rjw | 1f88458 | 2022-01-06 17:20:42 +0800 | [diff] [blame^] | 1 | /* |
| 2 | * This file is part of UBIFS. |
| 3 | * |
| 4 | * Copyright (C) 2006-2008 Nokia Corporation. |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify it |
| 7 | * under the terms of the GNU General Public License version 2 as published by |
| 8 | * the Free Software Foundation. |
| 9 | * |
| 10 | * This program is distributed in the hope that it will be useful, but WITHOUT |
| 11 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 12 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| 13 | * more details. |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License along with |
| 16 | * this program; if not, write to the Free Software Foundation, Inc., 51 |
| 17 | * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| 18 | * |
| 19 | * Authors: Adrian Hunter |
| 20 | * Artem Bityutskiy (Битюцкий Артём) |
| 21 | */ |
| 22 | |
| 23 | /* |
| 24 | * This file contains journal replay code. It runs when the file-system is being |
| 25 | * mounted and requires no locking. |
| 26 | * |
| 27 | * The larger is the journal, the longer it takes to scan it, so the longer it |
| 28 | * takes to mount UBIFS. This is why the journal has limited size which may be |
| 29 | * changed depending on the system requirements. But a larger journal gives |
| 30 | * faster I/O speed because it writes the index less frequently. So this is a |
| 31 | * trade-off. Also, the journal is indexed by the in-memory index (TNC), so the |
| 32 | * larger is the journal, the more memory its index may consume. |
| 33 | */ |
| 34 | |
| 35 | #include "ubifs.h" |
| 36 | #include <linux/list_sort.h> |
| 37 | |
| 38 | /** |
| 39 | * struct replay_entry - replay list entry. |
| 40 | * @lnum: logical eraseblock number of the node |
| 41 | * @offs: node offset |
| 42 | * @len: node length |
| 43 | * @deletion: non-zero if this entry corresponds to a node deletion |
| 44 | * @sqnum: node sequence number |
| 45 | * @list: links the replay list |
| 46 | * @key: node key |
| 47 | * @nm: directory entry name |
| 48 | * @old_size: truncation old size |
| 49 | * @new_size: truncation new size |
| 50 | * |
| 51 | * The replay process first scans all buds and builds the replay list, then |
| 52 | * sorts the replay list in nodes sequence number order, and then inserts all |
| 53 | * the replay entries to the TNC. |
| 54 | */ |
| 55 | struct replay_entry { |
| 56 | int lnum; |
| 57 | int offs; |
| 58 | int len; |
| 59 | unsigned int deletion:1; |
| 60 | unsigned long long sqnum; |
| 61 | struct list_head list; |
| 62 | union ubifs_key key; |
| 63 | union { |
| 64 | struct fscrypt_name nm; |
| 65 | struct { |
| 66 | loff_t old_size; |
| 67 | loff_t new_size; |
| 68 | }; |
| 69 | }; |
| 70 | }; |
| 71 | |
| 72 | /** |
| 73 | * struct bud_entry - entry in the list of buds to replay. |
| 74 | * @list: next bud in the list |
| 75 | * @bud: bud description object |
| 76 | * @sqnum: reference node sequence number |
| 77 | * @free: free bytes in the bud |
| 78 | * @dirty: dirty bytes in the bud |
| 79 | */ |
| 80 | struct bud_entry { |
| 81 | struct list_head list; |
| 82 | struct ubifs_bud *bud; |
| 83 | unsigned long long sqnum; |
| 84 | int free; |
| 85 | int dirty; |
| 86 | }; |
| 87 | |
| 88 | /** |
| 89 | * set_bud_lprops - set free and dirty space used by a bud. |
| 90 | * @c: UBIFS file-system description object |
| 91 | * @b: bud entry which describes the bud |
| 92 | * |
| 93 | * This function makes sure the LEB properties of bud @b are set correctly |
| 94 | * after the replay. Returns zero in case of success and a negative error code |
| 95 | * in case of failure. |
| 96 | */ |
| 97 | static int set_bud_lprops(struct ubifs_info *c, struct bud_entry *b) |
| 98 | { |
| 99 | const struct ubifs_lprops *lp; |
| 100 | int err = 0, dirty; |
| 101 | |
| 102 | ubifs_get_lprops(c); |
| 103 | |
| 104 | lp = ubifs_lpt_lookup_dirty(c, b->bud->lnum); |
| 105 | if (IS_ERR(lp)) { |
| 106 | err = PTR_ERR(lp); |
| 107 | goto out; |
| 108 | } |
| 109 | |
| 110 | dirty = lp->dirty; |
| 111 | if (b->bud->start == 0 && (lp->free != c->leb_size || lp->dirty != 0)) { |
| 112 | /* |
| 113 | * The LEB was added to the journal with a starting offset of |
| 114 | * zero which means the LEB must have been empty. The LEB |
| 115 | * property values should be @lp->free == @c->leb_size and |
| 116 | * @lp->dirty == 0, but that is not the case. The reason is that |
| 117 | * the LEB had been garbage collected before it became the bud, |
| 118 | * and there was not commit inbetween. The garbage collector |
| 119 | * resets the free and dirty space without recording it |
| 120 | * anywhere except lprops, so if there was no commit then |
| 121 | * lprops does not have that information. |
| 122 | * |
| 123 | * We do not need to adjust free space because the scan has told |
| 124 | * us the exact value which is recorded in the replay entry as |
| 125 | * @b->free. |
| 126 | * |
| 127 | * However we do need to subtract from the dirty space the |
| 128 | * amount of space that the garbage collector reclaimed, which |
| 129 | * is the whole LEB minus the amount of space that was free. |
| 130 | */ |
| 131 | dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum, |
| 132 | lp->free, lp->dirty); |
| 133 | dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum, |
| 134 | lp->free, lp->dirty); |
| 135 | dirty -= c->leb_size - lp->free; |
| 136 | /* |
| 137 | * If the replay order was perfect the dirty space would now be |
| 138 | * zero. The order is not perfect because the journal heads |
| 139 | * race with each other. This is not a problem but is does mean |
| 140 | * that the dirty space may temporarily exceed c->leb_size |
| 141 | * during the replay. |
| 142 | */ |
| 143 | if (dirty != 0) |
| 144 | dbg_mnt("LEB %d lp: %d free %d dirty replay: %d free %d dirty", |
| 145 | b->bud->lnum, lp->free, lp->dirty, b->free, |
| 146 | b->dirty); |
| 147 | } |
| 148 | lp = ubifs_change_lp(c, lp, b->free, dirty + b->dirty, |
| 149 | lp->flags | LPROPS_TAKEN, 0); |
| 150 | if (IS_ERR(lp)) { |
| 151 | err = PTR_ERR(lp); |
| 152 | goto out; |
| 153 | } |
| 154 | |
| 155 | /* Make sure the journal head points to the latest bud */ |
| 156 | err = ubifs_wbuf_seek_nolock(&c->jheads[b->bud->jhead].wbuf, |
| 157 | b->bud->lnum, c->leb_size - b->free); |
| 158 | |
| 159 | out: |
| 160 | ubifs_release_lprops(c); |
| 161 | return err; |
| 162 | } |
| 163 | |
| 164 | /** |
| 165 | * set_buds_lprops - set free and dirty space for all replayed buds. |
| 166 | * @c: UBIFS file-system description object |
| 167 | * |
| 168 | * This function sets LEB properties for all replayed buds. Returns zero in |
| 169 | * case of success and a negative error code in case of failure. |
| 170 | */ |
| 171 | static int set_buds_lprops(struct ubifs_info *c) |
| 172 | { |
| 173 | struct bud_entry *b; |
| 174 | int err; |
| 175 | |
| 176 | list_for_each_entry(b, &c->replay_buds, list) { |
| 177 | err = set_bud_lprops(c, b); |
| 178 | if (err) |
| 179 | return err; |
| 180 | } |
| 181 | |
| 182 | return 0; |
| 183 | } |
| 184 | |
| 185 | /** |
| 186 | * trun_remove_range - apply a replay entry for a truncation to the TNC. |
| 187 | * @c: UBIFS file-system description object |
| 188 | * @r: replay entry of truncation |
| 189 | */ |
| 190 | static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r) |
| 191 | { |
| 192 | unsigned min_blk, max_blk; |
| 193 | union ubifs_key min_key, max_key; |
| 194 | ino_t ino; |
| 195 | |
| 196 | min_blk = r->new_size / UBIFS_BLOCK_SIZE; |
| 197 | if (r->new_size & (UBIFS_BLOCK_SIZE - 1)) |
| 198 | min_blk += 1; |
| 199 | |
| 200 | max_blk = r->old_size / UBIFS_BLOCK_SIZE; |
| 201 | if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0) |
| 202 | max_blk -= 1; |
| 203 | |
| 204 | ino = key_inum(c, &r->key); |
| 205 | |
| 206 | data_key_init(c, &min_key, ino, min_blk); |
| 207 | data_key_init(c, &max_key, ino, max_blk); |
| 208 | |
| 209 | return ubifs_tnc_remove_range(c, &min_key, &max_key); |
| 210 | } |
| 211 | |
| 212 | /** |
| 213 | * inode_still_linked - check whether inode in question will be re-linked. |
| 214 | * @c: UBIFS file-system description object |
| 215 | * @rino: replay entry to test |
| 216 | * |
| 217 | * O_TMPFILE files can be re-linked, this means link count goes from 0 to 1. |
| 218 | * This case needs special care, otherwise all references to the inode will |
| 219 | * be removed upon the first replay entry of an inode with link count 0 |
| 220 | * is found. |
| 221 | */ |
| 222 | static bool inode_still_linked(struct ubifs_info *c, struct replay_entry *rino) |
| 223 | { |
| 224 | struct replay_entry *r; |
| 225 | |
| 226 | ubifs_assert(rino->deletion); |
| 227 | ubifs_assert(key_type(c, &rino->key) == UBIFS_INO_KEY); |
| 228 | |
| 229 | /* |
| 230 | * Find the most recent entry for the inode behind @rino and check |
| 231 | * whether it is a deletion. |
| 232 | */ |
| 233 | list_for_each_entry_reverse(r, &c->replay_list, list) { |
| 234 | ubifs_assert(r->sqnum >= rino->sqnum); |
| 235 | if (key_inum(c, &r->key) == key_inum(c, &rino->key)) |
| 236 | return r->deletion == 0; |
| 237 | |
| 238 | } |
| 239 | |
| 240 | ubifs_assert(0); |
| 241 | return false; |
| 242 | } |
| 243 | |
| 244 | /** |
| 245 | * apply_replay_entry - apply a replay entry to the TNC. |
| 246 | * @c: UBIFS file-system description object |
| 247 | * @r: replay entry to apply |
| 248 | * |
| 249 | * Apply a replay entry to the TNC. |
| 250 | */ |
| 251 | static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r) |
| 252 | { |
| 253 | int err; |
| 254 | |
| 255 | dbg_mntk(&r->key, "LEB %d:%d len %d deletion %d sqnum %llu key ", |
| 256 | r->lnum, r->offs, r->len, r->deletion, r->sqnum); |
| 257 | |
| 258 | /* Set c->replay_sqnum to help deal with dangling branches. */ |
| 259 | c->replay_sqnum = r->sqnum; |
| 260 | |
| 261 | if (is_hash_key(c, &r->key)) { |
| 262 | if (r->deletion) |
| 263 | err = ubifs_tnc_remove_nm(c, &r->key, &r->nm); |
| 264 | else |
| 265 | err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs, |
| 266 | r->len, &r->nm); |
| 267 | } else { |
| 268 | if (r->deletion) |
| 269 | switch (key_type(c, &r->key)) { |
| 270 | case UBIFS_INO_KEY: |
| 271 | { |
| 272 | ino_t inum = key_inum(c, &r->key); |
| 273 | |
| 274 | if (inode_still_linked(c, r)) { |
| 275 | err = 0; |
| 276 | break; |
| 277 | } |
| 278 | |
| 279 | err = ubifs_tnc_remove_ino(c, inum); |
| 280 | break; |
| 281 | } |
| 282 | case UBIFS_TRUN_KEY: |
| 283 | err = trun_remove_range(c, r); |
| 284 | break; |
| 285 | default: |
| 286 | err = ubifs_tnc_remove(c, &r->key); |
| 287 | break; |
| 288 | } |
| 289 | else |
| 290 | err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs, |
| 291 | r->len); |
| 292 | if (err) |
| 293 | return err; |
| 294 | |
| 295 | if (c->need_recovery) |
| 296 | err = ubifs_recover_size_accum(c, &r->key, r->deletion, |
| 297 | r->new_size); |
| 298 | } |
| 299 | |
| 300 | return err; |
| 301 | } |
| 302 | |
| 303 | /** |
| 304 | * replay_entries_cmp - compare 2 replay entries. |
| 305 | * @priv: UBIFS file-system description object |
| 306 | * @a: first replay entry |
| 307 | * @b: second replay entry |
| 308 | * |
| 309 | * This is a comparios function for 'list_sort()' which compares 2 replay |
| 310 | * entries @a and @b by comparing their sequence numer. Returns %1 if @a has |
| 311 | * greater sequence number and %-1 otherwise. |
| 312 | */ |
| 313 | static int replay_entries_cmp(void *priv, struct list_head *a, |
| 314 | struct list_head *b) |
| 315 | { |
| 316 | struct replay_entry *ra, *rb; |
| 317 | |
| 318 | cond_resched(); |
| 319 | if (a == b) |
| 320 | return 0; |
| 321 | |
| 322 | ra = list_entry(a, struct replay_entry, list); |
| 323 | rb = list_entry(b, struct replay_entry, list); |
| 324 | ubifs_assert(ra->sqnum != rb->sqnum); |
| 325 | if (ra->sqnum > rb->sqnum) |
| 326 | return 1; |
| 327 | return -1; |
| 328 | } |
| 329 | |
| 330 | /** |
| 331 | * apply_replay_list - apply the replay list to the TNC. |
| 332 | * @c: UBIFS file-system description object |
| 333 | * |
| 334 | * Apply all entries in the replay list to the TNC. Returns zero in case of |
| 335 | * success and a negative error code in case of failure. |
| 336 | */ |
| 337 | static int apply_replay_list(struct ubifs_info *c) |
| 338 | { |
| 339 | struct replay_entry *r; |
| 340 | int err; |
| 341 | |
| 342 | list_sort(c, &c->replay_list, &replay_entries_cmp); |
| 343 | |
| 344 | list_for_each_entry(r, &c->replay_list, list) { |
| 345 | cond_resched(); |
| 346 | |
| 347 | err = apply_replay_entry(c, r); |
| 348 | if (err) |
| 349 | return err; |
| 350 | } |
| 351 | |
| 352 | return 0; |
| 353 | } |
| 354 | |
| 355 | /** |
| 356 | * destroy_replay_list - destroy the replay. |
| 357 | * @c: UBIFS file-system description object |
| 358 | * |
| 359 | * Destroy the replay list. |
| 360 | */ |
| 361 | static void destroy_replay_list(struct ubifs_info *c) |
| 362 | { |
| 363 | struct replay_entry *r, *tmp; |
| 364 | |
| 365 | list_for_each_entry_safe(r, tmp, &c->replay_list, list) { |
| 366 | if (is_hash_key(c, &r->key)) |
| 367 | kfree(fname_name(&r->nm)); |
| 368 | list_del(&r->list); |
| 369 | kfree(r); |
| 370 | } |
| 371 | } |
| 372 | |
| 373 | /** |
| 374 | * insert_node - insert a node to the replay list |
| 375 | * @c: UBIFS file-system description object |
| 376 | * @lnum: node logical eraseblock number |
| 377 | * @offs: node offset |
| 378 | * @len: node length |
| 379 | * @key: node key |
| 380 | * @sqnum: sequence number |
| 381 | * @deletion: non-zero if this is a deletion |
| 382 | * @used: number of bytes in use in a LEB |
| 383 | * @old_size: truncation old size |
| 384 | * @new_size: truncation new size |
| 385 | * |
| 386 | * This function inserts a scanned non-direntry node to the replay list. The |
| 387 | * replay list contains @struct replay_entry elements, and we sort this list in |
| 388 | * sequence number order before applying it. The replay list is applied at the |
| 389 | * very end of the replay process. Since the list is sorted in sequence number |
| 390 | * order, the older modifications are applied first. This function returns zero |
| 391 | * in case of success and a negative error code in case of failure. |
| 392 | */ |
| 393 | static int insert_node(struct ubifs_info *c, int lnum, int offs, int len, |
| 394 | union ubifs_key *key, unsigned long long sqnum, |
| 395 | int deletion, int *used, loff_t old_size, |
| 396 | loff_t new_size) |
| 397 | { |
| 398 | struct replay_entry *r; |
| 399 | |
| 400 | dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs); |
| 401 | |
| 402 | if (key_inum(c, key) >= c->highest_inum) |
| 403 | c->highest_inum = key_inum(c, key); |
| 404 | |
| 405 | r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL); |
| 406 | if (!r) |
| 407 | return -ENOMEM; |
| 408 | |
| 409 | if (!deletion) |
| 410 | *used += ALIGN(len, 8); |
| 411 | r->lnum = lnum; |
| 412 | r->offs = offs; |
| 413 | r->len = len; |
| 414 | r->deletion = !!deletion; |
| 415 | r->sqnum = sqnum; |
| 416 | key_copy(c, key, &r->key); |
| 417 | r->old_size = old_size; |
| 418 | r->new_size = new_size; |
| 419 | |
| 420 | list_add_tail(&r->list, &c->replay_list); |
| 421 | return 0; |
| 422 | } |
| 423 | |
| 424 | /** |
| 425 | * insert_dent - insert a directory entry node into the replay list. |
| 426 | * @c: UBIFS file-system description object |
| 427 | * @lnum: node logical eraseblock number |
| 428 | * @offs: node offset |
| 429 | * @len: node length |
| 430 | * @key: node key |
| 431 | * @name: directory entry name |
| 432 | * @nlen: directory entry name length |
| 433 | * @sqnum: sequence number |
| 434 | * @deletion: non-zero if this is a deletion |
| 435 | * @used: number of bytes in use in a LEB |
| 436 | * |
| 437 | * This function inserts a scanned directory entry node or an extended |
| 438 | * attribute entry to the replay list. Returns zero in case of success and a |
| 439 | * negative error code in case of failure. |
| 440 | */ |
| 441 | static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len, |
| 442 | union ubifs_key *key, const char *name, int nlen, |
| 443 | unsigned long long sqnum, int deletion, int *used) |
| 444 | { |
| 445 | struct replay_entry *r; |
| 446 | char *nbuf; |
| 447 | |
| 448 | dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs); |
| 449 | if (key_inum(c, key) >= c->highest_inum) |
| 450 | c->highest_inum = key_inum(c, key); |
| 451 | |
| 452 | r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL); |
| 453 | if (!r) |
| 454 | return -ENOMEM; |
| 455 | |
| 456 | nbuf = kmalloc(nlen + 1, GFP_KERNEL); |
| 457 | if (!nbuf) { |
| 458 | kfree(r); |
| 459 | return -ENOMEM; |
| 460 | } |
| 461 | |
| 462 | if (!deletion) |
| 463 | *used += ALIGN(len, 8); |
| 464 | r->lnum = lnum; |
| 465 | r->offs = offs; |
| 466 | r->len = len; |
| 467 | r->deletion = !!deletion; |
| 468 | r->sqnum = sqnum; |
| 469 | key_copy(c, key, &r->key); |
| 470 | fname_len(&r->nm) = nlen; |
| 471 | memcpy(nbuf, name, nlen); |
| 472 | nbuf[nlen] = '\0'; |
| 473 | fname_name(&r->nm) = nbuf; |
| 474 | |
| 475 | list_add_tail(&r->list, &c->replay_list); |
| 476 | return 0; |
| 477 | } |
| 478 | |
| 479 | /** |
| 480 | * ubifs_validate_entry - validate directory or extended attribute entry node. |
| 481 | * @c: UBIFS file-system description object |
| 482 | * @dent: the node to validate |
| 483 | * |
| 484 | * This function validates directory or extended attribute entry node @dent. |
| 485 | * Returns zero if the node is all right and a %-EINVAL if not. |
| 486 | */ |
| 487 | int ubifs_validate_entry(struct ubifs_info *c, |
| 488 | const struct ubifs_dent_node *dent) |
| 489 | { |
| 490 | int key_type = key_type_flash(c, dent->key); |
| 491 | int nlen = le16_to_cpu(dent->nlen); |
| 492 | |
| 493 | if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 || |
| 494 | dent->type >= UBIFS_ITYPES_CNT || |
| 495 | nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 || |
| 496 | (key_type == UBIFS_XENT_KEY && strnlen(dent->name, nlen) != nlen) || |
| 497 | le64_to_cpu(dent->inum) > MAX_INUM) { |
| 498 | ubifs_err(c, "bad %s node", key_type == UBIFS_DENT_KEY ? |
| 499 | "directory entry" : "extended attribute entry"); |
| 500 | return -EINVAL; |
| 501 | } |
| 502 | |
| 503 | if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) { |
| 504 | ubifs_err(c, "bad key type %d", key_type); |
| 505 | return -EINVAL; |
| 506 | } |
| 507 | |
| 508 | return 0; |
| 509 | } |
| 510 | |
| 511 | /** |
| 512 | * is_last_bud - check if the bud is the last in the journal head. |
| 513 | * @c: UBIFS file-system description object |
| 514 | * @bud: bud description object |
| 515 | * |
| 516 | * This function checks if bud @bud is the last bud in its journal head. This |
| 517 | * information is then used by 'replay_bud()' to decide whether the bud can |
| 518 | * have corruptions or not. Indeed, only last buds can be corrupted by power |
| 519 | * cuts. Returns %1 if this is the last bud, and %0 if not. |
| 520 | */ |
| 521 | static int is_last_bud(struct ubifs_info *c, struct ubifs_bud *bud) |
| 522 | { |
| 523 | struct ubifs_jhead *jh = &c->jheads[bud->jhead]; |
| 524 | struct ubifs_bud *next; |
| 525 | uint32_t data; |
| 526 | int err; |
| 527 | |
| 528 | if (list_is_last(&bud->list, &jh->buds_list)) |
| 529 | return 1; |
| 530 | |
| 531 | /* |
| 532 | * The following is a quirk to make sure we work correctly with UBIFS |
| 533 | * images used with older UBIFS. |
| 534 | * |
| 535 | * Normally, the last bud will be the last in the journal head's list |
| 536 | * of bud. However, there is one exception if the UBIFS image belongs |
| 537 | * to older UBIFS. This is fairly unlikely: one would need to use old |
| 538 | * UBIFS, then have a power cut exactly at the right point, and then |
| 539 | * try to mount this image with new UBIFS. |
| 540 | * |
| 541 | * The exception is: it is possible to have 2 buds A and B, A goes |
| 542 | * before B, and B is the last, bud B is contains no data, and bud A is |
| 543 | * corrupted at the end. The reason is that in older versions when the |
| 544 | * journal code switched the next bud (from A to B), it first added a |
| 545 | * log reference node for the new bud (B), and only after this it |
| 546 | * synchronized the write-buffer of current bud (A). But later this was |
| 547 | * changed and UBIFS started to always synchronize the write-buffer of |
| 548 | * the bud (A) before writing the log reference for the new bud (B). |
| 549 | * |
| 550 | * But because older UBIFS always synchronized A's write-buffer before |
| 551 | * writing to B, we can recognize this exceptional situation but |
| 552 | * checking the contents of bud B - if it is empty, then A can be |
| 553 | * treated as the last and we can recover it. |
| 554 | * |
| 555 | * TODO: remove this piece of code in a couple of years (today it is |
| 556 | * 16.05.2011). |
| 557 | */ |
| 558 | next = list_entry(bud->list.next, struct ubifs_bud, list); |
| 559 | if (!list_is_last(&next->list, &jh->buds_list)) |
| 560 | return 0; |
| 561 | |
| 562 | err = ubifs_leb_read(c, next->lnum, (char *)&data, next->start, 4, 1); |
| 563 | if (err) |
| 564 | return 0; |
| 565 | |
| 566 | return data == 0xFFFFFFFF; |
| 567 | } |
| 568 | |
| 569 | /** |
| 570 | * replay_bud - replay a bud logical eraseblock. |
| 571 | * @c: UBIFS file-system description object |
| 572 | * @b: bud entry which describes the bud |
| 573 | * |
| 574 | * This function replays bud @bud, recovers it if needed, and adds all nodes |
| 575 | * from this bud to the replay list. Returns zero in case of success and a |
| 576 | * negative error code in case of failure. |
| 577 | */ |
| 578 | static int replay_bud(struct ubifs_info *c, struct bud_entry *b) |
| 579 | { |
| 580 | int is_last = is_last_bud(c, b->bud); |
| 581 | int err = 0, used = 0, lnum = b->bud->lnum, offs = b->bud->start; |
| 582 | struct ubifs_scan_leb *sleb; |
| 583 | struct ubifs_scan_node *snod; |
| 584 | |
| 585 | dbg_mnt("replay bud LEB %d, head %d, offs %d, is_last %d", |
| 586 | lnum, b->bud->jhead, offs, is_last); |
| 587 | |
| 588 | #ifdef CONFIG_UBIFS_SHARE_BUFFER |
| 589 | if (mutex_trylock(&ubifs_sbuf_mutex) == 0) { |
| 590 | atomic_long_inc(&ubifs_sbuf_lock_count); |
| 591 | ubifs_err(c, "trylock fail count %ld\n", READ_LOCK_COUNT); |
| 592 | mutex_lock(&ubifs_sbuf_mutex); |
| 593 | ubifs_err(c, "locked count %ld\n", READ_LOCK_COUNT); |
| 594 | } |
| 595 | #endif |
| 596 | if (c->need_recovery && is_last) |
| 597 | /* |
| 598 | * Recover only last LEBs in the journal heads, because power |
| 599 | * cuts may cause corruptions only in these LEBs, because only |
| 600 | * these LEBs could possibly be written to at the power cut |
| 601 | * time. |
| 602 | */ |
| 603 | sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead); |
| 604 | else |
| 605 | sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0); |
| 606 | if (IS_ERR(sleb)) { |
| 607 | #ifdef CONFIG_UBIFS_SHARE_BUFFER |
| 608 | mutex_unlock(&ubifs_sbuf_mutex); |
| 609 | #endif |
| 610 | return PTR_ERR(sleb); |
| 611 | } |
| 612 | |
| 613 | /* |
| 614 | * The bud does not have to start from offset zero - the beginning of |
| 615 | * the 'lnum' LEB may contain previously committed data. One of the |
| 616 | * things we have to do in replay is to correctly update lprops with |
| 617 | * newer information about this LEB. |
| 618 | * |
| 619 | * At this point lprops thinks that this LEB has 'c->leb_size - offs' |
| 620 | * bytes of free space because it only contain information about |
| 621 | * committed data. |
| 622 | * |
| 623 | * But we know that real amount of free space is 'c->leb_size - |
| 624 | * sleb->endpt', and the space in the 'lnum' LEB between 'offs' and |
| 625 | * 'sleb->endpt' is used by bud data. We have to correctly calculate |
| 626 | * how much of these data are dirty and update lprops with this |
| 627 | * information. |
| 628 | * |
| 629 | * The dirt in that LEB region is comprised of padding nodes, deletion |
| 630 | * nodes, truncation nodes and nodes which are obsoleted by subsequent |
| 631 | * nodes in this LEB. So instead of calculating clean space, we |
| 632 | * calculate used space ('used' variable). |
| 633 | */ |
| 634 | |
| 635 | list_for_each_entry(snod, &sleb->nodes, list) { |
| 636 | int deletion = 0; |
| 637 | |
| 638 | cond_resched(); |
| 639 | |
| 640 | if (snod->sqnum >= SQNUM_WATERMARK) { |
| 641 | ubifs_err(c, "file system's life ended"); |
| 642 | goto out_dump; |
| 643 | } |
| 644 | |
| 645 | if (snod->sqnum > c->max_sqnum) |
| 646 | c->max_sqnum = snod->sqnum; |
| 647 | |
| 648 | switch (snod->type) { |
| 649 | case UBIFS_INO_NODE: |
| 650 | { |
| 651 | struct ubifs_ino_node *ino = snod->node; |
| 652 | loff_t new_size = le64_to_cpu(ino->size); |
| 653 | |
| 654 | if (le32_to_cpu(ino->nlink) == 0) |
| 655 | deletion = 1; |
| 656 | err = insert_node(c, lnum, snod->offs, snod->len, |
| 657 | &snod->key, snod->sqnum, deletion, |
| 658 | &used, 0, new_size); |
| 659 | break; |
| 660 | } |
| 661 | case UBIFS_DATA_NODE: |
| 662 | { |
| 663 | struct ubifs_data_node *dn = snod->node; |
| 664 | loff_t new_size = le32_to_cpu(dn->size) + |
| 665 | key_block(c, &snod->key) * |
| 666 | UBIFS_BLOCK_SIZE; |
| 667 | |
| 668 | err = insert_node(c, lnum, snod->offs, snod->len, |
| 669 | &snod->key, snod->sqnum, deletion, |
| 670 | &used, 0, new_size); |
| 671 | break; |
| 672 | } |
| 673 | case UBIFS_DENT_NODE: |
| 674 | case UBIFS_XENT_NODE: |
| 675 | { |
| 676 | struct ubifs_dent_node *dent = snod->node; |
| 677 | |
| 678 | err = ubifs_validate_entry(c, dent); |
| 679 | if (err) |
| 680 | goto out_dump; |
| 681 | |
| 682 | err = insert_dent(c, lnum, snod->offs, snod->len, |
| 683 | &snod->key, dent->name, |
| 684 | le16_to_cpu(dent->nlen), snod->sqnum, |
| 685 | !le64_to_cpu(dent->inum), &used); |
| 686 | break; |
| 687 | } |
| 688 | case UBIFS_TRUN_NODE: |
| 689 | { |
| 690 | struct ubifs_trun_node *trun = snod->node; |
| 691 | loff_t old_size = le64_to_cpu(trun->old_size); |
| 692 | loff_t new_size = le64_to_cpu(trun->new_size); |
| 693 | union ubifs_key key; |
| 694 | |
| 695 | /* Validate truncation node */ |
| 696 | if (old_size < 0 || old_size > c->max_inode_sz || |
| 697 | new_size < 0 || new_size > c->max_inode_sz || |
| 698 | old_size <= new_size) { |
| 699 | ubifs_err(c, "bad truncation node"); |
| 700 | goto out_dump; |
| 701 | } |
| 702 | |
| 703 | /* |
| 704 | * Create a fake truncation key just to use the same |
| 705 | * functions which expect nodes to have keys. |
| 706 | */ |
| 707 | trun_key_init(c, &key, le32_to_cpu(trun->inum)); |
| 708 | err = insert_node(c, lnum, snod->offs, snod->len, |
| 709 | &key, snod->sqnum, 1, &used, |
| 710 | old_size, new_size); |
| 711 | break; |
| 712 | } |
| 713 | default: |
| 714 | ubifs_err(c, "unexpected node type %d in bud LEB %d:%d", |
| 715 | snod->type, lnum, snod->offs); |
| 716 | err = -EINVAL; |
| 717 | goto out_dump; |
| 718 | } |
| 719 | if (err) |
| 720 | goto out; |
| 721 | } |
| 722 | |
| 723 | ubifs_assert(ubifs_search_bud(c, lnum)); |
| 724 | ubifs_assert(sleb->endpt - offs >= used); |
| 725 | ubifs_assert(sleb->endpt % c->min_io_size == 0); |
| 726 | |
| 727 | b->dirty = sleb->endpt - offs - used; |
| 728 | b->free = c->leb_size - sleb->endpt; |
| 729 | dbg_mnt("bud LEB %d replied: dirty %d, free %d", |
| 730 | lnum, b->dirty, b->free); |
| 731 | |
| 732 | out: |
| 733 | ubifs_scan_destroy(sleb); |
| 734 | #ifdef CONFIG_UBIFS_SHARE_BUFFER |
| 735 | mutex_unlock(&ubifs_sbuf_mutex); |
| 736 | #endif |
| 737 | return err; |
| 738 | |
| 739 | out_dump: |
| 740 | ubifs_err(c, "bad node is at LEB %d:%d", lnum, snod->offs); |
| 741 | ubifs_dump_node(c, snod->node); |
| 742 | ubifs_scan_destroy(sleb); |
| 743 | #ifdef CONFIG_UBIFS_SHARE_BUFFER |
| 744 | mutex_unlock(&ubifs_sbuf_mutex); |
| 745 | #endif |
| 746 | return -EINVAL; |
| 747 | } |
| 748 | |
| 749 | /** |
| 750 | * replay_buds - replay all buds. |
| 751 | * @c: UBIFS file-system description object |
| 752 | * |
| 753 | * This function returns zero in case of success and a negative error code in |
| 754 | * case of failure. |
| 755 | */ |
| 756 | static int replay_buds(struct ubifs_info *c) |
| 757 | { |
| 758 | struct bud_entry *b; |
| 759 | int err; |
| 760 | unsigned long long prev_sqnum = 0; |
| 761 | |
| 762 | list_for_each_entry(b, &c->replay_buds, list) { |
| 763 | err = replay_bud(c, b); |
| 764 | if (err) |
| 765 | return err; |
| 766 | |
| 767 | ubifs_assert(b->sqnum > prev_sqnum); |
| 768 | prev_sqnum = b->sqnum; |
| 769 | } |
| 770 | |
| 771 | return 0; |
| 772 | } |
| 773 | |
| 774 | /** |
| 775 | * destroy_bud_list - destroy the list of buds to replay. |
| 776 | * @c: UBIFS file-system description object |
| 777 | */ |
| 778 | static void destroy_bud_list(struct ubifs_info *c) |
| 779 | { |
| 780 | struct bud_entry *b; |
| 781 | |
| 782 | while (!list_empty(&c->replay_buds)) { |
| 783 | b = list_entry(c->replay_buds.next, struct bud_entry, list); |
| 784 | list_del(&b->list); |
| 785 | kfree(b); |
| 786 | } |
| 787 | } |
| 788 | |
| 789 | /** |
| 790 | * add_replay_bud - add a bud to the list of buds to replay. |
| 791 | * @c: UBIFS file-system description object |
| 792 | * @lnum: bud logical eraseblock number to replay |
| 793 | * @offs: bud start offset |
| 794 | * @jhead: journal head to which this bud belongs |
| 795 | * @sqnum: reference node sequence number |
| 796 | * |
| 797 | * This function returns zero in case of success and a negative error code in |
| 798 | * case of failure. |
| 799 | */ |
| 800 | static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead, |
| 801 | unsigned long long sqnum) |
| 802 | { |
| 803 | struct ubifs_bud *bud; |
| 804 | struct bud_entry *b; |
| 805 | |
| 806 | dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead); |
| 807 | |
| 808 | bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL); |
| 809 | if (!bud) |
| 810 | return -ENOMEM; |
| 811 | |
| 812 | b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL); |
| 813 | if (!b) { |
| 814 | kfree(bud); |
| 815 | return -ENOMEM; |
| 816 | } |
| 817 | |
| 818 | bud->lnum = lnum; |
| 819 | bud->start = offs; |
| 820 | bud->jhead = jhead; |
| 821 | ubifs_add_bud(c, bud); |
| 822 | |
| 823 | b->bud = bud; |
| 824 | b->sqnum = sqnum; |
| 825 | list_add_tail(&b->list, &c->replay_buds); |
| 826 | |
| 827 | return 0; |
| 828 | } |
| 829 | |
| 830 | /** |
| 831 | * validate_ref - validate a reference node. |
| 832 | * @c: UBIFS file-system description object |
| 833 | * @ref: the reference node to validate |
| 834 | * @ref_lnum: LEB number of the reference node |
| 835 | * @ref_offs: reference node offset |
| 836 | * |
| 837 | * This function returns %1 if a bud reference already exists for the LEB. %0 is |
| 838 | * returned if the reference node is new, otherwise %-EINVAL is returned if |
| 839 | * validation failed. |
| 840 | */ |
| 841 | static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref) |
| 842 | { |
| 843 | struct ubifs_bud *bud; |
| 844 | int lnum = le32_to_cpu(ref->lnum); |
| 845 | unsigned int offs = le32_to_cpu(ref->offs); |
| 846 | unsigned int jhead = le32_to_cpu(ref->jhead); |
| 847 | |
| 848 | /* |
| 849 | * ref->offs may point to the end of LEB when the journal head points |
| 850 | * to the end of LEB and we write reference node for it during commit. |
| 851 | * So this is why we require 'offs > c->leb_size'. |
| 852 | */ |
| 853 | if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt || |
| 854 | lnum < c->main_first || offs > c->leb_size || |
| 855 | offs & (c->min_io_size - 1)) |
| 856 | return -EINVAL; |
| 857 | |
| 858 | /* Make sure we have not already looked at this bud */ |
| 859 | bud = ubifs_search_bud(c, lnum); |
| 860 | if (bud) { |
| 861 | if (bud->jhead == jhead && bud->start <= offs) |
| 862 | return 1; |
| 863 | ubifs_err(c, "bud at LEB %d:%d was already referred", lnum, offs); |
| 864 | return -EINVAL; |
| 865 | } |
| 866 | |
| 867 | return 0; |
| 868 | } |
| 869 | |
| 870 | /** |
| 871 | * replay_log_leb - replay a log logical eraseblock. |
| 872 | * @c: UBIFS file-system description object |
| 873 | * @lnum: log logical eraseblock to replay |
| 874 | * @offs: offset to start replaying from |
| 875 | * @sbuf: scan buffer |
| 876 | * |
| 877 | * This function replays a log LEB and returns zero in case of success, %1 if |
| 878 | * this is the last LEB in the log, and a negative error code in case of |
| 879 | * failure. |
| 880 | */ |
| 881 | static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf) |
| 882 | { |
| 883 | int err; |
| 884 | struct ubifs_scan_leb *sleb; |
| 885 | struct ubifs_scan_node *snod; |
| 886 | const struct ubifs_cs_node *node; |
| 887 | |
| 888 | dbg_mnt("replay log LEB %d:%d", lnum, offs); |
| 889 | sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery); |
| 890 | if (IS_ERR(sleb)) { |
| 891 | if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery) |
| 892 | return PTR_ERR(sleb); |
| 893 | /* |
| 894 | * Note, the below function will recover this log LEB only if |
| 895 | * it is the last, because unclean reboots can possibly corrupt |
| 896 | * only the tail of the log. |
| 897 | */ |
| 898 | sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf); |
| 899 | if (IS_ERR(sleb)) |
| 900 | return PTR_ERR(sleb); |
| 901 | } |
| 902 | |
| 903 | if (sleb->nodes_cnt == 0) { |
| 904 | err = 1; |
| 905 | goto out; |
| 906 | } |
| 907 | |
| 908 | node = sleb->buf; |
| 909 | snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list); |
| 910 | if (c->cs_sqnum == 0) { |
| 911 | /* |
| 912 | * This is the first log LEB we are looking at, make sure that |
| 913 | * the first node is a commit start node. Also record its |
| 914 | * sequence number so that UBIFS can determine where the log |
| 915 | * ends, because all nodes which were have higher sequence |
| 916 | * numbers. |
| 917 | */ |
| 918 | if (snod->type != UBIFS_CS_NODE) { |
| 919 | ubifs_err(c, "first log node at LEB %d:%d is not CS node", |
| 920 | lnum, offs); |
| 921 | goto out_dump; |
| 922 | } |
| 923 | if (le64_to_cpu(node->cmt_no) != c->cmt_no) { |
| 924 | ubifs_err(c, "first CS node at LEB %d:%d has wrong commit number %llu expected %llu", |
| 925 | lnum, offs, |
| 926 | (unsigned long long)le64_to_cpu(node->cmt_no), |
| 927 | c->cmt_no); |
| 928 | goto out_dump; |
| 929 | } |
| 930 | |
| 931 | c->cs_sqnum = le64_to_cpu(node->ch.sqnum); |
| 932 | dbg_mnt("commit start sqnum %llu", c->cs_sqnum); |
| 933 | } |
| 934 | |
| 935 | if (snod->sqnum < c->cs_sqnum) { |
| 936 | /* |
| 937 | * This means that we reached end of log and now |
| 938 | * look to the older log data, which was already |
| 939 | * committed but the eraseblock was not erased (UBIFS |
| 940 | * only un-maps it). So this basically means we have to |
| 941 | * exit with "end of log" code. |
| 942 | */ |
| 943 | err = 1; |
| 944 | goto out; |
| 945 | } |
| 946 | |
| 947 | /* Make sure the first node sits at offset zero of the LEB */ |
| 948 | if (snod->offs != 0) { |
| 949 | ubifs_err(c, "first node is not at zero offset"); |
| 950 | goto out_dump; |
| 951 | } |
| 952 | |
| 953 | list_for_each_entry(snod, &sleb->nodes, list) { |
| 954 | cond_resched(); |
| 955 | |
| 956 | if (snod->sqnum >= SQNUM_WATERMARK) { |
| 957 | ubifs_err(c, "file system's life ended"); |
| 958 | goto out_dump; |
| 959 | } |
| 960 | |
| 961 | if (snod->sqnum < c->cs_sqnum) { |
| 962 | ubifs_err(c, "bad sqnum %llu, commit sqnum %llu", |
| 963 | snod->sqnum, c->cs_sqnum); |
| 964 | goto out_dump; |
| 965 | } |
| 966 | |
| 967 | if (snod->sqnum > c->max_sqnum) |
| 968 | c->max_sqnum = snod->sqnum; |
| 969 | |
| 970 | switch (snod->type) { |
| 971 | case UBIFS_REF_NODE: { |
| 972 | const struct ubifs_ref_node *ref = snod->node; |
| 973 | |
| 974 | err = validate_ref(c, ref); |
| 975 | if (err == 1) |
| 976 | break; /* Already have this bud */ |
| 977 | if (err) |
| 978 | goto out_dump; |
| 979 | |
| 980 | err = add_replay_bud(c, le32_to_cpu(ref->lnum), |
| 981 | le32_to_cpu(ref->offs), |
| 982 | le32_to_cpu(ref->jhead), |
| 983 | snod->sqnum); |
| 984 | if (err) |
| 985 | goto out; |
| 986 | |
| 987 | break; |
| 988 | } |
| 989 | case UBIFS_CS_NODE: |
| 990 | /* Make sure it sits at the beginning of LEB */ |
| 991 | if (snod->offs != 0) { |
| 992 | ubifs_err(c, "unexpected node in log"); |
| 993 | goto out_dump; |
| 994 | } |
| 995 | break; |
| 996 | default: |
| 997 | ubifs_err(c, "unexpected node in log"); |
| 998 | goto out_dump; |
| 999 | } |
| 1000 | } |
| 1001 | |
| 1002 | if (sleb->endpt || c->lhead_offs >= c->leb_size) { |
| 1003 | c->lhead_lnum = lnum; |
| 1004 | c->lhead_offs = sleb->endpt; |
| 1005 | } |
| 1006 | |
| 1007 | err = !sleb->endpt; |
| 1008 | out: |
| 1009 | ubifs_scan_destroy(sleb); |
| 1010 | return err; |
| 1011 | |
| 1012 | out_dump: |
| 1013 | ubifs_err(c, "log error detected while replaying the log at LEB %d:%d", |
| 1014 | lnum, offs + snod->offs); |
| 1015 | ubifs_dump_node(c, snod->node); |
| 1016 | ubifs_scan_destroy(sleb); |
| 1017 | return -EINVAL; |
| 1018 | } |
| 1019 | |
| 1020 | /** |
| 1021 | * take_ihead - update the status of the index head in lprops to 'taken'. |
| 1022 | * @c: UBIFS file-system description object |
| 1023 | * |
| 1024 | * This function returns the amount of free space in the index head LEB or a |
| 1025 | * negative error code. |
| 1026 | */ |
| 1027 | static int take_ihead(struct ubifs_info *c) |
| 1028 | { |
| 1029 | const struct ubifs_lprops *lp; |
| 1030 | int err, free; |
| 1031 | |
| 1032 | ubifs_get_lprops(c); |
| 1033 | |
| 1034 | lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum); |
| 1035 | if (IS_ERR(lp)) { |
| 1036 | err = PTR_ERR(lp); |
| 1037 | goto out; |
| 1038 | } |
| 1039 | |
| 1040 | free = lp->free; |
| 1041 | |
| 1042 | lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC, |
| 1043 | lp->flags | LPROPS_TAKEN, 0); |
| 1044 | if (IS_ERR(lp)) { |
| 1045 | err = PTR_ERR(lp); |
| 1046 | goto out; |
| 1047 | } |
| 1048 | |
| 1049 | err = free; |
| 1050 | out: |
| 1051 | ubifs_release_lprops(c); |
| 1052 | return err; |
| 1053 | } |
| 1054 | |
| 1055 | /** |
| 1056 | * ubifs_replay_journal - replay journal. |
| 1057 | * @c: UBIFS file-system description object |
| 1058 | * |
| 1059 | * This function scans the journal, replays and cleans it up. It makes sure all |
| 1060 | * memory data structures related to uncommitted journal are built (dirty TNC |
| 1061 | * tree, tree of buds, modified lprops, etc). |
| 1062 | */ |
| 1063 | int ubifs_replay_journal(struct ubifs_info *c) |
| 1064 | { |
| 1065 | int err, lnum, free; |
| 1066 | |
| 1067 | BUILD_BUG_ON(UBIFS_TRUN_KEY > 5); |
| 1068 | |
| 1069 | /* Update the status of the index head in lprops to 'taken' */ |
| 1070 | free = take_ihead(c); |
| 1071 | if (free < 0) |
| 1072 | return free; /* Error code */ |
| 1073 | |
| 1074 | if (c->ihead_offs != c->leb_size - free) { |
| 1075 | ubifs_err(c, "bad index head LEB %d:%d", c->ihead_lnum, |
| 1076 | c->ihead_offs); |
| 1077 | return -EINVAL; |
| 1078 | } |
| 1079 | |
| 1080 | dbg_mnt("start replaying the journal"); |
| 1081 | c->replaying = 1; |
| 1082 | lnum = c->ltail_lnum = c->lhead_lnum; |
| 1083 | |
| 1084 | do { |
| 1085 | #ifdef CONFIG_UBIFS_SHARE_BUFFER |
| 1086 | if (mutex_trylock(&ubifs_sbuf_mutex) == 0) { |
| 1087 | atomic_long_inc(&ubifs_sbuf_lock_count); |
| 1088 | ubifs_err(c, "trylock fail count %ld\n", |
| 1089 | READ_LOCK_COUNT); |
| 1090 | mutex_lock(&ubifs_sbuf_mutex); |
| 1091 | ubifs_err(c, "locked count %ld\n", READ_LOCK_COUNT); |
| 1092 | } |
| 1093 | #endif |
| 1094 | |
| 1095 | err = replay_log_leb(c, lnum, 0, c->sbuf); |
| 1096 | #ifdef CONFIG_UBIFS_SHARE_BUFFER |
| 1097 | mutex_unlock(&ubifs_sbuf_mutex); |
| 1098 | #endif |
| 1099 | if (err == 1) { |
| 1100 | if (lnum != c->lhead_lnum) |
| 1101 | /* We hit the end of the log */ |
| 1102 | break; |
| 1103 | |
| 1104 | /* |
| 1105 | * The head of the log must always start with the |
| 1106 | * "commit start" node on a properly formatted UBIFS. |
| 1107 | * But we found no nodes at all, which means that |
| 1108 | * someting went wrong and we cannot proceed mounting |
| 1109 | * the file-system. |
| 1110 | */ |
| 1111 | ubifs_err(c, "no UBIFS nodes found at the log head LEB %d:%d, possibly corrupted", |
| 1112 | lnum, 0); |
| 1113 | err = -EINVAL; |
| 1114 | } |
| 1115 | if (err) |
| 1116 | goto out; |
| 1117 | lnum = ubifs_next_log_lnum(c, lnum); |
| 1118 | } while (lnum != c->ltail_lnum); |
| 1119 | |
| 1120 | err = replay_buds(c); |
| 1121 | if (err) |
| 1122 | goto out; |
| 1123 | |
| 1124 | err = apply_replay_list(c); |
| 1125 | if (err) |
| 1126 | goto out; |
| 1127 | |
| 1128 | err = set_buds_lprops(c); |
| 1129 | if (err) |
| 1130 | goto out; |
| 1131 | |
| 1132 | /* |
| 1133 | * UBIFS budgeting calculations use @c->bi.uncommitted_idx variable |
| 1134 | * to roughly estimate index growth. Things like @c->bi.min_idx_lebs |
| 1135 | * depend on it. This means we have to initialize it to make sure |
| 1136 | * budgeting works properly. |
| 1137 | */ |
| 1138 | c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt); |
| 1139 | c->bi.uncommitted_idx *= c->max_idx_node_sz; |
| 1140 | |
| 1141 | ubifs_assert(c->bud_bytes <= c->max_bud_bytes || c->need_recovery); |
| 1142 | dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, highest_inum %lu", |
| 1143 | c->lhead_lnum, c->lhead_offs, c->max_sqnum, |
| 1144 | (unsigned long)c->highest_inum); |
| 1145 | out: |
| 1146 | destroy_replay_list(c); |
| 1147 | destroy_bud_list(c); |
| 1148 | c->replaying = 0; |
| 1149 | return err; |
| 1150 | } |