blob: 6499056a80645cb4de034128e220f97874984b04 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * fs/userfaultfd.c
3 *
4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
5 * Copyright (C) 2008-2009 Red Hat, Inc.
6 * Copyright (C) 2015 Red Hat, Inc.
7 *
8 * This work is licensed under the terms of the GNU GPL, version 2. See
9 * the COPYING file in the top-level directory.
10 *
11 * Some part derived from fs/eventfd.c (anon inode setup) and
12 * mm/ksm.c (mm hashing).
13 */
14
15#include <linux/list.h>
16#include <linux/hashtable.h>
17#include <linux/sched/signal.h>
18#include <linux/sched/mm.h>
19#include <linux/mm.h>
20#include <linux/poll.h>
21#include <linux/slab.h>
22#include <linux/seq_file.h>
23#include <linux/file.h>
24#include <linux/bug.h>
25#include <linux/anon_inodes.h>
26#include <linux/syscalls.h>
27#include <linux/userfaultfd_k.h>
28#include <linux/mempolicy.h>
29#include <linux/ioctl.h>
30#include <linux/security.h>
31#include <linux/hugetlb.h>
32
33static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34
35enum userfaultfd_state {
36 UFFD_STATE_WAIT_API,
37 UFFD_STATE_RUNNING,
38};
39
40/*
41 * Start with fault_pending_wqh and fault_wqh so they're more likely
42 * to be in the same cacheline.
43 */
44struct userfaultfd_ctx {
45 /* waitqueue head for the pending (i.e. not read) userfaults */
46 wait_queue_head_t fault_pending_wqh;
47 /* waitqueue head for the userfaults */
48 wait_queue_head_t fault_wqh;
49 /* waitqueue head for the pseudo fd to wakeup poll/read */
50 wait_queue_head_t fd_wqh;
51 /* waitqueue head for events */
52 wait_queue_head_t event_wqh;
53 /* a refile sequence protected by fault_pending_wqh lock */
54 struct seqcount refile_seq;
55 /* pseudo fd refcounting */
56 atomic_t refcount;
57 /* userfaultfd syscall flags */
58 unsigned int flags;
59 /* features requested from the userspace */
60 unsigned int features;
61 /* state machine */
62 enum userfaultfd_state state;
63 /* released */
64 bool released;
65 /* mm with one ore more vmas attached to this userfaultfd_ctx */
66 struct mm_struct *mm;
67};
68
69struct userfaultfd_fork_ctx {
70 struct userfaultfd_ctx *orig;
71 struct userfaultfd_ctx *new;
72 struct list_head list;
73};
74
75struct userfaultfd_unmap_ctx {
76 struct userfaultfd_ctx *ctx;
77 unsigned long start;
78 unsigned long end;
79 struct list_head list;
80};
81
82struct userfaultfd_wait_queue {
83 struct uffd_msg msg;
84 wait_queue_entry_t wq;
85 struct userfaultfd_ctx *ctx;
86 bool waken;
87};
88
89struct userfaultfd_wake_range {
90 unsigned long start;
91 unsigned long len;
92};
93
94static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
95 int wake_flags, void *key)
96{
97 struct userfaultfd_wake_range *range = key;
98 int ret;
99 struct userfaultfd_wait_queue *uwq;
100 unsigned long start, len;
101
102 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
103 ret = 0;
104 /* len == 0 means wake all */
105 start = range->start;
106 len = range->len;
107 if (len && (start > uwq->msg.arg.pagefault.address ||
108 start + len <= uwq->msg.arg.pagefault.address))
109 goto out;
110 WRITE_ONCE(uwq->waken, true);
111 /*
112 * The Program-Order guarantees provided by the scheduler
113 * ensure uwq->waken is visible before the task is woken.
114 */
115 ret = wake_up_state(wq->private, mode);
116 if (ret) {
117 /*
118 * Wake only once, autoremove behavior.
119 *
120 * After the effect of list_del_init is visible to the other
121 * CPUs, the waitqueue may disappear from under us, see the
122 * !list_empty_careful() in handle_userfault().
123 *
124 * try_to_wake_up() has an implicit smp_mb(), and the
125 * wq->private is read before calling the extern function
126 * "wake_up_state" (which in turns calls try_to_wake_up).
127 */
128 list_del_init(&wq->entry);
129 }
130out:
131 return ret;
132}
133
134/**
135 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
136 * context.
137 * @ctx: [in] Pointer to the userfaultfd context.
138 */
139static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
140{
141 if (!atomic_inc_not_zero(&ctx->refcount))
142 BUG();
143}
144
145/**
146 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
147 * context.
148 * @ctx: [in] Pointer to userfaultfd context.
149 *
150 * The userfaultfd context reference must have been previously acquired either
151 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
152 */
153static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
154{
155 if (atomic_dec_and_test(&ctx->refcount)) {
156 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
157 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
158 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
159 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
160 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
161 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
162 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
163 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
164 mmdrop(ctx->mm);
165 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
166 }
167}
168
169static inline void msg_init(struct uffd_msg *msg)
170{
171 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
172 /*
173 * Must use memset to zero out the paddings or kernel data is
174 * leaked to userland.
175 */
176 memset(msg, 0, sizeof(struct uffd_msg));
177}
178
179static inline struct uffd_msg userfault_msg(unsigned long address,
180 unsigned int flags,
181 unsigned long reason,
182 unsigned int features)
183{
184 struct uffd_msg msg;
185 msg_init(&msg);
186 msg.event = UFFD_EVENT_PAGEFAULT;
187 msg.arg.pagefault.address = address;
188 if (flags & FAULT_FLAG_WRITE)
189 /*
190 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
191 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
192 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
193 * was a read fault, otherwise if set it means it's
194 * a write fault.
195 */
196 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
197 if (reason & VM_UFFD_WP)
198 /*
199 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
200 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
201 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
202 * a missing fault, otherwise if set it means it's a
203 * write protect fault.
204 */
205 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
206 if (features & UFFD_FEATURE_THREAD_ID)
207 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
208 return msg;
209}
210
211#ifdef CONFIG_HUGETLB_PAGE
212/*
213 * Same functionality as userfaultfd_must_wait below with modifications for
214 * hugepmd ranges.
215 */
216static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
217 struct vm_area_struct *vma,
218 unsigned long address,
219 unsigned long flags,
220 unsigned long reason)
221{
222 struct mm_struct *mm = ctx->mm;
223 pte_t *ptep, pte;
224 bool ret = true;
225
226 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
227
228 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
229
230 if (!ptep)
231 goto out;
232
233 ret = false;
234 pte = huge_ptep_get(ptep);
235
236 /*
237 * Lockless access: we're in a wait_event so it's ok if it
238 * changes under us.
239 */
240 if (huge_pte_none(pte))
241 ret = true;
242 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
243 ret = true;
244out:
245 return ret;
246}
247#else
248static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
249 struct vm_area_struct *vma,
250 unsigned long address,
251 unsigned long flags,
252 unsigned long reason)
253{
254 return false; /* should never get here */
255}
256#endif /* CONFIG_HUGETLB_PAGE */
257
258/*
259 * Verify the pagetables are still not ok after having reigstered into
260 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
261 * userfault that has already been resolved, if userfaultfd_read and
262 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
263 * threads.
264 */
265static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
266 unsigned long address,
267 unsigned long flags,
268 unsigned long reason)
269{
270 struct mm_struct *mm = ctx->mm;
271 pgd_t *pgd;
272 p4d_t *p4d;
273 pud_t *pud;
274 pmd_t *pmd, _pmd;
275 pte_t *pte;
276 bool ret = true;
277
278 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
279
280 pgd = pgd_offset(mm, address);
281 if (!pgd_present(*pgd))
282 goto out;
283 p4d = p4d_offset(pgd, address);
284 if (!p4d_present(*p4d))
285 goto out;
286 pud = pud_offset(p4d, address);
287 if (!pud_present(*pud))
288 goto out;
289 pmd = pmd_offset(pud, address);
290 /*
291 * READ_ONCE must function as a barrier with narrower scope
292 * and it must be equivalent to:
293 * _pmd = *pmd; barrier();
294 *
295 * This is to deal with the instability (as in
296 * pmd_trans_unstable) of the pmd.
297 */
298 _pmd = READ_ONCE(*pmd);
299 if (!pmd_present(_pmd))
300 goto out;
301
302 ret = false;
303 if (pmd_trans_huge(_pmd))
304 goto out;
305
306 /*
307 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
308 * and use the standard pte_offset_map() instead of parsing _pmd.
309 */
310 pte = pte_offset_map(pmd, address);
311 /*
312 * Lockless access: we're in a wait_event so it's ok if it
313 * changes under us.
314 */
315 if (pte_none(*pte))
316 ret = true;
317 pte_unmap(pte);
318
319out:
320 return ret;
321}
322
323/*
324 * The locking rules involved in returning VM_FAULT_RETRY depending on
325 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
326 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
327 * recommendation in __lock_page_or_retry is not an understatement.
328 *
329 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
330 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
331 * not set.
332 *
333 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
334 * set, VM_FAULT_RETRY can still be returned if and only if there are
335 * fatal_signal_pending()s, and the mmap_sem must be released before
336 * returning it.
337 */
338int handle_userfault(struct vm_fault *vmf, unsigned long reason)
339{
340 struct mm_struct *mm = vmf->vma->vm_mm;
341 struct userfaultfd_ctx *ctx;
342 struct userfaultfd_wait_queue uwq;
343 int ret;
344 bool must_wait, return_to_userland;
345 long blocking_state;
346
347 ret = VM_FAULT_SIGBUS;
348
349 /*
350 * We don't do userfault handling for the final child pid update.
351 *
352 * We also don't do userfault handling during
353 * coredumping. hugetlbfs has the special
354 * follow_hugetlb_page() to skip missing pages in the
355 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
356 * the no_page_table() helper in follow_page_mask(), but the
357 * shmem_vm_ops->fault method is invoked even during
358 * coredumping without mmap_sem and it ends up here.
359 */
360 if (current->flags & (PF_EXITING|PF_DUMPCORE))
361 goto out;
362
363 /*
364 * Coredumping runs without mmap_sem so we can only check that
365 * the mmap_sem is held, if PF_DUMPCORE was not set.
366 */
367 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
368
369 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
370 if (!ctx)
371 goto out;
372
373 BUG_ON(ctx->mm != mm);
374
375 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
376 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
377
378 if (ctx->features & UFFD_FEATURE_SIGBUS)
379 goto out;
380
381 /*
382 * If it's already released don't get it. This avoids to loop
383 * in __get_user_pages if userfaultfd_release waits on the
384 * caller of handle_userfault to release the mmap_sem.
385 */
386 if (unlikely(ACCESS_ONCE(ctx->released))) {
387 /*
388 * Don't return VM_FAULT_SIGBUS in this case, so a non
389 * cooperative manager can close the uffd after the
390 * last UFFDIO_COPY, without risking to trigger an
391 * involuntary SIGBUS if the process was starting the
392 * userfaultfd while the userfaultfd was still armed
393 * (but after the last UFFDIO_COPY). If the uffd
394 * wasn't already closed when the userfault reached
395 * this point, that would normally be solved by
396 * userfaultfd_must_wait returning 'false'.
397 *
398 * If we were to return VM_FAULT_SIGBUS here, the non
399 * cooperative manager would be instead forced to
400 * always call UFFDIO_UNREGISTER before it can safely
401 * close the uffd.
402 */
403 ret = VM_FAULT_NOPAGE;
404 goto out;
405 }
406
407 /*
408 * Check that we can return VM_FAULT_RETRY.
409 *
410 * NOTE: it should become possible to return VM_FAULT_RETRY
411 * even if FAULT_FLAG_TRIED is set without leading to gup()
412 * -EBUSY failures, if the userfaultfd is to be extended for
413 * VM_UFFD_WP tracking and we intend to arm the userfault
414 * without first stopping userland access to the memory. For
415 * VM_UFFD_MISSING userfaults this is enough for now.
416 */
417 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
418 /*
419 * Validate the invariant that nowait must allow retry
420 * to be sure not to return SIGBUS erroneously on
421 * nowait invocations.
422 */
423 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
424#ifdef CONFIG_DEBUG_VM
425 if (printk_ratelimit()) {
426 printk(KERN_WARNING
427 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
428 vmf->flags);
429 dump_stack();
430 }
431#endif
432 goto out;
433 }
434
435 /*
436 * Handle nowait, not much to do other than tell it to retry
437 * and wait.
438 */
439 ret = VM_FAULT_RETRY;
440 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
441 goto out;
442
443 /* take the reference before dropping the mmap_sem */
444 userfaultfd_ctx_get(ctx);
445
446 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
447 uwq.wq.private = current;
448 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
449 ctx->features);
450 uwq.ctx = ctx;
451 uwq.waken = false;
452
453 return_to_userland =
454 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
455 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
456 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
457 TASK_KILLABLE;
458
459 spin_lock(&ctx->fault_pending_wqh.lock);
460 /*
461 * After the __add_wait_queue the uwq is visible to userland
462 * through poll/read().
463 */
464 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
465 /*
466 * The smp_mb() after __set_current_state prevents the reads
467 * following the spin_unlock to happen before the list_add in
468 * __add_wait_queue.
469 */
470 set_current_state(blocking_state);
471 spin_unlock(&ctx->fault_pending_wqh.lock);
472
473 if (!is_vm_hugetlb_page(vmf->vma))
474 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
475 reason);
476 else
477 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
478 vmf->address,
479 vmf->flags, reason);
480 up_read(&mm->mmap_sem);
481
482 if (likely(must_wait && !ACCESS_ONCE(ctx->released) &&
483 (return_to_userland ? !signal_pending(current) :
484 !fatal_signal_pending(current)))) {
485 wake_up_poll(&ctx->fd_wqh, POLLIN);
486 schedule();
487 ret |= VM_FAULT_MAJOR;
488
489 /*
490 * False wakeups can orginate even from rwsem before
491 * up_read() however userfaults will wait either for a
492 * targeted wakeup on the specific uwq waitqueue from
493 * wake_userfault() or for signals or for uffd
494 * release.
495 */
496 while (!READ_ONCE(uwq.waken)) {
497 /*
498 * This needs the full smp_store_mb()
499 * guarantee as the state write must be
500 * visible to other CPUs before reading
501 * uwq.waken from other CPUs.
502 */
503 set_current_state(blocking_state);
504 if (READ_ONCE(uwq.waken) ||
505 READ_ONCE(ctx->released) ||
506 (return_to_userland ? signal_pending(current) :
507 fatal_signal_pending(current)))
508 break;
509 schedule();
510 }
511 }
512
513 __set_current_state(TASK_RUNNING);
514
515 if (return_to_userland) {
516 if (signal_pending(current) &&
517 !fatal_signal_pending(current)) {
518 /*
519 * If we got a SIGSTOP or SIGCONT and this is
520 * a normal userland page fault, just let
521 * userland return so the signal will be
522 * handled and gdb debugging works. The page
523 * fault code immediately after we return from
524 * this function is going to release the
525 * mmap_sem and it's not depending on it
526 * (unlike gup would if we were not to return
527 * VM_FAULT_RETRY).
528 *
529 * If a fatal signal is pending we still take
530 * the streamlined VM_FAULT_RETRY failure path
531 * and there's no need to retake the mmap_sem
532 * in such case.
533 */
534 down_read(&mm->mmap_sem);
535 ret = VM_FAULT_NOPAGE;
536 }
537 }
538
539 /*
540 * Here we race with the list_del; list_add in
541 * userfaultfd_ctx_read(), however because we don't ever run
542 * list_del_init() to refile across the two lists, the prev
543 * and next pointers will never point to self. list_add also
544 * would never let any of the two pointers to point to
545 * self. So list_empty_careful won't risk to see both pointers
546 * pointing to self at any time during the list refile. The
547 * only case where list_del_init() is called is the full
548 * removal in the wake function and there we don't re-list_add
549 * and it's fine not to block on the spinlock. The uwq on this
550 * kernel stack can be released after the list_del_init.
551 */
552 if (!list_empty_careful(&uwq.wq.entry)) {
553 spin_lock(&ctx->fault_pending_wqh.lock);
554 /*
555 * No need of list_del_init(), the uwq on the stack
556 * will be freed shortly anyway.
557 */
558 list_del(&uwq.wq.entry);
559 spin_unlock(&ctx->fault_pending_wqh.lock);
560 }
561
562 /*
563 * ctx may go away after this if the userfault pseudo fd is
564 * already released.
565 */
566 userfaultfd_ctx_put(ctx);
567
568out:
569 return ret;
570}
571
572static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
573 struct userfaultfd_wait_queue *ewq)
574{
575 struct userfaultfd_ctx *release_new_ctx;
576
577 if (WARN_ON_ONCE(current->flags & PF_EXITING))
578 goto out;
579
580 ewq->ctx = ctx;
581 init_waitqueue_entry(&ewq->wq, current);
582 release_new_ctx = NULL;
583
584 spin_lock(&ctx->event_wqh.lock);
585 /*
586 * After the __add_wait_queue the uwq is visible to userland
587 * through poll/read().
588 */
589 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
590 for (;;) {
591 set_current_state(TASK_KILLABLE);
592 if (ewq->msg.event == 0)
593 break;
594 if (ACCESS_ONCE(ctx->released) ||
595 fatal_signal_pending(current)) {
596 /*
597 * &ewq->wq may be queued in fork_event, but
598 * __remove_wait_queue ignores the head
599 * parameter. It would be a problem if it
600 * didn't.
601 */
602 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
603 if (ewq->msg.event == UFFD_EVENT_FORK) {
604 struct userfaultfd_ctx *new;
605
606 new = (struct userfaultfd_ctx *)
607 (unsigned long)
608 ewq->msg.arg.reserved.reserved1;
609 release_new_ctx = new;
610 }
611 break;
612 }
613
614 spin_unlock(&ctx->event_wqh.lock);
615
616 wake_up_poll(&ctx->fd_wqh, POLLIN);
617 schedule();
618
619 spin_lock(&ctx->event_wqh.lock);
620 }
621 __set_current_state(TASK_RUNNING);
622 spin_unlock(&ctx->event_wqh.lock);
623
624 if (release_new_ctx) {
625 struct vm_area_struct *vma;
626 struct mm_struct *mm = release_new_ctx->mm;
627
628 /* the various vma->vm_userfaultfd_ctx still points to it */
629 down_write(&mm->mmap_sem);
630 /* no task can run (and in turn coredump) yet */
631 VM_WARN_ON(!mmget_still_valid(mm));
632 for (vma = mm->mmap; vma; vma = vma->vm_next)
633 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
634 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
635 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
636 }
637 up_write(&mm->mmap_sem);
638
639 userfaultfd_ctx_put(release_new_ctx);
640 }
641
642 /*
643 * ctx may go away after this if the userfault pseudo fd is
644 * already released.
645 */
646out:
647 userfaultfd_ctx_put(ctx);
648}
649
650static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
651 struct userfaultfd_wait_queue *ewq)
652{
653 ewq->msg.event = 0;
654 wake_up_locked(&ctx->event_wqh);
655 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
656}
657
658int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
659{
660 struct userfaultfd_ctx *ctx = NULL, *octx;
661 struct userfaultfd_fork_ctx *fctx;
662
663 octx = vma->vm_userfaultfd_ctx.ctx;
664 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
665 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
666 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
667 return 0;
668 }
669
670 list_for_each_entry(fctx, fcs, list)
671 if (fctx->orig == octx) {
672 ctx = fctx->new;
673 break;
674 }
675
676 if (!ctx) {
677 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
678 if (!fctx)
679 return -ENOMEM;
680
681 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
682 if (!ctx) {
683 kfree(fctx);
684 return -ENOMEM;
685 }
686
687 atomic_set(&ctx->refcount, 1);
688 ctx->flags = octx->flags;
689 ctx->state = UFFD_STATE_RUNNING;
690 ctx->features = octx->features;
691 ctx->released = false;
692 ctx->mm = vma->vm_mm;
693 atomic_inc(&ctx->mm->mm_count);
694
695 userfaultfd_ctx_get(octx);
696 fctx->orig = octx;
697 fctx->new = ctx;
698 list_add_tail(&fctx->list, fcs);
699 }
700
701 vma->vm_userfaultfd_ctx.ctx = ctx;
702 return 0;
703}
704
705static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
706{
707 struct userfaultfd_ctx *ctx = fctx->orig;
708 struct userfaultfd_wait_queue ewq;
709
710 msg_init(&ewq.msg);
711
712 ewq.msg.event = UFFD_EVENT_FORK;
713 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
714
715 userfaultfd_event_wait_completion(ctx, &ewq);
716}
717
718void dup_userfaultfd_complete(struct list_head *fcs)
719{
720 struct userfaultfd_fork_ctx *fctx, *n;
721
722 list_for_each_entry_safe(fctx, n, fcs, list) {
723 dup_fctx(fctx);
724 list_del(&fctx->list);
725 kfree(fctx);
726 }
727}
728
729void mremap_userfaultfd_prep(struct vm_area_struct *vma,
730 struct vm_userfaultfd_ctx *vm_ctx)
731{
732 struct userfaultfd_ctx *ctx;
733
734 ctx = vma->vm_userfaultfd_ctx.ctx;
735 if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) {
736 vm_ctx->ctx = ctx;
737 userfaultfd_ctx_get(ctx);
738 }
739}
740
741void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
742 unsigned long from, unsigned long to,
743 unsigned long len)
744{
745 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
746 struct userfaultfd_wait_queue ewq;
747
748 if (!ctx)
749 return;
750
751 if (to & ~PAGE_MASK) {
752 userfaultfd_ctx_put(ctx);
753 return;
754 }
755
756 msg_init(&ewq.msg);
757
758 ewq.msg.event = UFFD_EVENT_REMAP;
759 ewq.msg.arg.remap.from = from;
760 ewq.msg.arg.remap.to = to;
761 ewq.msg.arg.remap.len = len;
762
763 userfaultfd_event_wait_completion(ctx, &ewq);
764}
765
766bool userfaultfd_remove(struct vm_area_struct *vma,
767 unsigned long start, unsigned long end)
768{
769 struct mm_struct *mm = vma->vm_mm;
770 struct userfaultfd_ctx *ctx;
771 struct userfaultfd_wait_queue ewq;
772
773 ctx = vma->vm_userfaultfd_ctx.ctx;
774 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
775 return true;
776
777 userfaultfd_ctx_get(ctx);
778 up_read(&mm->mmap_sem);
779
780 msg_init(&ewq.msg);
781
782 ewq.msg.event = UFFD_EVENT_REMOVE;
783 ewq.msg.arg.remove.start = start;
784 ewq.msg.arg.remove.end = end;
785
786 userfaultfd_event_wait_completion(ctx, &ewq);
787
788 return false;
789}
790
791static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
792 unsigned long start, unsigned long end)
793{
794 struct userfaultfd_unmap_ctx *unmap_ctx;
795
796 list_for_each_entry(unmap_ctx, unmaps, list)
797 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
798 unmap_ctx->end == end)
799 return true;
800
801 return false;
802}
803
804int userfaultfd_unmap_prep(struct vm_area_struct *vma,
805 unsigned long start, unsigned long end,
806 struct list_head *unmaps)
807{
808 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
809 struct userfaultfd_unmap_ctx *unmap_ctx;
810 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
811
812 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
813 has_unmap_ctx(ctx, unmaps, start, end))
814 continue;
815
816 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
817 if (!unmap_ctx)
818 return -ENOMEM;
819
820 userfaultfd_ctx_get(ctx);
821 unmap_ctx->ctx = ctx;
822 unmap_ctx->start = start;
823 unmap_ctx->end = end;
824 list_add_tail(&unmap_ctx->list, unmaps);
825 }
826
827 return 0;
828}
829
830void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
831{
832 struct userfaultfd_unmap_ctx *ctx, *n;
833 struct userfaultfd_wait_queue ewq;
834
835 list_for_each_entry_safe(ctx, n, uf, list) {
836 msg_init(&ewq.msg);
837
838 ewq.msg.event = UFFD_EVENT_UNMAP;
839 ewq.msg.arg.remove.start = ctx->start;
840 ewq.msg.arg.remove.end = ctx->end;
841
842 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
843
844 list_del(&ctx->list);
845 kfree(ctx);
846 }
847}
848
849static int userfaultfd_release(struct inode *inode, struct file *file)
850{
851 struct userfaultfd_ctx *ctx = file->private_data;
852 struct mm_struct *mm = ctx->mm;
853 struct vm_area_struct *vma, *prev;
854 /* len == 0 means wake all */
855 struct userfaultfd_wake_range range = { .len = 0, };
856 unsigned long new_flags;
857 bool still_valid;
858
859 ACCESS_ONCE(ctx->released) = true;
860
861 if (!mmget_not_zero(mm))
862 goto wakeup;
863
864 /*
865 * Flush page faults out of all CPUs. NOTE: all page faults
866 * must be retried without returning VM_FAULT_SIGBUS if
867 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
868 * changes while handle_userfault released the mmap_sem. So
869 * it's critical that released is set to true (above), before
870 * taking the mmap_sem for writing.
871 */
872 down_write(&mm->mmap_sem);
873 still_valid = mmget_still_valid(mm);
874 prev = NULL;
875 for (vma = mm->mmap; vma; vma = vma->vm_next) {
876 cond_resched();
877 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
878 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
879 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
880 prev = vma;
881 continue;
882 }
883 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
884 if (still_valid) {
885 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
886 new_flags, vma->anon_vma,
887 vma->vm_file, vma->vm_pgoff,
888 vma_policy(vma),
889 NULL_VM_UFFD_CTX,
890 vma_get_anon_name(vma));
891 if (prev)
892 vma = prev;
893 else
894 prev = vma;
895 }
896 vma->vm_flags = new_flags;
897 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
898 }
899 up_write(&mm->mmap_sem);
900 mmput(mm);
901wakeup:
902 /*
903 * After no new page faults can wait on this fault_*wqh, flush
904 * the last page faults that may have been already waiting on
905 * the fault_*wqh.
906 */
907 spin_lock(&ctx->fault_pending_wqh.lock);
908 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
909 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
910 spin_unlock(&ctx->fault_pending_wqh.lock);
911
912 /* Flush pending events that may still wait on event_wqh */
913 wake_up_all(&ctx->event_wqh);
914
915 wake_up_poll(&ctx->fd_wqh, POLLHUP);
916 userfaultfd_ctx_put(ctx);
917 return 0;
918}
919
920/* fault_pending_wqh.lock must be hold by the caller */
921static inline struct userfaultfd_wait_queue *find_userfault_in(
922 wait_queue_head_t *wqh)
923{
924 wait_queue_entry_t *wq;
925 struct userfaultfd_wait_queue *uwq;
926
927 VM_BUG_ON(!spin_is_locked(&wqh->lock));
928
929 uwq = NULL;
930 if (!waitqueue_active(wqh))
931 goto out;
932 /* walk in reverse to provide FIFO behavior to read userfaults */
933 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
934 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
935out:
936 return uwq;
937}
938
939static inline struct userfaultfd_wait_queue *find_userfault(
940 struct userfaultfd_ctx *ctx)
941{
942 return find_userfault_in(&ctx->fault_pending_wqh);
943}
944
945static inline struct userfaultfd_wait_queue *find_userfault_evt(
946 struct userfaultfd_ctx *ctx)
947{
948 return find_userfault_in(&ctx->event_wqh);
949}
950
951static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
952{
953 struct userfaultfd_ctx *ctx = file->private_data;
954 unsigned int ret;
955
956 poll_wait(file, &ctx->fd_wqh, wait);
957
958 switch (ctx->state) {
959 case UFFD_STATE_WAIT_API:
960 return POLLERR;
961 case UFFD_STATE_RUNNING:
962 /*
963 * poll() never guarantees that read won't block.
964 * userfaults can be waken before they're read().
965 */
966 if (unlikely(!(file->f_flags & O_NONBLOCK)))
967 return POLLERR;
968 /*
969 * lockless access to see if there are pending faults
970 * __pollwait last action is the add_wait_queue but
971 * the spin_unlock would allow the waitqueue_active to
972 * pass above the actual list_add inside
973 * add_wait_queue critical section. So use a full
974 * memory barrier to serialize the list_add write of
975 * add_wait_queue() with the waitqueue_active read
976 * below.
977 */
978 ret = 0;
979 smp_mb();
980 if (waitqueue_active(&ctx->fault_pending_wqh))
981 ret = POLLIN;
982 else if (waitqueue_active(&ctx->event_wqh))
983 ret = POLLIN;
984
985 return ret;
986 default:
987 WARN_ON_ONCE(1);
988 return POLLERR;
989 }
990}
991
992static const struct file_operations userfaultfd_fops;
993
994static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
995 struct userfaultfd_ctx *new,
996 struct uffd_msg *msg)
997{
998 int fd;
999 struct file *file;
1000 unsigned int flags = new->flags & UFFD_SHARED_FCNTL_FLAGS;
1001
1002 fd = get_unused_fd_flags(flags);
1003 if (fd < 0)
1004 return fd;
1005
1006 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, new,
1007 O_RDWR | flags);
1008 if (IS_ERR(file)) {
1009 put_unused_fd(fd);
1010 return PTR_ERR(file);
1011 }
1012
1013 fd_install(fd, file);
1014 msg->arg.reserved.reserved1 = 0;
1015 msg->arg.fork.ufd = fd;
1016
1017 return 0;
1018}
1019
1020static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1021 struct uffd_msg *msg)
1022{
1023 ssize_t ret;
1024 DECLARE_WAITQUEUE(wait, current);
1025 struct userfaultfd_wait_queue *uwq;
1026 /*
1027 * Handling fork event requires sleeping operations, so
1028 * we drop the event_wqh lock, then do these ops, then
1029 * lock it back and wake up the waiter. While the lock is
1030 * dropped the ewq may go away so we keep track of it
1031 * carefully.
1032 */
1033 LIST_HEAD(fork_event);
1034 struct userfaultfd_ctx *fork_nctx = NULL;
1035
1036 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1037 spin_lock(&ctx->fd_wqh.lock);
1038 __add_wait_queue(&ctx->fd_wqh, &wait);
1039 for (;;) {
1040 set_current_state(TASK_INTERRUPTIBLE);
1041 spin_lock(&ctx->fault_pending_wqh.lock);
1042 uwq = find_userfault(ctx);
1043 if (uwq) {
1044 /*
1045 * Use a seqcount to repeat the lockless check
1046 * in wake_userfault() to avoid missing
1047 * wakeups because during the refile both
1048 * waitqueue could become empty if this is the
1049 * only userfault.
1050 */
1051 write_seqcount_begin(&ctx->refile_seq);
1052
1053 /*
1054 * The fault_pending_wqh.lock prevents the uwq
1055 * to disappear from under us.
1056 *
1057 * Refile this userfault from
1058 * fault_pending_wqh to fault_wqh, it's not
1059 * pending anymore after we read it.
1060 *
1061 * Use list_del() by hand (as
1062 * userfaultfd_wake_function also uses
1063 * list_del_init() by hand) to be sure nobody
1064 * changes __remove_wait_queue() to use
1065 * list_del_init() in turn breaking the
1066 * !list_empty_careful() check in
1067 * handle_userfault(). The uwq->wq.head list
1068 * must never be empty at any time during the
1069 * refile, or the waitqueue could disappear
1070 * from under us. The "wait_queue_head_t"
1071 * parameter of __remove_wait_queue() is unused
1072 * anyway.
1073 */
1074 list_del(&uwq->wq.entry);
1075 __add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1076
1077 write_seqcount_end(&ctx->refile_seq);
1078
1079 /* careful to always initialize msg if ret == 0 */
1080 *msg = uwq->msg;
1081 spin_unlock(&ctx->fault_pending_wqh.lock);
1082 ret = 0;
1083 break;
1084 }
1085 spin_unlock(&ctx->fault_pending_wqh.lock);
1086
1087 spin_lock(&ctx->event_wqh.lock);
1088 uwq = find_userfault_evt(ctx);
1089 if (uwq) {
1090 *msg = uwq->msg;
1091
1092 if (uwq->msg.event == UFFD_EVENT_FORK) {
1093 fork_nctx = (struct userfaultfd_ctx *)
1094 (unsigned long)
1095 uwq->msg.arg.reserved.reserved1;
1096 list_move(&uwq->wq.entry, &fork_event);
1097 /*
1098 * fork_nctx can be freed as soon as
1099 * we drop the lock, unless we take a
1100 * reference on it.
1101 */
1102 userfaultfd_ctx_get(fork_nctx);
1103 spin_unlock(&ctx->event_wqh.lock);
1104 ret = 0;
1105 break;
1106 }
1107
1108 userfaultfd_event_complete(ctx, uwq);
1109 spin_unlock(&ctx->event_wqh.lock);
1110 ret = 0;
1111 break;
1112 }
1113 spin_unlock(&ctx->event_wqh.lock);
1114
1115 if (signal_pending(current)) {
1116 ret = -ERESTARTSYS;
1117 break;
1118 }
1119 if (no_wait) {
1120 ret = -EAGAIN;
1121 break;
1122 }
1123 spin_unlock(&ctx->fd_wqh.lock);
1124 schedule();
1125 spin_lock(&ctx->fd_wqh.lock);
1126 }
1127 __remove_wait_queue(&ctx->fd_wqh, &wait);
1128 __set_current_state(TASK_RUNNING);
1129 spin_unlock(&ctx->fd_wqh.lock);
1130
1131 if (!ret && msg->event == UFFD_EVENT_FORK) {
1132 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1133 spin_lock(&ctx->event_wqh.lock);
1134 if (!list_empty(&fork_event)) {
1135 /*
1136 * The fork thread didn't abort, so we can
1137 * drop the temporary refcount.
1138 */
1139 userfaultfd_ctx_put(fork_nctx);
1140
1141 uwq = list_first_entry(&fork_event,
1142 typeof(*uwq),
1143 wq.entry);
1144 /*
1145 * If fork_event list wasn't empty and in turn
1146 * the event wasn't already released by fork
1147 * (the event is allocated on fork kernel
1148 * stack), put the event back to its place in
1149 * the event_wq. fork_event head will be freed
1150 * as soon as we return so the event cannot
1151 * stay queued there no matter the current
1152 * "ret" value.
1153 */
1154 list_del(&uwq->wq.entry);
1155 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1156
1157 /*
1158 * Leave the event in the waitqueue and report
1159 * error to userland if we failed to resolve
1160 * the userfault fork.
1161 */
1162 if (likely(!ret))
1163 userfaultfd_event_complete(ctx, uwq);
1164 } else {
1165 /*
1166 * Here the fork thread aborted and the
1167 * refcount from the fork thread on fork_nctx
1168 * has already been released. We still hold
1169 * the reference we took before releasing the
1170 * lock above. If resolve_userfault_fork
1171 * failed we've to drop it because the
1172 * fork_nctx has to be freed in such case. If
1173 * it succeeded we'll hold it because the new
1174 * uffd references it.
1175 */
1176 if (ret)
1177 userfaultfd_ctx_put(fork_nctx);
1178 }
1179 spin_unlock(&ctx->event_wqh.lock);
1180 }
1181
1182 return ret;
1183}
1184
1185static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1186 size_t count, loff_t *ppos)
1187{
1188 struct userfaultfd_ctx *ctx = file->private_data;
1189 ssize_t _ret, ret = 0;
1190 struct uffd_msg msg;
1191 int no_wait = file->f_flags & O_NONBLOCK;
1192
1193 if (ctx->state == UFFD_STATE_WAIT_API)
1194 return -EINVAL;
1195
1196 for (;;) {
1197 if (count < sizeof(msg))
1198 return ret ? ret : -EINVAL;
1199 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1200 if (_ret < 0)
1201 return ret ? ret : _ret;
1202 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1203 return ret ? ret : -EFAULT;
1204 ret += sizeof(msg);
1205 buf += sizeof(msg);
1206 count -= sizeof(msg);
1207 /*
1208 * Allow to read more than one fault at time but only
1209 * block if waiting for the very first one.
1210 */
1211 no_wait = O_NONBLOCK;
1212 }
1213}
1214
1215static void __wake_userfault(struct userfaultfd_ctx *ctx,
1216 struct userfaultfd_wake_range *range)
1217{
1218 spin_lock(&ctx->fault_pending_wqh.lock);
1219 /* wake all in the range and autoremove */
1220 if (waitqueue_active(&ctx->fault_pending_wqh))
1221 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1222 range);
1223 if (waitqueue_active(&ctx->fault_wqh))
1224 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
1225 spin_unlock(&ctx->fault_pending_wqh.lock);
1226}
1227
1228static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1229 struct userfaultfd_wake_range *range)
1230{
1231 unsigned seq;
1232 bool need_wakeup;
1233
1234 /*
1235 * To be sure waitqueue_active() is not reordered by the CPU
1236 * before the pagetable update, use an explicit SMP memory
1237 * barrier here. PT lock release or up_read(mmap_sem) still
1238 * have release semantics that can allow the
1239 * waitqueue_active() to be reordered before the pte update.
1240 */
1241 smp_mb();
1242
1243 /*
1244 * Use waitqueue_active because it's very frequent to
1245 * change the address space atomically even if there are no
1246 * userfaults yet. So we take the spinlock only when we're
1247 * sure we've userfaults to wake.
1248 */
1249 do {
1250 seq = read_seqcount_begin(&ctx->refile_seq);
1251 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1252 waitqueue_active(&ctx->fault_wqh);
1253 cond_resched();
1254 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1255 if (need_wakeup)
1256 __wake_userfault(ctx, range);
1257}
1258
1259static __always_inline int validate_range(struct mm_struct *mm,
1260 __u64 start, __u64 len)
1261{
1262 __u64 task_size = mm->task_size;
1263
1264 if (start & ~PAGE_MASK)
1265 return -EINVAL;
1266 if (len & ~PAGE_MASK)
1267 return -EINVAL;
1268 if (!len)
1269 return -EINVAL;
1270 if (start < mmap_min_addr)
1271 return -EINVAL;
1272 if (start >= task_size)
1273 return -EINVAL;
1274 if (len > task_size - start)
1275 return -EINVAL;
1276 return 0;
1277}
1278
1279static inline bool vma_can_userfault(struct vm_area_struct *vma)
1280{
1281 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1282 vma_is_shmem(vma);
1283}
1284
1285static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1286 unsigned long arg)
1287{
1288 struct mm_struct *mm = ctx->mm;
1289 struct vm_area_struct *vma, *prev, *cur;
1290 int ret;
1291 struct uffdio_register uffdio_register;
1292 struct uffdio_register __user *user_uffdio_register;
1293 unsigned long vm_flags, new_flags;
1294 bool found;
1295 bool basic_ioctls;
1296 unsigned long start, end, vma_end;
1297
1298 user_uffdio_register = (struct uffdio_register __user *) arg;
1299
1300 ret = -EFAULT;
1301 if (copy_from_user(&uffdio_register, user_uffdio_register,
1302 sizeof(uffdio_register)-sizeof(__u64)))
1303 goto out;
1304
1305 ret = -EINVAL;
1306 if (!uffdio_register.mode)
1307 goto out;
1308 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1309 UFFDIO_REGISTER_MODE_WP))
1310 goto out;
1311 vm_flags = 0;
1312 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1313 vm_flags |= VM_UFFD_MISSING;
1314 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1315 vm_flags |= VM_UFFD_WP;
1316 /*
1317 * FIXME: remove the below error constraint by
1318 * implementing the wprotect tracking mode.
1319 */
1320 ret = -EINVAL;
1321 goto out;
1322 }
1323
1324 ret = validate_range(mm, uffdio_register.range.start,
1325 uffdio_register.range.len);
1326 if (ret)
1327 goto out;
1328
1329 start = uffdio_register.range.start;
1330 end = start + uffdio_register.range.len;
1331
1332 ret = -ENOMEM;
1333 if (!mmget_not_zero(mm))
1334 goto out;
1335
1336 down_write(&mm->mmap_sem);
1337 if (!mmget_still_valid(mm))
1338 goto out_unlock;
1339 vma = find_vma_prev(mm, start, &prev);
1340 if (!vma)
1341 goto out_unlock;
1342
1343 /* check that there's at least one vma in the range */
1344 ret = -EINVAL;
1345 if (vma->vm_start >= end)
1346 goto out_unlock;
1347
1348 /*
1349 * If the first vma contains huge pages, make sure start address
1350 * is aligned to huge page size.
1351 */
1352 if (is_vm_hugetlb_page(vma)) {
1353 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1354
1355 if (start & (vma_hpagesize - 1))
1356 goto out_unlock;
1357 }
1358
1359 /*
1360 * Search for not compatible vmas.
1361 */
1362 found = false;
1363 basic_ioctls = false;
1364 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1365 cond_resched();
1366
1367 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1368 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1369
1370 /* check not compatible vmas */
1371 ret = -EINVAL;
1372 if (!vma_can_userfault(cur))
1373 goto out_unlock;
1374
1375 /*
1376 * UFFDIO_COPY will fill file holes even without
1377 * PROT_WRITE. This check enforces that if this is a
1378 * MAP_SHARED, the process has write permission to the backing
1379 * file. If VM_MAYWRITE is set it also enforces that on a
1380 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1381 * F_WRITE_SEAL can be taken until the vma is destroyed.
1382 */
1383 ret = -EPERM;
1384 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1385 goto out_unlock;
1386
1387 /*
1388 * If this vma contains ending address, and huge pages
1389 * check alignment.
1390 */
1391 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1392 end > cur->vm_start) {
1393 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1394
1395 ret = -EINVAL;
1396
1397 if (end & (vma_hpagesize - 1))
1398 goto out_unlock;
1399 }
1400
1401 /*
1402 * Check that this vma isn't already owned by a
1403 * different userfaultfd. We can't allow more than one
1404 * userfaultfd to own a single vma simultaneously or we
1405 * wouldn't know which one to deliver the userfaults to.
1406 */
1407 ret = -EBUSY;
1408 if (cur->vm_userfaultfd_ctx.ctx &&
1409 cur->vm_userfaultfd_ctx.ctx != ctx)
1410 goto out_unlock;
1411
1412 /*
1413 * Note vmas containing huge pages
1414 */
1415 if (is_vm_hugetlb_page(cur))
1416 basic_ioctls = true;
1417
1418 found = true;
1419 }
1420 BUG_ON(!found);
1421
1422 if (vma->vm_start < start)
1423 prev = vma;
1424
1425 ret = 0;
1426 do {
1427 cond_resched();
1428
1429 BUG_ON(!vma_can_userfault(vma));
1430 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1431 vma->vm_userfaultfd_ctx.ctx != ctx);
1432 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1433
1434 /*
1435 * Nothing to do: this vma is already registered into this
1436 * userfaultfd and with the right tracking mode too.
1437 */
1438 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1439 (vma->vm_flags & vm_flags) == vm_flags)
1440 goto skip;
1441
1442 if (vma->vm_start > start)
1443 start = vma->vm_start;
1444 vma_end = min(end, vma->vm_end);
1445
1446 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1447 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1448 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1449 vma_policy(vma),
1450 ((struct vm_userfaultfd_ctx){ ctx }),
1451 vma_get_anon_name(vma));
1452 if (prev) {
1453 vma = prev;
1454 goto next;
1455 }
1456 if (vma->vm_start < start) {
1457 ret = split_vma(mm, vma, start, 1);
1458 if (ret)
1459 break;
1460 }
1461 if (vma->vm_end > end) {
1462 ret = split_vma(mm, vma, end, 0);
1463 if (ret)
1464 break;
1465 }
1466 next:
1467 /*
1468 * In the vma_merge() successful mprotect-like case 8:
1469 * the next vma was merged into the current one and
1470 * the current one has not been updated yet.
1471 */
1472 vma->vm_flags = new_flags;
1473 vma->vm_userfaultfd_ctx.ctx = ctx;
1474
1475 skip:
1476 prev = vma;
1477 start = vma->vm_end;
1478 vma = vma->vm_next;
1479 } while (vma && vma->vm_start < end);
1480out_unlock:
1481 up_write(&mm->mmap_sem);
1482 mmput(mm);
1483 if (!ret) {
1484 /*
1485 * Now that we scanned all vmas we can already tell
1486 * userland which ioctls methods are guaranteed to
1487 * succeed on this range.
1488 */
1489 if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1490 UFFD_API_RANGE_IOCTLS,
1491 &user_uffdio_register->ioctls))
1492 ret = -EFAULT;
1493 }
1494out:
1495 return ret;
1496}
1497
1498static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1499 unsigned long arg)
1500{
1501 struct mm_struct *mm = ctx->mm;
1502 struct vm_area_struct *vma, *prev, *cur;
1503 int ret;
1504 struct uffdio_range uffdio_unregister;
1505 unsigned long new_flags;
1506 bool found;
1507 unsigned long start, end, vma_end;
1508 const void __user *buf = (void __user *)arg;
1509
1510 ret = -EFAULT;
1511 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1512 goto out;
1513
1514 ret = validate_range(mm, uffdio_unregister.start,
1515 uffdio_unregister.len);
1516 if (ret)
1517 goto out;
1518
1519 start = uffdio_unregister.start;
1520 end = start + uffdio_unregister.len;
1521
1522 ret = -ENOMEM;
1523 if (!mmget_not_zero(mm))
1524 goto out;
1525
1526 down_write(&mm->mmap_sem);
1527 if (!mmget_still_valid(mm))
1528 goto out_unlock;
1529 vma = find_vma_prev(mm, start, &prev);
1530 if (!vma)
1531 goto out_unlock;
1532
1533 /* check that there's at least one vma in the range */
1534 ret = -EINVAL;
1535 if (vma->vm_start >= end)
1536 goto out_unlock;
1537
1538 /*
1539 * If the first vma contains huge pages, make sure start address
1540 * is aligned to huge page size.
1541 */
1542 if (is_vm_hugetlb_page(vma)) {
1543 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1544
1545 if (start & (vma_hpagesize - 1))
1546 goto out_unlock;
1547 }
1548
1549 /*
1550 * Search for not compatible vmas.
1551 */
1552 found = false;
1553 ret = -EINVAL;
1554 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1555 cond_resched();
1556
1557 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1558 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1559
1560 /*
1561 * Check not compatible vmas, not strictly required
1562 * here as not compatible vmas cannot have an
1563 * userfaultfd_ctx registered on them, but this
1564 * provides for more strict behavior to notice
1565 * unregistration errors.
1566 */
1567 if (!vma_can_userfault(cur))
1568 goto out_unlock;
1569
1570 found = true;
1571 }
1572 BUG_ON(!found);
1573
1574 if (vma->vm_start < start)
1575 prev = vma;
1576
1577 ret = 0;
1578 do {
1579 cond_resched();
1580
1581 BUG_ON(!vma_can_userfault(vma));
1582
1583 /*
1584 * Nothing to do: this vma is already registered into this
1585 * userfaultfd and with the right tracking mode too.
1586 */
1587 if (!vma->vm_userfaultfd_ctx.ctx)
1588 goto skip;
1589
1590 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1591
1592 if (vma->vm_start > start)
1593 start = vma->vm_start;
1594 vma_end = min(end, vma->vm_end);
1595
1596 if (userfaultfd_missing(vma)) {
1597 /*
1598 * Wake any concurrent pending userfault while
1599 * we unregister, so they will not hang
1600 * permanently and it avoids userland to call
1601 * UFFDIO_WAKE explicitly.
1602 */
1603 struct userfaultfd_wake_range range;
1604 range.start = start;
1605 range.len = vma_end - start;
1606 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1607 }
1608
1609 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1610 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1611 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1612 vma_policy(vma),
1613 NULL_VM_UFFD_CTX,
1614 vma_get_anon_name(vma));
1615 if (prev) {
1616 vma = prev;
1617 goto next;
1618 }
1619 if (vma->vm_start < start) {
1620 ret = split_vma(mm, vma, start, 1);
1621 if (ret)
1622 break;
1623 }
1624 if (vma->vm_end > end) {
1625 ret = split_vma(mm, vma, end, 0);
1626 if (ret)
1627 break;
1628 }
1629 next:
1630 /*
1631 * In the vma_merge() successful mprotect-like case 8:
1632 * the next vma was merged into the current one and
1633 * the current one has not been updated yet.
1634 */
1635 vma->vm_flags = new_flags;
1636 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1637
1638 skip:
1639 prev = vma;
1640 start = vma->vm_end;
1641 vma = vma->vm_next;
1642 } while (vma && vma->vm_start < end);
1643out_unlock:
1644 up_write(&mm->mmap_sem);
1645 mmput(mm);
1646out:
1647 return ret;
1648}
1649
1650/*
1651 * userfaultfd_wake may be used in combination with the
1652 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1653 */
1654static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1655 unsigned long arg)
1656{
1657 int ret;
1658 struct uffdio_range uffdio_wake;
1659 struct userfaultfd_wake_range range;
1660 const void __user *buf = (void __user *)arg;
1661
1662 ret = -EFAULT;
1663 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1664 goto out;
1665
1666 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1667 if (ret)
1668 goto out;
1669
1670 range.start = uffdio_wake.start;
1671 range.len = uffdio_wake.len;
1672
1673 /*
1674 * len == 0 means wake all and we don't want to wake all here,
1675 * so check it again to be sure.
1676 */
1677 VM_BUG_ON(!range.len);
1678
1679 wake_userfault(ctx, &range);
1680 ret = 0;
1681
1682out:
1683 return ret;
1684}
1685
1686static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1687 unsigned long arg)
1688{
1689 __s64 ret;
1690 struct uffdio_copy uffdio_copy;
1691 struct uffdio_copy __user *user_uffdio_copy;
1692 struct userfaultfd_wake_range range;
1693
1694 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1695
1696 ret = -EFAULT;
1697 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1698 /* don't copy "copy" last field */
1699 sizeof(uffdio_copy)-sizeof(__s64)))
1700 goto out;
1701
1702 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1703 if (ret)
1704 goto out;
1705 /*
1706 * double check for wraparound just in case. copy_from_user()
1707 * will later check uffdio_copy.src + uffdio_copy.len to fit
1708 * in the userland range.
1709 */
1710 ret = -EINVAL;
1711 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1712 goto out;
1713 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1714 goto out;
1715 if (mmget_not_zero(ctx->mm)) {
1716 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1717 uffdio_copy.len);
1718 mmput(ctx->mm);
1719 } else {
1720 return -ESRCH;
1721 }
1722 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1723 return -EFAULT;
1724 if (ret < 0)
1725 goto out;
1726 BUG_ON(!ret);
1727 /* len == 0 would wake all */
1728 range.len = ret;
1729 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1730 range.start = uffdio_copy.dst;
1731 wake_userfault(ctx, &range);
1732 }
1733 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1734out:
1735 return ret;
1736}
1737
1738static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1739 unsigned long arg)
1740{
1741 __s64 ret;
1742 struct uffdio_zeropage uffdio_zeropage;
1743 struct uffdio_zeropage __user *user_uffdio_zeropage;
1744 struct userfaultfd_wake_range range;
1745
1746 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1747
1748 ret = -EFAULT;
1749 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1750 /* don't copy "zeropage" last field */
1751 sizeof(uffdio_zeropage)-sizeof(__s64)))
1752 goto out;
1753
1754 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1755 uffdio_zeropage.range.len);
1756 if (ret)
1757 goto out;
1758 ret = -EINVAL;
1759 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1760 goto out;
1761
1762 if (mmget_not_zero(ctx->mm)) {
1763 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1764 uffdio_zeropage.range.len);
1765 mmput(ctx->mm);
1766 } else {
1767 return -ESRCH;
1768 }
1769 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1770 return -EFAULT;
1771 if (ret < 0)
1772 goto out;
1773 /* len == 0 would wake all */
1774 BUG_ON(!ret);
1775 range.len = ret;
1776 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1777 range.start = uffdio_zeropage.range.start;
1778 wake_userfault(ctx, &range);
1779 }
1780 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1781out:
1782 return ret;
1783}
1784
1785static inline unsigned int uffd_ctx_features(__u64 user_features)
1786{
1787 /*
1788 * For the current set of features the bits just coincide
1789 */
1790 return (unsigned int)user_features;
1791}
1792
1793/*
1794 * userland asks for a certain API version and we return which bits
1795 * and ioctl commands are implemented in this kernel for such API
1796 * version or -EINVAL if unknown.
1797 */
1798static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1799 unsigned long arg)
1800{
1801 struct uffdio_api uffdio_api;
1802 void __user *buf = (void __user *)arg;
1803 int ret;
1804 __u64 features;
1805
1806 ret = -EINVAL;
1807 if (ctx->state != UFFD_STATE_WAIT_API)
1808 goto out;
1809 ret = -EFAULT;
1810 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1811 goto out;
1812 features = uffdio_api.features;
1813 ret = -EINVAL;
1814 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1815 goto err_out;
1816 ret = -EPERM;
1817 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1818 goto err_out;
1819 /* report all available features and ioctls to userland */
1820 uffdio_api.features = UFFD_API_FEATURES;
1821 uffdio_api.ioctls = UFFD_API_IOCTLS;
1822 ret = -EFAULT;
1823 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1824 goto out;
1825 ctx->state = UFFD_STATE_RUNNING;
1826 /* only enable the requested features for this uffd context */
1827 ctx->features = uffd_ctx_features(features);
1828 ret = 0;
1829out:
1830 return ret;
1831err_out:
1832 memset(&uffdio_api, 0, sizeof(uffdio_api));
1833 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1834 ret = -EFAULT;
1835 goto out;
1836}
1837
1838static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1839 unsigned long arg)
1840{
1841 int ret = -EINVAL;
1842 struct userfaultfd_ctx *ctx = file->private_data;
1843
1844 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1845 return -EINVAL;
1846
1847 switch(cmd) {
1848 case UFFDIO_API:
1849 ret = userfaultfd_api(ctx, arg);
1850 break;
1851 case UFFDIO_REGISTER:
1852 ret = userfaultfd_register(ctx, arg);
1853 break;
1854 case UFFDIO_UNREGISTER:
1855 ret = userfaultfd_unregister(ctx, arg);
1856 break;
1857 case UFFDIO_WAKE:
1858 ret = userfaultfd_wake(ctx, arg);
1859 break;
1860 case UFFDIO_COPY:
1861 ret = userfaultfd_copy(ctx, arg);
1862 break;
1863 case UFFDIO_ZEROPAGE:
1864 ret = userfaultfd_zeropage(ctx, arg);
1865 break;
1866 }
1867 return ret;
1868}
1869
1870#ifdef CONFIG_PROC_FS
1871static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1872{
1873 struct userfaultfd_ctx *ctx = f->private_data;
1874 wait_queue_entry_t *wq;
1875 struct userfaultfd_wait_queue *uwq;
1876 unsigned long pending = 0, total = 0;
1877
1878 spin_lock(&ctx->fault_pending_wqh.lock);
1879 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1880 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1881 pending++;
1882 total++;
1883 }
1884 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1885 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1886 total++;
1887 }
1888 spin_unlock(&ctx->fault_pending_wqh.lock);
1889
1890 /*
1891 * If more protocols will be added, there will be all shown
1892 * separated by a space. Like this:
1893 * protocols: aa:... bb:...
1894 */
1895 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1896 pending, total, UFFD_API, ctx->features,
1897 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1898}
1899#endif
1900
1901static const struct file_operations userfaultfd_fops = {
1902#ifdef CONFIG_PROC_FS
1903 .show_fdinfo = userfaultfd_show_fdinfo,
1904#endif
1905 .release = userfaultfd_release,
1906 .poll = userfaultfd_poll,
1907 .read = userfaultfd_read,
1908 .unlocked_ioctl = userfaultfd_ioctl,
1909 .compat_ioctl = userfaultfd_ioctl,
1910 .llseek = noop_llseek,
1911};
1912
1913static void init_once_userfaultfd_ctx(void *mem)
1914{
1915 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1916
1917 init_waitqueue_head(&ctx->fault_pending_wqh);
1918 init_waitqueue_head(&ctx->fault_wqh);
1919 init_waitqueue_head(&ctx->event_wqh);
1920 init_waitqueue_head(&ctx->fd_wqh);
1921 seqcount_init(&ctx->refile_seq);
1922}
1923
1924/**
1925 * userfaultfd_file_create - Creates a userfaultfd file pointer.
1926 * @flags: Flags for the userfaultfd file.
1927 *
1928 * This function creates a userfaultfd file pointer, w/out installing
1929 * it into the fd table. This is useful when the userfaultfd file is
1930 * used during the initialization of data structures that require
1931 * extra setup after the userfaultfd creation. So the userfaultfd
1932 * creation is split into the file pointer creation phase, and the
1933 * file descriptor installation phase. In this way races with
1934 * userspace closing the newly installed file descriptor can be
1935 * avoided. Returns a userfaultfd file pointer, or a proper error
1936 * pointer.
1937 */
1938static struct file *userfaultfd_file_create(int flags)
1939{
1940 struct file *file;
1941 struct userfaultfd_ctx *ctx;
1942
1943 BUG_ON(!current->mm);
1944
1945 /* Check the UFFD_* constants for consistency. */
1946 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1947 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1948
1949 file = ERR_PTR(-EINVAL);
1950 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1951 goto out;
1952
1953 file = ERR_PTR(-ENOMEM);
1954 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1955 if (!ctx)
1956 goto out;
1957
1958 atomic_set(&ctx->refcount, 1);
1959 ctx->flags = flags;
1960 ctx->features = 0;
1961 ctx->state = UFFD_STATE_WAIT_API;
1962 ctx->released = false;
1963 ctx->mm = current->mm;
1964 /* prevent the mm struct to be freed */
1965 mmgrab(ctx->mm);
1966
1967 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
1968 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1969 if (IS_ERR(file)) {
1970 mmdrop(ctx->mm);
1971 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1972 }
1973out:
1974 return file;
1975}
1976
1977SYSCALL_DEFINE1(userfaultfd, int, flags)
1978{
1979 int fd, error;
1980 struct file *file;
1981
1982 error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
1983 if (error < 0)
1984 return error;
1985 fd = error;
1986
1987 file = userfaultfd_file_create(flags);
1988 if (IS_ERR(file)) {
1989 error = PTR_ERR(file);
1990 goto err_put_unused_fd;
1991 }
1992 fd_install(fd, file);
1993
1994 return fd;
1995
1996err_put_unused_fd:
1997 put_unused_fd(fd);
1998
1999 return error;
2000}
2001
2002static int __init userfaultfd_init(void)
2003{
2004 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2005 sizeof(struct userfaultfd_ctx),
2006 0,
2007 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2008 init_once_userfaultfd_ctx);
2009 return 0;
2010}
2011__initcall(userfaultfd_init);