rjw | 1f88458 | 2022-01-06 17:20:42 +0800 | [diff] [blame^] | 1 | /* SPDX-License-Identifier: GPL-2.0 */ |
| 2 | #ifndef _ASM_GENERIC_DIV64_H |
| 3 | #define _ASM_GENERIC_DIV64_H |
| 4 | /* |
| 5 | * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com> |
| 6 | * Based on former asm-ppc/div64.h and asm-m68knommu/div64.h |
| 7 | * |
| 8 | * Optimization for constant divisors on 32-bit machines: |
| 9 | * Copyright (C) 2006-2015 Nicolas Pitre |
| 10 | * |
| 11 | * The semantics of do_div() are: |
| 12 | * |
| 13 | * uint32_t do_div(uint64_t *n, uint32_t base) |
| 14 | * { |
| 15 | * uint32_t remainder = *n % base; |
| 16 | * *n = *n / base; |
| 17 | * return remainder; |
| 18 | * } |
| 19 | * |
| 20 | * NOTE: macro parameter n is evaluated multiple times, |
| 21 | * beware of side effects! |
| 22 | */ |
| 23 | |
| 24 | #include <linux/types.h> |
| 25 | #include <linux/compiler.h> |
| 26 | |
| 27 | #if BITS_PER_LONG == 64 |
| 28 | |
| 29 | # define do_div(n,base) ({ \ |
| 30 | uint32_t __base = (base); \ |
| 31 | uint32_t __rem; \ |
| 32 | __rem = ((uint64_t)(n)) % __base; \ |
| 33 | (n) = ((uint64_t)(n)) / __base; \ |
| 34 | __rem; \ |
| 35 | }) |
| 36 | |
| 37 | #elif BITS_PER_LONG == 32 |
| 38 | |
| 39 | #include <linux/log2.h> |
| 40 | |
| 41 | /* |
| 42 | * If the divisor happens to be constant, we determine the appropriate |
| 43 | * inverse at compile time to turn the division into a few inline |
| 44 | * multiplications which ought to be much faster. And yet only if compiling |
| 45 | * with a sufficiently recent gcc version to perform proper 64-bit constant |
| 46 | * propagation. |
| 47 | * |
| 48 | * (It is unfortunate that gcc doesn't perform all this internally.) |
| 49 | */ |
| 50 | |
| 51 | #ifndef __div64_const32_is_OK |
| 52 | #define __div64_const32_is_OK (__GNUC__ >= 4) |
| 53 | #endif |
| 54 | |
| 55 | #define __div64_const32(n, ___b) \ |
| 56 | ({ \ |
| 57 | /* \ |
| 58 | * Multiplication by reciprocal of b: n / b = n * (p / b) / p \ |
| 59 | * \ |
| 60 | * We rely on the fact that most of this code gets optimized \ |
| 61 | * away at compile time due to constant propagation and only \ |
| 62 | * a few multiplication instructions should remain. \ |
| 63 | * Hence this monstrous macro (static inline doesn't always \ |
| 64 | * do the trick here). \ |
| 65 | */ \ |
| 66 | uint64_t ___res, ___x, ___t, ___m, ___n = (n); \ |
| 67 | uint32_t ___p, ___bias; \ |
| 68 | \ |
| 69 | /* determine MSB of b */ \ |
| 70 | ___p = 1 << ilog2(___b); \ |
| 71 | \ |
| 72 | /* compute m = ((p << 64) + b - 1) / b */ \ |
| 73 | ___m = (~0ULL / ___b) * ___p; \ |
| 74 | ___m += (((~0ULL % ___b + 1) * ___p) + ___b - 1) / ___b; \ |
| 75 | \ |
| 76 | /* one less than the dividend with highest result */ \ |
| 77 | ___x = ~0ULL / ___b * ___b - 1; \ |
| 78 | \ |
| 79 | /* test our ___m with res = m * x / (p << 64) */ \ |
| 80 | ___res = ((___m & 0xffffffff) * (___x & 0xffffffff)) >> 32; \ |
| 81 | ___t = ___res += (___m & 0xffffffff) * (___x >> 32); \ |
| 82 | ___res += (___x & 0xffffffff) * (___m >> 32); \ |
| 83 | ___t = (___res < ___t) ? (1ULL << 32) : 0; \ |
| 84 | ___res = (___res >> 32) + ___t; \ |
| 85 | ___res += (___m >> 32) * (___x >> 32); \ |
| 86 | ___res /= ___p; \ |
| 87 | \ |
| 88 | /* Now sanitize and optimize what we've got. */ \ |
| 89 | if (~0ULL % (___b / (___b & -___b)) == 0) { \ |
| 90 | /* special case, can be simplified to ... */ \ |
| 91 | ___n /= (___b & -___b); \ |
| 92 | ___m = ~0ULL / (___b / (___b & -___b)); \ |
| 93 | ___p = 1; \ |
| 94 | ___bias = 1; \ |
| 95 | } else if (___res != ___x / ___b) { \ |
| 96 | /* \ |
| 97 | * We can't get away without a bias to compensate \ |
| 98 | * for bit truncation errors. To avoid it we'd need an \ |
| 99 | * additional bit to represent m which would overflow \ |
| 100 | * a 64-bit variable. \ |
| 101 | * \ |
| 102 | * Instead we do m = p / b and n / b = (n * m + m) / p. \ |
| 103 | */ \ |
| 104 | ___bias = 1; \ |
| 105 | /* Compute m = (p << 64) / b */ \ |
| 106 | ___m = (~0ULL / ___b) * ___p; \ |
| 107 | ___m += ((~0ULL % ___b + 1) * ___p) / ___b; \ |
| 108 | } else { \ |
| 109 | /* \ |
| 110 | * Reduce m / p, and try to clear bit 31 of m when \ |
| 111 | * possible, otherwise that'll need extra overflow \ |
| 112 | * handling later. \ |
| 113 | */ \ |
| 114 | uint32_t ___bits = -(___m & -___m); \ |
| 115 | ___bits |= ___m >> 32; \ |
| 116 | ___bits = (~___bits) << 1; \ |
| 117 | /* \ |
| 118 | * If ___bits == 0 then setting bit 31 is unavoidable. \ |
| 119 | * Simply apply the maximum possible reduction in that \ |
| 120 | * case. Otherwise the MSB of ___bits indicates the \ |
| 121 | * best reduction we should apply. \ |
| 122 | */ \ |
| 123 | if (!___bits) { \ |
| 124 | ___p /= (___m & -___m); \ |
| 125 | ___m /= (___m & -___m); \ |
| 126 | } else { \ |
| 127 | ___p >>= ilog2(___bits); \ |
| 128 | ___m >>= ilog2(___bits); \ |
| 129 | } \ |
| 130 | /* No bias needed. */ \ |
| 131 | ___bias = 0; \ |
| 132 | } \ |
| 133 | \ |
| 134 | /* \ |
| 135 | * Now we have a combination of 2 conditions: \ |
| 136 | * \ |
| 137 | * 1) whether or not we need to apply a bias, and \ |
| 138 | * \ |
| 139 | * 2) whether or not there might be an overflow in the cross \ |
| 140 | * product determined by (___m & ((1 << 63) | (1 << 31))). \ |
| 141 | * \ |
| 142 | * Select the best way to do (m_bias + m * n) / (1 << 64). \ |
| 143 | * From now on there will be actual runtime code generated. \ |
| 144 | */ \ |
| 145 | ___res = __arch_xprod_64(___m, ___n, ___bias); \ |
| 146 | \ |
| 147 | ___res /= ___p; \ |
| 148 | }) |
| 149 | |
| 150 | #ifndef __arch_xprod_64 |
| 151 | /* |
| 152 | * Default C implementation for __arch_xprod_64() |
| 153 | * |
| 154 | * Prototype: uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias) |
| 155 | * Semantic: retval = ((bias ? m : 0) + m * n) >> 64 |
| 156 | * |
| 157 | * The product is a 128-bit value, scaled down to 64 bits. |
| 158 | * Assuming constant propagation to optimize away unused conditional code. |
| 159 | * Architectures may provide their own optimized assembly implementation. |
| 160 | */ |
| 161 | static inline uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias) |
| 162 | { |
| 163 | uint32_t m_lo = m; |
| 164 | uint32_t m_hi = m >> 32; |
| 165 | uint32_t n_lo = n; |
| 166 | uint32_t n_hi = n >> 32; |
| 167 | uint64_t res, tmp; |
| 168 | |
| 169 | if (!bias) { |
| 170 | res = ((uint64_t)m_lo * n_lo) >> 32; |
| 171 | } else if (!(m & ((1ULL << 63) | (1ULL << 31)))) { |
| 172 | /* there can't be any overflow here */ |
| 173 | res = (m + (uint64_t)m_lo * n_lo) >> 32; |
| 174 | } else { |
| 175 | res = m + (uint64_t)m_lo * n_lo; |
| 176 | tmp = (res < m) ? (1ULL << 32) : 0; |
| 177 | res = (res >> 32) + tmp; |
| 178 | } |
| 179 | |
| 180 | if (!(m & ((1ULL << 63) | (1ULL << 31)))) { |
| 181 | /* there can't be any overflow here */ |
| 182 | res += (uint64_t)m_lo * n_hi; |
| 183 | res += (uint64_t)m_hi * n_lo; |
| 184 | res >>= 32; |
| 185 | } else { |
| 186 | tmp = res += (uint64_t)m_lo * n_hi; |
| 187 | res += (uint64_t)m_hi * n_lo; |
| 188 | tmp = (res < tmp) ? (1ULL << 32) : 0; |
| 189 | res = (res >> 32) + tmp; |
| 190 | } |
| 191 | |
| 192 | res += (uint64_t)m_hi * n_hi; |
| 193 | |
| 194 | return res; |
| 195 | } |
| 196 | #endif |
| 197 | |
| 198 | #ifndef __div64_32 |
| 199 | extern uint32_t __div64_32(uint64_t *dividend, uint32_t divisor); |
| 200 | #endif |
| 201 | |
| 202 | /* The unnecessary pointer compare is there |
| 203 | * to check for type safety (n must be 64bit) |
| 204 | */ |
| 205 | # define do_div(n,base) ({ \ |
| 206 | uint32_t __base = (base); \ |
| 207 | uint32_t __rem; \ |
| 208 | (void)(((typeof((n)) *)0) == ((uint64_t *)0)); \ |
| 209 | if (__builtin_constant_p(__base) && \ |
| 210 | is_power_of_2(__base)) { \ |
| 211 | __rem = (n) & (__base - 1); \ |
| 212 | (n) >>= ilog2(__base); \ |
| 213 | } else if (__div64_const32_is_OK && \ |
| 214 | __builtin_constant_p(__base) && \ |
| 215 | __base != 0) { \ |
| 216 | uint32_t __res_lo, __n_lo = (n); \ |
| 217 | (n) = __div64_const32(n, __base); \ |
| 218 | /* the remainder can be computed with 32-bit regs */ \ |
| 219 | __res_lo = (n); \ |
| 220 | __rem = __n_lo - __res_lo * __base; \ |
| 221 | } else if (likely(((n) >> 32) == 0)) { \ |
| 222 | __rem = (uint32_t)(n) % __base; \ |
| 223 | (n) = (uint32_t)(n) / __base; \ |
| 224 | } else \ |
| 225 | __rem = __div64_32(&(n), __base); \ |
| 226 | __rem; \ |
| 227 | }) |
| 228 | |
| 229 | #else /* BITS_PER_LONG == ?? */ |
| 230 | |
| 231 | # error do_div() does not yet support the C64 |
| 232 | |
| 233 | #endif /* BITS_PER_LONG */ |
| 234 | |
| 235 | #endif /* _ASM_GENERIC_DIV64_H */ |