blob: 544b5211221cdae3a61c5e1910e9286063fed6b0 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_format.h"
21#include "xfs_log_format.h"
22#include "xfs_trans_resv.h"
23#include "xfs_sb.h"
24#include "xfs_mount.h"
25#include "xfs_inode.h"
26#include "xfs_error.h"
27#include "xfs_trans.h"
28#include "xfs_trans_priv.h"
29#include "xfs_inode_item.h"
30#include "xfs_quota.h"
31#include "xfs_trace.h"
32#include "xfs_icache.h"
33#include "xfs_bmap_util.h"
34#include "xfs_dquot_item.h"
35#include "xfs_dquot.h"
36#include "xfs_reflink.h"
37
38#include <linux/kthread.h>
39#include <linux/freezer.h>
40
41/*
42 * Allocate and initialise an xfs_inode.
43 */
44struct xfs_inode *
45xfs_inode_alloc(
46 struct xfs_mount *mp,
47 xfs_ino_t ino)
48{
49 struct xfs_inode *ip;
50
51 /*
52 * if this didn't occur in transactions, we could use
53 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
54 * code up to do this anyway.
55 */
56 ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
57 if (!ip)
58 return NULL;
59 if (inode_init_always(mp->m_super, VFS_I(ip))) {
60 kmem_zone_free(xfs_inode_zone, ip);
61 return NULL;
62 }
63
64 /* VFS doesn't initialise i_mode! */
65 VFS_I(ip)->i_mode = 0;
66
67 XFS_STATS_INC(mp, vn_active);
68 ASSERT(atomic_read(&ip->i_pincount) == 0);
69 ASSERT(!xfs_isiflocked(ip));
70 ASSERT(ip->i_ino == 0);
71
72 /* initialise the xfs inode */
73 ip->i_ino = ino;
74 ip->i_mount = mp;
75 memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
76 ip->i_afp = NULL;
77 ip->i_cowfp = NULL;
78 ip->i_cnextents = 0;
79 ip->i_cformat = XFS_DINODE_FMT_EXTENTS;
80 memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
81 ip->i_flags = 0;
82 ip->i_delayed_blks = 0;
83 memset(&ip->i_d, 0, sizeof(ip->i_d));
84
85 return ip;
86}
87
88STATIC void
89xfs_inode_free_callback(
90 struct rcu_head *head)
91{
92 struct inode *inode = container_of(head, struct inode, i_rcu);
93 struct xfs_inode *ip = XFS_I(inode);
94
95 switch (VFS_I(ip)->i_mode & S_IFMT) {
96 case S_IFREG:
97 case S_IFDIR:
98 case S_IFLNK:
99 xfs_idestroy_fork(ip, XFS_DATA_FORK);
100 break;
101 }
102
103 if (ip->i_afp)
104 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
105 if (ip->i_cowfp)
106 xfs_idestroy_fork(ip, XFS_COW_FORK);
107
108 if (ip->i_itemp) {
109 ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
110 xfs_inode_item_destroy(ip);
111 ip->i_itemp = NULL;
112 }
113
114 kmem_zone_free(xfs_inode_zone, ip);
115}
116
117static void
118__xfs_inode_free(
119 struct xfs_inode *ip)
120{
121 /* asserts to verify all state is correct here */
122 ASSERT(atomic_read(&ip->i_pincount) == 0);
123 XFS_STATS_DEC(ip->i_mount, vn_active);
124
125 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
126}
127
128void
129xfs_inode_free(
130 struct xfs_inode *ip)
131{
132 ASSERT(!xfs_isiflocked(ip));
133
134 /*
135 * Because we use RCU freeing we need to ensure the inode always
136 * appears to be reclaimed with an invalid inode number when in the
137 * free state. The ip->i_flags_lock provides the barrier against lookup
138 * races.
139 */
140 spin_lock(&ip->i_flags_lock);
141 ip->i_flags = XFS_IRECLAIM;
142 ip->i_ino = 0;
143 spin_unlock(&ip->i_flags_lock);
144
145 __xfs_inode_free(ip);
146}
147
148/*
149 * Queue a new inode reclaim pass if there are reclaimable inodes and there
150 * isn't a reclaim pass already in progress. By default it runs every 5s based
151 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
152 * tunable, but that can be done if this method proves to be ineffective or too
153 * aggressive.
154 */
155static void
156xfs_reclaim_work_queue(
157 struct xfs_mount *mp)
158{
159
160 rcu_read_lock();
161 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
162 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
163 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
164 }
165 rcu_read_unlock();
166}
167
168/*
169 * This is a fast pass over the inode cache to try to get reclaim moving on as
170 * many inodes as possible in a short period of time. It kicks itself every few
171 * seconds, as well as being kicked by the inode cache shrinker when memory
172 * goes low. It scans as quickly as possible avoiding locked inodes or those
173 * already being flushed, and once done schedules a future pass.
174 */
175void
176xfs_reclaim_worker(
177 struct work_struct *work)
178{
179 struct xfs_mount *mp = container_of(to_delayed_work(work),
180 struct xfs_mount, m_reclaim_work);
181
182 xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
183 xfs_reclaim_work_queue(mp);
184}
185
186static void
187xfs_perag_set_reclaim_tag(
188 struct xfs_perag *pag)
189{
190 struct xfs_mount *mp = pag->pag_mount;
191
192 lockdep_assert_held(&pag->pag_ici_lock);
193 if (pag->pag_ici_reclaimable++)
194 return;
195
196 /* propagate the reclaim tag up into the perag radix tree */
197 spin_lock(&mp->m_perag_lock);
198 radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
199 XFS_ICI_RECLAIM_TAG);
200 spin_unlock(&mp->m_perag_lock);
201
202 /* schedule periodic background inode reclaim */
203 xfs_reclaim_work_queue(mp);
204
205 trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
206}
207
208static void
209xfs_perag_clear_reclaim_tag(
210 struct xfs_perag *pag)
211{
212 struct xfs_mount *mp = pag->pag_mount;
213
214 lockdep_assert_held(&pag->pag_ici_lock);
215 if (--pag->pag_ici_reclaimable)
216 return;
217
218 /* clear the reclaim tag from the perag radix tree */
219 spin_lock(&mp->m_perag_lock);
220 radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
221 XFS_ICI_RECLAIM_TAG);
222 spin_unlock(&mp->m_perag_lock);
223 trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
224}
225
226
227/*
228 * We set the inode flag atomically with the radix tree tag.
229 * Once we get tag lookups on the radix tree, this inode flag
230 * can go away.
231 */
232void
233xfs_inode_set_reclaim_tag(
234 struct xfs_inode *ip)
235{
236 struct xfs_mount *mp = ip->i_mount;
237 struct xfs_perag *pag;
238
239 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
240 spin_lock(&pag->pag_ici_lock);
241 spin_lock(&ip->i_flags_lock);
242
243 radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
244 XFS_ICI_RECLAIM_TAG);
245 xfs_perag_set_reclaim_tag(pag);
246 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
247
248 spin_unlock(&ip->i_flags_lock);
249 spin_unlock(&pag->pag_ici_lock);
250 xfs_perag_put(pag);
251}
252
253STATIC void
254xfs_inode_clear_reclaim_tag(
255 struct xfs_perag *pag,
256 xfs_ino_t ino)
257{
258 radix_tree_tag_clear(&pag->pag_ici_root,
259 XFS_INO_TO_AGINO(pag->pag_mount, ino),
260 XFS_ICI_RECLAIM_TAG);
261 xfs_perag_clear_reclaim_tag(pag);
262}
263
264static void
265xfs_inew_wait(
266 struct xfs_inode *ip)
267{
268 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
269 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);
270
271 do {
272 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
273 if (!xfs_iflags_test(ip, XFS_INEW))
274 break;
275 schedule();
276 } while (true);
277 finish_wait(wq, &wait.wq_entry);
278}
279
280/*
281 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
282 * part of the structure. This is made more complex by the fact we store
283 * information about the on-disk values in the VFS inode and so we can't just
284 * overwrite the values unconditionally. Hence we save the parameters we
285 * need to retain across reinitialisation, and rewrite them into the VFS inode
286 * after reinitialisation even if it fails.
287 */
288static int
289xfs_reinit_inode(
290 struct xfs_mount *mp,
291 struct inode *inode)
292{
293 int error;
294 uint32_t nlink = inode->i_nlink;
295 uint32_t generation = inode->i_generation;
296 uint64_t version = inode->i_version;
297 umode_t mode = inode->i_mode;
298
299 error = inode_init_always(mp->m_super, inode);
300
301 set_nlink(inode, nlink);
302 inode->i_generation = generation;
303 inode->i_version = version;
304 inode->i_mode = mode;
305 return error;
306}
307
308/*
309 * If we are allocating a new inode, then check what was returned is
310 * actually a free, empty inode. If we are not allocating an inode,
311 * then check we didn't find a free inode.
312 *
313 * Returns:
314 * 0 if the inode free state matches the lookup context
315 * -ENOENT if the inode is free and we are not allocating
316 * -EFSCORRUPTED if there is any state mismatch at all
317 */
318static int
319xfs_iget_check_free_state(
320 struct xfs_inode *ip,
321 int flags)
322{
323 if (flags & XFS_IGET_CREATE) {
324 /* should be a free inode */
325 if (VFS_I(ip)->i_mode != 0) {
326 xfs_warn(ip->i_mount,
327"Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
328 ip->i_ino, VFS_I(ip)->i_mode);
329 return -EFSCORRUPTED;
330 }
331
332 if (ip->i_d.di_nblocks != 0) {
333 xfs_warn(ip->i_mount,
334"Corruption detected! Free inode 0x%llx has blocks allocated!",
335 ip->i_ino);
336 return -EFSCORRUPTED;
337 }
338 return 0;
339 }
340
341 /* should be an allocated inode */
342 if (VFS_I(ip)->i_mode == 0)
343 return -ENOENT;
344
345 return 0;
346}
347
348/*
349 * Check the validity of the inode we just found it the cache
350 */
351static int
352xfs_iget_cache_hit(
353 struct xfs_perag *pag,
354 struct xfs_inode *ip,
355 xfs_ino_t ino,
356 int flags,
357 int lock_flags) __releases(RCU)
358{
359 struct inode *inode = VFS_I(ip);
360 struct xfs_mount *mp = ip->i_mount;
361 int error;
362
363 /*
364 * check for re-use of an inode within an RCU grace period due to the
365 * radix tree nodes not being updated yet. We monitor for this by
366 * setting the inode number to zero before freeing the inode structure.
367 * If the inode has been reallocated and set up, then the inode number
368 * will not match, so check for that, too.
369 */
370 spin_lock(&ip->i_flags_lock);
371 if (ip->i_ino != ino) {
372 trace_xfs_iget_skip(ip);
373 XFS_STATS_INC(mp, xs_ig_frecycle);
374 error = -EAGAIN;
375 goto out_error;
376 }
377
378
379 /*
380 * If we are racing with another cache hit that is currently
381 * instantiating this inode or currently recycling it out of
382 * reclaimabe state, wait for the initialisation to complete
383 * before continuing.
384 *
385 * XXX(hch): eventually we should do something equivalent to
386 * wait_on_inode to wait for these flags to be cleared
387 * instead of polling for it.
388 */
389 if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
390 trace_xfs_iget_skip(ip);
391 XFS_STATS_INC(mp, xs_ig_frecycle);
392 error = -EAGAIN;
393 goto out_error;
394 }
395
396 /*
397 * Check the inode free state is valid. This also detects lookup
398 * racing with unlinks.
399 */
400 error = xfs_iget_check_free_state(ip, flags);
401 if (error)
402 goto out_error;
403
404 /*
405 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
406 * Need to carefully get it back into useable state.
407 */
408 if (ip->i_flags & XFS_IRECLAIMABLE) {
409 trace_xfs_iget_reclaim(ip);
410
411 if (flags & XFS_IGET_INCORE) {
412 error = -EAGAIN;
413 goto out_error;
414 }
415
416 /*
417 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
418 * from stomping over us while we recycle the inode. We can't
419 * clear the radix tree reclaimable tag yet as it requires
420 * pag_ici_lock to be held exclusive.
421 */
422 ip->i_flags |= XFS_IRECLAIM;
423
424 spin_unlock(&ip->i_flags_lock);
425 rcu_read_unlock();
426
427 error = xfs_reinit_inode(mp, inode);
428 if (error) {
429 bool wake;
430 /*
431 * Re-initializing the inode failed, and we are in deep
432 * trouble. Try to re-add it to the reclaim list.
433 */
434 rcu_read_lock();
435 spin_lock(&ip->i_flags_lock);
436 wake = !!__xfs_iflags_test(ip, XFS_INEW);
437 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
438 if (wake)
439 wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
440 ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
441 trace_xfs_iget_reclaim_fail(ip);
442 goto out_error;
443 }
444
445 spin_lock(&pag->pag_ici_lock);
446 spin_lock(&ip->i_flags_lock);
447
448 /*
449 * Clear the per-lifetime state in the inode as we are now
450 * effectively a new inode and need to return to the initial
451 * state before reuse occurs.
452 */
453 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
454 ip->i_flags |= XFS_INEW;
455 xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
456 inode->i_state = I_NEW;
457
458 ASSERT(!rwsem_is_locked(&inode->i_rwsem));
459 init_rwsem(&inode->i_rwsem);
460
461 spin_unlock(&ip->i_flags_lock);
462 spin_unlock(&pag->pag_ici_lock);
463 } else {
464 /* If the VFS inode is being torn down, pause and try again. */
465 if (!igrab(inode)) {
466 trace_xfs_iget_skip(ip);
467 error = -EAGAIN;
468 goto out_error;
469 }
470
471 /* We've got a live one. */
472 spin_unlock(&ip->i_flags_lock);
473 rcu_read_unlock();
474 trace_xfs_iget_hit(ip);
475 }
476
477 if (lock_flags != 0)
478 xfs_ilock(ip, lock_flags);
479
480 if (!(flags & XFS_IGET_INCORE))
481 xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
482 XFS_STATS_INC(mp, xs_ig_found);
483
484 return 0;
485
486out_error:
487 spin_unlock(&ip->i_flags_lock);
488 rcu_read_unlock();
489 return error;
490}
491
492
493static int
494xfs_iget_cache_miss(
495 struct xfs_mount *mp,
496 struct xfs_perag *pag,
497 xfs_trans_t *tp,
498 xfs_ino_t ino,
499 struct xfs_inode **ipp,
500 int flags,
501 int lock_flags)
502{
503 struct xfs_inode *ip;
504 int error;
505 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
506 int iflags;
507
508 ip = xfs_inode_alloc(mp, ino);
509 if (!ip)
510 return -ENOMEM;
511
512 error = xfs_iread(mp, tp, ip, flags);
513 if (error)
514 goto out_destroy;
515
516 trace_xfs_iget_miss(ip);
517
518
519 /*
520 * Check the inode free state is valid. This also detects lookup
521 * racing with unlinks.
522 */
523 error = xfs_iget_check_free_state(ip, flags);
524 if (error)
525 goto out_destroy;
526
527 /*
528 * Preload the radix tree so we can insert safely under the
529 * write spinlock. Note that we cannot sleep inside the preload
530 * region. Since we can be called from transaction context, don't
531 * recurse into the file system.
532 */
533 if (radix_tree_preload(GFP_NOFS)) {
534 error = -EAGAIN;
535 goto out_destroy;
536 }
537
538 /*
539 * Because the inode hasn't been added to the radix-tree yet it can't
540 * be found by another thread, so we can do the non-sleeping lock here.
541 */
542 if (lock_flags) {
543 if (!xfs_ilock_nowait(ip, lock_flags))
544 BUG();
545 }
546
547 /*
548 * These values must be set before inserting the inode into the radix
549 * tree as the moment it is inserted a concurrent lookup (allowed by the
550 * RCU locking mechanism) can find it and that lookup must see that this
551 * is an inode currently under construction (i.e. that XFS_INEW is set).
552 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
553 * memory barrier that ensures this detection works correctly at lookup
554 * time.
555 */
556 iflags = XFS_INEW;
557 if (flags & XFS_IGET_DONTCACHE)
558 iflags |= XFS_IDONTCACHE;
559 ip->i_udquot = NULL;
560 ip->i_gdquot = NULL;
561 ip->i_pdquot = NULL;
562 xfs_iflags_set(ip, iflags);
563
564 /* insert the new inode */
565 spin_lock(&pag->pag_ici_lock);
566 error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
567 if (unlikely(error)) {
568 WARN_ON(error != -EEXIST);
569 XFS_STATS_INC(mp, xs_ig_dup);
570 error = -EAGAIN;
571 goto out_preload_end;
572 }
573 spin_unlock(&pag->pag_ici_lock);
574 radix_tree_preload_end();
575
576 *ipp = ip;
577 return 0;
578
579out_preload_end:
580 spin_unlock(&pag->pag_ici_lock);
581 radix_tree_preload_end();
582 if (lock_flags)
583 xfs_iunlock(ip, lock_flags);
584out_destroy:
585 __destroy_inode(VFS_I(ip));
586 xfs_inode_free(ip);
587 return error;
588}
589
590/*
591 * Look up an inode by number in the given file system.
592 * The inode is looked up in the cache held in each AG.
593 * If the inode is found in the cache, initialise the vfs inode
594 * if necessary.
595 *
596 * If it is not in core, read it in from the file system's device,
597 * add it to the cache and initialise the vfs inode.
598 *
599 * The inode is locked according to the value of the lock_flags parameter.
600 * This flag parameter indicates how and if the inode's IO lock and inode lock
601 * should be taken.
602 *
603 * mp -- the mount point structure for the current file system. It points
604 * to the inode hash table.
605 * tp -- a pointer to the current transaction if there is one. This is
606 * simply passed through to the xfs_iread() call.
607 * ino -- the number of the inode desired. This is the unique identifier
608 * within the file system for the inode being requested.
609 * lock_flags -- flags indicating how to lock the inode. See the comment
610 * for xfs_ilock() for a list of valid values.
611 */
612int
613xfs_iget(
614 xfs_mount_t *mp,
615 xfs_trans_t *tp,
616 xfs_ino_t ino,
617 uint flags,
618 uint lock_flags,
619 xfs_inode_t **ipp)
620{
621 xfs_inode_t *ip;
622 int error;
623 xfs_perag_t *pag;
624 xfs_agino_t agino;
625
626 /*
627 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
628 * doesn't get freed while it's being referenced during a
629 * radix tree traversal here. It assumes this function
630 * aqcuires only the ILOCK (and therefore it has no need to
631 * involve the IOLOCK in this synchronization).
632 */
633 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
634
635 /* reject inode numbers outside existing AGs */
636 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
637 return -EINVAL;
638
639 XFS_STATS_INC(mp, xs_ig_attempts);
640
641 /* get the perag structure and ensure that it's inode capable */
642 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
643 agino = XFS_INO_TO_AGINO(mp, ino);
644
645again:
646 error = 0;
647 rcu_read_lock();
648 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
649
650 if (ip) {
651 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
652 if (error)
653 goto out_error_or_again;
654 } else {
655 rcu_read_unlock();
656 if (flags & XFS_IGET_INCORE) {
657 error = -ENODATA;
658 goto out_error_or_again;
659 }
660 XFS_STATS_INC(mp, xs_ig_missed);
661
662 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
663 flags, lock_flags);
664 if (error)
665 goto out_error_or_again;
666 }
667 xfs_perag_put(pag);
668
669 *ipp = ip;
670
671 /*
672 * If we have a real type for an on-disk inode, we can setup the inode
673 * now. If it's a new inode being created, xfs_ialloc will handle it.
674 */
675 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
676 xfs_setup_existing_inode(ip);
677 return 0;
678
679out_error_or_again:
680 if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
681 delay(1);
682 goto again;
683 }
684 xfs_perag_put(pag);
685 return error;
686}
687
688/*
689 * "Is this a cached inode that's also allocated?"
690 *
691 * Look up an inode by number in the given file system. If the inode is
692 * in cache and isn't in purgatory, return 1 if the inode is allocated
693 * and 0 if it is not. For all other cases (not in cache, being torn
694 * down, etc.), return a negative error code.
695 *
696 * The caller has to prevent inode allocation and freeing activity,
697 * presumably by locking the AGI buffer. This is to ensure that an
698 * inode cannot transition from allocated to freed until the caller is
699 * ready to allow that. If the inode is in an intermediate state (new,
700 * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
701 * inode is not in the cache, -ENOENT will be returned. The caller must
702 * deal with these scenarios appropriately.
703 *
704 * This is a specialized use case for the online scrubber; if you're
705 * reading this, you probably want xfs_iget.
706 */
707int
708xfs_icache_inode_is_allocated(
709 struct xfs_mount *mp,
710 struct xfs_trans *tp,
711 xfs_ino_t ino,
712 bool *inuse)
713{
714 struct xfs_inode *ip;
715 int error;
716
717 error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
718 if (error)
719 return error;
720
721 *inuse = !!(VFS_I(ip)->i_mode);
722 IRELE(ip);
723 return 0;
724}
725
726/*
727 * The inode lookup is done in batches to keep the amount of lock traffic and
728 * radix tree lookups to a minimum. The batch size is a trade off between
729 * lookup reduction and stack usage. This is in the reclaim path, so we can't
730 * be too greedy.
731 */
732#define XFS_LOOKUP_BATCH 32
733
734STATIC int
735xfs_inode_ag_walk_grab(
736 struct xfs_inode *ip,
737 int flags)
738{
739 struct inode *inode = VFS_I(ip);
740 bool newinos = !!(flags & XFS_AGITER_INEW_WAIT);
741
742 ASSERT(rcu_read_lock_held());
743
744 /*
745 * check for stale RCU freed inode
746 *
747 * If the inode has been reallocated, it doesn't matter if it's not in
748 * the AG we are walking - we are walking for writeback, so if it
749 * passes all the "valid inode" checks and is dirty, then we'll write
750 * it back anyway. If it has been reallocated and still being
751 * initialised, the XFS_INEW check below will catch it.
752 */
753 spin_lock(&ip->i_flags_lock);
754 if (!ip->i_ino)
755 goto out_unlock_noent;
756
757 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
758 if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) ||
759 __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM))
760 goto out_unlock_noent;
761 spin_unlock(&ip->i_flags_lock);
762
763 /* nothing to sync during shutdown */
764 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
765 return -EFSCORRUPTED;
766
767 /* If we can't grab the inode, it must on it's way to reclaim. */
768 if (!igrab(inode))
769 return -ENOENT;
770
771 /* inode is valid */
772 return 0;
773
774out_unlock_noent:
775 spin_unlock(&ip->i_flags_lock);
776 return -ENOENT;
777}
778
779STATIC int
780xfs_inode_ag_walk(
781 struct xfs_mount *mp,
782 struct xfs_perag *pag,
783 int (*execute)(struct xfs_inode *ip, int flags,
784 void *args),
785 int flags,
786 void *args,
787 int tag,
788 int iter_flags)
789{
790 uint32_t first_index;
791 int last_error = 0;
792 int skipped;
793 int done;
794 int nr_found;
795
796restart:
797 done = 0;
798 skipped = 0;
799 first_index = 0;
800 nr_found = 0;
801 do {
802 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
803 int error = 0;
804 int i;
805
806 rcu_read_lock();
807
808 if (tag == -1)
809 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
810 (void **)batch, first_index,
811 XFS_LOOKUP_BATCH);
812 else
813 nr_found = radix_tree_gang_lookup_tag(
814 &pag->pag_ici_root,
815 (void **) batch, first_index,
816 XFS_LOOKUP_BATCH, tag);
817
818 if (!nr_found) {
819 rcu_read_unlock();
820 break;
821 }
822
823 /*
824 * Grab the inodes before we drop the lock. if we found
825 * nothing, nr == 0 and the loop will be skipped.
826 */
827 for (i = 0; i < nr_found; i++) {
828 struct xfs_inode *ip = batch[i];
829
830 if (done || xfs_inode_ag_walk_grab(ip, iter_flags))
831 batch[i] = NULL;
832
833 /*
834 * Update the index for the next lookup. Catch
835 * overflows into the next AG range which can occur if
836 * we have inodes in the last block of the AG and we
837 * are currently pointing to the last inode.
838 *
839 * Because we may see inodes that are from the wrong AG
840 * due to RCU freeing and reallocation, only update the
841 * index if it lies in this AG. It was a race that lead
842 * us to see this inode, so another lookup from the
843 * same index will not find it again.
844 */
845 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
846 continue;
847 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
848 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
849 done = 1;
850 }
851
852 /* unlock now we've grabbed the inodes. */
853 rcu_read_unlock();
854
855 for (i = 0; i < nr_found; i++) {
856 if (!batch[i])
857 continue;
858 if ((iter_flags & XFS_AGITER_INEW_WAIT) &&
859 xfs_iflags_test(batch[i], XFS_INEW))
860 xfs_inew_wait(batch[i]);
861 error = execute(batch[i], flags, args);
862 IRELE(batch[i]);
863 if (error == -EAGAIN) {
864 skipped++;
865 continue;
866 }
867 if (error && last_error != -EFSCORRUPTED)
868 last_error = error;
869 }
870
871 /* bail out if the filesystem is corrupted. */
872 if (error == -EFSCORRUPTED)
873 break;
874
875 cond_resched();
876
877 } while (nr_found && !done);
878
879 if (skipped) {
880 delay(1);
881 goto restart;
882 }
883 return last_error;
884}
885
886/*
887 * Background scanning to trim post-EOF preallocated space. This is queued
888 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
889 */
890void
891xfs_queue_eofblocks(
892 struct xfs_mount *mp)
893{
894 rcu_read_lock();
895 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
896 queue_delayed_work(mp->m_eofblocks_workqueue,
897 &mp->m_eofblocks_work,
898 msecs_to_jiffies(xfs_eofb_secs * 1000));
899 rcu_read_unlock();
900}
901
902void
903xfs_eofblocks_worker(
904 struct work_struct *work)
905{
906 struct xfs_mount *mp = container_of(to_delayed_work(work),
907 struct xfs_mount, m_eofblocks_work);
908 xfs_icache_free_eofblocks(mp, NULL);
909 xfs_queue_eofblocks(mp);
910}
911
912/*
913 * Background scanning to trim preallocated CoW space. This is queued
914 * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
915 * (We'll just piggyback on the post-EOF prealloc space workqueue.)
916 */
917STATIC void
918xfs_queue_cowblocks(
919 struct xfs_mount *mp)
920{
921 rcu_read_lock();
922 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG))
923 queue_delayed_work(mp->m_eofblocks_workqueue,
924 &mp->m_cowblocks_work,
925 msecs_to_jiffies(xfs_cowb_secs * 1000));
926 rcu_read_unlock();
927}
928
929void
930xfs_cowblocks_worker(
931 struct work_struct *work)
932{
933 struct xfs_mount *mp = container_of(to_delayed_work(work),
934 struct xfs_mount, m_cowblocks_work);
935 xfs_icache_free_cowblocks(mp, NULL);
936 xfs_queue_cowblocks(mp);
937}
938
939int
940xfs_inode_ag_iterator_flags(
941 struct xfs_mount *mp,
942 int (*execute)(struct xfs_inode *ip, int flags,
943 void *args),
944 int flags,
945 void *args,
946 int iter_flags)
947{
948 struct xfs_perag *pag;
949 int error = 0;
950 int last_error = 0;
951 xfs_agnumber_t ag;
952
953 ag = 0;
954 while ((pag = xfs_perag_get(mp, ag))) {
955 ag = pag->pag_agno + 1;
956 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1,
957 iter_flags);
958 xfs_perag_put(pag);
959 if (error) {
960 last_error = error;
961 if (error == -EFSCORRUPTED)
962 break;
963 }
964 }
965 return last_error;
966}
967
968int
969xfs_inode_ag_iterator(
970 struct xfs_mount *mp,
971 int (*execute)(struct xfs_inode *ip, int flags,
972 void *args),
973 int flags,
974 void *args)
975{
976 return xfs_inode_ag_iterator_flags(mp, execute, flags, args, 0);
977}
978
979int
980xfs_inode_ag_iterator_tag(
981 struct xfs_mount *mp,
982 int (*execute)(struct xfs_inode *ip, int flags,
983 void *args),
984 int flags,
985 void *args,
986 int tag)
987{
988 struct xfs_perag *pag;
989 int error = 0;
990 int last_error = 0;
991 xfs_agnumber_t ag;
992
993 ag = 0;
994 while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
995 ag = pag->pag_agno + 1;
996 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag,
997 0);
998 xfs_perag_put(pag);
999 if (error) {
1000 last_error = error;
1001 if (error == -EFSCORRUPTED)
1002 break;
1003 }
1004 }
1005 return last_error;
1006}
1007
1008/*
1009 * Grab the inode for reclaim exclusively.
1010 * Return 0 if we grabbed it, non-zero otherwise.
1011 */
1012STATIC int
1013xfs_reclaim_inode_grab(
1014 struct xfs_inode *ip,
1015 int flags)
1016{
1017 ASSERT(rcu_read_lock_held());
1018
1019 /* quick check for stale RCU freed inode */
1020 if (!ip->i_ino)
1021 return 1;
1022
1023 /*
1024 * If we are asked for non-blocking operation, do unlocked checks to
1025 * see if the inode already is being flushed or in reclaim to avoid
1026 * lock traffic.
1027 */
1028 if ((flags & SYNC_TRYLOCK) &&
1029 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
1030 return 1;
1031
1032 /*
1033 * The radix tree lock here protects a thread in xfs_iget from racing
1034 * with us starting reclaim on the inode. Once we have the
1035 * XFS_IRECLAIM flag set it will not touch us.
1036 *
1037 * Due to RCU lookup, we may find inodes that have been freed and only
1038 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
1039 * aren't candidates for reclaim at all, so we must check the
1040 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
1041 */
1042 spin_lock(&ip->i_flags_lock);
1043 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
1044 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
1045 /* not a reclaim candidate. */
1046 spin_unlock(&ip->i_flags_lock);
1047 return 1;
1048 }
1049 __xfs_iflags_set(ip, XFS_IRECLAIM);
1050 spin_unlock(&ip->i_flags_lock);
1051 return 0;
1052}
1053
1054/*
1055 * Inodes in different states need to be treated differently. The following
1056 * table lists the inode states and the reclaim actions necessary:
1057 *
1058 * inode state iflush ret required action
1059 * --------------- ---------- ---------------
1060 * bad - reclaim
1061 * shutdown EIO unpin and reclaim
1062 * clean, unpinned 0 reclaim
1063 * stale, unpinned 0 reclaim
1064 * clean, pinned(*) 0 requeue
1065 * stale, pinned EAGAIN requeue
1066 * dirty, async - requeue
1067 * dirty, sync 0 reclaim
1068 *
1069 * (*) dgc: I don't think the clean, pinned state is possible but it gets
1070 * handled anyway given the order of checks implemented.
1071 *
1072 * Also, because we get the flush lock first, we know that any inode that has
1073 * been flushed delwri has had the flush completed by the time we check that
1074 * the inode is clean.
1075 *
1076 * Note that because the inode is flushed delayed write by AIL pushing, the
1077 * flush lock may already be held here and waiting on it can result in very
1078 * long latencies. Hence for sync reclaims, where we wait on the flush lock,
1079 * the caller should push the AIL first before trying to reclaim inodes to
1080 * minimise the amount of time spent waiting. For background relaim, we only
1081 * bother to reclaim clean inodes anyway.
1082 *
1083 * Hence the order of actions after gaining the locks should be:
1084 * bad => reclaim
1085 * shutdown => unpin and reclaim
1086 * pinned, async => requeue
1087 * pinned, sync => unpin
1088 * stale => reclaim
1089 * clean => reclaim
1090 * dirty, async => requeue
1091 * dirty, sync => flush, wait and reclaim
1092 */
1093STATIC int
1094xfs_reclaim_inode(
1095 struct xfs_inode *ip,
1096 struct xfs_perag *pag,
1097 int sync_mode)
1098{
1099 struct xfs_buf *bp = NULL;
1100 xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */
1101 int error;
1102
1103restart:
1104 error = 0;
1105 xfs_ilock(ip, XFS_ILOCK_EXCL);
1106 if (!xfs_iflock_nowait(ip)) {
1107 if (!(sync_mode & SYNC_WAIT))
1108 goto out;
1109 xfs_iflock(ip);
1110 }
1111
1112 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1113 xfs_iunpin_wait(ip);
1114 /* xfs_iflush_abort() drops the flush lock */
1115 xfs_iflush_abort(ip, false);
1116 goto reclaim;
1117 }
1118 if (xfs_ipincount(ip)) {
1119 if (!(sync_mode & SYNC_WAIT))
1120 goto out_ifunlock;
1121 xfs_iunpin_wait(ip);
1122 }
1123 if (xfs_iflags_test(ip, XFS_ISTALE) || xfs_inode_clean(ip)) {
1124 xfs_ifunlock(ip);
1125 goto reclaim;
1126 }
1127
1128 /*
1129 * Never flush out dirty data during non-blocking reclaim, as it would
1130 * just contend with AIL pushing trying to do the same job.
1131 */
1132 if (!(sync_mode & SYNC_WAIT))
1133 goto out_ifunlock;
1134
1135 /*
1136 * Now we have an inode that needs flushing.
1137 *
1138 * Note that xfs_iflush will never block on the inode buffer lock, as
1139 * xfs_ifree_cluster() can lock the inode buffer before it locks the
1140 * ip->i_lock, and we are doing the exact opposite here. As a result,
1141 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
1142 * result in an ABBA deadlock with xfs_ifree_cluster().
1143 *
1144 * As xfs_ifree_cluser() must gather all inodes that are active in the
1145 * cache to mark them stale, if we hit this case we don't actually want
1146 * to do IO here - we want the inode marked stale so we can simply
1147 * reclaim it. Hence if we get an EAGAIN error here, just unlock the
1148 * inode, back off and try again. Hopefully the next pass through will
1149 * see the stale flag set on the inode.
1150 */
1151 error = xfs_iflush(ip, &bp);
1152 if (error == -EAGAIN) {
1153 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1154 /* backoff longer than in xfs_ifree_cluster */
1155 delay(2);
1156 goto restart;
1157 }
1158
1159 if (!error) {
1160 error = xfs_bwrite(bp);
1161 xfs_buf_relse(bp);
1162 }
1163
1164reclaim:
1165 ASSERT(!xfs_isiflocked(ip));
1166
1167 /*
1168 * Because we use RCU freeing we need to ensure the inode always appears
1169 * to be reclaimed with an invalid inode number when in the free state.
1170 * We do this as early as possible under the ILOCK so that
1171 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
1172 * detect races with us here. By doing this, we guarantee that once
1173 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
1174 * it will see either a valid inode that will serialise correctly, or it
1175 * will see an invalid inode that it can skip.
1176 */
1177 spin_lock(&ip->i_flags_lock);
1178 ip->i_flags = XFS_IRECLAIM;
1179 ip->i_ino = 0;
1180 spin_unlock(&ip->i_flags_lock);
1181
1182 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1183
1184 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1185 /*
1186 * Remove the inode from the per-AG radix tree.
1187 *
1188 * Because radix_tree_delete won't complain even if the item was never
1189 * added to the tree assert that it's been there before to catch
1190 * problems with the inode life time early on.
1191 */
1192 spin_lock(&pag->pag_ici_lock);
1193 if (!radix_tree_delete(&pag->pag_ici_root,
1194 XFS_INO_TO_AGINO(ip->i_mount, ino)))
1195 ASSERT(0);
1196 xfs_perag_clear_reclaim_tag(pag);
1197 spin_unlock(&pag->pag_ici_lock);
1198
1199 /*
1200 * Here we do an (almost) spurious inode lock in order to coordinate
1201 * with inode cache radix tree lookups. This is because the lookup
1202 * can reference the inodes in the cache without taking references.
1203 *
1204 * We make that OK here by ensuring that we wait until the inode is
1205 * unlocked after the lookup before we go ahead and free it.
1206 */
1207 xfs_ilock(ip, XFS_ILOCK_EXCL);
1208 xfs_qm_dqdetach(ip);
1209 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1210
1211 __xfs_inode_free(ip);
1212 return error;
1213
1214out_ifunlock:
1215 xfs_ifunlock(ip);
1216out:
1217 xfs_iflags_clear(ip, XFS_IRECLAIM);
1218 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1219 /*
1220 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1221 * a short while. However, this just burns CPU time scanning the tree
1222 * waiting for IO to complete and the reclaim work never goes back to
1223 * the idle state. Instead, return 0 to let the next scheduled
1224 * background reclaim attempt to reclaim the inode again.
1225 */
1226 return 0;
1227}
1228
1229/*
1230 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1231 * corrupted, we still want to try to reclaim all the inodes. If we don't,
1232 * then a shut down during filesystem unmount reclaim walk leak all the
1233 * unreclaimed inodes.
1234 */
1235STATIC int
1236xfs_reclaim_inodes_ag(
1237 struct xfs_mount *mp,
1238 int flags,
1239 int *nr_to_scan)
1240{
1241 struct xfs_perag *pag;
1242 int error = 0;
1243 int last_error = 0;
1244 xfs_agnumber_t ag;
1245 int trylock = flags & SYNC_TRYLOCK;
1246 int skipped;
1247
1248restart:
1249 ag = 0;
1250 skipped = 0;
1251 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1252 unsigned long first_index = 0;
1253 int done = 0;
1254 int nr_found = 0;
1255
1256 ag = pag->pag_agno + 1;
1257
1258 if (trylock) {
1259 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1260 skipped++;
1261 xfs_perag_put(pag);
1262 continue;
1263 }
1264 first_index = pag->pag_ici_reclaim_cursor;
1265 } else
1266 mutex_lock(&pag->pag_ici_reclaim_lock);
1267
1268 do {
1269 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1270 int i;
1271
1272 rcu_read_lock();
1273 nr_found = radix_tree_gang_lookup_tag(
1274 &pag->pag_ici_root,
1275 (void **)batch, first_index,
1276 XFS_LOOKUP_BATCH,
1277 XFS_ICI_RECLAIM_TAG);
1278 if (!nr_found) {
1279 done = 1;
1280 rcu_read_unlock();
1281 break;
1282 }
1283
1284 /*
1285 * Grab the inodes before we drop the lock. if we found
1286 * nothing, nr == 0 and the loop will be skipped.
1287 */
1288 for (i = 0; i < nr_found; i++) {
1289 struct xfs_inode *ip = batch[i];
1290
1291 if (done || xfs_reclaim_inode_grab(ip, flags))
1292 batch[i] = NULL;
1293
1294 /*
1295 * Update the index for the next lookup. Catch
1296 * overflows into the next AG range which can
1297 * occur if we have inodes in the last block of
1298 * the AG and we are currently pointing to the
1299 * last inode.
1300 *
1301 * Because we may see inodes that are from the
1302 * wrong AG due to RCU freeing and
1303 * reallocation, only update the index if it
1304 * lies in this AG. It was a race that lead us
1305 * to see this inode, so another lookup from
1306 * the same index will not find it again.
1307 */
1308 if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1309 pag->pag_agno)
1310 continue;
1311 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1312 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1313 done = 1;
1314 }
1315
1316 /* unlock now we've grabbed the inodes. */
1317 rcu_read_unlock();
1318
1319 for (i = 0; i < nr_found; i++) {
1320 if (!batch[i])
1321 continue;
1322 error = xfs_reclaim_inode(batch[i], pag, flags);
1323 if (error && last_error != -EFSCORRUPTED)
1324 last_error = error;
1325 }
1326
1327 *nr_to_scan -= XFS_LOOKUP_BATCH;
1328
1329 cond_resched();
1330
1331 } while (nr_found && !done && *nr_to_scan > 0);
1332
1333 if (trylock && !done)
1334 pag->pag_ici_reclaim_cursor = first_index;
1335 else
1336 pag->pag_ici_reclaim_cursor = 0;
1337 mutex_unlock(&pag->pag_ici_reclaim_lock);
1338 xfs_perag_put(pag);
1339 }
1340
1341 /*
1342 * if we skipped any AG, and we still have scan count remaining, do
1343 * another pass this time using blocking reclaim semantics (i.e
1344 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1345 * ensure that when we get more reclaimers than AGs we block rather
1346 * than spin trying to execute reclaim.
1347 */
1348 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1349 trylock = 0;
1350 goto restart;
1351 }
1352 return last_error;
1353}
1354
1355int
1356xfs_reclaim_inodes(
1357 xfs_mount_t *mp,
1358 int mode)
1359{
1360 int nr_to_scan = INT_MAX;
1361
1362 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1363}
1364
1365/*
1366 * Scan a certain number of inodes for reclaim.
1367 *
1368 * When called we make sure that there is a background (fast) inode reclaim in
1369 * progress, while we will throttle the speed of reclaim via doing synchronous
1370 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1371 * them to be cleaned, which we hope will not be very long due to the
1372 * background walker having already kicked the IO off on those dirty inodes.
1373 */
1374long
1375xfs_reclaim_inodes_nr(
1376 struct xfs_mount *mp,
1377 int nr_to_scan)
1378{
1379 /* kick background reclaimer and push the AIL */
1380 xfs_reclaim_work_queue(mp);
1381 xfs_ail_push_all(mp->m_ail);
1382
1383 return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1384}
1385
1386/*
1387 * Return the number of reclaimable inodes in the filesystem for
1388 * the shrinker to determine how much to reclaim.
1389 */
1390int
1391xfs_reclaim_inodes_count(
1392 struct xfs_mount *mp)
1393{
1394 struct xfs_perag *pag;
1395 xfs_agnumber_t ag = 0;
1396 int reclaimable = 0;
1397
1398 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1399 ag = pag->pag_agno + 1;
1400 reclaimable += pag->pag_ici_reclaimable;
1401 xfs_perag_put(pag);
1402 }
1403 return reclaimable;
1404}
1405
1406STATIC int
1407xfs_inode_match_id(
1408 struct xfs_inode *ip,
1409 struct xfs_eofblocks *eofb)
1410{
1411 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1412 !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1413 return 0;
1414
1415 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1416 !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1417 return 0;
1418
1419 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1420 xfs_get_projid(ip) != eofb->eof_prid)
1421 return 0;
1422
1423 return 1;
1424}
1425
1426/*
1427 * A union-based inode filtering algorithm. Process the inode if any of the
1428 * criteria match. This is for global/internal scans only.
1429 */
1430STATIC int
1431xfs_inode_match_id_union(
1432 struct xfs_inode *ip,
1433 struct xfs_eofblocks *eofb)
1434{
1435 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1436 uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1437 return 1;
1438
1439 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1440 gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1441 return 1;
1442
1443 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1444 xfs_get_projid(ip) == eofb->eof_prid)
1445 return 1;
1446
1447 return 0;
1448}
1449
1450STATIC int
1451xfs_inode_free_eofblocks(
1452 struct xfs_inode *ip,
1453 int flags,
1454 void *args)
1455{
1456 int ret = 0;
1457 struct xfs_eofblocks *eofb = args;
1458 int match;
1459
1460 if (!xfs_can_free_eofblocks(ip, false)) {
1461 /* inode could be preallocated or append-only */
1462 trace_xfs_inode_free_eofblocks_invalid(ip);
1463 xfs_inode_clear_eofblocks_tag(ip);
1464 return 0;
1465 }
1466
1467 /*
1468 * If the mapping is dirty the operation can block and wait for some
1469 * time. Unless we are waiting, skip it.
1470 */
1471 if (!(flags & SYNC_WAIT) &&
1472 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1473 return 0;
1474
1475 if (eofb) {
1476 if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1477 match = xfs_inode_match_id_union(ip, eofb);
1478 else
1479 match = xfs_inode_match_id(ip, eofb);
1480 if (!match)
1481 return 0;
1482
1483 /* skip the inode if the file size is too small */
1484 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1485 XFS_ISIZE(ip) < eofb->eof_min_file_size)
1486 return 0;
1487 }
1488
1489 /*
1490 * If the caller is waiting, return -EAGAIN to keep the background
1491 * scanner moving and revisit the inode in a subsequent pass.
1492 */
1493 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1494 if (flags & SYNC_WAIT)
1495 ret = -EAGAIN;
1496 return ret;
1497 }
1498 ret = xfs_free_eofblocks(ip);
1499 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1500
1501 return ret;
1502}
1503
1504static int
1505__xfs_icache_free_eofblocks(
1506 struct xfs_mount *mp,
1507 struct xfs_eofblocks *eofb,
1508 int (*execute)(struct xfs_inode *ip, int flags,
1509 void *args),
1510 int tag)
1511{
1512 int flags = SYNC_TRYLOCK;
1513
1514 if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1515 flags = SYNC_WAIT;
1516
1517 return xfs_inode_ag_iterator_tag(mp, execute, flags,
1518 eofb, tag);
1519}
1520
1521int
1522xfs_icache_free_eofblocks(
1523 struct xfs_mount *mp,
1524 struct xfs_eofblocks *eofb)
1525{
1526 return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks,
1527 XFS_ICI_EOFBLOCKS_TAG);
1528}
1529
1530/*
1531 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1532 * multiple quotas, we don't know exactly which quota caused an allocation
1533 * failure. We make a best effort by including each quota under low free space
1534 * conditions (less than 1% free space) in the scan.
1535 */
1536static int
1537__xfs_inode_free_quota_eofblocks(
1538 struct xfs_inode *ip,
1539 int (*execute)(struct xfs_mount *mp,
1540 struct xfs_eofblocks *eofb))
1541{
1542 int scan = 0;
1543 struct xfs_eofblocks eofb = {0};
1544 struct xfs_dquot *dq;
1545
1546 /*
1547 * Run a sync scan to increase effectiveness and use the union filter to
1548 * cover all applicable quotas in a single scan.
1549 */
1550 eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;
1551
1552 if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
1553 dq = xfs_inode_dquot(ip, XFS_DQ_USER);
1554 if (dq && xfs_dquot_lowsp(dq)) {
1555 eofb.eof_uid = VFS_I(ip)->i_uid;
1556 eofb.eof_flags |= XFS_EOF_FLAGS_UID;
1557 scan = 1;
1558 }
1559 }
1560
1561 if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
1562 dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
1563 if (dq && xfs_dquot_lowsp(dq)) {
1564 eofb.eof_gid = VFS_I(ip)->i_gid;
1565 eofb.eof_flags |= XFS_EOF_FLAGS_GID;
1566 scan = 1;
1567 }
1568 }
1569
1570 if (scan)
1571 execute(ip->i_mount, &eofb);
1572
1573 return scan;
1574}
1575
1576int
1577xfs_inode_free_quota_eofblocks(
1578 struct xfs_inode *ip)
1579{
1580 return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks);
1581}
1582
1583static void
1584__xfs_inode_set_eofblocks_tag(
1585 xfs_inode_t *ip,
1586 void (*execute)(struct xfs_mount *mp),
1587 void (*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1588 int error, unsigned long caller_ip),
1589 int tag)
1590{
1591 struct xfs_mount *mp = ip->i_mount;
1592 struct xfs_perag *pag;
1593 int tagged;
1594
1595 /*
1596 * Don't bother locking the AG and looking up in the radix trees
1597 * if we already know that we have the tag set.
1598 */
1599 if (ip->i_flags & XFS_IEOFBLOCKS)
1600 return;
1601 spin_lock(&ip->i_flags_lock);
1602 ip->i_flags |= XFS_IEOFBLOCKS;
1603 spin_unlock(&ip->i_flags_lock);
1604
1605 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1606 spin_lock(&pag->pag_ici_lock);
1607
1608 tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
1609 radix_tree_tag_set(&pag->pag_ici_root,
1610 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1611 if (!tagged) {
1612 /* propagate the eofblocks tag up into the perag radix tree */
1613 spin_lock(&ip->i_mount->m_perag_lock);
1614 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1615 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1616 tag);
1617 spin_unlock(&ip->i_mount->m_perag_lock);
1618
1619 /* kick off background trimming */
1620 execute(ip->i_mount);
1621
1622 set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1623 }
1624
1625 spin_unlock(&pag->pag_ici_lock);
1626 xfs_perag_put(pag);
1627}
1628
1629void
1630xfs_inode_set_eofblocks_tag(
1631 xfs_inode_t *ip)
1632{
1633 trace_xfs_inode_set_eofblocks_tag(ip);
1634 return __xfs_inode_set_eofblocks_tag(ip, xfs_queue_eofblocks,
1635 trace_xfs_perag_set_eofblocks,
1636 XFS_ICI_EOFBLOCKS_TAG);
1637}
1638
1639static void
1640__xfs_inode_clear_eofblocks_tag(
1641 xfs_inode_t *ip,
1642 void (*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1643 int error, unsigned long caller_ip),
1644 int tag)
1645{
1646 struct xfs_mount *mp = ip->i_mount;
1647 struct xfs_perag *pag;
1648
1649 spin_lock(&ip->i_flags_lock);
1650 ip->i_flags &= ~XFS_IEOFBLOCKS;
1651 spin_unlock(&ip->i_flags_lock);
1652
1653 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1654 spin_lock(&pag->pag_ici_lock);
1655
1656 radix_tree_tag_clear(&pag->pag_ici_root,
1657 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1658 if (!radix_tree_tagged(&pag->pag_ici_root, tag)) {
1659 /* clear the eofblocks tag from the perag radix tree */
1660 spin_lock(&ip->i_mount->m_perag_lock);
1661 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1662 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1663 tag);
1664 spin_unlock(&ip->i_mount->m_perag_lock);
1665 clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1666 }
1667
1668 spin_unlock(&pag->pag_ici_lock);
1669 xfs_perag_put(pag);
1670}
1671
1672void
1673xfs_inode_clear_eofblocks_tag(
1674 xfs_inode_t *ip)
1675{
1676 trace_xfs_inode_clear_eofblocks_tag(ip);
1677 return __xfs_inode_clear_eofblocks_tag(ip,
1678 trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG);
1679}
1680
1681/*
1682 * Automatic CoW Reservation Freeing
1683 *
1684 * These functions automatically garbage collect leftover CoW reservations
1685 * that were made on behalf of a cowextsize hint when we start to run out
1686 * of quota or when the reservations sit around for too long. If the file
1687 * has dirty pages or is undergoing writeback, its CoW reservations will
1688 * be retained.
1689 *
1690 * The actual garbage collection piggybacks off the same code that runs
1691 * the speculative EOF preallocation garbage collector.
1692 */
1693STATIC int
1694xfs_inode_free_cowblocks(
1695 struct xfs_inode *ip,
1696 int flags,
1697 void *args)
1698{
1699 int ret;
1700 struct xfs_eofblocks *eofb = args;
1701 int match;
1702 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1703
1704 /*
1705 * Just clear the tag if we have an empty cow fork or none at all. It's
1706 * possible the inode was fully unshared since it was originally tagged.
1707 */
1708 if (!xfs_is_reflink_inode(ip) || !ifp->if_bytes) {
1709 trace_xfs_inode_free_cowblocks_invalid(ip);
1710 xfs_inode_clear_cowblocks_tag(ip);
1711 return 0;
1712 }
1713
1714 /*
1715 * If the mapping is dirty or under writeback we cannot touch the
1716 * CoW fork. Leave it alone if we're in the midst of a directio.
1717 */
1718 if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1719 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1720 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1721 atomic_read(&VFS_I(ip)->i_dio_count))
1722 return 0;
1723
1724 if (eofb) {
1725 if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1726 match = xfs_inode_match_id_union(ip, eofb);
1727 else
1728 match = xfs_inode_match_id(ip, eofb);
1729 if (!match)
1730 return 0;
1731
1732 /* skip the inode if the file size is too small */
1733 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1734 XFS_ISIZE(ip) < eofb->eof_min_file_size)
1735 return 0;
1736 }
1737
1738 /* Free the CoW blocks */
1739 xfs_ilock(ip, XFS_IOLOCK_EXCL);
1740 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1741
1742 ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1743
1744 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1745 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1746
1747 return ret;
1748}
1749
1750int
1751xfs_icache_free_cowblocks(
1752 struct xfs_mount *mp,
1753 struct xfs_eofblocks *eofb)
1754{
1755 return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks,
1756 XFS_ICI_COWBLOCKS_TAG);
1757}
1758
1759int
1760xfs_inode_free_quota_cowblocks(
1761 struct xfs_inode *ip)
1762{
1763 return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks);
1764}
1765
1766void
1767xfs_inode_set_cowblocks_tag(
1768 xfs_inode_t *ip)
1769{
1770 trace_xfs_inode_set_cowblocks_tag(ip);
1771 return __xfs_inode_set_eofblocks_tag(ip, xfs_queue_cowblocks,
1772 trace_xfs_perag_set_cowblocks,
1773 XFS_ICI_COWBLOCKS_TAG);
1774}
1775
1776void
1777xfs_inode_clear_cowblocks_tag(
1778 xfs_inode_t *ip)
1779{
1780 trace_xfs_inode_clear_cowblocks_tag(ip);
1781 return __xfs_inode_clear_eofblocks_tag(ip,
1782 trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG);
1783}