blob: 7de0c9562b7077668e372d5bfc0fbc843c3db033 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
27#include <linux/swap.h>
28#include <linux/pipe_fs_i.h>
29#include <linux/mpage.h>
30#include <linux/quotaops.h>
31#include <linux/blkdev.h>
32#include <linux/uio.h>
33
34#include <cluster/masklog.h>
35
36#include "ocfs2.h"
37
38#include "alloc.h"
39#include "aops.h"
40#include "dlmglue.h"
41#include "extent_map.h"
42#include "file.h"
43#include "inode.h"
44#include "journal.h"
45#include "suballoc.h"
46#include "super.h"
47#include "symlink.h"
48#include "refcounttree.h"
49#include "ocfs2_trace.h"
50
51#include "buffer_head_io.h"
52#include "dir.h"
53#include "namei.h"
54#include "sysfile.h"
55
56static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
57 struct buffer_head *bh_result, int create)
58{
59 int err = -EIO;
60 int status;
61 struct ocfs2_dinode *fe = NULL;
62 struct buffer_head *bh = NULL;
63 struct buffer_head *buffer_cache_bh = NULL;
64 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
65 void *kaddr;
66
67 trace_ocfs2_symlink_get_block(
68 (unsigned long long)OCFS2_I(inode)->ip_blkno,
69 (unsigned long long)iblock, bh_result, create);
70
71 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
72
73 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
74 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
75 (unsigned long long)iblock);
76 goto bail;
77 }
78
79 status = ocfs2_read_inode_block(inode, &bh);
80 if (status < 0) {
81 mlog_errno(status);
82 goto bail;
83 }
84 fe = (struct ocfs2_dinode *) bh->b_data;
85
86 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87 le32_to_cpu(fe->i_clusters))) {
88 err = -ENOMEM;
89 mlog(ML_ERROR, "block offset is outside the allocated size: "
90 "%llu\n", (unsigned long long)iblock);
91 goto bail;
92 }
93
94 /* We don't use the page cache to create symlink data, so if
95 * need be, copy it over from the buffer cache. */
96 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98 iblock;
99 buffer_cache_bh = sb_getblk(osb->sb, blkno);
100 if (!buffer_cache_bh) {
101 err = -ENOMEM;
102 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
103 goto bail;
104 }
105
106 /* we haven't locked out transactions, so a commit
107 * could've happened. Since we've got a reference on
108 * the bh, even if it commits while we're doing the
109 * copy, the data is still good. */
110 if (buffer_jbd(buffer_cache_bh)
111 && ocfs2_inode_is_new(inode)) {
112 kaddr = kmap_atomic(bh_result->b_page);
113 if (!kaddr) {
114 mlog(ML_ERROR, "couldn't kmap!\n");
115 goto bail;
116 }
117 memcpy(kaddr + (bh_result->b_size * iblock),
118 buffer_cache_bh->b_data,
119 bh_result->b_size);
120 kunmap_atomic(kaddr);
121 set_buffer_uptodate(bh_result);
122 }
123 brelse(buffer_cache_bh);
124 }
125
126 map_bh(bh_result, inode->i_sb,
127 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
128
129 err = 0;
130
131bail:
132 brelse(bh);
133
134 return err;
135}
136
137static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
138 struct buffer_head *bh_result, int create)
139{
140 int ret = 0;
141 struct ocfs2_inode_info *oi = OCFS2_I(inode);
142
143 down_read(&oi->ip_alloc_sem);
144 ret = ocfs2_get_block(inode, iblock, bh_result, create);
145 up_read(&oi->ip_alloc_sem);
146
147 return ret;
148}
149
150int ocfs2_get_block(struct inode *inode, sector_t iblock,
151 struct buffer_head *bh_result, int create)
152{
153 int err = 0;
154 unsigned int ext_flags;
155 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
156 u64 p_blkno, count, past_eof;
157 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
158
159 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
160 (unsigned long long)iblock, bh_result, create);
161
162 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
163 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
164 inode, inode->i_ino);
165
166 if (S_ISLNK(inode->i_mode)) {
167 /* this always does I/O for some reason. */
168 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
169 goto bail;
170 }
171
172 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
173 &ext_flags);
174 if (err) {
175 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
176 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
177 (unsigned long long)p_blkno);
178 goto bail;
179 }
180
181 if (max_blocks < count)
182 count = max_blocks;
183
184 /*
185 * ocfs2 never allocates in this function - the only time we
186 * need to use BH_New is when we're extending i_size on a file
187 * system which doesn't support holes, in which case BH_New
188 * allows __block_write_begin() to zero.
189 *
190 * If we see this on a sparse file system, then a truncate has
191 * raced us and removed the cluster. In this case, we clear
192 * the buffers dirty and uptodate bits and let the buffer code
193 * ignore it as a hole.
194 */
195 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
196 clear_buffer_dirty(bh_result);
197 clear_buffer_uptodate(bh_result);
198 goto bail;
199 }
200
201 /* Treat the unwritten extent as a hole for zeroing purposes. */
202 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
203 map_bh(bh_result, inode->i_sb, p_blkno);
204
205 bh_result->b_size = count << inode->i_blkbits;
206
207 if (!ocfs2_sparse_alloc(osb)) {
208 if (p_blkno == 0) {
209 err = -EIO;
210 mlog(ML_ERROR,
211 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
212 (unsigned long long)iblock,
213 (unsigned long long)p_blkno,
214 (unsigned long long)OCFS2_I(inode)->ip_blkno);
215 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
216 dump_stack();
217 goto bail;
218 }
219 }
220
221 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
222
223 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
224 (unsigned long long)past_eof);
225 if (create && (iblock >= past_eof))
226 set_buffer_new(bh_result);
227
228bail:
229 if (err < 0)
230 err = -EIO;
231
232 return err;
233}
234
235int ocfs2_read_inline_data(struct inode *inode, struct page *page,
236 struct buffer_head *di_bh)
237{
238 void *kaddr;
239 loff_t size;
240 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
241
242 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
243 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
244 (unsigned long long)OCFS2_I(inode)->ip_blkno);
245 return -EROFS;
246 }
247
248 size = i_size_read(inode);
249
250 if (size > PAGE_SIZE ||
251 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
252 ocfs2_error(inode->i_sb,
253 "Inode %llu has with inline data has bad size: %Lu\n",
254 (unsigned long long)OCFS2_I(inode)->ip_blkno,
255 (unsigned long long)size);
256 return -EROFS;
257 }
258
259 kaddr = kmap_atomic(page);
260 if (size)
261 memcpy(kaddr, di->id2.i_data.id_data, size);
262 /* Clear the remaining part of the page */
263 memset(kaddr + size, 0, PAGE_SIZE - size);
264 flush_dcache_page(page);
265 kunmap_atomic(kaddr);
266
267 SetPageUptodate(page);
268
269 return 0;
270}
271
272static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
273{
274 int ret;
275 struct buffer_head *di_bh = NULL;
276
277 BUG_ON(!PageLocked(page));
278 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
279
280 ret = ocfs2_read_inode_block(inode, &di_bh);
281 if (ret) {
282 mlog_errno(ret);
283 goto out;
284 }
285
286 ret = ocfs2_read_inline_data(inode, page, di_bh);
287out:
288 unlock_page(page);
289
290 brelse(di_bh);
291 return ret;
292}
293
294static int ocfs2_readpage(struct file *file, struct page *page)
295{
296 struct inode *inode = page->mapping->host;
297 struct ocfs2_inode_info *oi = OCFS2_I(inode);
298 loff_t start = (loff_t)page->index << PAGE_SHIFT;
299 int ret, unlock = 1;
300
301 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
302 (page ? page->index : 0));
303
304 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
305 if (ret != 0) {
306 if (ret == AOP_TRUNCATED_PAGE)
307 unlock = 0;
308 mlog_errno(ret);
309 goto out;
310 }
311
312 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
313 /*
314 * Unlock the page and cycle ip_alloc_sem so that we don't
315 * busyloop waiting for ip_alloc_sem to unlock
316 */
317 ret = AOP_TRUNCATED_PAGE;
318 unlock_page(page);
319 unlock = 0;
320 down_read(&oi->ip_alloc_sem);
321 up_read(&oi->ip_alloc_sem);
322 goto out_inode_unlock;
323 }
324
325 /*
326 * i_size might have just been updated as we grabed the meta lock. We
327 * might now be discovering a truncate that hit on another node.
328 * block_read_full_page->get_block freaks out if it is asked to read
329 * beyond the end of a file, so we check here. Callers
330 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
331 * and notice that the page they just read isn't needed.
332 *
333 * XXX sys_readahead() seems to get that wrong?
334 */
335 if (start >= i_size_read(inode)) {
336 zero_user(page, 0, PAGE_SIZE);
337 SetPageUptodate(page);
338 ret = 0;
339 goto out_alloc;
340 }
341
342 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
343 ret = ocfs2_readpage_inline(inode, page);
344 else
345 ret = block_read_full_page(page, ocfs2_get_block);
346 unlock = 0;
347
348out_alloc:
349 up_read(&OCFS2_I(inode)->ip_alloc_sem);
350out_inode_unlock:
351 ocfs2_inode_unlock(inode, 0);
352out:
353 if (unlock)
354 unlock_page(page);
355 return ret;
356}
357
358/*
359 * This is used only for read-ahead. Failures or difficult to handle
360 * situations are safe to ignore.
361 *
362 * Right now, we don't bother with BH_Boundary - in-inode extent lists
363 * are quite large (243 extents on 4k blocks), so most inodes don't
364 * grow out to a tree. If need be, detecting boundary extents could
365 * trivially be added in a future version of ocfs2_get_block().
366 */
367static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
368 struct list_head *pages, unsigned nr_pages)
369{
370 int ret, err = -EIO;
371 struct inode *inode = mapping->host;
372 struct ocfs2_inode_info *oi = OCFS2_I(inode);
373 loff_t start;
374 struct page *last;
375
376 /*
377 * Use the nonblocking flag for the dlm code to avoid page
378 * lock inversion, but don't bother with retrying.
379 */
380 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
381 if (ret)
382 return err;
383
384 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
385 ocfs2_inode_unlock(inode, 0);
386 return err;
387 }
388
389 /*
390 * Don't bother with inline-data. There isn't anything
391 * to read-ahead in that case anyway...
392 */
393 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
394 goto out_unlock;
395
396 /*
397 * Check whether a remote node truncated this file - we just
398 * drop out in that case as it's not worth handling here.
399 */
400 last = list_entry(pages->prev, struct page, lru);
401 start = (loff_t)last->index << PAGE_SHIFT;
402 if (start >= i_size_read(inode))
403 goto out_unlock;
404
405 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
406
407out_unlock:
408 up_read(&oi->ip_alloc_sem);
409 ocfs2_inode_unlock(inode, 0);
410
411 return err;
412}
413
414/* Note: Because we don't support holes, our allocation has
415 * already happened (allocation writes zeros to the file data)
416 * so we don't have to worry about ordered writes in
417 * ocfs2_writepage.
418 *
419 * ->writepage is called during the process of invalidating the page cache
420 * during blocked lock processing. It can't block on any cluster locks
421 * to during block mapping. It's relying on the fact that the block
422 * mapping can't have disappeared under the dirty pages that it is
423 * being asked to write back.
424 */
425static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
426{
427 trace_ocfs2_writepage(
428 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
429 page->index);
430
431 return block_write_full_page(page, ocfs2_get_block, wbc);
432}
433
434/* Taken from ext3. We don't necessarily need the full blown
435 * functionality yet, but IMHO it's better to cut and paste the whole
436 * thing so we can avoid introducing our own bugs (and easily pick up
437 * their fixes when they happen) --Mark */
438int walk_page_buffers( handle_t *handle,
439 struct buffer_head *head,
440 unsigned from,
441 unsigned to,
442 int *partial,
443 int (*fn)( handle_t *handle,
444 struct buffer_head *bh))
445{
446 struct buffer_head *bh;
447 unsigned block_start, block_end;
448 unsigned blocksize = head->b_size;
449 int err, ret = 0;
450 struct buffer_head *next;
451
452 for ( bh = head, block_start = 0;
453 ret == 0 && (bh != head || !block_start);
454 block_start = block_end, bh = next)
455 {
456 next = bh->b_this_page;
457 block_end = block_start + blocksize;
458 if (block_end <= from || block_start >= to) {
459 if (partial && !buffer_uptodate(bh))
460 *partial = 1;
461 continue;
462 }
463 err = (*fn)(handle, bh);
464 if (!ret)
465 ret = err;
466 }
467 return ret;
468}
469
470static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
471{
472 sector_t status;
473 u64 p_blkno = 0;
474 int err = 0;
475 struct inode *inode = mapping->host;
476
477 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
478 (unsigned long long)block);
479
480 /*
481 * The swap code (ab-)uses ->bmap to get a block mapping and then
482 * bypasseѕ the file system for actual I/O. We really can't allow
483 * that on refcounted inodes, so we have to skip out here. And yes,
484 * 0 is the magic code for a bmap error..
485 */
486 if (ocfs2_is_refcount_inode(inode))
487 return 0;
488
489 /* We don't need to lock journal system files, since they aren't
490 * accessed concurrently from multiple nodes.
491 */
492 if (!INODE_JOURNAL(inode)) {
493 err = ocfs2_inode_lock(inode, NULL, 0);
494 if (err) {
495 if (err != -ENOENT)
496 mlog_errno(err);
497 goto bail;
498 }
499 down_read(&OCFS2_I(inode)->ip_alloc_sem);
500 }
501
502 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
503 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
504 NULL);
505
506 if (!INODE_JOURNAL(inode)) {
507 up_read(&OCFS2_I(inode)->ip_alloc_sem);
508 ocfs2_inode_unlock(inode, 0);
509 }
510
511 if (err) {
512 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
513 (unsigned long long)block);
514 mlog_errno(err);
515 goto bail;
516 }
517
518bail:
519 status = err ? 0 : p_blkno;
520
521 return status;
522}
523
524static int ocfs2_releasepage(struct page *page, gfp_t wait)
525{
526 if (!page_has_buffers(page))
527 return 0;
528 return try_to_free_buffers(page);
529}
530
531static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
532 u32 cpos,
533 unsigned int *start,
534 unsigned int *end)
535{
536 unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
537
538 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
539 unsigned int cpp;
540
541 cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
542
543 cluster_start = cpos % cpp;
544 cluster_start = cluster_start << osb->s_clustersize_bits;
545
546 cluster_end = cluster_start + osb->s_clustersize;
547 }
548
549 BUG_ON(cluster_start > PAGE_SIZE);
550 BUG_ON(cluster_end > PAGE_SIZE);
551
552 if (start)
553 *start = cluster_start;
554 if (end)
555 *end = cluster_end;
556}
557
558/*
559 * 'from' and 'to' are the region in the page to avoid zeroing.
560 *
561 * If pagesize > clustersize, this function will avoid zeroing outside
562 * of the cluster boundary.
563 *
564 * from == to == 0 is code for "zero the entire cluster region"
565 */
566static void ocfs2_clear_page_regions(struct page *page,
567 struct ocfs2_super *osb, u32 cpos,
568 unsigned from, unsigned to)
569{
570 void *kaddr;
571 unsigned int cluster_start, cluster_end;
572
573 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
574
575 kaddr = kmap_atomic(page);
576
577 if (from || to) {
578 if (from > cluster_start)
579 memset(kaddr + cluster_start, 0, from - cluster_start);
580 if (to < cluster_end)
581 memset(kaddr + to, 0, cluster_end - to);
582 } else {
583 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
584 }
585
586 kunmap_atomic(kaddr);
587}
588
589/*
590 * Nonsparse file systems fully allocate before we get to the write
591 * code. This prevents ocfs2_write() from tagging the write as an
592 * allocating one, which means ocfs2_map_page_blocks() might try to
593 * read-in the blocks at the tail of our file. Avoid reading them by
594 * testing i_size against each block offset.
595 */
596static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
597 unsigned int block_start)
598{
599 u64 offset = page_offset(page) + block_start;
600
601 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
602 return 1;
603
604 if (i_size_read(inode) > offset)
605 return 1;
606
607 return 0;
608}
609
610/*
611 * Some of this taken from __block_write_begin(). We already have our
612 * mapping by now though, and the entire write will be allocating or
613 * it won't, so not much need to use BH_New.
614 *
615 * This will also skip zeroing, which is handled externally.
616 */
617int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
618 struct inode *inode, unsigned int from,
619 unsigned int to, int new)
620{
621 int ret = 0;
622 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
623 unsigned int block_end, block_start;
624 unsigned int bsize = i_blocksize(inode);
625
626 if (!page_has_buffers(page))
627 create_empty_buffers(page, bsize, 0);
628
629 head = page_buffers(page);
630 for (bh = head, block_start = 0; bh != head || !block_start;
631 bh = bh->b_this_page, block_start += bsize) {
632 block_end = block_start + bsize;
633
634 clear_buffer_new(bh);
635
636 /*
637 * Ignore blocks outside of our i/o range -
638 * they may belong to unallocated clusters.
639 */
640 if (block_start >= to || block_end <= from) {
641 if (PageUptodate(page))
642 set_buffer_uptodate(bh);
643 continue;
644 }
645
646 /*
647 * For an allocating write with cluster size >= page
648 * size, we always write the entire page.
649 */
650 if (new)
651 set_buffer_new(bh);
652
653 if (!buffer_mapped(bh)) {
654 map_bh(bh, inode->i_sb, *p_blkno);
655 clean_bdev_bh_alias(bh);
656 }
657
658 if (PageUptodate(page)) {
659 if (!buffer_uptodate(bh))
660 set_buffer_uptodate(bh);
661 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
662 !buffer_new(bh) &&
663 ocfs2_should_read_blk(inode, page, block_start) &&
664 (block_start < from || block_end > to)) {
665 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
666 *wait_bh++=bh;
667 }
668
669 *p_blkno = *p_blkno + 1;
670 }
671
672 /*
673 * If we issued read requests - let them complete.
674 */
675 while(wait_bh > wait) {
676 wait_on_buffer(*--wait_bh);
677 if (!buffer_uptodate(*wait_bh))
678 ret = -EIO;
679 }
680
681 if (ret == 0 || !new)
682 return ret;
683
684 /*
685 * If we get -EIO above, zero out any newly allocated blocks
686 * to avoid exposing stale data.
687 */
688 bh = head;
689 block_start = 0;
690 do {
691 block_end = block_start + bsize;
692 if (block_end <= from)
693 goto next_bh;
694 if (block_start >= to)
695 break;
696
697 zero_user(page, block_start, bh->b_size);
698 set_buffer_uptodate(bh);
699 mark_buffer_dirty(bh);
700
701next_bh:
702 block_start = block_end;
703 bh = bh->b_this_page;
704 } while (bh != head);
705
706 return ret;
707}
708
709#if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
710#define OCFS2_MAX_CTXT_PAGES 1
711#else
712#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
713#endif
714
715#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
716
717struct ocfs2_unwritten_extent {
718 struct list_head ue_node;
719 struct list_head ue_ip_node;
720 u32 ue_cpos;
721 u32 ue_phys;
722};
723
724/*
725 * Describe the state of a single cluster to be written to.
726 */
727struct ocfs2_write_cluster_desc {
728 u32 c_cpos;
729 u32 c_phys;
730 /*
731 * Give this a unique field because c_phys eventually gets
732 * filled.
733 */
734 unsigned c_new;
735 unsigned c_clear_unwritten;
736 unsigned c_needs_zero;
737};
738
739struct ocfs2_write_ctxt {
740 /* Logical cluster position / len of write */
741 u32 w_cpos;
742 u32 w_clen;
743
744 /* First cluster allocated in a nonsparse extend */
745 u32 w_first_new_cpos;
746
747 /* Type of caller. Must be one of buffer, mmap, direct. */
748 ocfs2_write_type_t w_type;
749
750 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
751
752 /*
753 * This is true if page_size > cluster_size.
754 *
755 * It triggers a set of special cases during write which might
756 * have to deal with allocating writes to partial pages.
757 */
758 unsigned int w_large_pages;
759
760 /*
761 * Pages involved in this write.
762 *
763 * w_target_page is the page being written to by the user.
764 *
765 * w_pages is an array of pages which always contains
766 * w_target_page, and in the case of an allocating write with
767 * page_size < cluster size, it will contain zero'd and mapped
768 * pages adjacent to w_target_page which need to be written
769 * out in so that future reads from that region will get
770 * zero's.
771 */
772 unsigned int w_num_pages;
773 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
774 struct page *w_target_page;
775
776 /*
777 * w_target_locked is used for page_mkwrite path indicating no unlocking
778 * against w_target_page in ocfs2_write_end_nolock.
779 */
780 unsigned int w_target_locked:1;
781
782 /*
783 * ocfs2_write_end() uses this to know what the real range to
784 * write in the target should be.
785 */
786 unsigned int w_target_from;
787 unsigned int w_target_to;
788
789 /*
790 * We could use journal_current_handle() but this is cleaner,
791 * IMHO -Mark
792 */
793 handle_t *w_handle;
794
795 struct buffer_head *w_di_bh;
796
797 struct ocfs2_cached_dealloc_ctxt w_dealloc;
798
799 struct list_head w_unwritten_list;
800};
801
802void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
803{
804 int i;
805
806 for(i = 0; i < num_pages; i++) {
807 if (pages[i]) {
808 unlock_page(pages[i]);
809 mark_page_accessed(pages[i]);
810 put_page(pages[i]);
811 }
812 }
813}
814
815static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
816{
817 int i;
818
819 /*
820 * w_target_locked is only set to true in the page_mkwrite() case.
821 * The intent is to allow us to lock the target page from write_begin()
822 * to write_end(). The caller must hold a ref on w_target_page.
823 */
824 if (wc->w_target_locked) {
825 BUG_ON(!wc->w_target_page);
826 for (i = 0; i < wc->w_num_pages; i++) {
827 if (wc->w_target_page == wc->w_pages[i]) {
828 wc->w_pages[i] = NULL;
829 break;
830 }
831 }
832 mark_page_accessed(wc->w_target_page);
833 put_page(wc->w_target_page);
834 }
835 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
836}
837
838static void ocfs2_free_unwritten_list(struct inode *inode,
839 struct list_head *head)
840{
841 struct ocfs2_inode_info *oi = OCFS2_I(inode);
842 struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
843
844 list_for_each_entry_safe(ue, tmp, head, ue_node) {
845 list_del(&ue->ue_node);
846 spin_lock(&oi->ip_lock);
847 list_del(&ue->ue_ip_node);
848 spin_unlock(&oi->ip_lock);
849 kfree(ue);
850 }
851}
852
853static void ocfs2_free_write_ctxt(struct inode *inode,
854 struct ocfs2_write_ctxt *wc)
855{
856 ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
857 ocfs2_unlock_pages(wc);
858 brelse(wc->w_di_bh);
859 kfree(wc);
860}
861
862static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
863 struct ocfs2_super *osb, loff_t pos,
864 unsigned len, ocfs2_write_type_t type,
865 struct buffer_head *di_bh)
866{
867 u32 cend;
868 struct ocfs2_write_ctxt *wc;
869
870 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
871 if (!wc)
872 return -ENOMEM;
873
874 wc->w_cpos = pos >> osb->s_clustersize_bits;
875 wc->w_first_new_cpos = UINT_MAX;
876 cend = (pos + len - 1) >> osb->s_clustersize_bits;
877 wc->w_clen = cend - wc->w_cpos + 1;
878 get_bh(di_bh);
879 wc->w_di_bh = di_bh;
880 wc->w_type = type;
881
882 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
883 wc->w_large_pages = 1;
884 else
885 wc->w_large_pages = 0;
886
887 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
888 INIT_LIST_HEAD(&wc->w_unwritten_list);
889
890 *wcp = wc;
891
892 return 0;
893}
894
895/*
896 * If a page has any new buffers, zero them out here, and mark them uptodate
897 * and dirty so they'll be written out (in order to prevent uninitialised
898 * block data from leaking). And clear the new bit.
899 */
900static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
901{
902 unsigned int block_start, block_end;
903 struct buffer_head *head, *bh;
904
905 BUG_ON(!PageLocked(page));
906 if (!page_has_buffers(page))
907 return;
908
909 bh = head = page_buffers(page);
910 block_start = 0;
911 do {
912 block_end = block_start + bh->b_size;
913
914 if (buffer_new(bh)) {
915 if (block_end > from && block_start < to) {
916 if (!PageUptodate(page)) {
917 unsigned start, end;
918
919 start = max(from, block_start);
920 end = min(to, block_end);
921
922 zero_user_segment(page, start, end);
923 set_buffer_uptodate(bh);
924 }
925
926 clear_buffer_new(bh);
927 mark_buffer_dirty(bh);
928 }
929 }
930
931 block_start = block_end;
932 bh = bh->b_this_page;
933 } while (bh != head);
934}
935
936/*
937 * Only called when we have a failure during allocating write to write
938 * zero's to the newly allocated region.
939 */
940static void ocfs2_write_failure(struct inode *inode,
941 struct ocfs2_write_ctxt *wc,
942 loff_t user_pos, unsigned user_len)
943{
944 int i;
945 unsigned from = user_pos & (PAGE_SIZE - 1),
946 to = user_pos + user_len;
947 struct page *tmppage;
948
949 if (wc->w_target_page)
950 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
951
952 for(i = 0; i < wc->w_num_pages; i++) {
953 tmppage = wc->w_pages[i];
954
955 if (tmppage && page_has_buffers(tmppage)) {
956 if (ocfs2_should_order_data(inode))
957 ocfs2_jbd2_file_inode(wc->w_handle, inode);
958
959 block_commit_write(tmppage, from, to);
960 }
961 }
962}
963
964static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
965 struct ocfs2_write_ctxt *wc,
966 struct page *page, u32 cpos,
967 loff_t user_pos, unsigned user_len,
968 int new)
969{
970 int ret;
971 unsigned int map_from = 0, map_to = 0;
972 unsigned int cluster_start, cluster_end;
973 unsigned int user_data_from = 0, user_data_to = 0;
974
975 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
976 &cluster_start, &cluster_end);
977
978 /* treat the write as new if the a hole/lseek spanned across
979 * the page boundary.
980 */
981 new = new | ((i_size_read(inode) <= page_offset(page)) &&
982 (page_offset(page) <= user_pos));
983
984 if (page == wc->w_target_page) {
985 map_from = user_pos & (PAGE_SIZE - 1);
986 map_to = map_from + user_len;
987
988 if (new)
989 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
990 cluster_start, cluster_end,
991 new);
992 else
993 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
994 map_from, map_to, new);
995 if (ret) {
996 mlog_errno(ret);
997 goto out;
998 }
999
1000 user_data_from = map_from;
1001 user_data_to = map_to;
1002 if (new) {
1003 map_from = cluster_start;
1004 map_to = cluster_end;
1005 }
1006 } else {
1007 /*
1008 * If we haven't allocated the new page yet, we
1009 * shouldn't be writing it out without copying user
1010 * data. This is likely a math error from the caller.
1011 */
1012 BUG_ON(!new);
1013
1014 map_from = cluster_start;
1015 map_to = cluster_end;
1016
1017 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1018 cluster_start, cluster_end, new);
1019 if (ret) {
1020 mlog_errno(ret);
1021 goto out;
1022 }
1023 }
1024
1025 /*
1026 * Parts of newly allocated pages need to be zero'd.
1027 *
1028 * Above, we have also rewritten 'to' and 'from' - as far as
1029 * the rest of the function is concerned, the entire cluster
1030 * range inside of a page needs to be written.
1031 *
1032 * We can skip this if the page is up to date - it's already
1033 * been zero'd from being read in as a hole.
1034 */
1035 if (new && !PageUptodate(page))
1036 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1037 cpos, user_data_from, user_data_to);
1038
1039 flush_dcache_page(page);
1040
1041out:
1042 return ret;
1043}
1044
1045/*
1046 * This function will only grab one clusters worth of pages.
1047 */
1048static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1049 struct ocfs2_write_ctxt *wc,
1050 u32 cpos, loff_t user_pos,
1051 unsigned user_len, int new,
1052 struct page *mmap_page)
1053{
1054 int ret = 0, i;
1055 unsigned long start, target_index, end_index, index;
1056 struct inode *inode = mapping->host;
1057 loff_t last_byte;
1058
1059 target_index = user_pos >> PAGE_SHIFT;
1060
1061 /*
1062 * Figure out how many pages we'll be manipulating here. For
1063 * non allocating write, we just change the one
1064 * page. Otherwise, we'll need a whole clusters worth. If we're
1065 * writing past i_size, we only need enough pages to cover the
1066 * last page of the write.
1067 */
1068 if (new) {
1069 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1070 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1071 /*
1072 * We need the index *past* the last page we could possibly
1073 * touch. This is the page past the end of the write or
1074 * i_size, whichever is greater.
1075 */
1076 last_byte = max(user_pos + user_len, i_size_read(inode));
1077 BUG_ON(last_byte < 1);
1078 end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
1079 if ((start + wc->w_num_pages) > end_index)
1080 wc->w_num_pages = end_index - start;
1081 } else {
1082 wc->w_num_pages = 1;
1083 start = target_index;
1084 }
1085 end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
1086
1087 for(i = 0; i < wc->w_num_pages; i++) {
1088 index = start + i;
1089
1090 if (index >= target_index && index <= end_index &&
1091 wc->w_type == OCFS2_WRITE_MMAP) {
1092 /*
1093 * ocfs2_pagemkwrite() is a little different
1094 * and wants us to directly use the page
1095 * passed in.
1096 */
1097 lock_page(mmap_page);
1098
1099 /* Exit and let the caller retry */
1100 if (mmap_page->mapping != mapping) {
1101 WARN_ON(mmap_page->mapping);
1102 unlock_page(mmap_page);
1103 ret = -EAGAIN;
1104 goto out;
1105 }
1106
1107 get_page(mmap_page);
1108 wc->w_pages[i] = mmap_page;
1109 wc->w_target_locked = true;
1110 } else if (index >= target_index && index <= end_index &&
1111 wc->w_type == OCFS2_WRITE_DIRECT) {
1112 /* Direct write has no mapping page. */
1113 wc->w_pages[i] = NULL;
1114 continue;
1115 } else {
1116 wc->w_pages[i] = find_or_create_page(mapping, index,
1117 GFP_NOFS);
1118 if (!wc->w_pages[i]) {
1119 ret = -ENOMEM;
1120 mlog_errno(ret);
1121 goto out;
1122 }
1123 }
1124 wait_for_stable_page(wc->w_pages[i]);
1125
1126 if (index == target_index)
1127 wc->w_target_page = wc->w_pages[i];
1128 }
1129out:
1130 if (ret)
1131 wc->w_target_locked = false;
1132 return ret;
1133}
1134
1135/*
1136 * Prepare a single cluster for write one cluster into the file.
1137 */
1138static int ocfs2_write_cluster(struct address_space *mapping,
1139 u32 *phys, unsigned int new,
1140 unsigned int clear_unwritten,
1141 unsigned int should_zero,
1142 struct ocfs2_alloc_context *data_ac,
1143 struct ocfs2_alloc_context *meta_ac,
1144 struct ocfs2_write_ctxt *wc, u32 cpos,
1145 loff_t user_pos, unsigned user_len)
1146{
1147 int ret, i;
1148 u64 p_blkno;
1149 struct inode *inode = mapping->host;
1150 struct ocfs2_extent_tree et;
1151 int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1152
1153 if (new) {
1154 u32 tmp_pos;
1155
1156 /*
1157 * This is safe to call with the page locks - it won't take
1158 * any additional semaphores or cluster locks.
1159 */
1160 tmp_pos = cpos;
1161 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1162 &tmp_pos, 1, !clear_unwritten,
1163 wc->w_di_bh, wc->w_handle,
1164 data_ac, meta_ac, NULL);
1165 /*
1166 * This shouldn't happen because we must have already
1167 * calculated the correct meta data allocation required. The
1168 * internal tree allocation code should know how to increase
1169 * transaction credits itself.
1170 *
1171 * If need be, we could handle -EAGAIN for a
1172 * RESTART_TRANS here.
1173 */
1174 mlog_bug_on_msg(ret == -EAGAIN,
1175 "Inode %llu: EAGAIN return during allocation.\n",
1176 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1177 if (ret < 0) {
1178 mlog_errno(ret);
1179 goto out;
1180 }
1181 } else if (clear_unwritten) {
1182 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1183 wc->w_di_bh);
1184 ret = ocfs2_mark_extent_written(inode, &et,
1185 wc->w_handle, cpos, 1, *phys,
1186 meta_ac, &wc->w_dealloc);
1187 if (ret < 0) {
1188 mlog_errno(ret);
1189 goto out;
1190 }
1191 }
1192
1193 /*
1194 * The only reason this should fail is due to an inability to
1195 * find the extent added.
1196 */
1197 ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
1198 if (ret < 0) {
1199 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1200 "at logical cluster %u",
1201 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
1202 goto out;
1203 }
1204
1205 BUG_ON(*phys == 0);
1206
1207 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1208 if (!should_zero)
1209 p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1210
1211 for(i = 0; i < wc->w_num_pages; i++) {
1212 int tmpret;
1213
1214 /* This is the direct io target page. */
1215 if (wc->w_pages[i] == NULL) {
1216 p_blkno++;
1217 continue;
1218 }
1219
1220 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1221 wc->w_pages[i], cpos,
1222 user_pos, user_len,
1223 should_zero);
1224 if (tmpret) {
1225 mlog_errno(tmpret);
1226 if (ret == 0)
1227 ret = tmpret;
1228 }
1229 }
1230
1231 /*
1232 * We only have cleanup to do in case of allocating write.
1233 */
1234 if (ret && new)
1235 ocfs2_write_failure(inode, wc, user_pos, user_len);
1236
1237out:
1238
1239 return ret;
1240}
1241
1242static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1243 struct ocfs2_alloc_context *data_ac,
1244 struct ocfs2_alloc_context *meta_ac,
1245 struct ocfs2_write_ctxt *wc,
1246 loff_t pos, unsigned len)
1247{
1248 int ret, i;
1249 loff_t cluster_off;
1250 unsigned int local_len = len;
1251 struct ocfs2_write_cluster_desc *desc;
1252 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1253
1254 for (i = 0; i < wc->w_clen; i++) {
1255 desc = &wc->w_desc[i];
1256
1257 /*
1258 * We have to make sure that the total write passed in
1259 * doesn't extend past a single cluster.
1260 */
1261 local_len = len;
1262 cluster_off = pos & (osb->s_clustersize - 1);
1263 if ((cluster_off + local_len) > osb->s_clustersize)
1264 local_len = osb->s_clustersize - cluster_off;
1265
1266 ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1267 desc->c_new,
1268 desc->c_clear_unwritten,
1269 desc->c_needs_zero,
1270 data_ac, meta_ac,
1271 wc, desc->c_cpos, pos, local_len);
1272 if (ret) {
1273 mlog_errno(ret);
1274 goto out;
1275 }
1276
1277 len -= local_len;
1278 pos += local_len;
1279 }
1280
1281 ret = 0;
1282out:
1283 return ret;
1284}
1285
1286/*
1287 * ocfs2_write_end() wants to know which parts of the target page it
1288 * should complete the write on. It's easiest to compute them ahead of
1289 * time when a more complete view of the write is available.
1290 */
1291static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1292 struct ocfs2_write_ctxt *wc,
1293 loff_t pos, unsigned len, int alloc)
1294{
1295 struct ocfs2_write_cluster_desc *desc;
1296
1297 wc->w_target_from = pos & (PAGE_SIZE - 1);
1298 wc->w_target_to = wc->w_target_from + len;
1299
1300 if (alloc == 0)
1301 return;
1302
1303 /*
1304 * Allocating write - we may have different boundaries based
1305 * on page size and cluster size.
1306 *
1307 * NOTE: We can no longer compute one value from the other as
1308 * the actual write length and user provided length may be
1309 * different.
1310 */
1311
1312 if (wc->w_large_pages) {
1313 /*
1314 * We only care about the 1st and last cluster within
1315 * our range and whether they should be zero'd or not. Either
1316 * value may be extended out to the start/end of a
1317 * newly allocated cluster.
1318 */
1319 desc = &wc->w_desc[0];
1320 if (desc->c_needs_zero)
1321 ocfs2_figure_cluster_boundaries(osb,
1322 desc->c_cpos,
1323 &wc->w_target_from,
1324 NULL);
1325
1326 desc = &wc->w_desc[wc->w_clen - 1];
1327 if (desc->c_needs_zero)
1328 ocfs2_figure_cluster_boundaries(osb,
1329 desc->c_cpos,
1330 NULL,
1331 &wc->w_target_to);
1332 } else {
1333 wc->w_target_from = 0;
1334 wc->w_target_to = PAGE_SIZE;
1335 }
1336}
1337
1338/*
1339 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1340 * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1341 * by the direct io procedure.
1342 * If this is a new extent that allocated by direct io, we should mark it in
1343 * the ip_unwritten_list.
1344 */
1345static int ocfs2_unwritten_check(struct inode *inode,
1346 struct ocfs2_write_ctxt *wc,
1347 struct ocfs2_write_cluster_desc *desc)
1348{
1349 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1350 struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1351 int ret = 0;
1352
1353 if (!desc->c_needs_zero)
1354 return 0;
1355
1356retry:
1357 spin_lock(&oi->ip_lock);
1358 /* Needs not to zero no metter buffer or direct. The one who is zero
1359 * the cluster is doing zero. And he will clear unwritten after all
1360 * cluster io finished. */
1361 list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1362 if (desc->c_cpos == ue->ue_cpos) {
1363 BUG_ON(desc->c_new);
1364 desc->c_needs_zero = 0;
1365 desc->c_clear_unwritten = 0;
1366 goto unlock;
1367 }
1368 }
1369
1370 if (wc->w_type != OCFS2_WRITE_DIRECT)
1371 goto unlock;
1372
1373 if (new == NULL) {
1374 spin_unlock(&oi->ip_lock);
1375 new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1376 GFP_NOFS);
1377 if (new == NULL) {
1378 ret = -ENOMEM;
1379 goto out;
1380 }
1381 goto retry;
1382 }
1383 /* This direct write will doing zero. */
1384 new->ue_cpos = desc->c_cpos;
1385 new->ue_phys = desc->c_phys;
1386 desc->c_clear_unwritten = 0;
1387 list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1388 list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1389 new = NULL;
1390unlock:
1391 spin_unlock(&oi->ip_lock);
1392out:
1393 if (new)
1394 kfree(new);
1395 return ret;
1396}
1397
1398/*
1399 * Populate each single-cluster write descriptor in the write context
1400 * with information about the i/o to be done.
1401 *
1402 * Returns the number of clusters that will have to be allocated, as
1403 * well as a worst case estimate of the number of extent records that
1404 * would have to be created during a write to an unwritten region.
1405 */
1406static int ocfs2_populate_write_desc(struct inode *inode,
1407 struct ocfs2_write_ctxt *wc,
1408 unsigned int *clusters_to_alloc,
1409 unsigned int *extents_to_split)
1410{
1411 int ret;
1412 struct ocfs2_write_cluster_desc *desc;
1413 unsigned int num_clusters = 0;
1414 unsigned int ext_flags = 0;
1415 u32 phys = 0;
1416 int i;
1417
1418 *clusters_to_alloc = 0;
1419 *extents_to_split = 0;
1420
1421 for (i = 0; i < wc->w_clen; i++) {
1422 desc = &wc->w_desc[i];
1423 desc->c_cpos = wc->w_cpos + i;
1424
1425 if (num_clusters == 0) {
1426 /*
1427 * Need to look up the next extent record.
1428 */
1429 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1430 &num_clusters, &ext_flags);
1431 if (ret) {
1432 mlog_errno(ret);
1433 goto out;
1434 }
1435
1436 /* We should already CoW the refcountd extent. */
1437 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1438
1439 /*
1440 * Assume worst case - that we're writing in
1441 * the middle of the extent.
1442 *
1443 * We can assume that the write proceeds from
1444 * left to right, in which case the extent
1445 * insert code is smart enough to coalesce the
1446 * next splits into the previous records created.
1447 */
1448 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1449 *extents_to_split = *extents_to_split + 2;
1450 } else if (phys) {
1451 /*
1452 * Only increment phys if it doesn't describe
1453 * a hole.
1454 */
1455 phys++;
1456 }
1457
1458 /*
1459 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1460 * file that got extended. w_first_new_cpos tells us
1461 * where the newly allocated clusters are so we can
1462 * zero them.
1463 */
1464 if (desc->c_cpos >= wc->w_first_new_cpos) {
1465 BUG_ON(phys == 0);
1466 desc->c_needs_zero = 1;
1467 }
1468
1469 desc->c_phys = phys;
1470 if (phys == 0) {
1471 desc->c_new = 1;
1472 desc->c_needs_zero = 1;
1473 desc->c_clear_unwritten = 1;
1474 *clusters_to_alloc = *clusters_to_alloc + 1;
1475 }
1476
1477 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1478 desc->c_clear_unwritten = 1;
1479 desc->c_needs_zero = 1;
1480 }
1481
1482 ret = ocfs2_unwritten_check(inode, wc, desc);
1483 if (ret) {
1484 mlog_errno(ret);
1485 goto out;
1486 }
1487
1488 num_clusters--;
1489 }
1490
1491 ret = 0;
1492out:
1493 return ret;
1494}
1495
1496static int ocfs2_write_begin_inline(struct address_space *mapping,
1497 struct inode *inode,
1498 struct ocfs2_write_ctxt *wc)
1499{
1500 int ret;
1501 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1502 struct page *page;
1503 handle_t *handle;
1504 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1505
1506 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1507 if (IS_ERR(handle)) {
1508 ret = PTR_ERR(handle);
1509 mlog_errno(ret);
1510 goto out;
1511 }
1512
1513 page = find_or_create_page(mapping, 0, GFP_NOFS);
1514 if (!page) {
1515 ocfs2_commit_trans(osb, handle);
1516 ret = -ENOMEM;
1517 mlog_errno(ret);
1518 goto out;
1519 }
1520 /*
1521 * If we don't set w_num_pages then this page won't get unlocked
1522 * and freed on cleanup of the write context.
1523 */
1524 wc->w_pages[0] = wc->w_target_page = page;
1525 wc->w_num_pages = 1;
1526
1527 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1528 OCFS2_JOURNAL_ACCESS_WRITE);
1529 if (ret) {
1530 ocfs2_commit_trans(osb, handle);
1531
1532 mlog_errno(ret);
1533 goto out;
1534 }
1535
1536 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1537 ocfs2_set_inode_data_inline(inode, di);
1538
1539 if (!PageUptodate(page)) {
1540 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1541 if (ret) {
1542 ocfs2_commit_trans(osb, handle);
1543
1544 goto out;
1545 }
1546 }
1547
1548 wc->w_handle = handle;
1549out:
1550 return ret;
1551}
1552
1553int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1554{
1555 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1556
1557 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1558 return 1;
1559 return 0;
1560}
1561
1562static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1563 struct inode *inode, loff_t pos,
1564 unsigned len, struct page *mmap_page,
1565 struct ocfs2_write_ctxt *wc)
1566{
1567 int ret, written = 0;
1568 loff_t end = pos + len;
1569 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1570 struct ocfs2_dinode *di = NULL;
1571
1572 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1573 len, (unsigned long long)pos,
1574 oi->ip_dyn_features);
1575
1576 /*
1577 * Handle inodes which already have inline data 1st.
1578 */
1579 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1580 if (mmap_page == NULL &&
1581 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1582 goto do_inline_write;
1583
1584 /*
1585 * The write won't fit - we have to give this inode an
1586 * inline extent list now.
1587 */
1588 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1589 if (ret)
1590 mlog_errno(ret);
1591 goto out;
1592 }
1593
1594 /*
1595 * Check whether the inode can accept inline data.
1596 */
1597 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1598 return 0;
1599
1600 /*
1601 * Check whether the write can fit.
1602 */
1603 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1604 if (mmap_page ||
1605 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1606 return 0;
1607
1608do_inline_write:
1609 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1610 if (ret) {
1611 mlog_errno(ret);
1612 goto out;
1613 }
1614
1615 /*
1616 * This signals to the caller that the data can be written
1617 * inline.
1618 */
1619 written = 1;
1620out:
1621 return written ? written : ret;
1622}
1623
1624/*
1625 * This function only does anything for file systems which can't
1626 * handle sparse files.
1627 *
1628 * What we want to do here is fill in any hole between the current end
1629 * of allocation and the end of our write. That way the rest of the
1630 * write path can treat it as an non-allocating write, which has no
1631 * special case code for sparse/nonsparse files.
1632 */
1633static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1634 struct buffer_head *di_bh,
1635 loff_t pos, unsigned len,
1636 struct ocfs2_write_ctxt *wc)
1637{
1638 int ret;
1639 loff_t newsize = pos + len;
1640
1641 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1642
1643 if (newsize <= i_size_read(inode))
1644 return 0;
1645
1646 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1647 if (ret)
1648 mlog_errno(ret);
1649
1650 /* There is no wc if this is call from direct. */
1651 if (wc)
1652 wc->w_first_new_cpos =
1653 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1654
1655 return ret;
1656}
1657
1658static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1659 loff_t pos)
1660{
1661 int ret = 0;
1662
1663 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1664 if (pos > i_size_read(inode))
1665 ret = ocfs2_zero_extend(inode, di_bh, pos);
1666
1667 return ret;
1668}
1669
1670int ocfs2_write_begin_nolock(struct address_space *mapping,
1671 loff_t pos, unsigned len, ocfs2_write_type_t type,
1672 struct page **pagep, void **fsdata,
1673 struct buffer_head *di_bh, struct page *mmap_page)
1674{
1675 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1676 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1677 struct ocfs2_write_ctxt *wc;
1678 struct inode *inode = mapping->host;
1679 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1680 struct ocfs2_dinode *di;
1681 struct ocfs2_alloc_context *data_ac = NULL;
1682 struct ocfs2_alloc_context *meta_ac = NULL;
1683 handle_t *handle;
1684 struct ocfs2_extent_tree et;
1685 int try_free = 1, ret1;
1686
1687try_again:
1688 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1689 if (ret) {
1690 mlog_errno(ret);
1691 return ret;
1692 }
1693
1694 if (ocfs2_supports_inline_data(osb)) {
1695 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1696 mmap_page, wc);
1697 if (ret == 1) {
1698 ret = 0;
1699 goto success;
1700 }
1701 if (ret < 0) {
1702 mlog_errno(ret);
1703 goto out;
1704 }
1705 }
1706
1707 /* Direct io change i_size late, should not zero tail here. */
1708 if (type != OCFS2_WRITE_DIRECT) {
1709 if (ocfs2_sparse_alloc(osb))
1710 ret = ocfs2_zero_tail(inode, di_bh, pos);
1711 else
1712 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1713 len, wc);
1714 if (ret) {
1715 mlog_errno(ret);
1716 goto out;
1717 }
1718 }
1719
1720 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1721 if (ret < 0) {
1722 mlog_errno(ret);
1723 goto out;
1724 } else if (ret == 1) {
1725 clusters_need = wc->w_clen;
1726 ret = ocfs2_refcount_cow(inode, di_bh,
1727 wc->w_cpos, wc->w_clen, UINT_MAX);
1728 if (ret) {
1729 mlog_errno(ret);
1730 goto out;
1731 }
1732 }
1733
1734 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1735 &extents_to_split);
1736 if (ret) {
1737 mlog_errno(ret);
1738 goto out;
1739 }
1740 clusters_need += clusters_to_alloc;
1741
1742 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1743
1744 trace_ocfs2_write_begin_nolock(
1745 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1746 (long long)i_size_read(inode),
1747 le32_to_cpu(di->i_clusters),
1748 pos, len, type, mmap_page,
1749 clusters_to_alloc, extents_to_split);
1750
1751 /*
1752 * We set w_target_from, w_target_to here so that
1753 * ocfs2_write_end() knows which range in the target page to
1754 * write out. An allocation requires that we write the entire
1755 * cluster range.
1756 */
1757 if (clusters_to_alloc || extents_to_split) {
1758 /*
1759 * XXX: We are stretching the limits of
1760 * ocfs2_lock_allocators(). It greatly over-estimates
1761 * the work to be done.
1762 */
1763 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1764 wc->w_di_bh);
1765 ret = ocfs2_lock_allocators(inode, &et,
1766 clusters_to_alloc, extents_to_split,
1767 &data_ac, &meta_ac);
1768 if (ret) {
1769 mlog_errno(ret);
1770 goto out;
1771 }
1772
1773 if (data_ac)
1774 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1775
1776 credits = ocfs2_calc_extend_credits(inode->i_sb,
1777 &di->id2.i_list);
1778 } else if (type == OCFS2_WRITE_DIRECT)
1779 /* direct write needs not to start trans if no extents alloc. */
1780 goto success;
1781
1782 /*
1783 * We have to zero sparse allocated clusters, unwritten extent clusters,
1784 * and non-sparse clusters we just extended. For non-sparse writes,
1785 * we know zeros will only be needed in the first and/or last cluster.
1786 */
1787 if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1788 wc->w_desc[wc->w_clen - 1].c_needs_zero))
1789 cluster_of_pages = 1;
1790 else
1791 cluster_of_pages = 0;
1792
1793 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1794
1795 handle = ocfs2_start_trans(osb, credits);
1796 if (IS_ERR(handle)) {
1797 ret = PTR_ERR(handle);
1798 mlog_errno(ret);
1799 goto out;
1800 }
1801
1802 wc->w_handle = handle;
1803
1804 if (clusters_to_alloc) {
1805 ret = dquot_alloc_space_nodirty(inode,
1806 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1807 if (ret)
1808 goto out_commit;
1809 }
1810
1811 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1812 OCFS2_JOURNAL_ACCESS_WRITE);
1813 if (ret) {
1814 mlog_errno(ret);
1815 goto out_quota;
1816 }
1817
1818 /*
1819 * Fill our page array first. That way we've grabbed enough so
1820 * that we can zero and flush if we error after adding the
1821 * extent.
1822 */
1823 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1824 cluster_of_pages, mmap_page);
1825 if (ret && ret != -EAGAIN) {
1826 mlog_errno(ret);
1827 goto out_quota;
1828 }
1829
1830 /*
1831 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1832 * the target page. In this case, we exit with no error and no target
1833 * page. This will trigger the caller, page_mkwrite(), to re-try
1834 * the operation.
1835 */
1836 if (ret == -EAGAIN) {
1837 BUG_ON(wc->w_target_page);
1838 ret = 0;
1839 goto out_quota;
1840 }
1841
1842 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1843 len);
1844 if (ret) {
1845 mlog_errno(ret);
1846 goto out_quota;
1847 }
1848
1849 if (data_ac)
1850 ocfs2_free_alloc_context(data_ac);
1851 if (meta_ac)
1852 ocfs2_free_alloc_context(meta_ac);
1853
1854success:
1855 if (pagep)
1856 *pagep = wc->w_target_page;
1857 *fsdata = wc;
1858 return 0;
1859out_quota:
1860 if (clusters_to_alloc)
1861 dquot_free_space(inode,
1862 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1863out_commit:
1864 ocfs2_commit_trans(osb, handle);
1865
1866out:
1867 /*
1868 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1869 * even in case of error here like ENOSPC and ENOMEM. So, we need
1870 * to unlock the target page manually to prevent deadlocks when
1871 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1872 * to VM code.
1873 */
1874 if (wc->w_target_locked)
1875 unlock_page(mmap_page);
1876
1877 ocfs2_free_write_ctxt(inode, wc);
1878
1879 if (data_ac) {
1880 ocfs2_free_alloc_context(data_ac);
1881 data_ac = NULL;
1882 }
1883 if (meta_ac) {
1884 ocfs2_free_alloc_context(meta_ac);
1885 meta_ac = NULL;
1886 }
1887
1888 if (ret == -ENOSPC && try_free) {
1889 /*
1890 * Try to free some truncate log so that we can have enough
1891 * clusters to allocate.
1892 */
1893 try_free = 0;
1894
1895 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1896 if (ret1 == 1)
1897 goto try_again;
1898
1899 if (ret1 < 0)
1900 mlog_errno(ret1);
1901 }
1902
1903 return ret;
1904}
1905
1906static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1907 loff_t pos, unsigned len, unsigned flags,
1908 struct page **pagep, void **fsdata)
1909{
1910 int ret;
1911 struct buffer_head *di_bh = NULL;
1912 struct inode *inode = mapping->host;
1913
1914 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1915 if (ret) {
1916 mlog_errno(ret);
1917 return ret;
1918 }
1919
1920 /*
1921 * Take alloc sem here to prevent concurrent lookups. That way
1922 * the mapping, zeroing and tree manipulation within
1923 * ocfs2_write() will be safe against ->readpage(). This
1924 * should also serve to lock out allocation from a shared
1925 * writeable region.
1926 */
1927 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1928
1929 ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1930 pagep, fsdata, di_bh, NULL);
1931 if (ret) {
1932 mlog_errno(ret);
1933 goto out_fail;
1934 }
1935
1936 brelse(di_bh);
1937
1938 return 0;
1939
1940out_fail:
1941 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1942
1943 brelse(di_bh);
1944 ocfs2_inode_unlock(inode, 1);
1945
1946 return ret;
1947}
1948
1949static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1950 unsigned len, unsigned *copied,
1951 struct ocfs2_dinode *di,
1952 struct ocfs2_write_ctxt *wc)
1953{
1954 void *kaddr;
1955
1956 if (unlikely(*copied < len)) {
1957 if (!PageUptodate(wc->w_target_page)) {
1958 *copied = 0;
1959 return;
1960 }
1961 }
1962
1963 kaddr = kmap_atomic(wc->w_target_page);
1964 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1965 kunmap_atomic(kaddr);
1966
1967 trace_ocfs2_write_end_inline(
1968 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1969 (unsigned long long)pos, *copied,
1970 le16_to_cpu(di->id2.i_data.id_count),
1971 le16_to_cpu(di->i_dyn_features));
1972}
1973
1974int ocfs2_write_end_nolock(struct address_space *mapping,
1975 loff_t pos, unsigned len, unsigned copied, void *fsdata)
1976{
1977 int i, ret;
1978 unsigned from, to, start = pos & (PAGE_SIZE - 1);
1979 struct inode *inode = mapping->host;
1980 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1981 struct ocfs2_write_ctxt *wc = fsdata;
1982 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1983 handle_t *handle = wc->w_handle;
1984 struct page *tmppage;
1985
1986 BUG_ON(!list_empty(&wc->w_unwritten_list));
1987
1988 if (handle) {
1989 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1990 wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1991 if (ret) {
1992 copied = ret;
1993 mlog_errno(ret);
1994 goto out;
1995 }
1996 }
1997
1998 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1999 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2000 goto out_write_size;
2001 }
2002
2003 if (unlikely(copied < len) && wc->w_target_page) {
2004 if (!PageUptodate(wc->w_target_page))
2005 copied = 0;
2006
2007 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2008 start+len);
2009 }
2010 if (wc->w_target_page)
2011 flush_dcache_page(wc->w_target_page);
2012
2013 for(i = 0; i < wc->w_num_pages; i++) {
2014 tmppage = wc->w_pages[i];
2015
2016 /* This is the direct io target page. */
2017 if (tmppage == NULL)
2018 continue;
2019
2020 if (tmppage == wc->w_target_page) {
2021 from = wc->w_target_from;
2022 to = wc->w_target_to;
2023
2024 BUG_ON(from > PAGE_SIZE ||
2025 to > PAGE_SIZE ||
2026 to < from);
2027 } else {
2028 /*
2029 * Pages adjacent to the target (if any) imply
2030 * a hole-filling write in which case we want
2031 * to flush their entire range.
2032 */
2033 from = 0;
2034 to = PAGE_SIZE;
2035 }
2036
2037 if (page_has_buffers(tmppage)) {
2038 if (handle && ocfs2_should_order_data(inode))
2039 ocfs2_jbd2_file_inode(handle, inode);
2040 block_commit_write(tmppage, from, to);
2041 }
2042 }
2043
2044out_write_size:
2045 /* Direct io do not update i_size here. */
2046 if (wc->w_type != OCFS2_WRITE_DIRECT) {
2047 pos += copied;
2048 if (pos > i_size_read(inode)) {
2049 i_size_write(inode, pos);
2050 mark_inode_dirty(inode);
2051 }
2052 inode->i_blocks = ocfs2_inode_sector_count(inode);
2053 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2054 inode->i_mtime = inode->i_ctime = current_time(inode);
2055 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2056 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2057 if (handle)
2058 ocfs2_update_inode_fsync_trans(handle, inode, 1);
2059 }
2060 if (handle)
2061 ocfs2_journal_dirty(handle, wc->w_di_bh);
2062
2063out:
2064 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2065 * lock, or it will cause a deadlock since journal commit threads holds
2066 * this lock and will ask for the page lock when flushing the data.
2067 * put it here to preserve the unlock order.
2068 */
2069 ocfs2_unlock_pages(wc);
2070
2071 if (handle)
2072 ocfs2_commit_trans(osb, handle);
2073
2074 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2075
2076 brelse(wc->w_di_bh);
2077 kfree(wc);
2078
2079 return copied;
2080}
2081
2082static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2083 loff_t pos, unsigned len, unsigned copied,
2084 struct page *page, void *fsdata)
2085{
2086 int ret;
2087 struct inode *inode = mapping->host;
2088
2089 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
2090
2091 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2092 ocfs2_inode_unlock(inode, 1);
2093
2094 return ret;
2095}
2096
2097struct ocfs2_dio_write_ctxt {
2098 struct list_head dw_zero_list;
2099 unsigned dw_zero_count;
2100 int dw_orphaned;
2101 pid_t dw_writer_pid;
2102};
2103
2104static struct ocfs2_dio_write_ctxt *
2105ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2106{
2107 struct ocfs2_dio_write_ctxt *dwc = NULL;
2108
2109 if (bh->b_private)
2110 return bh->b_private;
2111
2112 dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2113 if (dwc == NULL)
2114 return NULL;
2115 INIT_LIST_HEAD(&dwc->dw_zero_list);
2116 dwc->dw_zero_count = 0;
2117 dwc->dw_orphaned = 0;
2118 dwc->dw_writer_pid = task_pid_nr(current);
2119 bh->b_private = dwc;
2120 *alloc = 1;
2121
2122 return dwc;
2123}
2124
2125static void ocfs2_dio_free_write_ctx(struct inode *inode,
2126 struct ocfs2_dio_write_ctxt *dwc)
2127{
2128 ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2129 kfree(dwc);
2130}
2131
2132/*
2133 * TODO: Make this into a generic get_blocks function.
2134 *
2135 * From do_direct_io in direct-io.c:
2136 * "So what we do is to permit the ->get_blocks function to populate
2137 * bh.b_size with the size of IO which is permitted at this offset and
2138 * this i_blkbits."
2139 *
2140 * This function is called directly from get_more_blocks in direct-io.c.
2141 *
2142 * called like this: dio->get_blocks(dio->inode, fs_startblk,
2143 * fs_count, map_bh, dio->rw == WRITE);
2144 */
2145static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
2146 struct buffer_head *bh_result, int create)
2147{
2148 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2149 struct ocfs2_inode_info *oi = OCFS2_I(inode);
2150 struct ocfs2_write_ctxt *wc;
2151 struct ocfs2_write_cluster_desc *desc = NULL;
2152 struct ocfs2_dio_write_ctxt *dwc = NULL;
2153 struct buffer_head *di_bh = NULL;
2154 u64 p_blkno;
2155 unsigned int i_blkbits = inode->i_sb->s_blocksize_bits;
2156 loff_t pos = iblock << i_blkbits;
2157 sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits;
2158 unsigned len, total_len = bh_result->b_size;
2159 int ret = 0, first_get_block = 0;
2160
2161 len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2162 len = min(total_len, len);
2163
2164 /*
2165 * bh_result->b_size is count in get_more_blocks according to write
2166 * "pos" and "end", we need map twice to return different buffer state:
2167 * 1. area in file size, not set NEW;
2168 * 2. area out file size, set NEW.
2169 *
2170 * iblock endblk
2171 * |--------|---------|---------|---------
2172 * |<-------area in file------->|
2173 */
2174
2175 if ((iblock <= endblk) &&
2176 ((iblock + ((len - 1) >> i_blkbits)) > endblk))
2177 len = (endblk - iblock + 1) << i_blkbits;
2178
2179 mlog(0, "get block of %lu at %llu:%u req %u\n",
2180 inode->i_ino, pos, len, total_len);
2181
2182 /*
2183 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2184 * we may need to add it to orphan dir. So can not fall to fast path
2185 * while file size will be changed.
2186 */
2187 if (pos + total_len <= i_size_read(inode)) {
2188
2189 /* This is the fast path for re-write. */
2190 ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
2191 if (buffer_mapped(bh_result) &&
2192 !buffer_new(bh_result) &&
2193 ret == 0)
2194 goto out;
2195
2196 /* Clear state set by ocfs2_get_block. */
2197 bh_result->b_state = 0;
2198 }
2199
2200 dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2201 if (unlikely(dwc == NULL)) {
2202 ret = -ENOMEM;
2203 mlog_errno(ret);
2204 goto out;
2205 }
2206
2207 if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2208 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2209 !dwc->dw_orphaned) {
2210 /*
2211 * when we are going to alloc extents beyond file size, add the
2212 * inode to orphan dir, so we can recall those spaces when
2213 * system crashed during write.
2214 */
2215 ret = ocfs2_add_inode_to_orphan(osb, inode);
2216 if (ret < 0) {
2217 mlog_errno(ret);
2218 goto out;
2219 }
2220 dwc->dw_orphaned = 1;
2221 }
2222
2223 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2224 if (ret) {
2225 mlog_errno(ret);
2226 goto out;
2227 }
2228
2229 down_write(&oi->ip_alloc_sem);
2230
2231 if (first_get_block) {
2232 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
2233 ret = ocfs2_zero_tail(inode, di_bh, pos);
2234 else
2235 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2236 total_len, NULL);
2237 if (ret < 0) {
2238 mlog_errno(ret);
2239 goto unlock;
2240 }
2241 }
2242
2243 ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2244 OCFS2_WRITE_DIRECT, NULL,
2245 (void **)&wc, di_bh, NULL);
2246 if (ret) {
2247 mlog_errno(ret);
2248 goto unlock;
2249 }
2250
2251 desc = &wc->w_desc[0];
2252
2253 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2254 BUG_ON(p_blkno == 0);
2255 p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2256
2257 map_bh(bh_result, inode->i_sb, p_blkno);
2258 bh_result->b_size = len;
2259 if (desc->c_needs_zero)
2260 set_buffer_new(bh_result);
2261
2262 if (iblock > endblk)
2263 set_buffer_new(bh_result);
2264
2265 /* May sleep in end_io. It should not happen in a irq context. So defer
2266 * it to dio work queue. */
2267 set_buffer_defer_completion(bh_result);
2268
2269 if (!list_empty(&wc->w_unwritten_list)) {
2270 struct ocfs2_unwritten_extent *ue = NULL;
2271
2272 ue = list_first_entry(&wc->w_unwritten_list,
2273 struct ocfs2_unwritten_extent,
2274 ue_node);
2275 BUG_ON(ue->ue_cpos != desc->c_cpos);
2276 /* The physical address may be 0, fill it. */
2277 ue->ue_phys = desc->c_phys;
2278
2279 list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2280 dwc->dw_zero_count++;
2281 }
2282
2283 ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
2284 BUG_ON(ret != len);
2285 ret = 0;
2286unlock:
2287 up_write(&oi->ip_alloc_sem);
2288 ocfs2_inode_unlock(inode, 1);
2289 brelse(di_bh);
2290out:
2291 if (ret < 0)
2292 ret = -EIO;
2293 return ret;
2294}
2295
2296static int ocfs2_dio_end_io_write(struct inode *inode,
2297 struct ocfs2_dio_write_ctxt *dwc,
2298 loff_t offset,
2299 ssize_t bytes)
2300{
2301 struct ocfs2_cached_dealloc_ctxt dealloc;
2302 struct ocfs2_extent_tree et;
2303 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2304 struct ocfs2_inode_info *oi = OCFS2_I(inode);
2305 struct ocfs2_unwritten_extent *ue = NULL;
2306 struct buffer_head *di_bh = NULL;
2307 struct ocfs2_dinode *di;
2308 struct ocfs2_alloc_context *data_ac = NULL;
2309 struct ocfs2_alloc_context *meta_ac = NULL;
2310 handle_t *handle = NULL;
2311 loff_t end = offset + bytes;
2312 int ret = 0, credits = 0, locked = 0;
2313
2314 ocfs2_init_dealloc_ctxt(&dealloc);
2315
2316 /* We do clear unwritten, delete orphan, change i_size here. If neither
2317 * of these happen, we can skip all this. */
2318 if (list_empty(&dwc->dw_zero_list) &&
2319 end <= i_size_read(inode) &&
2320 !dwc->dw_orphaned)
2321 goto out;
2322
2323 /* ocfs2_file_write_iter will get i_mutex, so we need not lock if we
2324 * are in that context. */
2325 if (dwc->dw_writer_pid != task_pid_nr(current)) {
2326 inode_lock(inode);
2327 locked = 1;
2328 }
2329
2330 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2331 if (ret < 0) {
2332 mlog_errno(ret);
2333 goto out;
2334 }
2335
2336 down_write(&oi->ip_alloc_sem);
2337
2338 /* Delete orphan before acquire i_mutex. */
2339 if (dwc->dw_orphaned) {
2340 BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2341
2342 end = end > i_size_read(inode) ? end : 0;
2343
2344 ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2345 !!end, end);
2346 if (ret < 0)
2347 mlog_errno(ret);
2348 }
2349
2350 di = (struct ocfs2_dinode *)di_bh->b_data;
2351
2352 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2353
2354 ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2355 &data_ac, &meta_ac);
2356 if (ret) {
2357 mlog_errno(ret);
2358 goto unlock;
2359 }
2360
2361 credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2362
2363 handle = ocfs2_start_trans(osb, credits);
2364 if (IS_ERR(handle)) {
2365 ret = PTR_ERR(handle);
2366 mlog_errno(ret);
2367 goto unlock;
2368 }
2369 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2370 OCFS2_JOURNAL_ACCESS_WRITE);
2371 if (ret) {
2372 mlog_errno(ret);
2373 goto commit;
2374 }
2375
2376 list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2377 ret = ocfs2_mark_extent_written(inode, &et, handle,
2378 ue->ue_cpos, 1,
2379 ue->ue_phys,
2380 meta_ac, &dealloc);
2381 if (ret < 0) {
2382 mlog_errno(ret);
2383 break;
2384 }
2385 }
2386
2387 if (end > i_size_read(inode)) {
2388 ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2389 if (ret < 0)
2390 mlog_errno(ret);
2391 }
2392commit:
2393 ocfs2_commit_trans(osb, handle);
2394unlock:
2395 up_write(&oi->ip_alloc_sem);
2396 ocfs2_inode_unlock(inode, 1);
2397 brelse(di_bh);
2398out:
2399 if (data_ac)
2400 ocfs2_free_alloc_context(data_ac);
2401 if (meta_ac)
2402 ocfs2_free_alloc_context(meta_ac);
2403 ocfs2_run_deallocs(osb, &dealloc);
2404 if (locked)
2405 inode_unlock(inode);
2406 ocfs2_dio_free_write_ctx(inode, dwc);
2407
2408 return ret;
2409}
2410
2411/*
2412 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
2413 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
2414 * to protect io on one node from truncation on another.
2415 */
2416static int ocfs2_dio_end_io(struct kiocb *iocb,
2417 loff_t offset,
2418 ssize_t bytes,
2419 void *private)
2420{
2421 struct inode *inode = file_inode(iocb->ki_filp);
2422 int level;
2423 int ret = 0;
2424
2425 /* this io's submitter should not have unlocked this before we could */
2426 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2427
2428 if (bytes <= 0)
2429 mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld",
2430 (long long)bytes);
2431 if (private) {
2432 if (bytes > 0)
2433 ret = ocfs2_dio_end_io_write(inode, private, offset,
2434 bytes);
2435 else
2436 ocfs2_dio_free_write_ctx(inode, private);
2437 }
2438
2439 ocfs2_iocb_clear_rw_locked(iocb);
2440
2441 level = ocfs2_iocb_rw_locked_level(iocb);
2442 ocfs2_rw_unlock(inode, level);
2443 return ret;
2444}
2445
2446static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2447{
2448 struct file *file = iocb->ki_filp;
2449 struct inode *inode = file->f_mapping->host;
2450 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2451 get_block_t *get_block;
2452
2453 /*
2454 * Fallback to buffered I/O if we see an inode without
2455 * extents.
2456 */
2457 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2458 return 0;
2459
2460 /* Fallback to buffered I/O if we do not support append dio. */
2461 if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2462 !ocfs2_supports_append_dio(osb))
2463 return 0;
2464
2465 if (iov_iter_rw(iter) == READ)
2466 get_block = ocfs2_lock_get_block;
2467 else
2468 get_block = ocfs2_dio_wr_get_block;
2469
2470 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2471 iter, get_block,
2472 ocfs2_dio_end_io, NULL, 0);
2473}
2474
2475const struct address_space_operations ocfs2_aops = {
2476 .readpage = ocfs2_readpage,
2477 .readpages = ocfs2_readpages,
2478 .writepage = ocfs2_writepage,
2479 .write_begin = ocfs2_write_begin,
2480 .write_end = ocfs2_write_end,
2481 .bmap = ocfs2_bmap,
2482 .direct_IO = ocfs2_direct_IO,
2483 .invalidatepage = block_invalidatepage,
2484 .releasepage = ocfs2_releasepage,
2485 .migratepage = buffer_migrate_page,
2486 .is_partially_uptodate = block_is_partially_uptodate,
2487 .error_remove_page = generic_error_remove_page,
2488};