blob: 6096b354a25c7cd7939125b6deaae18c52ab8fa9 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
21 */
22
23/*
24 * This file contains journal replay code. It runs when the file-system is being
25 * mounted and requires no locking.
26 *
27 * The larger is the journal, the longer it takes to scan it, so the longer it
28 * takes to mount UBIFS. This is why the journal has limited size which may be
29 * changed depending on the system requirements. But a larger journal gives
30 * faster I/O speed because it writes the index less frequently. So this is a
31 * trade-off. Also, the journal is indexed by the in-memory index (TNC), so the
32 * larger is the journal, the more memory its index may consume.
33 */
34
35#include "ubifs.h"
36#include <linux/list_sort.h>
37
38/**
39 * struct replay_entry - replay list entry.
40 * @lnum: logical eraseblock number of the node
41 * @offs: node offset
42 * @len: node length
43 * @deletion: non-zero if this entry corresponds to a node deletion
44 * @sqnum: node sequence number
45 * @list: links the replay list
46 * @key: node key
47 * @nm: directory entry name
48 * @old_size: truncation old size
49 * @new_size: truncation new size
50 *
51 * The replay process first scans all buds and builds the replay list, then
52 * sorts the replay list in nodes sequence number order, and then inserts all
53 * the replay entries to the TNC.
54 */
55struct replay_entry {
56 int lnum;
57 int offs;
58 int len;
59 unsigned int deletion:1;
60 unsigned long long sqnum;
61 struct list_head list;
62 union ubifs_key key;
63 union {
64 struct fscrypt_name nm;
65 struct {
66 loff_t old_size;
67 loff_t new_size;
68 };
69 };
70};
71
72/**
73 * struct bud_entry - entry in the list of buds to replay.
74 * @list: next bud in the list
75 * @bud: bud description object
76 * @sqnum: reference node sequence number
77 * @free: free bytes in the bud
78 * @dirty: dirty bytes in the bud
79 */
80struct bud_entry {
81 struct list_head list;
82 struct ubifs_bud *bud;
83 unsigned long long sqnum;
84 int free;
85 int dirty;
86};
87
88/**
89 * set_bud_lprops - set free and dirty space used by a bud.
90 * @c: UBIFS file-system description object
91 * @b: bud entry which describes the bud
92 *
93 * This function makes sure the LEB properties of bud @b are set correctly
94 * after the replay. Returns zero in case of success and a negative error code
95 * in case of failure.
96 */
97static int set_bud_lprops(struct ubifs_info *c, struct bud_entry *b)
98{
99 const struct ubifs_lprops *lp;
100 int err = 0, dirty;
101
102 ubifs_get_lprops(c);
103
104 lp = ubifs_lpt_lookup_dirty(c, b->bud->lnum);
105 if (IS_ERR(lp)) {
106 err = PTR_ERR(lp);
107 goto out;
108 }
109
110 dirty = lp->dirty;
111 if (b->bud->start == 0 && (lp->free != c->leb_size || lp->dirty != 0)) {
112 /*
113 * The LEB was added to the journal with a starting offset of
114 * zero which means the LEB must have been empty. The LEB
115 * property values should be @lp->free == @c->leb_size and
116 * @lp->dirty == 0, but that is not the case. The reason is that
117 * the LEB had been garbage collected before it became the bud,
118 * and there was not commit inbetween. The garbage collector
119 * resets the free and dirty space without recording it
120 * anywhere except lprops, so if there was no commit then
121 * lprops does not have that information.
122 *
123 * We do not need to adjust free space because the scan has told
124 * us the exact value which is recorded in the replay entry as
125 * @b->free.
126 *
127 * However we do need to subtract from the dirty space the
128 * amount of space that the garbage collector reclaimed, which
129 * is the whole LEB minus the amount of space that was free.
130 */
131 dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
132 lp->free, lp->dirty);
133 dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
134 lp->free, lp->dirty);
135 dirty -= c->leb_size - lp->free;
136 /*
137 * If the replay order was perfect the dirty space would now be
138 * zero. The order is not perfect because the journal heads
139 * race with each other. This is not a problem but is does mean
140 * that the dirty space may temporarily exceed c->leb_size
141 * during the replay.
142 */
143 if (dirty != 0)
144 dbg_mnt("LEB %d lp: %d free %d dirty replay: %d free %d dirty",
145 b->bud->lnum, lp->free, lp->dirty, b->free,
146 b->dirty);
147 }
148 lp = ubifs_change_lp(c, lp, b->free, dirty + b->dirty,
149 lp->flags | LPROPS_TAKEN, 0);
150 if (IS_ERR(lp)) {
151 err = PTR_ERR(lp);
152 goto out;
153 }
154
155 /* Make sure the journal head points to the latest bud */
156 err = ubifs_wbuf_seek_nolock(&c->jheads[b->bud->jhead].wbuf,
157 b->bud->lnum, c->leb_size - b->free);
158
159out:
160 ubifs_release_lprops(c);
161 return err;
162}
163
164/**
165 * set_buds_lprops - set free and dirty space for all replayed buds.
166 * @c: UBIFS file-system description object
167 *
168 * This function sets LEB properties for all replayed buds. Returns zero in
169 * case of success and a negative error code in case of failure.
170 */
171static int set_buds_lprops(struct ubifs_info *c)
172{
173 struct bud_entry *b;
174 int err;
175
176 list_for_each_entry(b, &c->replay_buds, list) {
177 err = set_bud_lprops(c, b);
178 if (err)
179 return err;
180 }
181
182 return 0;
183}
184
185/**
186 * trun_remove_range - apply a replay entry for a truncation to the TNC.
187 * @c: UBIFS file-system description object
188 * @r: replay entry of truncation
189 */
190static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r)
191{
192 unsigned min_blk, max_blk;
193 union ubifs_key min_key, max_key;
194 ino_t ino;
195
196 min_blk = r->new_size / UBIFS_BLOCK_SIZE;
197 if (r->new_size & (UBIFS_BLOCK_SIZE - 1))
198 min_blk += 1;
199
200 max_blk = r->old_size / UBIFS_BLOCK_SIZE;
201 if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0)
202 max_blk -= 1;
203
204 ino = key_inum(c, &r->key);
205
206 data_key_init(c, &min_key, ino, min_blk);
207 data_key_init(c, &max_key, ino, max_blk);
208
209 return ubifs_tnc_remove_range(c, &min_key, &max_key);
210}
211
212/**
213 * inode_still_linked - check whether inode in question will be re-linked.
214 * @c: UBIFS file-system description object
215 * @rino: replay entry to test
216 *
217 * O_TMPFILE files can be re-linked, this means link count goes from 0 to 1.
218 * This case needs special care, otherwise all references to the inode will
219 * be removed upon the first replay entry of an inode with link count 0
220 * is found.
221 */
222static bool inode_still_linked(struct ubifs_info *c, struct replay_entry *rino)
223{
224 struct replay_entry *r;
225
226 ubifs_assert(rino->deletion);
227 ubifs_assert(key_type(c, &rino->key) == UBIFS_INO_KEY);
228
229 /*
230 * Find the most recent entry for the inode behind @rino and check
231 * whether it is a deletion.
232 */
233 list_for_each_entry_reverse(r, &c->replay_list, list) {
234 ubifs_assert(r->sqnum >= rino->sqnum);
235 if (key_inum(c, &r->key) == key_inum(c, &rino->key))
236 return r->deletion == 0;
237
238 }
239
240 ubifs_assert(0);
241 return false;
242}
243
244/**
245 * apply_replay_entry - apply a replay entry to the TNC.
246 * @c: UBIFS file-system description object
247 * @r: replay entry to apply
248 *
249 * Apply a replay entry to the TNC.
250 */
251static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r)
252{
253 int err;
254
255 dbg_mntk(&r->key, "LEB %d:%d len %d deletion %d sqnum %llu key ",
256 r->lnum, r->offs, r->len, r->deletion, r->sqnum);
257
258 /* Set c->replay_sqnum to help deal with dangling branches. */
259 c->replay_sqnum = r->sqnum;
260
261 if (is_hash_key(c, &r->key)) {
262 if (r->deletion)
263 err = ubifs_tnc_remove_nm(c, &r->key, &r->nm);
264 else
265 err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs,
266 r->len, &r->nm);
267 } else {
268 if (r->deletion)
269 switch (key_type(c, &r->key)) {
270 case UBIFS_INO_KEY:
271 {
272 ino_t inum = key_inum(c, &r->key);
273
274 if (inode_still_linked(c, r)) {
275 err = 0;
276 break;
277 }
278
279 err = ubifs_tnc_remove_ino(c, inum);
280 break;
281 }
282 case UBIFS_TRUN_KEY:
283 err = trun_remove_range(c, r);
284 break;
285 default:
286 err = ubifs_tnc_remove(c, &r->key);
287 break;
288 }
289 else
290 err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs,
291 r->len);
292 if (err)
293 return err;
294
295 if (c->need_recovery)
296 err = ubifs_recover_size_accum(c, &r->key, r->deletion,
297 r->new_size);
298 }
299
300 return err;
301}
302
303/**
304 * replay_entries_cmp - compare 2 replay entries.
305 * @priv: UBIFS file-system description object
306 * @a: first replay entry
307 * @b: second replay entry
308 *
309 * This is a comparios function for 'list_sort()' which compares 2 replay
310 * entries @a and @b by comparing their sequence numer. Returns %1 if @a has
311 * greater sequence number and %-1 otherwise.
312 */
313static int replay_entries_cmp(void *priv, struct list_head *a,
314 struct list_head *b)
315{
316 struct replay_entry *ra, *rb;
317
318 cond_resched();
319 if (a == b)
320 return 0;
321
322 ra = list_entry(a, struct replay_entry, list);
323 rb = list_entry(b, struct replay_entry, list);
324 ubifs_assert(ra->sqnum != rb->sqnum);
325 if (ra->sqnum > rb->sqnum)
326 return 1;
327 return -1;
328}
329
330/**
331 * apply_replay_list - apply the replay list to the TNC.
332 * @c: UBIFS file-system description object
333 *
334 * Apply all entries in the replay list to the TNC. Returns zero in case of
335 * success and a negative error code in case of failure.
336 */
337static int apply_replay_list(struct ubifs_info *c)
338{
339 struct replay_entry *r;
340 int err;
341
342 list_sort(c, &c->replay_list, &replay_entries_cmp);
343
344 list_for_each_entry(r, &c->replay_list, list) {
345 cond_resched();
346
347 err = apply_replay_entry(c, r);
348 if (err)
349 return err;
350 }
351
352 return 0;
353}
354
355/**
356 * destroy_replay_list - destroy the replay.
357 * @c: UBIFS file-system description object
358 *
359 * Destroy the replay list.
360 */
361static void destroy_replay_list(struct ubifs_info *c)
362{
363 struct replay_entry *r, *tmp;
364
365 list_for_each_entry_safe(r, tmp, &c->replay_list, list) {
366 if (is_hash_key(c, &r->key))
367 kfree(fname_name(&r->nm));
368 list_del(&r->list);
369 kfree(r);
370 }
371}
372
373/**
374 * insert_node - insert a node to the replay list
375 * @c: UBIFS file-system description object
376 * @lnum: node logical eraseblock number
377 * @offs: node offset
378 * @len: node length
379 * @key: node key
380 * @sqnum: sequence number
381 * @deletion: non-zero if this is a deletion
382 * @used: number of bytes in use in a LEB
383 * @old_size: truncation old size
384 * @new_size: truncation new size
385 *
386 * This function inserts a scanned non-direntry node to the replay list. The
387 * replay list contains @struct replay_entry elements, and we sort this list in
388 * sequence number order before applying it. The replay list is applied at the
389 * very end of the replay process. Since the list is sorted in sequence number
390 * order, the older modifications are applied first. This function returns zero
391 * in case of success and a negative error code in case of failure.
392 */
393static int insert_node(struct ubifs_info *c, int lnum, int offs, int len,
394 union ubifs_key *key, unsigned long long sqnum,
395 int deletion, int *used, loff_t old_size,
396 loff_t new_size)
397{
398 struct replay_entry *r;
399
400 dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
401
402 if (key_inum(c, key) >= c->highest_inum)
403 c->highest_inum = key_inum(c, key);
404
405 r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
406 if (!r)
407 return -ENOMEM;
408
409 if (!deletion)
410 *used += ALIGN(len, 8);
411 r->lnum = lnum;
412 r->offs = offs;
413 r->len = len;
414 r->deletion = !!deletion;
415 r->sqnum = sqnum;
416 key_copy(c, key, &r->key);
417 r->old_size = old_size;
418 r->new_size = new_size;
419
420 list_add_tail(&r->list, &c->replay_list);
421 return 0;
422}
423
424/**
425 * insert_dent - insert a directory entry node into the replay list.
426 * @c: UBIFS file-system description object
427 * @lnum: node logical eraseblock number
428 * @offs: node offset
429 * @len: node length
430 * @key: node key
431 * @name: directory entry name
432 * @nlen: directory entry name length
433 * @sqnum: sequence number
434 * @deletion: non-zero if this is a deletion
435 * @used: number of bytes in use in a LEB
436 *
437 * This function inserts a scanned directory entry node or an extended
438 * attribute entry to the replay list. Returns zero in case of success and a
439 * negative error code in case of failure.
440 */
441static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len,
442 union ubifs_key *key, const char *name, int nlen,
443 unsigned long long sqnum, int deletion, int *used)
444{
445 struct replay_entry *r;
446 char *nbuf;
447
448 dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
449 if (key_inum(c, key) >= c->highest_inum)
450 c->highest_inum = key_inum(c, key);
451
452 r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
453 if (!r)
454 return -ENOMEM;
455
456 nbuf = kmalloc(nlen + 1, GFP_KERNEL);
457 if (!nbuf) {
458 kfree(r);
459 return -ENOMEM;
460 }
461
462 if (!deletion)
463 *used += ALIGN(len, 8);
464 r->lnum = lnum;
465 r->offs = offs;
466 r->len = len;
467 r->deletion = !!deletion;
468 r->sqnum = sqnum;
469 key_copy(c, key, &r->key);
470 fname_len(&r->nm) = nlen;
471 memcpy(nbuf, name, nlen);
472 nbuf[nlen] = '\0';
473 fname_name(&r->nm) = nbuf;
474
475 list_add_tail(&r->list, &c->replay_list);
476 return 0;
477}
478
479/**
480 * ubifs_validate_entry - validate directory or extended attribute entry node.
481 * @c: UBIFS file-system description object
482 * @dent: the node to validate
483 *
484 * This function validates directory or extended attribute entry node @dent.
485 * Returns zero if the node is all right and a %-EINVAL if not.
486 */
487int ubifs_validate_entry(struct ubifs_info *c,
488 const struct ubifs_dent_node *dent)
489{
490 int key_type = key_type_flash(c, dent->key);
491 int nlen = le16_to_cpu(dent->nlen);
492
493 if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 ||
494 dent->type >= UBIFS_ITYPES_CNT ||
495 nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 ||
496 (key_type == UBIFS_XENT_KEY && strnlen(dent->name, nlen) != nlen) ||
497 le64_to_cpu(dent->inum) > MAX_INUM) {
498 ubifs_err(c, "bad %s node", key_type == UBIFS_DENT_KEY ?
499 "directory entry" : "extended attribute entry");
500 return -EINVAL;
501 }
502
503 if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) {
504 ubifs_err(c, "bad key type %d", key_type);
505 return -EINVAL;
506 }
507
508 return 0;
509}
510
511/**
512 * is_last_bud - check if the bud is the last in the journal head.
513 * @c: UBIFS file-system description object
514 * @bud: bud description object
515 *
516 * This function checks if bud @bud is the last bud in its journal head. This
517 * information is then used by 'replay_bud()' to decide whether the bud can
518 * have corruptions or not. Indeed, only last buds can be corrupted by power
519 * cuts. Returns %1 if this is the last bud, and %0 if not.
520 */
521static int is_last_bud(struct ubifs_info *c, struct ubifs_bud *bud)
522{
523 struct ubifs_jhead *jh = &c->jheads[bud->jhead];
524 struct ubifs_bud *next;
525 uint32_t data;
526 int err;
527
528 if (list_is_last(&bud->list, &jh->buds_list))
529 return 1;
530
531 /*
532 * The following is a quirk to make sure we work correctly with UBIFS
533 * images used with older UBIFS.
534 *
535 * Normally, the last bud will be the last in the journal head's list
536 * of bud. However, there is one exception if the UBIFS image belongs
537 * to older UBIFS. This is fairly unlikely: one would need to use old
538 * UBIFS, then have a power cut exactly at the right point, and then
539 * try to mount this image with new UBIFS.
540 *
541 * The exception is: it is possible to have 2 buds A and B, A goes
542 * before B, and B is the last, bud B is contains no data, and bud A is
543 * corrupted at the end. The reason is that in older versions when the
544 * journal code switched the next bud (from A to B), it first added a
545 * log reference node for the new bud (B), and only after this it
546 * synchronized the write-buffer of current bud (A). But later this was
547 * changed and UBIFS started to always synchronize the write-buffer of
548 * the bud (A) before writing the log reference for the new bud (B).
549 *
550 * But because older UBIFS always synchronized A's write-buffer before
551 * writing to B, we can recognize this exceptional situation but
552 * checking the contents of bud B - if it is empty, then A can be
553 * treated as the last and we can recover it.
554 *
555 * TODO: remove this piece of code in a couple of years (today it is
556 * 16.05.2011).
557 */
558 next = list_entry(bud->list.next, struct ubifs_bud, list);
559 if (!list_is_last(&next->list, &jh->buds_list))
560 return 0;
561
562 err = ubifs_leb_read(c, next->lnum, (char *)&data, next->start, 4, 1);
563 if (err)
564 return 0;
565
566 return data == 0xFFFFFFFF;
567}
568
569/**
570 * replay_bud - replay a bud logical eraseblock.
571 * @c: UBIFS file-system description object
572 * @b: bud entry which describes the bud
573 *
574 * This function replays bud @bud, recovers it if needed, and adds all nodes
575 * from this bud to the replay list. Returns zero in case of success and a
576 * negative error code in case of failure.
577 */
578static int replay_bud(struct ubifs_info *c, struct bud_entry *b)
579{
580 int is_last = is_last_bud(c, b->bud);
581 int err = 0, used = 0, lnum = b->bud->lnum, offs = b->bud->start;
582 struct ubifs_scan_leb *sleb;
583 struct ubifs_scan_node *snod;
584
585 dbg_mnt("replay bud LEB %d, head %d, offs %d, is_last %d",
586 lnum, b->bud->jhead, offs, is_last);
587
588#ifdef CONFIG_UBIFS_SHARE_BUFFER
589 if (mutex_trylock(&ubifs_sbuf_mutex) == 0) {
590 atomic_long_inc(&ubifs_sbuf_lock_count);
591 ubifs_err(c, "trylock fail count %ld\n", READ_LOCK_COUNT);
592 mutex_lock(&ubifs_sbuf_mutex);
593 ubifs_err(c, "locked count %ld\n", READ_LOCK_COUNT);
594 }
595#endif
596 if (c->need_recovery && is_last)
597 /*
598 * Recover only last LEBs in the journal heads, because power
599 * cuts may cause corruptions only in these LEBs, because only
600 * these LEBs could possibly be written to at the power cut
601 * time.
602 */
603 sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead);
604 else
605 sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0);
606 if (IS_ERR(sleb)) {
607#ifdef CONFIG_UBIFS_SHARE_BUFFER
608 mutex_unlock(&ubifs_sbuf_mutex);
609#endif
610 return PTR_ERR(sleb);
611 }
612
613 /*
614 * The bud does not have to start from offset zero - the beginning of
615 * the 'lnum' LEB may contain previously committed data. One of the
616 * things we have to do in replay is to correctly update lprops with
617 * newer information about this LEB.
618 *
619 * At this point lprops thinks that this LEB has 'c->leb_size - offs'
620 * bytes of free space because it only contain information about
621 * committed data.
622 *
623 * But we know that real amount of free space is 'c->leb_size -
624 * sleb->endpt', and the space in the 'lnum' LEB between 'offs' and
625 * 'sleb->endpt' is used by bud data. We have to correctly calculate
626 * how much of these data are dirty and update lprops with this
627 * information.
628 *
629 * The dirt in that LEB region is comprised of padding nodes, deletion
630 * nodes, truncation nodes and nodes which are obsoleted by subsequent
631 * nodes in this LEB. So instead of calculating clean space, we
632 * calculate used space ('used' variable).
633 */
634
635 list_for_each_entry(snod, &sleb->nodes, list) {
636 int deletion = 0;
637
638 cond_resched();
639
640 if (snod->sqnum >= SQNUM_WATERMARK) {
641 ubifs_err(c, "file system's life ended");
642 goto out_dump;
643 }
644
645 if (snod->sqnum > c->max_sqnum)
646 c->max_sqnum = snod->sqnum;
647
648 switch (snod->type) {
649 case UBIFS_INO_NODE:
650 {
651 struct ubifs_ino_node *ino = snod->node;
652 loff_t new_size = le64_to_cpu(ino->size);
653
654 if (le32_to_cpu(ino->nlink) == 0)
655 deletion = 1;
656 err = insert_node(c, lnum, snod->offs, snod->len,
657 &snod->key, snod->sqnum, deletion,
658 &used, 0, new_size);
659 break;
660 }
661 case UBIFS_DATA_NODE:
662 {
663 struct ubifs_data_node *dn = snod->node;
664 loff_t new_size = le32_to_cpu(dn->size) +
665 key_block(c, &snod->key) *
666 UBIFS_BLOCK_SIZE;
667
668 err = insert_node(c, lnum, snod->offs, snod->len,
669 &snod->key, snod->sqnum, deletion,
670 &used, 0, new_size);
671 break;
672 }
673 case UBIFS_DENT_NODE:
674 case UBIFS_XENT_NODE:
675 {
676 struct ubifs_dent_node *dent = snod->node;
677
678 err = ubifs_validate_entry(c, dent);
679 if (err)
680 goto out_dump;
681
682 err = insert_dent(c, lnum, snod->offs, snod->len,
683 &snod->key, dent->name,
684 le16_to_cpu(dent->nlen), snod->sqnum,
685 !le64_to_cpu(dent->inum), &used);
686 break;
687 }
688 case UBIFS_TRUN_NODE:
689 {
690 struct ubifs_trun_node *trun = snod->node;
691 loff_t old_size = le64_to_cpu(trun->old_size);
692 loff_t new_size = le64_to_cpu(trun->new_size);
693 union ubifs_key key;
694
695 /* Validate truncation node */
696 if (old_size < 0 || old_size > c->max_inode_sz ||
697 new_size < 0 || new_size > c->max_inode_sz ||
698 old_size <= new_size) {
699 ubifs_err(c, "bad truncation node");
700 goto out_dump;
701 }
702
703 /*
704 * Create a fake truncation key just to use the same
705 * functions which expect nodes to have keys.
706 */
707 trun_key_init(c, &key, le32_to_cpu(trun->inum));
708 err = insert_node(c, lnum, snod->offs, snod->len,
709 &key, snod->sqnum, 1, &used,
710 old_size, new_size);
711 break;
712 }
713 default:
714 ubifs_err(c, "unexpected node type %d in bud LEB %d:%d",
715 snod->type, lnum, snod->offs);
716 err = -EINVAL;
717 goto out_dump;
718 }
719 if (err)
720 goto out;
721 }
722
723 ubifs_assert(ubifs_search_bud(c, lnum));
724 ubifs_assert(sleb->endpt - offs >= used);
725 ubifs_assert(sleb->endpt % c->min_io_size == 0);
726
727 b->dirty = sleb->endpt - offs - used;
728 b->free = c->leb_size - sleb->endpt;
729 dbg_mnt("bud LEB %d replied: dirty %d, free %d",
730 lnum, b->dirty, b->free);
731
732out:
733 ubifs_scan_destroy(sleb);
734#ifdef CONFIG_UBIFS_SHARE_BUFFER
735 mutex_unlock(&ubifs_sbuf_mutex);
736#endif
737 return err;
738
739out_dump:
740 ubifs_err(c, "bad node is at LEB %d:%d", lnum, snod->offs);
741 ubifs_dump_node(c, snod->node);
742 ubifs_scan_destroy(sleb);
743#ifdef CONFIG_UBIFS_SHARE_BUFFER
744 mutex_unlock(&ubifs_sbuf_mutex);
745#endif
746 return -EINVAL;
747}
748
749/**
750 * replay_buds - replay all buds.
751 * @c: UBIFS file-system description object
752 *
753 * This function returns zero in case of success and a negative error code in
754 * case of failure.
755 */
756static int replay_buds(struct ubifs_info *c)
757{
758 struct bud_entry *b;
759 int err;
760 unsigned long long prev_sqnum = 0;
761
762 list_for_each_entry(b, &c->replay_buds, list) {
763 err = replay_bud(c, b);
764 if (err)
765 return err;
766
767 ubifs_assert(b->sqnum > prev_sqnum);
768 prev_sqnum = b->sqnum;
769 }
770
771 return 0;
772}
773
774/**
775 * destroy_bud_list - destroy the list of buds to replay.
776 * @c: UBIFS file-system description object
777 */
778static void destroy_bud_list(struct ubifs_info *c)
779{
780 struct bud_entry *b;
781
782 while (!list_empty(&c->replay_buds)) {
783 b = list_entry(c->replay_buds.next, struct bud_entry, list);
784 list_del(&b->list);
785 kfree(b);
786 }
787}
788
789/**
790 * add_replay_bud - add a bud to the list of buds to replay.
791 * @c: UBIFS file-system description object
792 * @lnum: bud logical eraseblock number to replay
793 * @offs: bud start offset
794 * @jhead: journal head to which this bud belongs
795 * @sqnum: reference node sequence number
796 *
797 * This function returns zero in case of success and a negative error code in
798 * case of failure.
799 */
800static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead,
801 unsigned long long sqnum)
802{
803 struct ubifs_bud *bud;
804 struct bud_entry *b;
805
806 dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead);
807
808 bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL);
809 if (!bud)
810 return -ENOMEM;
811
812 b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL);
813 if (!b) {
814 kfree(bud);
815 return -ENOMEM;
816 }
817
818 bud->lnum = lnum;
819 bud->start = offs;
820 bud->jhead = jhead;
821 ubifs_add_bud(c, bud);
822
823 b->bud = bud;
824 b->sqnum = sqnum;
825 list_add_tail(&b->list, &c->replay_buds);
826
827 return 0;
828}
829
830/**
831 * validate_ref - validate a reference node.
832 * @c: UBIFS file-system description object
833 * @ref: the reference node to validate
834 * @ref_lnum: LEB number of the reference node
835 * @ref_offs: reference node offset
836 *
837 * This function returns %1 if a bud reference already exists for the LEB. %0 is
838 * returned if the reference node is new, otherwise %-EINVAL is returned if
839 * validation failed.
840 */
841static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref)
842{
843 struct ubifs_bud *bud;
844 int lnum = le32_to_cpu(ref->lnum);
845 unsigned int offs = le32_to_cpu(ref->offs);
846 unsigned int jhead = le32_to_cpu(ref->jhead);
847
848 /*
849 * ref->offs may point to the end of LEB when the journal head points
850 * to the end of LEB and we write reference node for it during commit.
851 * So this is why we require 'offs > c->leb_size'.
852 */
853 if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt ||
854 lnum < c->main_first || offs > c->leb_size ||
855 offs & (c->min_io_size - 1))
856 return -EINVAL;
857
858 /* Make sure we have not already looked at this bud */
859 bud = ubifs_search_bud(c, lnum);
860 if (bud) {
861 if (bud->jhead == jhead && bud->start <= offs)
862 return 1;
863 ubifs_err(c, "bud at LEB %d:%d was already referred", lnum, offs);
864 return -EINVAL;
865 }
866
867 return 0;
868}
869
870/**
871 * replay_log_leb - replay a log logical eraseblock.
872 * @c: UBIFS file-system description object
873 * @lnum: log logical eraseblock to replay
874 * @offs: offset to start replaying from
875 * @sbuf: scan buffer
876 *
877 * This function replays a log LEB and returns zero in case of success, %1 if
878 * this is the last LEB in the log, and a negative error code in case of
879 * failure.
880 */
881static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf)
882{
883 int err;
884 struct ubifs_scan_leb *sleb;
885 struct ubifs_scan_node *snod;
886 const struct ubifs_cs_node *node;
887
888 dbg_mnt("replay log LEB %d:%d", lnum, offs);
889 sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery);
890 if (IS_ERR(sleb)) {
891 if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery)
892 return PTR_ERR(sleb);
893 /*
894 * Note, the below function will recover this log LEB only if
895 * it is the last, because unclean reboots can possibly corrupt
896 * only the tail of the log.
897 */
898 sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf);
899 if (IS_ERR(sleb))
900 return PTR_ERR(sleb);
901 }
902
903 if (sleb->nodes_cnt == 0) {
904 err = 1;
905 goto out;
906 }
907
908 node = sleb->buf;
909 snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
910 if (c->cs_sqnum == 0) {
911 /*
912 * This is the first log LEB we are looking at, make sure that
913 * the first node is a commit start node. Also record its
914 * sequence number so that UBIFS can determine where the log
915 * ends, because all nodes which were have higher sequence
916 * numbers.
917 */
918 if (snod->type != UBIFS_CS_NODE) {
919 ubifs_err(c, "first log node at LEB %d:%d is not CS node",
920 lnum, offs);
921 goto out_dump;
922 }
923 if (le64_to_cpu(node->cmt_no) != c->cmt_no) {
924 ubifs_err(c, "first CS node at LEB %d:%d has wrong commit number %llu expected %llu",
925 lnum, offs,
926 (unsigned long long)le64_to_cpu(node->cmt_no),
927 c->cmt_no);
928 goto out_dump;
929 }
930
931 c->cs_sqnum = le64_to_cpu(node->ch.sqnum);
932 dbg_mnt("commit start sqnum %llu", c->cs_sqnum);
933 }
934
935 if (snod->sqnum < c->cs_sqnum) {
936 /*
937 * This means that we reached end of log and now
938 * look to the older log data, which was already
939 * committed but the eraseblock was not erased (UBIFS
940 * only un-maps it). So this basically means we have to
941 * exit with "end of log" code.
942 */
943 err = 1;
944 goto out;
945 }
946
947 /* Make sure the first node sits at offset zero of the LEB */
948 if (snod->offs != 0) {
949 ubifs_err(c, "first node is not at zero offset");
950 goto out_dump;
951 }
952
953 list_for_each_entry(snod, &sleb->nodes, list) {
954 cond_resched();
955
956 if (snod->sqnum >= SQNUM_WATERMARK) {
957 ubifs_err(c, "file system's life ended");
958 goto out_dump;
959 }
960
961 if (snod->sqnum < c->cs_sqnum) {
962 ubifs_err(c, "bad sqnum %llu, commit sqnum %llu",
963 snod->sqnum, c->cs_sqnum);
964 goto out_dump;
965 }
966
967 if (snod->sqnum > c->max_sqnum)
968 c->max_sqnum = snod->sqnum;
969
970 switch (snod->type) {
971 case UBIFS_REF_NODE: {
972 const struct ubifs_ref_node *ref = snod->node;
973
974 err = validate_ref(c, ref);
975 if (err == 1)
976 break; /* Already have this bud */
977 if (err)
978 goto out_dump;
979
980 err = add_replay_bud(c, le32_to_cpu(ref->lnum),
981 le32_to_cpu(ref->offs),
982 le32_to_cpu(ref->jhead),
983 snod->sqnum);
984 if (err)
985 goto out;
986
987 break;
988 }
989 case UBIFS_CS_NODE:
990 /* Make sure it sits at the beginning of LEB */
991 if (snod->offs != 0) {
992 ubifs_err(c, "unexpected node in log");
993 goto out_dump;
994 }
995 break;
996 default:
997 ubifs_err(c, "unexpected node in log");
998 goto out_dump;
999 }
1000 }
1001
1002 if (sleb->endpt || c->lhead_offs >= c->leb_size) {
1003 c->lhead_lnum = lnum;
1004 c->lhead_offs = sleb->endpt;
1005 }
1006
1007 err = !sleb->endpt;
1008out:
1009 ubifs_scan_destroy(sleb);
1010 return err;
1011
1012out_dump:
1013 ubifs_err(c, "log error detected while replaying the log at LEB %d:%d",
1014 lnum, offs + snod->offs);
1015 ubifs_dump_node(c, snod->node);
1016 ubifs_scan_destroy(sleb);
1017 return -EINVAL;
1018}
1019
1020/**
1021 * take_ihead - update the status of the index head in lprops to 'taken'.
1022 * @c: UBIFS file-system description object
1023 *
1024 * This function returns the amount of free space in the index head LEB or a
1025 * negative error code.
1026 */
1027static int take_ihead(struct ubifs_info *c)
1028{
1029 const struct ubifs_lprops *lp;
1030 int err, free;
1031
1032 ubifs_get_lprops(c);
1033
1034 lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum);
1035 if (IS_ERR(lp)) {
1036 err = PTR_ERR(lp);
1037 goto out;
1038 }
1039
1040 free = lp->free;
1041
1042 lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
1043 lp->flags | LPROPS_TAKEN, 0);
1044 if (IS_ERR(lp)) {
1045 err = PTR_ERR(lp);
1046 goto out;
1047 }
1048
1049 err = free;
1050out:
1051 ubifs_release_lprops(c);
1052 return err;
1053}
1054
1055/**
1056 * ubifs_replay_journal - replay journal.
1057 * @c: UBIFS file-system description object
1058 *
1059 * This function scans the journal, replays and cleans it up. It makes sure all
1060 * memory data structures related to uncommitted journal are built (dirty TNC
1061 * tree, tree of buds, modified lprops, etc).
1062 */
1063int ubifs_replay_journal(struct ubifs_info *c)
1064{
1065 int err, lnum, free;
1066
1067 BUILD_BUG_ON(UBIFS_TRUN_KEY > 5);
1068
1069 /* Update the status of the index head in lprops to 'taken' */
1070 free = take_ihead(c);
1071 if (free < 0)
1072 return free; /* Error code */
1073
1074 if (c->ihead_offs != c->leb_size - free) {
1075 ubifs_err(c, "bad index head LEB %d:%d", c->ihead_lnum,
1076 c->ihead_offs);
1077 return -EINVAL;
1078 }
1079
1080 dbg_mnt("start replaying the journal");
1081 c->replaying = 1;
1082 lnum = c->ltail_lnum = c->lhead_lnum;
1083
1084 do {
1085#ifdef CONFIG_UBIFS_SHARE_BUFFER
1086 if (mutex_trylock(&ubifs_sbuf_mutex) == 0) {
1087 atomic_long_inc(&ubifs_sbuf_lock_count);
1088 ubifs_err(c, "trylock fail count %ld\n",
1089 READ_LOCK_COUNT);
1090 mutex_lock(&ubifs_sbuf_mutex);
1091 ubifs_err(c, "locked count %ld\n", READ_LOCK_COUNT);
1092 }
1093#endif
1094
1095 err = replay_log_leb(c, lnum, 0, c->sbuf);
1096#ifdef CONFIG_UBIFS_SHARE_BUFFER
1097 mutex_unlock(&ubifs_sbuf_mutex);
1098#endif
1099 if (err == 1) {
1100 if (lnum != c->lhead_lnum)
1101 /* We hit the end of the log */
1102 break;
1103
1104 /*
1105 * The head of the log must always start with the
1106 * "commit start" node on a properly formatted UBIFS.
1107 * But we found no nodes at all, which means that
1108 * someting went wrong and we cannot proceed mounting
1109 * the file-system.
1110 */
1111 ubifs_err(c, "no UBIFS nodes found at the log head LEB %d:%d, possibly corrupted",
1112 lnum, 0);
1113 err = -EINVAL;
1114 }
1115 if (err)
1116 goto out;
1117 lnum = ubifs_next_log_lnum(c, lnum);
1118 } while (lnum != c->ltail_lnum);
1119
1120 err = replay_buds(c);
1121 if (err)
1122 goto out;
1123
1124 err = apply_replay_list(c);
1125 if (err)
1126 goto out;
1127
1128 err = set_buds_lprops(c);
1129 if (err)
1130 goto out;
1131
1132 /*
1133 * UBIFS budgeting calculations use @c->bi.uncommitted_idx variable
1134 * to roughly estimate index growth. Things like @c->bi.min_idx_lebs
1135 * depend on it. This means we have to initialize it to make sure
1136 * budgeting works properly.
1137 */
1138 c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt);
1139 c->bi.uncommitted_idx *= c->max_idx_node_sz;
1140
1141 ubifs_assert(c->bud_bytes <= c->max_bud_bytes || c->need_recovery);
1142 dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, highest_inum %lu",
1143 c->lhead_lnum, c->lhead_offs, c->max_sqnum,
1144 (unsigned long)c->highest_inum);
1145out:
1146 destroy_replay_list(c);
1147 destroy_bud_list(c);
1148 c->replaying = 0;
1149 return err;
1150}