the most recently returned cache entry,
2330 * but do it without locking.
2331 */
2332 struct nfs_inode *nfsi = NFS_I(inode);
2333 struct nfs_access_entry *cache;
2334 int err = -ECHILD;
2335 struct list_head *lh;
2336
2337 rcu_read_lock();
2338 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2339 goto out;
2340 lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2341 cache = list_entry(lh, struct nfs_access_entry, lru);
2342 if (lh == &nfsi->access_cache_entry_lru ||
2343 cred != cache->cred)
2344 cache = NULL;
2345 if (cache == NULL)
2346 goto out;
2347 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2348 goto out;
2349 res->cred = cache->cred;
2350 res->mask = cache->mask;
2351 err = 0;
2352out:
2353 rcu_read_unlock();
2354 return err;
2355}
2356
2357static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2358{
2359 struct nfs_inode *nfsi = NFS_I(inode);
2360 struct rb_root *root_node = &nfsi->access_cache;
2361 struct rb_node **p = &root_node->rb_node;
2362 struct rb_node *parent = NULL;
2363 struct nfs_access_entry *entry;
2364
2365 spin_lock(&inode->i_lock);
2366 while (*p != NULL) {
2367 parent = *p;
2368 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2369
2370 if (set->cred < entry->cred)
2371 p = &parent->rb_left;
2372 else if (set->cred > entry->cred)
2373 p = &parent->rb_right;
2374 else
2375 goto found;
2376 }
2377 rb_link_node(&set->rb_node, parent, p);
2378 rb_insert_color(&set->rb_node, root_node);
2379 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2380 spin_unlock(&inode->i_lock);
2381 return;
2382found:
2383 rb_replace_node(parent, &set->rb_node, root_node);
2384 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2385 list_del(&entry->lru);
2386 spin_unlock(&inode->i_lock);
2387 nfs_access_free_entry(entry);
2388}
2389
2390void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2391{
2392 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2393 if (cache == NULL)
2394 return;
2395 RB_CLEAR_NODE(&cache->rb_node);
2396 cache->cred = get_rpccred(set->cred);
2397 cache->mask = set->mask;
2398
2399 /* The above field assignments must be visible
2400 * before this item appears on the lru. We cannot easily
2401 * use rcu_assign_pointer, so just force the memory barrier.
2402 */
2403 smp_wmb();
2404 nfs_access_add_rbtree(inode, cache);
2405
2406 /* Update accounting */
2407 smp_mb__before_atomic();
2408 atomic_long_inc(&nfs_access_nr_entries);
2409 smp_mb__after_atomic();
2410
2411 /* Add inode to global LRU list */
2412 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2413 spin_lock(&nfs_access_lru_lock);
2414 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2415 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2416 &nfs_access_lru_list);
2417 spin_unlock(&nfs_access_lru_lock);
2418 }
2419 nfs_access_cache_enforce_limit();
2420}
2421EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2422
2423#define NFS_MAY_READ (NFS4_ACCESS_READ)
2424#define NFS_MAY_WRITE (NFS4_ACCESS_MODIFY | \
2425 NFS4_ACCESS_EXTEND | \
2426 NFS4_ACCESS_DELETE)
2427#define NFS_FILE_MAY_WRITE (NFS4_ACCESS_MODIFY | \
2428 NFS4_ACCESS_EXTEND)
2429#define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2430#define NFS_MAY_LOOKUP (NFS4_ACCESS_LOOKUP)
2431#define NFS_MAY_EXECUTE (NFS4_ACCESS_EXECUTE)
2432static int
2433nfs_access_calc_mask(u32 access_result, umode_t umode)
2434{
2435 int mask = 0;
2436
2437 if (access_result & NFS_MAY_READ)
2438 mask |= MAY_READ;
2439 if (S_ISDIR(umode)) {
2440 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2441 mask |= MAY_WRITE;
2442 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2443 mask |= MAY_EXEC;
2444 } else if (S_ISREG(umode)) {
2445 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2446 mask |= MAY_WRITE;
2447 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2448 mask |= MAY_EXEC;
2449 } else if (access_result & NFS_MAY_WRITE)
2450 mask |= MAY_WRITE;
2451 return mask;
2452}
2453
2454void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2455{
2456 entry->mask = access_result;
2457}
2458EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2459
2460static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2461{
2462 struct nfs_access_entry cache;
2463 bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2464 int cache_mask;
2465 int status;
2466
2467 trace_nfs_access_enter(inode);
2468
2469 status = nfs_access_get_cached_rcu(inode, cred, &cache);
2470 if (status != 0)
2471 status = nfs_access_get_cached(inode, cred, &cache, may_block);
2472 if (status == 0)
2473 goto out_cached;
2474
2475 status = -ECHILD;
2476 if (!may_block)
2477 goto out;
2478
2479 /* Be clever: ask server to check for all possible rights */
2480 cache.mask = NFS_MAY_LOOKUP | NFS_MAY_EXECUTE
2481 | NFS_MAY_WRITE | NFS_MAY_READ;
2482 cache.cred = cred;
2483 status = NFS_PROTO(inode)->access(inode, &cache);
2484 if (status != 0) {
2485 if (status == -ESTALE) {
2486 nfs_zap_caches(inode);
2487 if (!S_ISDIR(inode->i_mode))
2488 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2489 }
2490 goto out;
2491 }
2492 nfs_access_add_cache(inode, &cache);
2493out_cached:
2494 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2495 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2496 status = -EACCES;
2497out:
2498 trace_nfs_access_exit(inode, status);
2499 return status;
2500}
2501
2502static int nfs_open_permission_mask(int openflags)
2503{
2504 int mask = 0;
2505
2506 if (openflags & __FMODE_EXEC) {
2507 /* ONLY check exec rights */
2508 mask = MAY_EXEC;
2509 } else {
2510 if ((openflags & O_ACCMODE) != O_WRONLY)
2511 mask |= MAY_READ;
2512 if ((openflags & O_ACCMODE) != O_RDONLY)
2513 mask |= MAY_WRITE;
2514 }
2515
2516 return mask;
2517}
2518
2519int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2520{
2521 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2522}
2523EXPORT_SYMBOL_GPL(nfs_may_open);
2524
2525static int nfs_execute_ok(struct inode *inode, int mask)
2526{
2527 struct nfs_server *server = NFS_SERVER(inode);
2528 int ret = 0;
2529
2530 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) {
2531 if (mask & MAY_NOT_BLOCK)
2532 return -ECHILD;
2533 ret = __nfs_revalidate_inode(server, inode);
2534 }
2535 if (ret == 0 && !execute_ok(inode))
2536 ret = -EACCES;
2537 return ret;
2538}
2539
2540int nfs_permission(struct inode *inode, int mask)
2541{
2542 struct rpc_cred *cred;
2543 int res = 0;
2544
2545 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2546
2547 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2548 goto out;
2549 /* Is this sys_access() ? */
2550 if (mask & (MAY_ACCESS | MAY_CHDIR))
2551 goto force_lookup;
2552
2553 switch (inode->i_mode & S_IFMT) {
2554 case S_IFLNK:
2555 goto out;
2556 case S_IFREG:
2557 if ((mask & MAY_OPEN) &&
2558 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2559 return 0;
2560 break;
2561 case S_IFDIR:
2562 /*
2563 * Optimize away all write operations, since the server
2564 * will check permissions when we perform the op.
2565 */
2566 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2567 goto out;
2568 }
2569
2570force_lookup:
2571 if (!NFS_PROTO(inode)->access)
2572 goto out_notsup;
2573
2574 /* Always try fast lookups first */
2575 rcu_read_lock();
2576 cred = rpc_lookup_cred_nonblock();
2577 if (!IS_ERR(cred))
2578 res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2579 else
2580 res = PTR_ERR(cred);
2581 rcu_read_unlock();
2582 if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2583 /* Fast lookup failed, try the slow way */
2584 cred = rpc_lookup_cred();
2585 if (!IS_ERR(cred)) {
2586 res = nfs_do_access(inode, cred, mask);
2587 put_rpccred(cred);
2588 } else
2589 res = PTR_ERR(cred);
2590 }
2591out:
2592 if (!res && (mask & MAY_EXEC))
2593 res = nfs_execute_ok(inode, mask);
2594
2595 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2596 inode->i_sb->s_id, inode->i_ino, mask, res);
2597 return res;
2598out_notsup:
2599 if (mask & MAY_NOT_BLOCK)
2600 return -ECHILD;
2601
2602 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2603 if (res == 0)
2604 res = generic_permission(inode, mask);
2605 goto out;
2606}
2607EXPORT_SYMBOL_GPL(nfs_permission);
2608
2609/*
2610 * Local variables:
2611 * version-control: t
2612 * kept-new-versions: 5
2613 * End:
2614 */