blob: fc5f843c5efcce3bd9a9545a3ea4aa8056e425ce [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Author: Adrian Hunter
20 */
21
22#include "ubifs.h"
23
24/*
25 * An orphan is an inode number whose inode node has been committed to the index
26 * with a link count of zero. That happens when an open file is deleted
27 * (unlinked) and then a commit is run. In the normal course of events the inode
28 * would be deleted when the file is closed. However in the case of an unclean
29 * unmount, orphans need to be accounted for. After an unclean unmount, the
30 * orphans' inodes must be deleted which means either scanning the entire index
31 * looking for them, or keeping a list on flash somewhere. This unit implements
32 * the latter approach.
33 *
34 * The orphan area is a fixed number of LEBs situated between the LPT area and
35 * the main area. The number of orphan area LEBs is specified when the file
36 * system is created. The minimum number is 1. The size of the orphan area
37 * should be so that it can hold the maximum number of orphans that are expected
38 * to ever exist at one time.
39 *
40 * The number of orphans that can fit in a LEB is:
41 *
42 * (c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64)
43 *
44 * For example: a 15872 byte LEB can fit 1980 orphans so 1 LEB may be enough.
45 *
46 * Orphans are accumulated in a rb-tree. When an inode's link count drops to
47 * zero, the inode number is added to the rb-tree. It is removed from the tree
48 * when the inode is deleted. Any new orphans that are in the orphan tree when
49 * the commit is run, are written to the orphan area in 1 or more orphan nodes.
50 * If the orphan area is full, it is consolidated to make space. There is
51 * always enough space because validation prevents the user from creating more
52 * than the maximum number of orphans allowed.
53 */
54
55static int dbg_check_orphans(struct ubifs_info *c);
56
57/**
58 * ubifs_add_orphan - add an orphan.
59 * @c: UBIFS file-system description object
60 * @inum: orphan inode number
61 *
62 * Add an orphan. This function is called when an inodes link count drops to
63 * zero.
64 */
65int ubifs_add_orphan(struct ubifs_info *c, ino_t inum)
66{
67 struct ubifs_orphan *orphan, *o;
68 struct rb_node **p, *parent = NULL;
69
70 orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_NOFS);
71 if (!orphan)
72 return -ENOMEM;
73 orphan->inum = inum;
74 orphan->new = 1;
75
76 spin_lock(&c->orphan_lock);
77 if (c->tot_orphans >= c->max_orphans) {
78 spin_unlock(&c->orphan_lock);
79 kfree(orphan);
80 return -ENFILE;
81 }
82 p = &c->orph_tree.rb_node;
83 while (*p) {
84 parent = *p;
85 o = rb_entry(parent, struct ubifs_orphan, rb);
86 if (inum < o->inum)
87 p = &(*p)->rb_left;
88 else if (inum > o->inum)
89 p = &(*p)->rb_right;
90 else {
91 ubifs_err(c, "orphaned twice");
92 spin_unlock(&c->orphan_lock);
93 kfree(orphan);
94 return 0;
95 }
96 }
97 c->tot_orphans += 1;
98 c->new_orphans += 1;
99 rb_link_node(&orphan->rb, parent, p);
100 rb_insert_color(&orphan->rb, &c->orph_tree);
101 list_add_tail(&orphan->list, &c->orph_list);
102 list_add_tail(&orphan->new_list, &c->orph_new);
103 spin_unlock(&c->orphan_lock);
104 dbg_gen("ino %lu", (unsigned long)inum);
105 return 0;
106}
107
108/**
109 * ubifs_delete_orphan - delete an orphan.
110 * @c: UBIFS file-system description object
111 * @inum: orphan inode number
112 *
113 * Delete an orphan. This function is called when an inode is deleted.
114 */
115void ubifs_delete_orphan(struct ubifs_info *c, ino_t inum)
116{
117 struct ubifs_orphan *o;
118 struct rb_node *p;
119
120 spin_lock(&c->orphan_lock);
121 p = c->orph_tree.rb_node;
122 while (p) {
123 o = rb_entry(p, struct ubifs_orphan, rb);
124 if (inum < o->inum)
125 p = p->rb_left;
126 else if (inum > o->inum)
127 p = p->rb_right;
128 else {
129 if (o->del) {
130 spin_unlock(&c->orphan_lock);
131 dbg_gen("deleted twice ino %lu",
132 (unsigned long)inum);
133 return;
134 }
135 if (o->cmt) {
136 o->del = 1;
137 o->dnext = c->orph_dnext;
138 c->orph_dnext = o;
139 spin_unlock(&c->orphan_lock);
140 dbg_gen("delete later ino %lu",
141 (unsigned long)inum);
142 return;
143 }
144 rb_erase(p, &c->orph_tree);
145 list_del(&o->list);
146 c->tot_orphans -= 1;
147 if (o->new) {
148 list_del(&o->new_list);
149 c->new_orphans -= 1;
150 }
151 spin_unlock(&c->orphan_lock);
152 kfree(o);
153 dbg_gen("inum %lu", (unsigned long)inum);
154 return;
155 }
156 }
157 spin_unlock(&c->orphan_lock);
158 ubifs_err(c, "missing orphan ino %lu", (unsigned long)inum);
159 dump_stack();
160}
161
162/**
163 * ubifs_orphan_start_commit - start commit of orphans.
164 * @c: UBIFS file-system description object
165 *
166 * Start commit of orphans.
167 */
168int ubifs_orphan_start_commit(struct ubifs_info *c)
169{
170 struct ubifs_orphan *orphan, **last;
171
172 spin_lock(&c->orphan_lock);
173 last = &c->orph_cnext;
174 list_for_each_entry(orphan, &c->orph_new, new_list) {
175 ubifs_assert(orphan->new);
176 ubifs_assert(!orphan->cmt);
177 orphan->new = 0;
178 orphan->cmt = 1;
179 *last = orphan;
180 last = &orphan->cnext;
181 }
182 *last = NULL;
183 c->cmt_orphans = c->new_orphans;
184 c->new_orphans = 0;
185 dbg_cmt("%d orphans to commit", c->cmt_orphans);
186 INIT_LIST_HEAD(&c->orph_new);
187 if (c->tot_orphans == 0)
188 c->no_orphs = 1;
189 else
190 c->no_orphs = 0;
191 spin_unlock(&c->orphan_lock);
192 return 0;
193}
194
195/**
196 * avail_orphs - calculate available space.
197 * @c: UBIFS file-system description object
198 *
199 * This function returns the number of orphans that can be written in the
200 * available space.
201 */
202static int avail_orphs(struct ubifs_info *c)
203{
204 int avail_lebs, avail, gap;
205
206 avail_lebs = c->orph_lebs - (c->ohead_lnum - c->orph_first) - 1;
207 avail = avail_lebs *
208 ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
209 gap = c->leb_size - c->ohead_offs;
210 if (gap >= UBIFS_ORPH_NODE_SZ + sizeof(__le64))
211 avail += (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
212 return avail;
213}
214
215/**
216 * tot_avail_orphs - calculate total space.
217 * @c: UBIFS file-system description object
218 *
219 * This function returns the number of orphans that can be written in half
220 * the total space. That leaves half the space for adding new orphans.
221 */
222static int tot_avail_orphs(struct ubifs_info *c)
223{
224 int avail_lebs, avail;
225
226 avail_lebs = c->orph_lebs;
227 avail = avail_lebs *
228 ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
229 return avail / 2;
230}
231
232/**
233 * do_write_orph_node - write a node to the orphan head.
234 * @c: UBIFS file-system description object
235 * @len: length of node
236 * @atomic: write atomically
237 *
238 * This function writes a node to the orphan head from the orphan buffer. If
239 * %atomic is not zero, then the write is done atomically. On success, %0 is
240 * returned, otherwise a negative error code is returned.
241 */
242static int do_write_orph_node(struct ubifs_info *c, int len, int atomic)
243{
244 int err = 0;
245
246 if (atomic) {
247 ubifs_assert(c->ohead_offs == 0);
248 ubifs_prepare_node(c, c->orph_buf, len, 1);
249 len = ALIGN(len, c->min_io_size);
250 err = ubifs_leb_change(c, c->ohead_lnum, c->orph_buf, len);
251 } else {
252 if (c->ohead_offs == 0) {
253 /* Ensure LEB has been unmapped */
254 err = ubifs_leb_unmap(c, c->ohead_lnum);
255 if (err)
256 return err;
257 }
258 err = ubifs_write_node(c, c->orph_buf, len, c->ohead_lnum,
259 c->ohead_offs);
260 }
261 return err;
262}
263
264/**
265 * write_orph_node - write an orphan node.
266 * @c: UBIFS file-system description object
267 * @atomic: write atomically
268 *
269 * This function builds an orphan node from the cnext list and writes it to the
270 * orphan head. On success, %0 is returned, otherwise a negative error code
271 * is returned.
272 */
273static int write_orph_node(struct ubifs_info *c, int atomic)
274{
275 struct ubifs_orphan *orphan, *cnext;
276 struct ubifs_orph_node *orph;
277 int gap, err, len, cnt, i;
278
279 ubifs_assert(c->cmt_orphans > 0);
280 gap = c->leb_size - c->ohead_offs;
281 if (gap < UBIFS_ORPH_NODE_SZ + sizeof(__le64)) {
282 c->ohead_lnum += 1;
283 c->ohead_offs = 0;
284 gap = c->leb_size;
285 if (c->ohead_lnum > c->orph_last) {
286 /*
287 * We limit the number of orphans so that this should
288 * never happen.
289 */
290 ubifs_err(c, "out of space in orphan area");
291 return -EINVAL;
292 }
293 }
294 cnt = (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
295 if (cnt > c->cmt_orphans)
296 cnt = c->cmt_orphans;
297 len = UBIFS_ORPH_NODE_SZ + cnt * sizeof(__le64);
298#ifdef CONFIG_UBIFS_SHARE_BUFFER
299 if (mutex_trylock(&ubifs_sbuf_mutex) == 0) {
300 atomic_long_inc(&ubifs_sbuf_lock_count);
301 ubifs_err(c, "trylock fail count %ld\n", READ_LOCK_COUNT);
302 mutex_lock(&ubifs_sbuf_mutex);
303 ubifs_err(c, "locked count %ld\n", READ_LOCK_COUNT);
304 }
305#endif
306 ubifs_assert(c->orph_buf);
307 orph = c->orph_buf;
308 orph->ch.node_type = UBIFS_ORPH_NODE;
309 spin_lock(&c->orphan_lock);
310 cnext = c->orph_cnext;
311 for (i = 0; i < cnt; i++) {
312 orphan = cnext;
313 ubifs_assert(orphan->cmt);
314 orph->inos[i] = cpu_to_le64(orphan->inum);
315 orphan->cmt = 0;
316 cnext = orphan->cnext;
317 orphan->cnext = NULL;
318 }
319 c->orph_cnext = cnext;
320 c->cmt_orphans -= cnt;
321 spin_unlock(&c->orphan_lock);
322 if (c->cmt_orphans)
323 orph->cmt_no = cpu_to_le64(c->cmt_no);
324 else
325 /* Mark the last node of the commit */
326 orph->cmt_no = cpu_to_le64((c->cmt_no) | (1ULL << 63));
327 ubifs_assert(c->ohead_offs + len <= c->leb_size);
328 ubifs_assert(c->ohead_lnum >= c->orph_first);
329 ubifs_assert(c->ohead_lnum <= c->orph_last);
330 err = do_write_orph_node(c, len, atomic);
331#ifdef CONFIG_UBIFS_SHARE_BUFFER
332 mutex_unlock(&ubifs_sbuf_mutex);
333#endif
334 c->ohead_offs += ALIGN(len, c->min_io_size);
335 c->ohead_offs = ALIGN(c->ohead_offs, 8);
336 return err;
337}
338
339/**
340 * write_orph_nodes - write orphan nodes until there are no more to commit.
341 * @c: UBIFS file-system description object
342 * @atomic: write atomically
343 *
344 * This function writes orphan nodes for all the orphans to commit. On success,
345 * %0 is returned, otherwise a negative error code is returned.
346 */
347static int write_orph_nodes(struct ubifs_info *c, int atomic)
348{
349 int err;
350
351 while (c->cmt_orphans > 0) {
352 err = write_orph_node(c, atomic);
353 if (err)
354 return err;
355 }
356 if (atomic) {
357 int lnum;
358
359 /* Unmap any unused LEBs after consolidation */
360 for (lnum = c->ohead_lnum + 1; lnum <= c->orph_last; lnum++) {
361 err = ubifs_leb_unmap(c, lnum);
362 if (err)
363 return err;
364 }
365 }
366 return 0;
367}
368
369/**
370 * consolidate - consolidate the orphan area.
371 * @c: UBIFS file-system description object
372 *
373 * This function enables consolidation by putting all the orphans into the list
374 * to commit. The list is in the order that the orphans were added, and the
375 * LEBs are written atomically in order, so at no time can orphans be lost by
376 * an unclean unmount.
377 *
378 * This function returns %0 on success and a negative error code on failure.
379 */
380static int consolidate(struct ubifs_info *c)
381{
382 int tot_avail = tot_avail_orphs(c), err = 0;
383
384 spin_lock(&c->orphan_lock);
385 dbg_cmt("there is space for %d orphans and there are %d",
386 tot_avail, c->tot_orphans);
387 if (c->tot_orphans - c->new_orphans <= tot_avail) {
388 struct ubifs_orphan *orphan, **last;
389 int cnt = 0;
390
391 /* Change the cnext list to include all non-new orphans */
392 last = &c->orph_cnext;
393 list_for_each_entry(orphan, &c->orph_list, list) {
394 if (orphan->new)
395 continue;
396 orphan->cmt = 1;
397 *last = orphan;
398 last = &orphan->cnext;
399 cnt += 1;
400 }
401 *last = NULL;
402 ubifs_assert(cnt == c->tot_orphans - c->new_orphans);
403 c->cmt_orphans = cnt;
404 c->ohead_lnum = c->orph_first;
405 c->ohead_offs = 0;
406 } else {
407 /*
408 * We limit the number of orphans so that this should
409 * never happen.
410 */
411 ubifs_err(c, "out of space in orphan area");
412 err = -EINVAL;
413 }
414 spin_unlock(&c->orphan_lock);
415 return err;
416}
417
418/**
419 * commit_orphans - commit orphans.
420 * @c: UBIFS file-system description object
421 *
422 * This function commits orphans to flash. On success, %0 is returned,
423 * otherwise a negative error code is returned.
424 */
425static int commit_orphans(struct ubifs_info *c)
426{
427 int avail, atomic = 0, err;
428
429 ubifs_assert(c->cmt_orphans > 0);
430 avail = avail_orphs(c);
431 if (avail < c->cmt_orphans) {
432 /* Not enough space to write new orphans, so consolidate */
433 err = consolidate(c);
434 if (err)
435 return err;
436 atomic = 1;
437 }
438 err = write_orph_nodes(c, atomic);
439 return err;
440}
441
442/**
443 * erase_deleted - erase the orphans marked for deletion.
444 * @c: UBIFS file-system description object
445 *
446 * During commit, the orphans being committed cannot be deleted, so they are
447 * marked for deletion and deleted by this function. Also, the recovery
448 * adds killed orphans to the deletion list, and therefore they are deleted
449 * here too.
450 */
451static void erase_deleted(struct ubifs_info *c)
452{
453 struct ubifs_orphan *orphan, *dnext;
454
455 spin_lock(&c->orphan_lock);
456 dnext = c->orph_dnext;
457 while (dnext) {
458 orphan = dnext;
459 dnext = orphan->dnext;
460 ubifs_assert(!orphan->new);
461 ubifs_assert(orphan->del);
462 rb_erase(&orphan->rb, &c->orph_tree);
463 list_del(&orphan->list);
464 c->tot_orphans -= 1;
465 dbg_gen("deleting orphan ino %lu", (unsigned long)orphan->inum);
466 kfree(orphan);
467 }
468 c->orph_dnext = NULL;
469 spin_unlock(&c->orphan_lock);
470}
471
472/**
473 * ubifs_orphan_end_commit - end commit of orphans.
474 * @c: UBIFS file-system description object
475 *
476 * End commit of orphans.
477 */
478int ubifs_orphan_end_commit(struct ubifs_info *c)
479{
480 int err;
481
482 if (c->cmt_orphans != 0) {
483 err = commit_orphans(c);
484 if (err)
485 return err;
486 }
487 erase_deleted(c);
488 err = dbg_check_orphans(c);
489 return err;
490}
491
492/**
493 * ubifs_clear_orphans - erase all LEBs used for orphans.
494 * @c: UBIFS file-system description object
495 *
496 * If recovery is not required, then the orphans from the previous session
497 * are not needed. This function locates the LEBs used to record
498 * orphans, and un-maps them.
499 */
500int ubifs_clear_orphans(struct ubifs_info *c)
501{
502 int lnum, err;
503
504 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
505 err = ubifs_leb_unmap(c, lnum);
506 if (err)
507 return err;
508 }
509 c->ohead_lnum = c->orph_first;
510 c->ohead_offs = 0;
511 return 0;
512}
513
514/**
515 * insert_dead_orphan - insert an orphan.
516 * @c: UBIFS file-system description object
517 * @inum: orphan inode number
518 *
519 * This function is a helper to the 'do_kill_orphans()' function. The orphan
520 * must be kept until the next commit, so it is added to the rb-tree and the
521 * deletion list.
522 */
523static int insert_dead_orphan(struct ubifs_info *c, ino_t inum)
524{
525 struct ubifs_orphan *orphan, *o;
526 struct rb_node **p, *parent = NULL;
527
528 orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_KERNEL);
529 if (!orphan)
530 return -ENOMEM;
531 orphan->inum = inum;
532
533 p = &c->orph_tree.rb_node;
534 while (*p) {
535 parent = *p;
536 o = rb_entry(parent, struct ubifs_orphan, rb);
537 if (inum < o->inum)
538 p = &(*p)->rb_left;
539 else if (inum > o->inum)
540 p = &(*p)->rb_right;
541 else {
542 /* Already added - no problem */
543 kfree(orphan);
544 return 0;
545 }
546 }
547 c->tot_orphans += 1;
548 rb_link_node(&orphan->rb, parent, p);
549 rb_insert_color(&orphan->rb, &c->orph_tree);
550 list_add_tail(&orphan->list, &c->orph_list);
551 orphan->del = 1;
552 orphan->dnext = c->orph_dnext;
553 c->orph_dnext = orphan;
554 dbg_mnt("ino %lu, new %d, tot %d", (unsigned long)inum,
555 c->new_orphans, c->tot_orphans);
556 return 0;
557}
558
559/**
560 * do_kill_orphans - remove orphan inodes from the index.
561 * @c: UBIFS file-system description object
562 * @sleb: scanned LEB
563 * @last_cmt_no: cmt_no of last orphan node read is passed and returned here
564 * @outofdate: whether the LEB is out of date is returned here
565 * @last_flagged: whether the end orphan node is encountered
566 *
567 * This function is a helper to the 'kill_orphans()' function. It goes through
568 * every orphan node in a LEB and for every inode number recorded, removes
569 * all keys for that inode from the TNC.
570 */
571static int do_kill_orphans(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
572 unsigned long long *last_cmt_no, int *outofdate,
573 int *last_flagged)
574{
575 struct ubifs_scan_node *snod;
576 struct ubifs_orph_node *orph;
577 unsigned long long cmt_no;
578 ino_t inum;
579 int i, n, err, first = 1;
580
581 list_for_each_entry(snod, &sleb->nodes, list) {
582 if (snod->type != UBIFS_ORPH_NODE) {
583 ubifs_err(c, "invalid node type %d in orphan area at %d:%d",
584 snod->type, sleb->lnum, snod->offs);
585 ubifs_dump_node(c, snod->node);
586 return -EINVAL;
587 }
588
589 orph = snod->node;
590
591 /* Check commit number */
592 cmt_no = le64_to_cpu(orph->cmt_no) & LLONG_MAX;
593 /*
594 * The commit number on the master node may be less, because
595 * of a failed commit. If there are several failed commits in a
596 * row, the commit number written on orphan nodes will continue
597 * to increase (because the commit number is adjusted here) even
598 * though the commit number on the master node stays the same
599 * because the master node has not been re-written.
600 */
601 if (cmt_no > c->cmt_no)
602 c->cmt_no = cmt_no;
603 if (cmt_no < *last_cmt_no && *last_flagged) {
604 /*
605 * The last orphan node had a higher commit number and
606 * was flagged as the last written for that commit
607 * number. That makes this orphan node, out of date.
608 */
609 if (!first) {
610 ubifs_err(c, "out of order commit number %llu in orphan node at %d:%d",
611 cmt_no, sleb->lnum, snod->offs);
612 ubifs_dump_node(c, snod->node);
613 return -EINVAL;
614 }
615 dbg_rcvry("out of date LEB %d", sleb->lnum);
616 *outofdate = 1;
617 return 0;
618 }
619
620 if (first)
621 first = 0;
622
623 n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
624 for (i = 0; i < n; i++) {
625 inum = le64_to_cpu(orph->inos[i]);
626 dbg_rcvry("deleting orphaned inode %lu",
627 (unsigned long)inum);
628 err = ubifs_tnc_remove_ino(c, inum);
629 if (err)
630 return err;
631 err = insert_dead_orphan(c, inum);
632 if (err)
633 return err;
634 }
635
636 *last_cmt_no = cmt_no;
637 if (le64_to_cpu(orph->cmt_no) & (1ULL << 63)) {
638 dbg_rcvry("last orph node for commit %llu at %d:%d",
639 cmt_no, sleb->lnum, snod->offs);
640 *last_flagged = 1;
641 } else
642 *last_flagged = 0;
643 }
644
645 return 0;
646}
647
648/**
649 * kill_orphans - remove all orphan inodes from the index.
650 * @c: UBIFS file-system description object
651 *
652 * If recovery is required, then orphan inodes recorded during the previous
653 * session (which ended with an unclean unmount) must be deleted from the index.
654 * This is done by updating the TNC, but since the index is not updated until
655 * the next commit, the LEBs where the orphan information is recorded are not
656 * erased until the next commit.
657 */
658static int kill_orphans(struct ubifs_info *c)
659{
660 unsigned long long last_cmt_no = 0;
661 int lnum, err = 0, outofdate = 0, last_flagged = 0;
662
663 c->ohead_lnum = c->orph_first;
664 c->ohead_offs = 0;
665 /* Check no-orphans flag and skip this if no orphans */
666 if (c->no_orphs) {
667 dbg_rcvry("no orphans");
668 return 0;
669 }
670 /*
671 * Orph nodes always start at c->orph_first and are written to each
672 * successive LEB in turn. Generally unused LEBs will have been unmapped
673 * but may contain out of date orphan nodes if the unmap didn't go
674 * through. In addition, the last orphan node written for each commit is
675 * marked (top bit of orph->cmt_no is set to 1). It is possible that
676 * there are orphan nodes from the next commit (i.e. the commit did not
677 * complete successfully). In that case, no orphans will have been lost
678 * due to the way that orphans are written, and any orphans added will
679 * be valid orphans anyway and so can be deleted.
680 */
681 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
682 struct ubifs_scan_leb *sleb;
683
684 dbg_rcvry("LEB %d", lnum);
685#ifdef CONFIG_UBIFS_SHARE_BUFFER
686 if (mutex_trylock(&ubifs_sbuf_mutex) == 0) {
687 atomic_long_inc(&ubifs_sbuf_lock_count);
688 ubifs_err(c, "trylock fail count %ld\n",
689 READ_LOCK_COUNT);
690 mutex_lock(&ubifs_sbuf_mutex);
691 ubifs_err(c, "locked count %ld\n", READ_LOCK_COUNT);
692 }
693#endif
694 sleb = ubifs_scan(c, lnum, 0, c->sbuf, 1);
695 if (IS_ERR(sleb)) {
696 if (PTR_ERR(sleb) == -EUCLEAN)
697 sleb = ubifs_recover_leb(c, lnum, 0,
698 c->sbuf, -1);
699 if (IS_ERR(sleb)) {
700 err = PTR_ERR(sleb);
701#ifdef CONFIG_UBIFS_SHARE_BUFFER
702 mutex_unlock(&ubifs_sbuf_mutex);
703#endif
704 break;
705 }
706 }
707 err = do_kill_orphans(c, sleb, &last_cmt_no, &outofdate,
708 &last_flagged);
709 if (err || outofdate) {
710 ubifs_scan_destroy(sleb);
711#ifdef CONFIG_UBIFS_SHARE_BUFFER
712 mutex_unlock(&ubifs_sbuf_mutex);
713#endif
714 break;
715 }
716 if (sleb->endpt) {
717 c->ohead_lnum = lnum;
718 c->ohead_offs = sleb->endpt;
719 }
720 ubifs_scan_destroy(sleb);
721#ifdef CONFIG_UBIFS_SHARE_BUFFER
722 mutex_unlock(&ubifs_sbuf_mutex);
723#endif
724 }
725 return err;
726}
727
728/**
729 * ubifs_mount_orphans - delete orphan inodes and erase LEBs that recorded them.
730 * @c: UBIFS file-system description object
731 * @unclean: indicates recovery from unclean unmount
732 * @read_only: indicates read only mount
733 *
734 * This function is called when mounting to erase orphans from the previous
735 * session. If UBIFS was not unmounted cleanly, then the inodes recorded as
736 * orphans are deleted.
737 */
738int ubifs_mount_orphans(struct ubifs_info *c, int unclean, int read_only)
739{
740 int err = 0;
741
742 c->max_orphans = tot_avail_orphs(c);
743
744 if (!read_only) {
745#ifdef CONFIG_UBIFS_SHARE_BUFFER
746 c->orph_buf = c->sbuf;
747#else
748 c->orph_buf = vmalloc(c->leb_size);
749#endif
750 if (!c->orph_buf)
751 return -ENOMEM;
752 }
753
754 if (unclean)
755 err = kill_orphans(c);
756 else if (!read_only)
757 err = ubifs_clear_orphans(c);
758
759 return err;
760}
761
762/*
763 * Everything below is related to debugging.
764 */
765
766struct check_orphan {
767 struct rb_node rb;
768 ino_t inum;
769};
770
771struct check_info {
772 unsigned long last_ino;
773 unsigned long tot_inos;
774 unsigned long missing;
775 unsigned long long leaf_cnt;
776 struct ubifs_ino_node *node;
777 struct rb_root root;
778};
779
780static int dbg_find_orphan(struct ubifs_info *c, ino_t inum)
781{
782 struct ubifs_orphan *o;
783 struct rb_node *p;
784
785 spin_lock(&c->orphan_lock);
786 p = c->orph_tree.rb_node;
787 while (p) {
788 o = rb_entry(p, struct ubifs_orphan, rb);
789 if (inum < o->inum)
790 p = p->rb_left;
791 else if (inum > o->inum)
792 p = p->rb_right;
793 else {
794 spin_unlock(&c->orphan_lock);
795 return 1;
796 }
797 }
798 spin_unlock(&c->orphan_lock);
799 return 0;
800}
801
802static int dbg_ins_check_orphan(struct rb_root *root, ino_t inum)
803{
804 struct check_orphan *orphan, *o;
805 struct rb_node **p, *parent = NULL;
806
807 orphan = kzalloc(sizeof(struct check_orphan), GFP_NOFS);
808 if (!orphan)
809 return -ENOMEM;
810 orphan->inum = inum;
811
812 p = &root->rb_node;
813 while (*p) {
814 parent = *p;
815 o = rb_entry(parent, struct check_orphan, rb);
816 if (inum < o->inum)
817 p = &(*p)->rb_left;
818 else if (inum > o->inum)
819 p = &(*p)->rb_right;
820 else {
821 kfree(orphan);
822 return 0;
823 }
824 }
825 rb_link_node(&orphan->rb, parent, p);
826 rb_insert_color(&orphan->rb, root);
827 return 0;
828}
829
830static int dbg_find_check_orphan(struct rb_root *root, ino_t inum)
831{
832 struct check_orphan *o;
833 struct rb_node *p;
834
835 p = root->rb_node;
836 while (p) {
837 o = rb_entry(p, struct check_orphan, rb);
838 if (inum < o->inum)
839 p = p->rb_left;
840 else if (inum > o->inum)
841 p = p->rb_right;
842 else
843 return 1;
844 }
845 return 0;
846}
847
848static void dbg_free_check_tree(struct rb_root *root)
849{
850 struct check_orphan *o, *n;
851
852 rbtree_postorder_for_each_entry_safe(o, n, root, rb)
853 kfree(o);
854}
855
856static int dbg_orphan_check(struct ubifs_info *c, struct ubifs_zbranch *zbr,
857 void *priv)
858{
859 struct check_info *ci = priv;
860 ino_t inum;
861 int err;
862
863 inum = key_inum(c, &zbr->key);
864 if (inum != ci->last_ino) {
865 /* Lowest node type is the inode node, so it comes first */
866 if (key_type(c, &zbr->key) != UBIFS_INO_KEY)
867 ubifs_err(c, "found orphan node ino %lu, type %d",
868 (unsigned long)inum, key_type(c, &zbr->key));
869 ci->last_ino = inum;
870 ci->tot_inos += 1;
871 err = ubifs_tnc_read_node(c, zbr, ci->node);
872 if (err) {
873 ubifs_err(c, "node read failed, error %d", err);
874 return err;
875 }
876 if (ci->node->nlink == 0)
877 /* Must be recorded as an orphan */
878 if (!dbg_find_check_orphan(&ci->root, inum) &&
879 !dbg_find_orphan(c, inum)) {
880 ubifs_err(c, "missing orphan, ino %lu",
881 (unsigned long)inum);
882 ci->missing += 1;
883 }
884 }
885 ci->leaf_cnt += 1;
886 return 0;
887}
888
889static int dbg_read_orphans(struct check_info *ci, struct ubifs_scan_leb *sleb)
890{
891 struct ubifs_scan_node *snod;
892 struct ubifs_orph_node *orph;
893 ino_t inum;
894 int i, n, err;
895
896 list_for_each_entry(snod, &sleb->nodes, list) {
897 cond_resched();
898 if (snod->type != UBIFS_ORPH_NODE)
899 continue;
900 orph = snod->node;
901 n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
902 for (i = 0; i < n; i++) {
903 inum = le64_to_cpu(orph->inos[i]);
904 err = dbg_ins_check_orphan(&ci->root, inum);
905 if (err)
906 return err;
907 }
908 }
909 return 0;
910}
911
912static int dbg_scan_orphans(struct ubifs_info *c, struct check_info *ci)
913{
914 int lnum, err = 0;
915 void *buf;
916
917 /* Check no-orphans flag and skip this if no orphans */
918 if (c->no_orphs)
919 return 0;
920
921 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
922 if (!buf) {
923 ubifs_err(c, "cannot allocate memory to check orphans");
924 return 0;
925 }
926
927 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
928 struct ubifs_scan_leb *sleb;
929
930 sleb = ubifs_scan(c, lnum, 0, buf, 0);
931 if (IS_ERR(sleb)) {
932 err = PTR_ERR(sleb);
933 break;
934 }
935
936 err = dbg_read_orphans(ci, sleb);
937 ubifs_scan_destroy(sleb);
938 if (err)
939 break;
940 }
941
942 vfree(buf);
943 return err;
944}
945
946static int dbg_check_orphans(struct ubifs_info *c)
947{
948 struct check_info ci;
949 int err;
950
951 if (!dbg_is_chk_orph(c))
952 return 0;
953
954 ci.last_ino = 0;
955 ci.tot_inos = 0;
956 ci.missing = 0;
957 ci.leaf_cnt = 0;
958 ci.root = RB_ROOT;
959 ci.node = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
960 if (!ci.node) {
961 ubifs_err(c, "out of memory");
962 return -ENOMEM;
963 }
964
965 err = dbg_scan_orphans(c, &ci);
966 if (err)
967 goto out;
968
969 err = dbg_walk_index(c, &dbg_orphan_check, NULL, &ci);
970 if (err) {
971 ubifs_err(c, "cannot scan TNC, error %d", err);
972 goto out;
973 }
974
975 if (ci.missing) {
976 ubifs_err(c, "%lu missing orphan(s)", ci.missing);
977 err = -EINVAL;
978 goto out;
979 }
980
981 dbg_cmt("last inode number is %lu", ci.last_ino);
982 dbg_cmt("total number of inodes is %lu", ci.tot_inos);
983 dbg_cmt("total number of leaf nodes is %llu", ci.leaf_cnt);
984
985out:
986 dbg_free_check_tree(&ci.root);
987 kfree(ci.node);
988 return err;
989}