blob: 51de27685e185efd6539b8be69e05ae642359b53 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * http://www.ecma.ch/
15 * http://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41#include "udfdecl.h"
42
43#include <linux/blkdev.h>
44#include <linux/slab.h>
45#include <linux/kernel.h>
46#include <linux/module.h>
47#include <linux/parser.h>
48#include <linux/stat.h>
49#include <linux/cdrom.h>
50#include <linux/nls.h>
51#include <linux/vfs.h>
52#include <linux/vmalloc.h>
53#include <linux/errno.h>
54#include <linux/mount.h>
55#include <linux/seq_file.h>
56#include <linux/bitmap.h>
57#include <linux/crc-itu-t.h>
58#include <linux/log2.h>
59#include <asm/byteorder.h>
60
61#include "udf_sb.h"
62#include "udf_i.h"
63
64#include <linux/init.h>
65#include <linux/uaccess.h>
66
67#define VDS_POS_PRIMARY_VOL_DESC 0
68#define VDS_POS_UNALLOC_SPACE_DESC 1
69#define VDS_POS_LOGICAL_VOL_DESC 2
70#define VDS_POS_PARTITION_DESC 3
71#define VDS_POS_IMP_USE_VOL_DESC 4
72#define VDS_POS_VOL_DESC_PTR 5
73#define VDS_POS_TERMINATING_DESC 6
74#define VDS_POS_LENGTH 7
75
76#define VSD_FIRST_SECTOR_OFFSET 32768
77#define VSD_MAX_SECTOR_OFFSET 0x800000
78
79/*
80 * Maximum number of Terminating Descriptor / Logical Volume Integrity
81 * Descriptor redirections. The chosen numbers are arbitrary - just that we
82 * hopefully don't limit any real use of rewritten inode on write-once media
83 * but avoid looping for too long on corrupted media.
84 */
85#define UDF_MAX_TD_NESTING 64
86#define UDF_MAX_LVID_NESTING 1000
87
88enum { UDF_MAX_LINKS = 0xffff };
89
90/* These are the "meat" - everything else is stuffing */
91static int udf_fill_super(struct super_block *, void *, int);
92static void udf_put_super(struct super_block *);
93static int udf_sync_fs(struct super_block *, int);
94static int udf_remount_fs(struct super_block *, int *, char *);
95static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
96static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
97 struct kernel_lb_addr *);
98static void udf_load_fileset(struct super_block *, struct buffer_head *,
99 struct kernel_lb_addr *);
100static void udf_open_lvid(struct super_block *);
101static void udf_close_lvid(struct super_block *);
102static unsigned int udf_count_free(struct super_block *);
103static int udf_statfs(struct dentry *, struct kstatfs *);
104static int udf_show_options(struct seq_file *, struct dentry *);
105
106struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
107{
108 struct logicalVolIntegrityDesc *lvid;
109 unsigned int partnum;
110 unsigned int offset;
111
112 if (!UDF_SB(sb)->s_lvid_bh)
113 return NULL;
114 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
115 partnum = le32_to_cpu(lvid->numOfPartitions);
116 if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
117 offsetof(struct logicalVolIntegrityDesc, impUse)) /
118 (2 * sizeof(uint32_t)) < partnum) {
119 udf_err(sb, "Logical volume integrity descriptor corrupted "
120 "(numOfPartitions = %u)!\n", partnum);
121 return NULL;
122 }
123 /* The offset is to skip freeSpaceTable and sizeTable arrays */
124 offset = partnum * 2 * sizeof(uint32_t);
125 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
126}
127
128/* UDF filesystem type */
129static struct dentry *udf_mount(struct file_system_type *fs_type,
130 int flags, const char *dev_name, void *data)
131{
132 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
133}
134
135static struct file_system_type udf_fstype = {
136 .owner = THIS_MODULE,
137 .name = "udf",
138 .mount = udf_mount,
139 .kill_sb = kill_block_super,
140 .fs_flags = FS_REQUIRES_DEV,
141};
142MODULE_ALIAS_FS("udf");
143
144static struct kmem_cache *udf_inode_cachep;
145
146static struct inode *udf_alloc_inode(struct super_block *sb)
147{
148 struct udf_inode_info *ei;
149 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
150 if (!ei)
151 return NULL;
152
153 ei->i_unique = 0;
154 ei->i_lenExtents = 0;
155 ei->i_next_alloc_block = 0;
156 ei->i_next_alloc_goal = 0;
157 ei->i_strat4096 = 0;
158 init_rwsem(&ei->i_data_sem);
159 ei->cached_extent.lstart = -1;
160 spin_lock_init(&ei->i_extent_cache_lock);
161
162 return &ei->vfs_inode;
163}
164
165static void udf_i_callback(struct rcu_head *head)
166{
167 struct inode *inode = container_of(head, struct inode, i_rcu);
168 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
169}
170
171static void udf_destroy_inode(struct inode *inode)
172{
173 call_rcu(&inode->i_rcu, udf_i_callback);
174}
175
176static void init_once(void *foo)
177{
178 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
179
180 ei->i_ext.i_data = NULL;
181 inode_init_once(&ei->vfs_inode);
182}
183
184static int __init init_inodecache(void)
185{
186 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
187 sizeof(struct udf_inode_info),
188 0, (SLAB_RECLAIM_ACCOUNT |
189 SLAB_MEM_SPREAD |
190 SLAB_ACCOUNT),
191 init_once);
192 if (!udf_inode_cachep)
193 return -ENOMEM;
194 return 0;
195}
196
197static void destroy_inodecache(void)
198{
199 /*
200 * Make sure all delayed rcu free inodes are flushed before we
201 * destroy cache.
202 */
203 rcu_barrier();
204 kmem_cache_destroy(udf_inode_cachep);
205}
206
207/* Superblock operations */
208static const struct super_operations udf_sb_ops = {
209 .alloc_inode = udf_alloc_inode,
210 .destroy_inode = udf_destroy_inode,
211 .write_inode = udf_write_inode,
212 .evict_inode = udf_evict_inode,
213 .put_super = udf_put_super,
214 .sync_fs = udf_sync_fs,
215 .statfs = udf_statfs,
216 .remount_fs = udf_remount_fs,
217 .show_options = udf_show_options,
218};
219
220struct udf_options {
221 unsigned char novrs;
222 unsigned int blocksize;
223 unsigned int session;
224 unsigned int lastblock;
225 unsigned int anchor;
226 unsigned int volume;
227 unsigned short partition;
228 unsigned int fileset;
229 unsigned int rootdir;
230 unsigned int flags;
231 umode_t umask;
232 kgid_t gid;
233 kuid_t uid;
234 umode_t fmode;
235 umode_t dmode;
236 struct nls_table *nls_map;
237};
238
239static int __init init_udf_fs(void)
240{
241 int err;
242
243 err = init_inodecache();
244 if (err)
245 goto out1;
246 err = register_filesystem(&udf_fstype);
247 if (err)
248 goto out;
249
250 return 0;
251
252out:
253 destroy_inodecache();
254
255out1:
256 return err;
257}
258
259static void __exit exit_udf_fs(void)
260{
261 unregister_filesystem(&udf_fstype);
262 destroy_inodecache();
263}
264
265static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
266{
267 struct udf_sb_info *sbi = UDF_SB(sb);
268
269 sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
270 if (!sbi->s_partmaps) {
271 sbi->s_partitions = 0;
272 return -ENOMEM;
273 }
274
275 sbi->s_partitions = count;
276 return 0;
277}
278
279static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
280{
281 int i;
282 int nr_groups = bitmap->s_nr_groups;
283
284 for (i = 0; i < nr_groups; i++)
285 if (bitmap->s_block_bitmap[i])
286 brelse(bitmap->s_block_bitmap[i]);
287
288 kvfree(bitmap);
289}
290
291static void udf_free_partition(struct udf_part_map *map)
292{
293 int i;
294 struct udf_meta_data *mdata;
295
296 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
297 iput(map->s_uspace.s_table);
298 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
299 iput(map->s_fspace.s_table);
300 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
301 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
302 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
303 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
304 if (map->s_partition_type == UDF_SPARABLE_MAP15)
305 for (i = 0; i < 4; i++)
306 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
307 else if (map->s_partition_type == UDF_METADATA_MAP25) {
308 mdata = &map->s_type_specific.s_metadata;
309 iput(mdata->s_metadata_fe);
310 mdata->s_metadata_fe = NULL;
311
312 iput(mdata->s_mirror_fe);
313 mdata->s_mirror_fe = NULL;
314
315 iput(mdata->s_bitmap_fe);
316 mdata->s_bitmap_fe = NULL;
317 }
318}
319
320static void udf_sb_free_partitions(struct super_block *sb)
321{
322 struct udf_sb_info *sbi = UDF_SB(sb);
323 int i;
324
325 if (!sbi->s_partmaps)
326 return;
327 for (i = 0; i < sbi->s_partitions; i++)
328 udf_free_partition(&sbi->s_partmaps[i]);
329 kfree(sbi->s_partmaps);
330 sbi->s_partmaps = NULL;
331}
332
333static int udf_show_options(struct seq_file *seq, struct dentry *root)
334{
335 struct super_block *sb = root->d_sb;
336 struct udf_sb_info *sbi = UDF_SB(sb);
337
338 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
339 seq_puts(seq, ",nostrict");
340 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
341 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
342 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
343 seq_puts(seq, ",unhide");
344 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
345 seq_puts(seq, ",undelete");
346 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
347 seq_puts(seq, ",noadinicb");
348 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
349 seq_puts(seq, ",shortad");
350 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
351 seq_puts(seq, ",uid=forget");
352 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
353 seq_puts(seq, ",uid=ignore");
354 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
355 seq_puts(seq, ",gid=forget");
356 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
357 seq_puts(seq, ",gid=ignore");
358 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
359 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
360 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
361 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
362 if (sbi->s_umask != 0)
363 seq_printf(seq, ",umask=%ho", sbi->s_umask);
364 if (sbi->s_fmode != UDF_INVALID_MODE)
365 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
366 if (sbi->s_dmode != UDF_INVALID_MODE)
367 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
368 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
369 seq_printf(seq, ",session=%u", sbi->s_session);
370 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
371 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
372 if (sbi->s_anchor != 0)
373 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
374 /*
375 * volume, partition, fileset and rootdir seem to be ignored
376 * currently
377 */
378 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
379 seq_puts(seq, ",utf8");
380 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
381 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
382
383 return 0;
384}
385
386/*
387 * udf_parse_options
388 *
389 * PURPOSE
390 * Parse mount options.
391 *
392 * DESCRIPTION
393 * The following mount options are supported:
394 *
395 * gid= Set the default group.
396 * umask= Set the default umask.
397 * mode= Set the default file permissions.
398 * dmode= Set the default directory permissions.
399 * uid= Set the default user.
400 * bs= Set the block size.
401 * unhide Show otherwise hidden files.
402 * undelete Show deleted files in lists.
403 * adinicb Embed data in the inode (default)
404 * noadinicb Don't embed data in the inode
405 * shortad Use short ad's
406 * longad Use long ad's (default)
407 * nostrict Unset strict conformance
408 * iocharset= Set the NLS character set
409 *
410 * The remaining are for debugging and disaster recovery:
411 *
412 * novrs Skip volume sequence recognition
413 *
414 * The following expect a offset from 0.
415 *
416 * session= Set the CDROM session (default= last session)
417 * anchor= Override standard anchor location. (default= 256)
418 * volume= Override the VolumeDesc location. (unused)
419 * partition= Override the PartitionDesc location. (unused)
420 * lastblock= Set the last block of the filesystem/
421 *
422 * The following expect a offset from the partition root.
423 *
424 * fileset= Override the fileset block location. (unused)
425 * rootdir= Override the root directory location. (unused)
426 * WARNING: overriding the rootdir to a non-directory may
427 * yield highly unpredictable results.
428 *
429 * PRE-CONDITIONS
430 * options Pointer to mount options string.
431 * uopts Pointer to mount options variable.
432 *
433 * POST-CONDITIONS
434 * <return> 1 Mount options parsed okay.
435 * <return> 0 Error parsing mount options.
436 *
437 * HISTORY
438 * July 1, 1997 - Andrew E. Mileski
439 * Written, tested, and released.
440 */
441
442enum {
443 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
444 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
445 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
446 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
447 Opt_rootdir, Opt_utf8, Opt_iocharset,
448 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
449 Opt_fmode, Opt_dmode
450};
451
452static const match_table_t tokens = {
453 {Opt_novrs, "novrs"},
454 {Opt_nostrict, "nostrict"},
455 {Opt_bs, "bs=%u"},
456 {Opt_unhide, "unhide"},
457 {Opt_undelete, "undelete"},
458 {Opt_noadinicb, "noadinicb"},
459 {Opt_adinicb, "adinicb"},
460 {Opt_shortad, "shortad"},
461 {Opt_longad, "longad"},
462 {Opt_uforget, "uid=forget"},
463 {Opt_uignore, "uid=ignore"},
464 {Opt_gforget, "gid=forget"},
465 {Opt_gignore, "gid=ignore"},
466 {Opt_gid, "gid=%u"},
467 {Opt_uid, "uid=%u"},
468 {Opt_umask, "umask=%o"},
469 {Opt_session, "session=%u"},
470 {Opt_lastblock, "lastblock=%u"},
471 {Opt_anchor, "anchor=%u"},
472 {Opt_volume, "volume=%u"},
473 {Opt_partition, "partition=%u"},
474 {Opt_fileset, "fileset=%u"},
475 {Opt_rootdir, "rootdir=%u"},
476 {Opt_utf8, "utf8"},
477 {Opt_iocharset, "iocharset=%s"},
478 {Opt_fmode, "mode=%o"},
479 {Opt_dmode, "dmode=%o"},
480 {Opt_err, NULL}
481};
482
483static int udf_parse_options(char *options, struct udf_options *uopt,
484 bool remount)
485{
486 char *p;
487 int option;
488
489 uopt->novrs = 0;
490 uopt->partition = 0xFFFF;
491 uopt->session = 0xFFFFFFFF;
492 uopt->lastblock = 0;
493 uopt->anchor = 0;
494 uopt->volume = 0xFFFFFFFF;
495 uopt->rootdir = 0xFFFFFFFF;
496 uopt->fileset = 0xFFFFFFFF;
497 uopt->nls_map = NULL;
498
499 if (!options)
500 return 1;
501
502 while ((p = strsep(&options, ",")) != NULL) {
503 substring_t args[MAX_OPT_ARGS];
504 int token;
505 unsigned n;
506 if (!*p)
507 continue;
508
509 token = match_token(p, tokens, args);
510 switch (token) {
511 case Opt_novrs:
512 uopt->novrs = 1;
513 break;
514 case Opt_bs:
515 if (match_int(&args[0], &option))
516 return 0;
517 n = option;
518 if (n != 512 && n != 1024 && n != 2048 && n != 4096)
519 return 0;
520 uopt->blocksize = n;
521 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
522 break;
523 case Opt_unhide:
524 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
525 break;
526 case Opt_undelete:
527 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
528 break;
529 case Opt_noadinicb:
530 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
531 break;
532 case Opt_adinicb:
533 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
534 break;
535 case Opt_shortad:
536 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
537 break;
538 case Opt_longad:
539 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
540 break;
541 case Opt_gid:
542 if (match_int(args, &option))
543 return 0;
544 uopt->gid = make_kgid(current_user_ns(), option);
545 if (!gid_valid(uopt->gid))
546 return 0;
547 uopt->flags |= (1 << UDF_FLAG_GID_SET);
548 break;
549 case Opt_uid:
550 if (match_int(args, &option))
551 return 0;
552 uopt->uid = make_kuid(current_user_ns(), option);
553 if (!uid_valid(uopt->uid))
554 return 0;
555 uopt->flags |= (1 << UDF_FLAG_UID_SET);
556 break;
557 case Opt_umask:
558 if (match_octal(args, &option))
559 return 0;
560 uopt->umask = option;
561 break;
562 case Opt_nostrict:
563 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
564 break;
565 case Opt_session:
566 if (match_int(args, &option))
567 return 0;
568 uopt->session = option;
569 if (!remount)
570 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
571 break;
572 case Opt_lastblock:
573 if (match_int(args, &option))
574 return 0;
575 uopt->lastblock = option;
576 if (!remount)
577 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
578 break;
579 case Opt_anchor:
580 if (match_int(args, &option))
581 return 0;
582 uopt->anchor = option;
583 break;
584 case Opt_volume:
585 if (match_int(args, &option))
586 return 0;
587 uopt->volume = option;
588 break;
589 case Opt_partition:
590 if (match_int(args, &option))
591 return 0;
592 uopt->partition = option;
593 break;
594 case Opt_fileset:
595 if (match_int(args, &option))
596 return 0;
597 uopt->fileset = option;
598 break;
599 case Opt_rootdir:
600 if (match_int(args, &option))
601 return 0;
602 uopt->rootdir = option;
603 break;
604 case Opt_utf8:
605 uopt->flags |= (1 << UDF_FLAG_UTF8);
606 break;
607#ifdef CONFIG_UDF_NLS
608 case Opt_iocharset:
609 uopt->nls_map = load_nls(args[0].from);
610 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
611 break;
612#endif
613 case Opt_uignore:
614 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
615 break;
616 case Opt_uforget:
617 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
618 break;
619 case Opt_gignore:
620 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
621 break;
622 case Opt_gforget:
623 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
624 break;
625 case Opt_fmode:
626 if (match_octal(args, &option))
627 return 0;
628 uopt->fmode = option & 0777;
629 break;
630 case Opt_dmode:
631 if (match_octal(args, &option))
632 return 0;
633 uopt->dmode = option & 0777;
634 break;
635 default:
636 pr_err("bad mount option \"%s\" or missing value\n", p);
637 return 0;
638 }
639 }
640 return 1;
641}
642
643static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
644{
645 struct udf_options uopt;
646 struct udf_sb_info *sbi = UDF_SB(sb);
647 int error = 0;
648 struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
649
650 sync_filesystem(sb);
651 if (lvidiu) {
652 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
653 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY))
654 return -EACCES;
655 }
656
657 uopt.flags = sbi->s_flags;
658 uopt.uid = sbi->s_uid;
659 uopt.gid = sbi->s_gid;
660 uopt.umask = sbi->s_umask;
661 uopt.fmode = sbi->s_fmode;
662 uopt.dmode = sbi->s_dmode;
663
664 if (!udf_parse_options(options, &uopt, true))
665 return -EINVAL;
666
667 write_lock(&sbi->s_cred_lock);
668 sbi->s_flags = uopt.flags;
669 sbi->s_uid = uopt.uid;
670 sbi->s_gid = uopt.gid;
671 sbi->s_umask = uopt.umask;
672 sbi->s_fmode = uopt.fmode;
673 sbi->s_dmode = uopt.dmode;
674 write_unlock(&sbi->s_cred_lock);
675
676 if ((bool)(*flags & MS_RDONLY) == sb_rdonly(sb))
677 goto out_unlock;
678
679 if (*flags & MS_RDONLY)
680 udf_close_lvid(sb);
681 else
682 udf_open_lvid(sb);
683
684out_unlock:
685 return error;
686}
687
688/* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
689/* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
690static loff_t udf_check_vsd(struct super_block *sb)
691{
692 struct volStructDesc *vsd = NULL;
693 loff_t sector = VSD_FIRST_SECTOR_OFFSET;
694 int sectorsize;
695 struct buffer_head *bh = NULL;
696 int nsr02 = 0;
697 int nsr03 = 0;
698 struct udf_sb_info *sbi;
699
700 sbi = UDF_SB(sb);
701 if (sb->s_blocksize < sizeof(struct volStructDesc))
702 sectorsize = sizeof(struct volStructDesc);
703 else
704 sectorsize = sb->s_blocksize;
705
706 sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits);
707
708 udf_debug("Starting at sector %u (%ld byte sectors)\n",
709 (unsigned int)(sector >> sb->s_blocksize_bits),
710 sb->s_blocksize);
711 /* Process the sequence (if applicable). The hard limit on the sector
712 * offset is arbitrary, hopefully large enough so that all valid UDF
713 * filesystems will be recognised. There is no mention of an upper
714 * bound to the size of the volume recognition area in the standard.
715 * The limit will prevent the code to read all the sectors of a
716 * specially crafted image (like a bluray disc full of CD001 sectors),
717 * potentially causing minutes or even hours of uninterruptible I/O
718 * activity. This actually happened with uninitialised SSD partitions
719 * (all 0xFF) before the check for the limit and all valid IDs were
720 * added */
721 for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
722 sector += sectorsize) {
723 /* Read a block */
724 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
725 if (!bh)
726 break;
727
728 /* Look for ISO descriptors */
729 vsd = (struct volStructDesc *)(bh->b_data +
730 (sector & (sb->s_blocksize - 1)));
731
732 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
733 VSD_STD_ID_LEN)) {
734 switch (vsd->structType) {
735 case 0:
736 udf_debug("ISO9660 Boot Record found\n");
737 break;
738 case 1:
739 udf_debug("ISO9660 Primary Volume Descriptor found\n");
740 break;
741 case 2:
742 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
743 break;
744 case 3:
745 udf_debug("ISO9660 Volume Partition Descriptor found\n");
746 break;
747 case 255:
748 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
749 break;
750 default:
751 udf_debug("ISO9660 VRS (%u) found\n",
752 vsd->structType);
753 break;
754 }
755 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
756 VSD_STD_ID_LEN))
757 ; /* nothing */
758 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
759 VSD_STD_ID_LEN)) {
760 brelse(bh);
761 break;
762 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
763 VSD_STD_ID_LEN))
764 nsr02 = sector;
765 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
766 VSD_STD_ID_LEN))
767 nsr03 = sector;
768 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
769 VSD_STD_ID_LEN))
770 ; /* nothing */
771 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
772 VSD_STD_ID_LEN))
773 ; /* nothing */
774 else {
775 /* invalid id : end of volume recognition area */
776 brelse(bh);
777 break;
778 }
779 brelse(bh);
780 }
781
782 if (nsr03)
783 return nsr03;
784 else if (nsr02)
785 return nsr02;
786 else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
787 VSD_FIRST_SECTOR_OFFSET)
788 return -1;
789 else
790 return 0;
791}
792
793static int udf_find_fileset(struct super_block *sb,
794 struct kernel_lb_addr *fileset,
795 struct kernel_lb_addr *root)
796{
797 struct buffer_head *bh = NULL;
798 long lastblock;
799 uint16_t ident;
800 struct udf_sb_info *sbi;
801
802 if (fileset->logicalBlockNum != 0xFFFFFFFF ||
803 fileset->partitionReferenceNum != 0xFFFF) {
804 bh = udf_read_ptagged(sb, fileset, 0, &ident);
805
806 if (!bh) {
807 return 1;
808 } else if (ident != TAG_IDENT_FSD) {
809 brelse(bh);
810 return 1;
811 }
812
813 }
814
815 sbi = UDF_SB(sb);
816 if (!bh) {
817 /* Search backwards through the partitions */
818 struct kernel_lb_addr newfileset;
819
820/* --> cvg: FIXME - is it reasonable? */
821 return 1;
822
823 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
824 (newfileset.partitionReferenceNum != 0xFFFF &&
825 fileset->logicalBlockNum == 0xFFFFFFFF &&
826 fileset->partitionReferenceNum == 0xFFFF);
827 newfileset.partitionReferenceNum--) {
828 lastblock = sbi->s_partmaps
829 [newfileset.partitionReferenceNum]
830 .s_partition_len;
831 newfileset.logicalBlockNum = 0;
832
833 do {
834 bh = udf_read_ptagged(sb, &newfileset, 0,
835 &ident);
836 if (!bh) {
837 newfileset.logicalBlockNum++;
838 continue;
839 }
840
841 switch (ident) {
842 case TAG_IDENT_SBD:
843 {
844 struct spaceBitmapDesc *sp;
845 sp = (struct spaceBitmapDesc *)
846 bh->b_data;
847 newfileset.logicalBlockNum += 1 +
848 ((le32_to_cpu(sp->numOfBytes) +
849 sizeof(struct spaceBitmapDesc)
850 - 1) >> sb->s_blocksize_bits);
851 brelse(bh);
852 break;
853 }
854 case TAG_IDENT_FSD:
855 *fileset = newfileset;
856 break;
857 default:
858 newfileset.logicalBlockNum++;
859 brelse(bh);
860 bh = NULL;
861 break;
862 }
863 } while (newfileset.logicalBlockNum < lastblock &&
864 fileset->logicalBlockNum == 0xFFFFFFFF &&
865 fileset->partitionReferenceNum == 0xFFFF);
866 }
867 }
868
869 if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
870 fileset->partitionReferenceNum != 0xFFFF) && bh) {
871 udf_debug("Fileset at block=%d, partition=%d\n",
872 fileset->logicalBlockNum,
873 fileset->partitionReferenceNum);
874
875 sbi->s_partition = fileset->partitionReferenceNum;
876 udf_load_fileset(sb, bh, root);
877 brelse(bh);
878 return 0;
879 }
880 return 1;
881}
882
883/*
884 * Load primary Volume Descriptor Sequence
885 *
886 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
887 * should be tried.
888 */
889static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
890{
891 struct primaryVolDesc *pvoldesc;
892 uint8_t *outstr;
893 struct buffer_head *bh;
894 uint16_t ident;
895 int ret = -ENOMEM;
896
897 outstr = kmalloc(128, GFP_NOFS);
898 if (!outstr)
899 return -ENOMEM;
900
901 bh = udf_read_tagged(sb, block, block, &ident);
902 if (!bh) {
903 ret = -EAGAIN;
904 goto out2;
905 }
906
907 if (ident != TAG_IDENT_PVD) {
908 ret = -EIO;
909 goto out_bh;
910 }
911
912 pvoldesc = (struct primaryVolDesc *)bh->b_data;
913
914 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
915 pvoldesc->recordingDateAndTime)) {
916#ifdef UDFFS_DEBUG
917 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
918 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
919 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
920 ts->minute, le16_to_cpu(ts->typeAndTimezone));
921#endif
922 }
923
924 ret = udf_dstrCS0toUTF8(outstr, 31, pvoldesc->volIdent, 32);
925 if (ret < 0) {
926 strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
927 pr_warn("incorrect volume identification, setting to "
928 "'InvalidName'\n");
929 } else {
930 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
931 }
932 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
933
934 ret = udf_dstrCS0toUTF8(outstr, 127, pvoldesc->volSetIdent, 128);
935 if (ret < 0) {
936 ret = 0;
937 goto out_bh;
938 }
939 outstr[ret] = 0;
940 udf_debug("volSetIdent[] = '%s'\n", outstr);
941
942 ret = 0;
943out_bh:
944 brelse(bh);
945out2:
946 kfree(outstr);
947 return ret;
948}
949
950struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
951 u32 meta_file_loc, u32 partition_ref)
952{
953 struct kernel_lb_addr addr;
954 struct inode *metadata_fe;
955
956 addr.logicalBlockNum = meta_file_loc;
957 addr.partitionReferenceNum = partition_ref;
958
959 metadata_fe = udf_iget_special(sb, &addr);
960
961 if (IS_ERR(metadata_fe)) {
962 udf_warn(sb, "metadata inode efe not found\n");
963 return metadata_fe;
964 }
965 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
966 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
967 iput(metadata_fe);
968 return ERR_PTR(-EIO);
969 }
970
971 return metadata_fe;
972}
973
974static int udf_load_metadata_files(struct super_block *sb, int partition,
975 int type1_index)
976{
977 struct udf_sb_info *sbi = UDF_SB(sb);
978 struct udf_part_map *map;
979 struct udf_meta_data *mdata;
980 struct kernel_lb_addr addr;
981 struct inode *fe;
982
983 map = &sbi->s_partmaps[partition];
984 mdata = &map->s_type_specific.s_metadata;
985 mdata->s_phys_partition_ref = type1_index;
986
987 /* metadata address */
988 udf_debug("Metadata file location: block = %d part = %d\n",
989 mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
990
991 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
992 mdata->s_phys_partition_ref);
993 if (IS_ERR(fe)) {
994 /* mirror file entry */
995 udf_debug("Mirror metadata file location: block = %d part = %d\n",
996 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
997
998 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
999 mdata->s_phys_partition_ref);
1000
1001 if (IS_ERR(fe)) {
1002 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
1003 return PTR_ERR(fe);
1004 }
1005 mdata->s_mirror_fe = fe;
1006 } else
1007 mdata->s_metadata_fe = fe;
1008
1009
1010 /*
1011 * bitmap file entry
1012 * Note:
1013 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1014 */
1015 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1016 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1017 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
1018
1019 udf_debug("Bitmap file location: block = %d part = %d\n",
1020 addr.logicalBlockNum, addr.partitionReferenceNum);
1021
1022 fe = udf_iget_special(sb, &addr);
1023 if (IS_ERR(fe)) {
1024 if (sb_rdonly(sb))
1025 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1026 else {
1027 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1028 return PTR_ERR(fe);
1029 }
1030 } else
1031 mdata->s_bitmap_fe = fe;
1032 }
1033
1034 udf_debug("udf_load_metadata_files Ok\n");
1035 return 0;
1036}
1037
1038static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1039 struct kernel_lb_addr *root)
1040{
1041 struct fileSetDesc *fset;
1042
1043 fset = (struct fileSetDesc *)bh->b_data;
1044
1045 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1046
1047 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1048
1049 udf_debug("Rootdir at block=%d, partition=%d\n",
1050 root->logicalBlockNum, root->partitionReferenceNum);
1051}
1052
1053int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1054{
1055 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1056 return DIV_ROUND_UP(map->s_partition_len +
1057 (sizeof(struct spaceBitmapDesc) << 3),
1058 sb->s_blocksize * 8);
1059}
1060
1061static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1062{
1063 struct udf_bitmap *bitmap;
1064 int nr_groups;
1065 int size;
1066
1067 nr_groups = udf_compute_nr_groups(sb, index);
1068 size = sizeof(struct udf_bitmap) +
1069 (sizeof(struct buffer_head *) * nr_groups);
1070
1071 if (size <= PAGE_SIZE)
1072 bitmap = kzalloc(size, GFP_KERNEL);
1073 else
1074 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1075
1076 if (!bitmap)
1077 return NULL;
1078
1079 bitmap->s_nr_groups = nr_groups;
1080 return bitmap;
1081}
1082
1083static int udf_fill_partdesc_info(struct super_block *sb,
1084 struct partitionDesc *p, int p_index)
1085{
1086 struct udf_part_map *map;
1087 struct udf_sb_info *sbi = UDF_SB(sb);
1088 struct partitionHeaderDesc *phd;
1089
1090 map = &sbi->s_partmaps[p_index];
1091
1092 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1093 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1094
1095 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1096 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1097 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1098 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1099 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1100 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1101 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1102 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1103
1104 udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1105 p_index, map->s_partition_type,
1106 map->s_partition_root, map->s_partition_len);
1107
1108 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1109 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1110 return 0;
1111
1112 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1113 if (phd->unallocSpaceTable.extLength) {
1114 struct kernel_lb_addr loc = {
1115 .logicalBlockNum = le32_to_cpu(
1116 phd->unallocSpaceTable.extPosition),
1117 .partitionReferenceNum = p_index,
1118 };
1119 struct inode *inode;
1120
1121 inode = udf_iget_special(sb, &loc);
1122 if (IS_ERR(inode)) {
1123 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1124 p_index);
1125 return PTR_ERR(inode);
1126 }
1127 map->s_uspace.s_table = inode;
1128 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1129 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1130 p_index, map->s_uspace.s_table->i_ino);
1131 }
1132
1133 if (phd->unallocSpaceBitmap.extLength) {
1134 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1135 if (!bitmap)
1136 return -ENOMEM;
1137 map->s_uspace.s_bitmap = bitmap;
1138 bitmap->s_extPosition = le32_to_cpu(
1139 phd->unallocSpaceBitmap.extPosition);
1140 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1141 udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1142 p_index, bitmap->s_extPosition);
1143 }
1144
1145 if (phd->partitionIntegrityTable.extLength)
1146 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1147
1148 if (phd->freedSpaceTable.extLength) {
1149 struct kernel_lb_addr loc = {
1150 .logicalBlockNum = le32_to_cpu(
1151 phd->freedSpaceTable.extPosition),
1152 .partitionReferenceNum = p_index,
1153 };
1154 struct inode *inode;
1155
1156 inode = udf_iget_special(sb, &loc);
1157 if (IS_ERR(inode)) {
1158 udf_debug("cannot load freedSpaceTable (part %d)\n",
1159 p_index);
1160 return PTR_ERR(inode);
1161 }
1162 map->s_fspace.s_table = inode;
1163 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1164 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1165 p_index, map->s_fspace.s_table->i_ino);
1166 }
1167
1168 if (phd->freedSpaceBitmap.extLength) {
1169 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1170 if (!bitmap)
1171 return -ENOMEM;
1172 map->s_fspace.s_bitmap = bitmap;
1173 bitmap->s_extPosition = le32_to_cpu(
1174 phd->freedSpaceBitmap.extPosition);
1175 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1176 udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1177 p_index, bitmap->s_extPosition);
1178 }
1179 return 0;
1180}
1181
1182static void udf_find_vat_block(struct super_block *sb, int p_index,
1183 int type1_index, sector_t start_block)
1184{
1185 struct udf_sb_info *sbi = UDF_SB(sb);
1186 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1187 sector_t vat_block;
1188 struct kernel_lb_addr ino;
1189 struct inode *inode;
1190
1191 /*
1192 * VAT file entry is in the last recorded block. Some broken disks have
1193 * it a few blocks before so try a bit harder...
1194 */
1195 ino.partitionReferenceNum = type1_index;
1196 for (vat_block = start_block;
1197 vat_block >= map->s_partition_root &&
1198 vat_block >= start_block - 3; vat_block--) {
1199 ino.logicalBlockNum = vat_block - map->s_partition_root;
1200 inode = udf_iget_special(sb, &ino);
1201 if (!IS_ERR(inode)) {
1202 sbi->s_vat_inode = inode;
1203 break;
1204 }
1205 }
1206}
1207
1208static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1209{
1210 struct udf_sb_info *sbi = UDF_SB(sb);
1211 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1212 struct buffer_head *bh = NULL;
1213 struct udf_inode_info *vati;
1214 uint32_t pos;
1215 struct virtualAllocationTable20 *vat20;
1216 sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1217 sb->s_blocksize_bits;
1218
1219 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1220 if (!sbi->s_vat_inode &&
1221 sbi->s_last_block != blocks - 1) {
1222 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1223 (unsigned long)sbi->s_last_block,
1224 (unsigned long)blocks - 1);
1225 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1226 }
1227 if (!sbi->s_vat_inode)
1228 return -EIO;
1229
1230 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1231 map->s_type_specific.s_virtual.s_start_offset = 0;
1232 map->s_type_specific.s_virtual.s_num_entries =
1233 (sbi->s_vat_inode->i_size - 36) >> 2;
1234 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1235 vati = UDF_I(sbi->s_vat_inode);
1236 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1237 pos = udf_block_map(sbi->s_vat_inode, 0);
1238 bh = sb_bread(sb, pos);
1239 if (!bh)
1240 return -EIO;
1241 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1242 } else {
1243 vat20 = (struct virtualAllocationTable20 *)
1244 vati->i_ext.i_data;
1245 }
1246
1247 map->s_type_specific.s_virtual.s_start_offset =
1248 le16_to_cpu(vat20->lengthHeader);
1249 map->s_type_specific.s_virtual.s_num_entries =
1250 (sbi->s_vat_inode->i_size -
1251 map->s_type_specific.s_virtual.
1252 s_start_offset) >> 2;
1253 brelse(bh);
1254 }
1255 return 0;
1256}
1257
1258/*
1259 * Load partition descriptor block
1260 *
1261 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1262 * sequence.
1263 */
1264static int udf_load_partdesc(struct super_block *sb, sector_t block)
1265{
1266 struct buffer_head *bh;
1267 struct partitionDesc *p;
1268 struct udf_part_map *map;
1269 struct udf_sb_info *sbi = UDF_SB(sb);
1270 int i, type1_idx;
1271 uint16_t partitionNumber;
1272 uint16_t ident;
1273 int ret;
1274
1275 bh = udf_read_tagged(sb, block, block, &ident);
1276 if (!bh)
1277 return -EAGAIN;
1278 if (ident != TAG_IDENT_PD) {
1279 ret = 0;
1280 goto out_bh;
1281 }
1282
1283 p = (struct partitionDesc *)bh->b_data;
1284 partitionNumber = le16_to_cpu(p->partitionNumber);
1285
1286 /* First scan for TYPE1 and SPARABLE partitions */
1287 for (i = 0; i < sbi->s_partitions; i++) {
1288 map = &sbi->s_partmaps[i];
1289 udf_debug("Searching map: (%d == %d)\n",
1290 map->s_partition_num, partitionNumber);
1291 if (map->s_partition_num == partitionNumber &&
1292 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1293 map->s_partition_type == UDF_SPARABLE_MAP15))
1294 break;
1295 }
1296
1297 if (i >= sbi->s_partitions) {
1298 udf_debug("Partition (%d) not found in partition map\n",
1299 partitionNumber);
1300 ret = 0;
1301 goto out_bh;
1302 }
1303
1304 ret = udf_fill_partdesc_info(sb, p, i);
1305 if (ret < 0)
1306 goto out_bh;
1307
1308 /*
1309 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1310 * PHYSICAL partitions are already set up
1311 */
1312 type1_idx = i;
1313#ifdef UDFFS_DEBUG
1314 map = NULL; /* supress 'maybe used uninitialized' warning */
1315#endif
1316 for (i = 0; i < sbi->s_partitions; i++) {
1317 map = &sbi->s_partmaps[i];
1318
1319 if (map->s_partition_num == partitionNumber &&
1320 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1321 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1322 map->s_partition_type == UDF_METADATA_MAP25))
1323 break;
1324 }
1325
1326 if (i >= sbi->s_partitions) {
1327 ret = 0;
1328 goto out_bh;
1329 }
1330
1331 ret = udf_fill_partdesc_info(sb, p, i);
1332 if (ret < 0)
1333 goto out_bh;
1334
1335 if (map->s_partition_type == UDF_METADATA_MAP25) {
1336 ret = udf_load_metadata_files(sb, i, type1_idx);
1337 if (ret < 0) {
1338 udf_err(sb, "error loading MetaData partition map %d\n",
1339 i);
1340 goto out_bh;
1341 }
1342 } else {
1343 /*
1344 * If we have a partition with virtual map, we don't handle
1345 * writing to it (we overwrite blocks instead of relocating
1346 * them).
1347 */
1348 if (!sb_rdonly(sb)) {
1349 ret = -EACCES;
1350 goto out_bh;
1351 }
1352 ret = udf_load_vat(sb, i, type1_idx);
1353 if (ret < 0)
1354 goto out_bh;
1355 }
1356 ret = 0;
1357out_bh:
1358 /* In case loading failed, we handle cleanup in udf_fill_super */
1359 brelse(bh);
1360 return ret;
1361}
1362
1363static int udf_load_sparable_map(struct super_block *sb,
1364 struct udf_part_map *map,
1365 struct sparablePartitionMap *spm)
1366{
1367 uint32_t loc;
1368 uint16_t ident;
1369 struct sparingTable *st;
1370 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1371 int i;
1372 struct buffer_head *bh;
1373
1374 map->s_partition_type = UDF_SPARABLE_MAP15;
1375 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1376 if (!is_power_of_2(sdata->s_packet_len)) {
1377 udf_err(sb, "error loading logical volume descriptor: "
1378 "Invalid packet length %u\n",
1379 (unsigned)sdata->s_packet_len);
1380 return -EIO;
1381 }
1382 if (spm->numSparingTables > 4) {
1383 udf_err(sb, "error loading logical volume descriptor: "
1384 "Too many sparing tables (%d)\n",
1385 (int)spm->numSparingTables);
1386 return -EIO;
1387 }
1388
1389 for (i = 0; i < spm->numSparingTables; i++) {
1390 loc = le32_to_cpu(spm->locSparingTable[i]);
1391 bh = udf_read_tagged(sb, loc, loc, &ident);
1392 if (!bh)
1393 continue;
1394
1395 st = (struct sparingTable *)bh->b_data;
1396 if (ident != 0 ||
1397 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1398 strlen(UDF_ID_SPARING)) ||
1399 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1400 sb->s_blocksize) {
1401 brelse(bh);
1402 continue;
1403 }
1404
1405 sdata->s_spar_map[i] = bh;
1406 }
1407 map->s_partition_func = udf_get_pblock_spar15;
1408 return 0;
1409}
1410
1411static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1412 struct kernel_lb_addr *fileset)
1413{
1414 struct logicalVolDesc *lvd;
1415 int i, offset;
1416 uint8_t type;
1417 struct udf_sb_info *sbi = UDF_SB(sb);
1418 struct genericPartitionMap *gpm;
1419 uint16_t ident;
1420 struct buffer_head *bh;
1421 unsigned int table_len;
1422 int ret;
1423
1424 bh = udf_read_tagged(sb, block, block, &ident);
1425 if (!bh)
1426 return -EAGAIN;
1427 BUG_ON(ident != TAG_IDENT_LVD);
1428 lvd = (struct logicalVolDesc *)bh->b_data;
1429 table_len = le32_to_cpu(lvd->mapTableLength);
1430 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1431 udf_err(sb, "error loading logical volume descriptor: "
1432 "Partition table too long (%u > %lu)\n", table_len,
1433 sb->s_blocksize - sizeof(*lvd));
1434 ret = -EIO;
1435 goto out_bh;
1436 }
1437
1438 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1439 if (ret)
1440 goto out_bh;
1441
1442 for (i = 0, offset = 0;
1443 i < sbi->s_partitions && offset < table_len;
1444 i++, offset += gpm->partitionMapLength) {
1445 struct udf_part_map *map = &sbi->s_partmaps[i];
1446 gpm = (struct genericPartitionMap *)
1447 &(lvd->partitionMaps[offset]);
1448 type = gpm->partitionMapType;
1449 if (type == 1) {
1450 struct genericPartitionMap1 *gpm1 =
1451 (struct genericPartitionMap1 *)gpm;
1452 map->s_partition_type = UDF_TYPE1_MAP15;
1453 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1454 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1455 map->s_partition_func = NULL;
1456 } else if (type == 2) {
1457 struct udfPartitionMap2 *upm2 =
1458 (struct udfPartitionMap2 *)gpm;
1459 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1460 strlen(UDF_ID_VIRTUAL))) {
1461 u16 suf =
1462 le16_to_cpu(((__le16 *)upm2->partIdent.
1463 identSuffix)[0]);
1464 if (suf < 0x0200) {
1465 map->s_partition_type =
1466 UDF_VIRTUAL_MAP15;
1467 map->s_partition_func =
1468 udf_get_pblock_virt15;
1469 } else {
1470 map->s_partition_type =
1471 UDF_VIRTUAL_MAP20;
1472 map->s_partition_func =
1473 udf_get_pblock_virt20;
1474 }
1475 } else if (!strncmp(upm2->partIdent.ident,
1476 UDF_ID_SPARABLE,
1477 strlen(UDF_ID_SPARABLE))) {
1478 ret = udf_load_sparable_map(sb, map,
1479 (struct sparablePartitionMap *)gpm);
1480 if (ret < 0)
1481 goto out_bh;
1482 } else if (!strncmp(upm2->partIdent.ident,
1483 UDF_ID_METADATA,
1484 strlen(UDF_ID_METADATA))) {
1485 struct udf_meta_data *mdata =
1486 &map->s_type_specific.s_metadata;
1487 struct metadataPartitionMap *mdm =
1488 (struct metadataPartitionMap *)
1489 &(lvd->partitionMaps[offset]);
1490 udf_debug("Parsing Logical vol part %d type %d id=%s\n",
1491 i, type, UDF_ID_METADATA);
1492
1493 map->s_partition_type = UDF_METADATA_MAP25;
1494 map->s_partition_func = udf_get_pblock_meta25;
1495
1496 mdata->s_meta_file_loc =
1497 le32_to_cpu(mdm->metadataFileLoc);
1498 mdata->s_mirror_file_loc =
1499 le32_to_cpu(mdm->metadataMirrorFileLoc);
1500 mdata->s_bitmap_file_loc =
1501 le32_to_cpu(mdm->metadataBitmapFileLoc);
1502 mdata->s_alloc_unit_size =
1503 le32_to_cpu(mdm->allocUnitSize);
1504 mdata->s_align_unit_size =
1505 le16_to_cpu(mdm->alignUnitSize);
1506 if (mdm->flags & 0x01)
1507 mdata->s_flags |= MF_DUPLICATE_MD;
1508
1509 udf_debug("Metadata Ident suffix=0x%x\n",
1510 le16_to_cpu(*(__le16 *)
1511 mdm->partIdent.identSuffix));
1512 udf_debug("Metadata part num=%d\n",
1513 le16_to_cpu(mdm->partitionNum));
1514 udf_debug("Metadata part alloc unit size=%d\n",
1515 le32_to_cpu(mdm->allocUnitSize));
1516 udf_debug("Metadata file loc=%d\n",
1517 le32_to_cpu(mdm->metadataFileLoc));
1518 udf_debug("Mirror file loc=%d\n",
1519 le32_to_cpu(mdm->metadataMirrorFileLoc));
1520 udf_debug("Bitmap file loc=%d\n",
1521 le32_to_cpu(mdm->metadataBitmapFileLoc));
1522 udf_debug("Flags: %d %d\n",
1523 mdata->s_flags, mdm->flags);
1524 } else {
1525 udf_debug("Unknown ident: %s\n",
1526 upm2->partIdent.ident);
1527 continue;
1528 }
1529 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1530 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1531 }
1532 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1533 i, map->s_partition_num, type, map->s_volumeseqnum);
1534 }
1535
1536 if (fileset) {
1537 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1538
1539 *fileset = lelb_to_cpu(la->extLocation);
1540 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1541 fileset->logicalBlockNum,
1542 fileset->partitionReferenceNum);
1543 }
1544 if (lvd->integritySeqExt.extLength)
1545 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1546 ret = 0;
1547out_bh:
1548 brelse(bh);
1549 return ret;
1550}
1551
1552/*
1553 * Find the prevailing Logical Volume Integrity Descriptor.
1554 */
1555static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1556{
1557 struct buffer_head *bh, *final_bh;
1558 uint16_t ident;
1559 struct udf_sb_info *sbi = UDF_SB(sb);
1560 struct logicalVolIntegrityDesc *lvid;
1561 int indirections = 0;
1562
1563 while (++indirections <= UDF_MAX_LVID_NESTING) {
1564 final_bh = NULL;
1565 while (loc.extLength > 0 &&
1566 (bh = udf_read_tagged(sb, loc.extLocation,
1567 loc.extLocation, &ident))) {
1568 if (ident != TAG_IDENT_LVID) {
1569 brelse(bh);
1570 break;
1571 }
1572
1573 brelse(final_bh);
1574 final_bh = bh;
1575
1576 loc.extLength -= sb->s_blocksize;
1577 loc.extLocation++;
1578 }
1579
1580 if (!final_bh)
1581 return;
1582
1583 brelse(sbi->s_lvid_bh);
1584 sbi->s_lvid_bh = final_bh;
1585
1586 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1587 if (lvid->nextIntegrityExt.extLength == 0)
1588 return;
1589
1590 loc = leea_to_cpu(lvid->nextIntegrityExt);
1591 }
1592
1593 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1594 UDF_MAX_LVID_NESTING);
1595 brelse(sbi->s_lvid_bh);
1596 sbi->s_lvid_bh = NULL;
1597}
1598
1599
1600/*
1601 * Process a main/reserve volume descriptor sequence.
1602 * @block First block of first extent of the sequence.
1603 * @lastblock Lastblock of first extent of the sequence.
1604 * @fileset There we store extent containing root fileset
1605 *
1606 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1607 * sequence
1608 */
1609static noinline int udf_process_sequence(
1610 struct super_block *sb,
1611 sector_t block, sector_t lastblock,
1612 struct kernel_lb_addr *fileset)
1613{
1614 struct buffer_head *bh = NULL;
1615 struct udf_vds_record vds[VDS_POS_LENGTH];
1616 struct udf_vds_record *curr;
1617 struct generic_desc *gd;
1618 struct volDescPtr *vdp;
1619 bool done = false;
1620 uint32_t vdsn;
1621 uint16_t ident;
1622 long next_s = 0, next_e = 0;
1623 int ret;
1624 unsigned int indirections = 0;
1625
1626 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1627
1628 /*
1629 * Read the main descriptor sequence and find which descriptors
1630 * are in it.
1631 */
1632 for (; (!done && block <= lastblock); block++) {
1633
1634 bh = udf_read_tagged(sb, block, block, &ident);
1635 if (!bh) {
1636 udf_err(sb,
1637 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1638 (unsigned long long)block);
1639 return -EAGAIN;
1640 }
1641
1642 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1643 gd = (struct generic_desc *)bh->b_data;
1644 vdsn = le32_to_cpu(gd->volDescSeqNum);
1645 switch (ident) {
1646 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1647 curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1648 if (vdsn >= curr->volDescSeqNum) {
1649 curr->volDescSeqNum = vdsn;
1650 curr->block = block;
1651 }
1652 break;
1653 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1654 curr = &vds[VDS_POS_VOL_DESC_PTR];
1655 if (vdsn >= curr->volDescSeqNum) {
1656 curr->volDescSeqNum = vdsn;
1657 curr->block = block;
1658
1659 vdp = (struct volDescPtr *)bh->b_data;
1660 next_s = le32_to_cpu(
1661 vdp->nextVolDescSeqExt.extLocation);
1662 next_e = le32_to_cpu(
1663 vdp->nextVolDescSeqExt.extLength);
1664 next_e = next_e >> sb->s_blocksize_bits;
1665 next_e += next_s;
1666 }
1667 break;
1668 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1669 curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1670 if (vdsn >= curr->volDescSeqNum) {
1671 curr->volDescSeqNum = vdsn;
1672 curr->block = block;
1673 }
1674 break;
1675 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1676 curr = &vds[VDS_POS_PARTITION_DESC];
1677 if (!curr->block)
1678 curr->block = block;
1679 break;
1680 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1681 curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1682 if (vdsn >= curr->volDescSeqNum) {
1683 curr->volDescSeqNum = vdsn;
1684 curr->block = block;
1685 }
1686 break;
1687 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1688 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1689 if (vdsn >= curr->volDescSeqNum) {
1690 curr->volDescSeqNum = vdsn;
1691 curr->block = block;
1692 }
1693 break;
1694 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1695 if (++indirections > UDF_MAX_TD_NESTING) {
1696 udf_err(sb, "too many TDs (max %u supported)\n", UDF_MAX_TD_NESTING);
1697 brelse(bh);
1698 return -EIO;
1699 }
1700
1701 vds[VDS_POS_TERMINATING_DESC].block = block;
1702 if (next_e) {
1703 block = next_s;
1704 lastblock = next_e;
1705 next_s = next_e = 0;
1706 } else
1707 done = true;
1708 break;
1709 }
1710 brelse(bh);
1711 }
1712 /*
1713 * Now read interesting descriptors again and process them
1714 * in a suitable order
1715 */
1716 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1717 udf_err(sb, "Primary Volume Descriptor not found!\n");
1718 return -EAGAIN;
1719 }
1720 ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1721 if (ret < 0)
1722 return ret;
1723
1724 if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1725 ret = udf_load_logicalvol(sb,
1726 vds[VDS_POS_LOGICAL_VOL_DESC].block,
1727 fileset);
1728 if (ret < 0)
1729 return ret;
1730 }
1731
1732 if (vds[VDS_POS_PARTITION_DESC].block) {
1733 /*
1734 * We rescan the whole descriptor sequence to find
1735 * partition descriptor blocks and process them.
1736 */
1737 for (block = vds[VDS_POS_PARTITION_DESC].block;
1738 block < vds[VDS_POS_TERMINATING_DESC].block;
1739 block++) {
1740 ret = udf_load_partdesc(sb, block);
1741 if (ret < 0)
1742 return ret;
1743 }
1744 }
1745
1746 return 0;
1747}
1748
1749/*
1750 * Load Volume Descriptor Sequence described by anchor in bh
1751 *
1752 * Returns <0 on error, 0 on success
1753 */
1754static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1755 struct kernel_lb_addr *fileset)
1756{
1757 struct anchorVolDescPtr *anchor;
1758 sector_t main_s, main_e, reserve_s, reserve_e;
1759 int ret;
1760
1761 anchor = (struct anchorVolDescPtr *)bh->b_data;
1762
1763 /* Locate the main sequence */
1764 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1765 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1766 main_e = main_e >> sb->s_blocksize_bits;
1767 main_e += main_s;
1768
1769 /* Locate the reserve sequence */
1770 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1771 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1772 reserve_e = reserve_e >> sb->s_blocksize_bits;
1773 reserve_e += reserve_s;
1774
1775 /* Process the main & reserve sequences */
1776 /* responsible for finding the PartitionDesc(s) */
1777 ret = udf_process_sequence(sb, main_s, main_e, fileset);
1778 if (ret != -EAGAIN)
1779 return ret;
1780 udf_sb_free_partitions(sb);
1781 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1782 if (ret < 0) {
1783 udf_sb_free_partitions(sb);
1784 /* No sequence was OK, return -EIO */
1785 if (ret == -EAGAIN)
1786 ret = -EIO;
1787 }
1788 return ret;
1789}
1790
1791/*
1792 * Check whether there is an anchor block in the given block and
1793 * load Volume Descriptor Sequence if so.
1794 *
1795 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1796 * block
1797 */
1798static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1799 struct kernel_lb_addr *fileset)
1800{
1801 struct buffer_head *bh;
1802 uint16_t ident;
1803 int ret;
1804
1805 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1806 udf_fixed_to_variable(block) >=
1807 i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1808 return -EAGAIN;
1809
1810 bh = udf_read_tagged(sb, block, block, &ident);
1811 if (!bh)
1812 return -EAGAIN;
1813 if (ident != TAG_IDENT_AVDP) {
1814 brelse(bh);
1815 return -EAGAIN;
1816 }
1817 ret = udf_load_sequence(sb, bh, fileset);
1818 brelse(bh);
1819 return ret;
1820}
1821
1822/*
1823 * Search for an anchor volume descriptor pointer.
1824 *
1825 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1826 * of anchors.
1827 */
1828static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1829 struct kernel_lb_addr *fileset)
1830{
1831 sector_t last[6];
1832 int i;
1833 struct udf_sb_info *sbi = UDF_SB(sb);
1834 int last_count = 0;
1835 int ret;
1836
1837 /* First try user provided anchor */
1838 if (sbi->s_anchor) {
1839 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1840 if (ret != -EAGAIN)
1841 return ret;
1842 }
1843 /*
1844 * according to spec, anchor is in either:
1845 * block 256
1846 * lastblock-256
1847 * lastblock
1848 * however, if the disc isn't closed, it could be 512.
1849 */
1850 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1851 if (ret != -EAGAIN)
1852 return ret;
1853 /*
1854 * The trouble is which block is the last one. Drives often misreport
1855 * this so we try various possibilities.
1856 */
1857 last[last_count++] = *lastblock;
1858 if (*lastblock >= 1)
1859 last[last_count++] = *lastblock - 1;
1860 last[last_count++] = *lastblock + 1;
1861 if (*lastblock >= 2)
1862 last[last_count++] = *lastblock - 2;
1863 if (*lastblock >= 150)
1864 last[last_count++] = *lastblock - 150;
1865 if (*lastblock >= 152)
1866 last[last_count++] = *lastblock - 152;
1867
1868 for (i = 0; i < last_count; i++) {
1869 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1870 sb->s_blocksize_bits)
1871 continue;
1872 ret = udf_check_anchor_block(sb, last[i], fileset);
1873 if (ret != -EAGAIN) {
1874 if (!ret)
1875 *lastblock = last[i];
1876 return ret;
1877 }
1878 if (last[i] < 256)
1879 continue;
1880 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1881 if (ret != -EAGAIN) {
1882 if (!ret)
1883 *lastblock = last[i];
1884 return ret;
1885 }
1886 }
1887
1888 /* Finally try block 512 in case media is open */
1889 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1890}
1891
1892/*
1893 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1894 * area specified by it. The function expects sbi->s_lastblock to be the last
1895 * block on the media.
1896 *
1897 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1898 * was not found.
1899 */
1900static int udf_find_anchor(struct super_block *sb,
1901 struct kernel_lb_addr *fileset)
1902{
1903 struct udf_sb_info *sbi = UDF_SB(sb);
1904 sector_t lastblock = sbi->s_last_block;
1905 int ret;
1906
1907 ret = udf_scan_anchors(sb, &lastblock, fileset);
1908 if (ret != -EAGAIN)
1909 goto out;
1910
1911 /* No anchor found? Try VARCONV conversion of block numbers */
1912 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1913 lastblock = udf_variable_to_fixed(sbi->s_last_block);
1914 /* Firstly, we try to not convert number of the last block */
1915 ret = udf_scan_anchors(sb, &lastblock, fileset);
1916 if (ret != -EAGAIN)
1917 goto out;
1918
1919 lastblock = sbi->s_last_block;
1920 /* Secondly, we try with converted number of the last block */
1921 ret = udf_scan_anchors(sb, &lastblock, fileset);
1922 if (ret < 0) {
1923 /* VARCONV didn't help. Clear it. */
1924 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1925 }
1926out:
1927 if (ret == 0)
1928 sbi->s_last_block = lastblock;
1929 return ret;
1930}
1931
1932/*
1933 * Check Volume Structure Descriptor, find Anchor block and load Volume
1934 * Descriptor Sequence.
1935 *
1936 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1937 * block was not found.
1938 */
1939static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1940 int silent, struct kernel_lb_addr *fileset)
1941{
1942 struct udf_sb_info *sbi = UDF_SB(sb);
1943 loff_t nsr_off;
1944 int ret;
1945
1946 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1947 if (!silent)
1948 udf_warn(sb, "Bad block size\n");
1949 return -EINVAL;
1950 }
1951 sbi->s_last_block = uopt->lastblock;
1952 if (!uopt->novrs) {
1953 /* Check that it is NSR02 compliant */
1954 nsr_off = udf_check_vsd(sb);
1955 if (!nsr_off) {
1956 if (!silent)
1957 udf_warn(sb, "No VRS found\n");
1958 return -EINVAL;
1959 }
1960 if (nsr_off == -1)
1961 udf_debug("Failed to read sector at offset %d. "
1962 "Assuming open disc. Skipping validity "
1963 "check\n", VSD_FIRST_SECTOR_OFFSET);
1964 if (!sbi->s_last_block)
1965 sbi->s_last_block = udf_get_last_block(sb);
1966 } else {
1967 udf_debug("Validity check skipped because of novrs option\n");
1968 }
1969
1970 /* Look for anchor block and load Volume Descriptor Sequence */
1971 sbi->s_anchor = uopt->anchor;
1972 ret = udf_find_anchor(sb, fileset);
1973 if (ret < 0) {
1974 if (!silent && ret == -EAGAIN)
1975 udf_warn(sb, "No anchor found\n");
1976 return ret;
1977 }
1978 return 0;
1979}
1980
1981static void udf_open_lvid(struct super_block *sb)
1982{
1983 struct udf_sb_info *sbi = UDF_SB(sb);
1984 struct buffer_head *bh = sbi->s_lvid_bh;
1985 struct logicalVolIntegrityDesc *lvid;
1986 struct logicalVolIntegrityDescImpUse *lvidiu;
1987 struct timespec ts;
1988
1989 if (!bh)
1990 return;
1991 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1992 lvidiu = udf_sb_lvidiu(sb);
1993 if (!lvidiu)
1994 return;
1995
1996 mutex_lock(&sbi->s_alloc_mutex);
1997 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1998 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1999 ktime_get_real_ts(&ts);
2000 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2001 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2002
2003 lvid->descTag.descCRC = cpu_to_le16(
2004 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2005 le16_to_cpu(lvid->descTag.descCRCLength)));
2006
2007 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2008 mark_buffer_dirty(bh);
2009 sbi->s_lvid_dirty = 0;
2010 mutex_unlock(&sbi->s_alloc_mutex);
2011 /* Make opening of filesystem visible on the media immediately */
2012 sync_dirty_buffer(bh);
2013}
2014
2015static void udf_close_lvid(struct super_block *sb)
2016{
2017 struct udf_sb_info *sbi = UDF_SB(sb);
2018 struct buffer_head *bh = sbi->s_lvid_bh;
2019 struct logicalVolIntegrityDesc *lvid;
2020 struct logicalVolIntegrityDescImpUse *lvidiu;
2021 struct timespec ts;
2022
2023 if (!bh)
2024 return;
2025 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2026 lvidiu = udf_sb_lvidiu(sb);
2027 if (!lvidiu)
2028 return;
2029
2030 mutex_lock(&sbi->s_alloc_mutex);
2031 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2032 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2033 ktime_get_real_ts(&ts);
2034 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2035 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2036 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2037 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2038 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2039 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2040 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2041 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2042
2043 lvid->descTag.descCRC = cpu_to_le16(
2044 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2045 le16_to_cpu(lvid->descTag.descCRCLength)));
2046
2047 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2048 /*
2049 * We set buffer uptodate unconditionally here to avoid spurious
2050 * warnings from mark_buffer_dirty() when previous EIO has marked
2051 * the buffer as !uptodate
2052 */
2053 set_buffer_uptodate(bh);
2054 mark_buffer_dirty(bh);
2055 sbi->s_lvid_dirty = 0;
2056 mutex_unlock(&sbi->s_alloc_mutex);
2057 /* Make closing of filesystem visible on the media immediately */
2058 sync_dirty_buffer(bh);
2059}
2060
2061u64 lvid_get_unique_id(struct super_block *sb)
2062{
2063 struct buffer_head *bh;
2064 struct udf_sb_info *sbi = UDF_SB(sb);
2065 struct logicalVolIntegrityDesc *lvid;
2066 struct logicalVolHeaderDesc *lvhd;
2067 u64 uniqueID;
2068 u64 ret;
2069
2070 bh = sbi->s_lvid_bh;
2071 if (!bh)
2072 return 0;
2073
2074 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2075 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2076
2077 mutex_lock(&sbi->s_alloc_mutex);
2078 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2079 if (!(++uniqueID & 0xFFFFFFFF))
2080 uniqueID += 16;
2081 lvhd->uniqueID = cpu_to_le64(uniqueID);
2082 mutex_unlock(&sbi->s_alloc_mutex);
2083 mark_buffer_dirty(bh);
2084
2085 return ret;
2086}
2087
2088static int udf_fill_super(struct super_block *sb, void *options, int silent)
2089{
2090 int ret = -EINVAL;
2091 struct inode *inode = NULL;
2092 struct udf_options uopt;
2093 struct kernel_lb_addr rootdir, fileset;
2094 struct udf_sb_info *sbi;
2095 bool lvid_open = false;
2096
2097 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2098 /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2099 uopt.uid = make_kuid(current_user_ns(), overflowuid);
2100 uopt.gid = make_kgid(current_user_ns(), overflowgid);
2101 uopt.umask = 0;
2102 uopt.fmode = UDF_INVALID_MODE;
2103 uopt.dmode = UDF_INVALID_MODE;
2104
2105 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2106 if (!sbi)
2107 return -ENOMEM;
2108
2109 sb->s_fs_info = sbi;
2110
2111 mutex_init(&sbi->s_alloc_mutex);
2112
2113 if (!udf_parse_options((char *)options, &uopt, false))
2114 goto parse_options_failure;
2115
2116 if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2117 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2118 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2119 goto parse_options_failure;
2120 }
2121#ifdef CONFIG_UDF_NLS
2122 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2123 uopt.nls_map = load_nls_default();
2124 if (!uopt.nls_map)
2125 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2126 else
2127 udf_debug("Using default NLS map\n");
2128 }
2129#endif
2130 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2131 uopt.flags |= (1 << UDF_FLAG_UTF8);
2132
2133 fileset.logicalBlockNum = 0xFFFFFFFF;
2134 fileset.partitionReferenceNum = 0xFFFF;
2135
2136 sbi->s_flags = uopt.flags;
2137 sbi->s_uid = uopt.uid;
2138 sbi->s_gid = uopt.gid;
2139 sbi->s_umask = uopt.umask;
2140 sbi->s_fmode = uopt.fmode;
2141 sbi->s_dmode = uopt.dmode;
2142 sbi->s_nls_map = uopt.nls_map;
2143 rwlock_init(&sbi->s_cred_lock);
2144
2145 if (uopt.session == 0xFFFFFFFF)
2146 sbi->s_session = udf_get_last_session(sb);
2147 else
2148 sbi->s_session = uopt.session;
2149
2150 udf_debug("Multi-session=%d\n", sbi->s_session);
2151
2152 /* Fill in the rest of the superblock */
2153 sb->s_op = &udf_sb_ops;
2154 sb->s_export_op = &udf_export_ops;
2155
2156 sb->s_magic = UDF_SUPER_MAGIC;
2157 sb->s_time_gran = 1000;
2158
2159 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2160 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2161 } else {
2162 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2163 while (uopt.blocksize <= 4096) {
2164 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2165 if (ret < 0) {
2166 if (!silent && ret != -EACCES) {
2167 pr_notice("Scanning with blocksize %d failed\n",
2168 uopt.blocksize);
2169 }
2170 brelse(sbi->s_lvid_bh);
2171 sbi->s_lvid_bh = NULL;
2172 /*
2173 * EACCES is special - we want to propagate to
2174 * upper layers that we cannot handle RW mount.
2175 */
2176 if (ret == -EACCES)
2177 break;
2178 } else
2179 break;
2180
2181 uopt.blocksize <<= 1;
2182 }
2183 }
2184 if (ret < 0) {
2185 if (ret == -EAGAIN) {
2186 udf_warn(sb, "No partition found (1)\n");
2187 ret = -EINVAL;
2188 }
2189 goto error_out;
2190 }
2191
2192 udf_debug("Lastblock=%d\n", sbi->s_last_block);
2193
2194 if (sbi->s_lvid_bh) {
2195 struct logicalVolIntegrityDescImpUse *lvidiu =
2196 udf_sb_lvidiu(sb);
2197 uint16_t minUDFReadRev;
2198 uint16_t minUDFWriteRev;
2199
2200 if (!lvidiu) {
2201 ret = -EINVAL;
2202 goto error_out;
2203 }
2204 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2205 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2206 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2207 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2208 minUDFReadRev,
2209 UDF_MAX_READ_VERSION);
2210 ret = -EINVAL;
2211 goto error_out;
2212 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2213 !sb_rdonly(sb)) {
2214 ret = -EACCES;
2215 goto error_out;
2216 }
2217
2218 sbi->s_udfrev = minUDFWriteRev;
2219
2220 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2221 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2222 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2223 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2224 }
2225
2226 if (!sbi->s_partitions) {
2227 udf_warn(sb, "No partition found (2)\n");
2228 ret = -EINVAL;
2229 goto error_out;
2230 }
2231
2232 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2233 UDF_PART_FLAG_READ_ONLY &&
2234 !sb_rdonly(sb)) {
2235 ret = -EACCES;
2236 goto error_out;
2237 }
2238
2239 if (udf_find_fileset(sb, &fileset, &rootdir)) {
2240 udf_warn(sb, "No fileset found\n");
2241 ret = -EINVAL;
2242 goto error_out;
2243 }
2244
2245 if (!silent) {
2246 struct timestamp ts;
2247 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2248 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2249 sbi->s_volume_ident,
2250 le16_to_cpu(ts.year), ts.month, ts.day,
2251 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2252 }
2253 if (!sb_rdonly(sb)) {
2254 udf_open_lvid(sb);
2255 lvid_open = true;
2256 }
2257
2258 /* Assign the root inode */
2259 /* assign inodes by physical block number */
2260 /* perhaps it's not extensible enough, but for now ... */
2261 inode = udf_iget(sb, &rootdir);
2262 if (IS_ERR(inode)) {
2263 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2264 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2265 ret = PTR_ERR(inode);
2266 goto error_out;
2267 }
2268
2269 /* Allocate a dentry for the root inode */
2270 sb->s_root = d_make_root(inode);
2271 if (!sb->s_root) {
2272 udf_err(sb, "Couldn't allocate root dentry\n");
2273 ret = -ENOMEM;
2274 goto error_out;
2275 }
2276 sb->s_maxbytes = MAX_LFS_FILESIZE;
2277 sb->s_max_links = UDF_MAX_LINKS;
2278 return 0;
2279
2280error_out:
2281 iput(sbi->s_vat_inode);
2282parse_options_failure:
2283#ifdef CONFIG_UDF_NLS
2284 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2285 unload_nls(sbi->s_nls_map);
2286#endif
2287 if (lvid_open)
2288 udf_close_lvid(sb);
2289 brelse(sbi->s_lvid_bh);
2290 udf_sb_free_partitions(sb);
2291 kfree(sbi);
2292 sb->s_fs_info = NULL;
2293
2294 return ret;
2295}
2296
2297void _udf_err(struct super_block *sb, const char *function,
2298 const char *fmt, ...)
2299{
2300 struct va_format vaf;
2301 va_list args;
2302
2303 va_start(args, fmt);
2304
2305 vaf.fmt = fmt;
2306 vaf.va = &args;
2307
2308 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2309
2310 va_end(args);
2311}
2312
2313void _udf_warn(struct super_block *sb, const char *function,
2314 const char *fmt, ...)
2315{
2316 struct va_format vaf;
2317 va_list args;
2318
2319 va_start(args, fmt);
2320
2321 vaf.fmt = fmt;
2322 vaf.va = &args;
2323
2324 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2325
2326 va_end(args);
2327}
2328
2329static void udf_put_super(struct super_block *sb)
2330{
2331 struct udf_sb_info *sbi;
2332
2333 sbi = UDF_SB(sb);
2334
2335 iput(sbi->s_vat_inode);
2336#ifdef CONFIG_UDF_NLS
2337 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2338 unload_nls(sbi->s_nls_map);
2339#endif
2340 if (!sb_rdonly(sb))
2341 udf_close_lvid(sb);
2342 brelse(sbi->s_lvid_bh);
2343 udf_sb_free_partitions(sb);
2344 mutex_destroy(&sbi->s_alloc_mutex);
2345 kfree(sb->s_fs_info);
2346 sb->s_fs_info = NULL;
2347}
2348
2349static int udf_sync_fs(struct super_block *sb, int wait)
2350{
2351 struct udf_sb_info *sbi = UDF_SB(sb);
2352
2353 mutex_lock(&sbi->s_alloc_mutex);
2354 if (sbi->s_lvid_dirty) {
2355 /*
2356 * Blockdevice will be synced later so we don't have to submit
2357 * the buffer for IO
2358 */
2359 mark_buffer_dirty(sbi->s_lvid_bh);
2360 sbi->s_lvid_dirty = 0;
2361 }
2362 mutex_unlock(&sbi->s_alloc_mutex);
2363
2364 return 0;
2365}
2366
2367static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2368{
2369 struct super_block *sb = dentry->d_sb;
2370 struct udf_sb_info *sbi = UDF_SB(sb);
2371 struct logicalVolIntegrityDescImpUse *lvidiu;
2372 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2373
2374 lvidiu = udf_sb_lvidiu(sb);
2375 buf->f_type = UDF_SUPER_MAGIC;
2376 buf->f_bsize = sb->s_blocksize;
2377 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2378 buf->f_bfree = udf_count_free(sb);
2379 buf->f_bavail = buf->f_bfree;
2380 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2381 le32_to_cpu(lvidiu->numDirs)) : 0)
2382 + buf->f_bfree;
2383 buf->f_ffree = buf->f_bfree;
2384 buf->f_namelen = UDF_NAME_LEN;
2385 buf->f_fsid.val[0] = (u32)id;
2386 buf->f_fsid.val[1] = (u32)(id >> 32);
2387
2388 return 0;
2389}
2390
2391static unsigned int udf_count_free_bitmap(struct super_block *sb,
2392 struct udf_bitmap *bitmap)
2393{
2394 struct buffer_head *bh = NULL;
2395 unsigned int accum = 0;
2396 int index;
2397 int block = 0, newblock;
2398 struct kernel_lb_addr loc;
2399 uint32_t bytes;
2400 uint8_t *ptr;
2401 uint16_t ident;
2402 struct spaceBitmapDesc *bm;
2403
2404 loc.logicalBlockNum = bitmap->s_extPosition;
2405 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2406 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2407
2408 if (!bh) {
2409 udf_err(sb, "udf_count_free failed\n");
2410 goto out;
2411 } else if (ident != TAG_IDENT_SBD) {
2412 brelse(bh);
2413 udf_err(sb, "udf_count_free failed\n");
2414 goto out;
2415 }
2416
2417 bm = (struct spaceBitmapDesc *)bh->b_data;
2418 bytes = le32_to_cpu(bm->numOfBytes);
2419 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2420 ptr = (uint8_t *)bh->b_data;
2421
2422 while (bytes > 0) {
2423 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2424 accum += bitmap_weight((const unsigned long *)(ptr + index),
2425 cur_bytes * 8);
2426 bytes -= cur_bytes;
2427 if (bytes) {
2428 brelse(bh);
2429 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2430 bh = udf_tread(sb, newblock);
2431 if (!bh) {
2432 udf_debug("read failed\n");
2433 goto out;
2434 }
2435 index = 0;
2436 ptr = (uint8_t *)bh->b_data;
2437 }
2438 }
2439 brelse(bh);
2440out:
2441 return accum;
2442}
2443
2444static unsigned int udf_count_free_table(struct super_block *sb,
2445 struct inode *table)
2446{
2447 unsigned int accum = 0;
2448 uint32_t elen;
2449 struct kernel_lb_addr eloc;
2450 int8_t etype;
2451 struct extent_position epos;
2452
2453 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2454 epos.block = UDF_I(table)->i_location;
2455 epos.offset = sizeof(struct unallocSpaceEntry);
2456 epos.bh = NULL;
2457
2458 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2459 accum += (elen >> table->i_sb->s_blocksize_bits);
2460
2461 brelse(epos.bh);
2462 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2463
2464 return accum;
2465}
2466
2467static unsigned int udf_count_free(struct super_block *sb)
2468{
2469 unsigned int accum = 0;
2470 struct udf_sb_info *sbi = UDF_SB(sb);
2471 struct udf_part_map *map;
2472 unsigned int part = sbi->s_partition;
2473 int ptype = sbi->s_partmaps[part].s_partition_type;
2474
2475 if (ptype == UDF_METADATA_MAP25) {
2476 part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2477 s_phys_partition_ref;
2478 } else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2479 /*
2480 * Filesystems with VAT are append-only and we cannot write to
2481 * them. Let's just report 0 here.
2482 */
2483 return 0;
2484 }
2485
2486 if (sbi->s_lvid_bh) {
2487 struct logicalVolIntegrityDesc *lvid =
2488 (struct logicalVolIntegrityDesc *)
2489 sbi->s_lvid_bh->b_data;
2490 if (le32_to_cpu(lvid->numOfPartitions) > part) {
2491 accum = le32_to_cpu(
2492 lvid->freeSpaceTable[part]);
2493 if (accum == 0xFFFFFFFF)
2494 accum = 0;
2495 }
2496 }
2497
2498 if (accum)
2499 return accum;
2500
2501 map = &sbi->s_partmaps[part];
2502 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2503 accum += udf_count_free_bitmap(sb,
2504 map->s_uspace.s_bitmap);
2505 }
2506 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2507 accum += udf_count_free_bitmap(sb,
2508 map->s_fspace.s_bitmap);
2509 }
2510 if (accum)
2511 return accum;
2512
2513 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2514 accum += udf_count_free_table(sb,
2515 map->s_uspace.s_table);
2516 }
2517 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2518 accum += udf_count_free_table(sb,
2519 map->s_fspace.s_table);
2520 }
2521
2522 return accum;
2523}
2524
2525MODULE_AUTHOR("Ben Fennema");
2526MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2527MODULE_LICENSE("GPL");
2528module_init(init_udf_fs)
2529module_exit(exit_udf_fs)