blob: 55d16db84ea44ce53326f468199f308e1af63dfa [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40#ifndef _SOCK_H
41#define _SOCK_H
42
43#include <linux/hardirq.h>
44#include <linux/kernel.h>
45#include <linux/list.h>
46#include <linux/list_nulls.h>
47#include <linux/timer.h>
48#include <linux/cache.h>
49#include <linux/bitops.h>
50#include <linux/lockdep.h>
51#include <linux/netdevice.h>
52#include <linux/skbuff.h> /* struct sk_buff */
53#include <linux/mm.h>
54#include <linux/security.h>
55#include <linux/slab.h>
56#include <linux/uaccess.h>
57#include <linux/page_counter.h>
58#include <linux/memcontrol.h>
59#include <linux/static_key.h>
60#include <linux/sched.h>
61#include <linux/wait.h>
62#include <linux/cgroup-defs.h>
63
64#include <linux/filter.h>
65#include <linux/rculist_nulls.h>
66#include <linux/poll.h>
67
68#include <linux/atomic.h>
69#include <linux/refcount.h>
70#include <net/dst.h>
71#include <net/checksum.h>
72#include <net/tcp_states.h>
73#include <linux/net_tstamp.h>
74#include <net/smc.h>
75
76/*
77 * This structure really needs to be cleaned up.
78 * Most of it is for TCP, and not used by any of
79 * the other protocols.
80 */
81
82/* Define this to get the SOCK_DBG debugging facility. */
83#define SOCK_DEBUGGING
84#ifdef SOCK_DEBUGGING
85#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
86 printk(KERN_DEBUG msg); } while (0)
87#else
88/* Validate arguments and do nothing */
89static inline __printf(2, 3)
90void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
91{
92}
93#endif
94
95/* This is the per-socket lock. The spinlock provides a synchronization
96 * between user contexts and software interrupt processing, whereas the
97 * mini-semaphore synchronizes multiple users amongst themselves.
98 */
99typedef struct {
100 spinlock_t slock;
101 int owned;
102 wait_queue_head_t wq;
103 /*
104 * We express the mutex-alike socket_lock semantics
105 * to the lock validator by explicitly managing
106 * the slock as a lock variant (in addition to
107 * the slock itself):
108 */
109#ifdef CONFIG_DEBUG_LOCK_ALLOC
110 struct lockdep_map dep_map;
111#endif
112} socket_lock_t;
113
114struct sock;
115struct proto;
116struct net;
117
118typedef __u32 __bitwise __portpair;
119typedef __u64 __bitwise __addrpair;
120
121/**
122 * struct sock_common - minimal network layer representation of sockets
123 * @skc_daddr: Foreign IPv4 addr
124 * @skc_rcv_saddr: Bound local IPv4 addr
125 * @skc_hash: hash value used with various protocol lookup tables
126 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
127 * @skc_dport: placeholder for inet_dport/tw_dport
128 * @skc_num: placeholder for inet_num/tw_num
129 * @skc_family: network address family
130 * @skc_state: Connection state
131 * @skc_reuse: %SO_REUSEADDR setting
132 * @skc_reuseport: %SO_REUSEPORT setting
133 * @skc_bound_dev_if: bound device index if != 0
134 * @skc_bind_node: bind hash linkage for various protocol lookup tables
135 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
136 * @skc_prot: protocol handlers inside a network family
137 * @skc_net: reference to the network namespace of this socket
138 * @skc_node: main hash linkage for various protocol lookup tables
139 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
140 * @skc_tx_queue_mapping: tx queue number for this connection
141 * @skc_flags: place holder for sk_flags
142 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
143 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
144 * @skc_incoming_cpu: record/match cpu processing incoming packets
145 * @skc_refcnt: reference count
146 *
147 * This is the minimal network layer representation of sockets, the header
148 * for struct sock and struct inet_timewait_sock.
149 */
150struct sock_common {
151 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
152 * address on 64bit arches : cf INET_MATCH()
153 */
154 union {
155 __addrpair skc_addrpair;
156 struct {
157 __be32 skc_daddr;
158 __be32 skc_rcv_saddr;
159 };
160 };
161 union {
162 unsigned int skc_hash;
163 __u16 skc_u16hashes[2];
164 };
165 /* skc_dport && skc_num must be grouped as well */
166 union {
167 __portpair skc_portpair;
168 struct {
169 __be16 skc_dport;
170 __u16 skc_num;
171 };
172 };
173
174 unsigned short skc_family;
175 volatile unsigned char skc_state;
176 unsigned char skc_reuse:4;
177 unsigned char skc_reuseport:1;
178 unsigned char skc_ipv6only:1;
179 unsigned char skc_net_refcnt:1;
180 int skc_bound_dev_if;
181 union {
182 struct hlist_node skc_bind_node;
183 struct hlist_node skc_portaddr_node;
184 };
185 struct proto *skc_prot;
186 possible_net_t skc_net;
187
188#if IS_ENABLED(CONFIG_IPV6)
189 struct in6_addr skc_v6_daddr;
190 struct in6_addr skc_v6_rcv_saddr;
191#endif
192
193 atomic64_t skc_cookie;
194
195 /* following fields are padding to force
196 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
197 * assuming IPV6 is enabled. We use this padding differently
198 * for different kind of 'sockets'
199 */
200 union {
201 unsigned long skc_flags;
202 struct sock *skc_listener; /* request_sock */
203 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
204 };
205 /*
206 * fields between dontcopy_begin/dontcopy_end
207 * are not copied in sock_copy()
208 */
209 /* private: */
210 int skc_dontcopy_begin[0];
211 /* public: */
212 union {
213 struct hlist_node skc_node;
214 struct hlist_nulls_node skc_nulls_node;
215 };
216 int skc_tx_queue_mapping;
217 union {
218 int skc_incoming_cpu;
219 u32 skc_rcv_wnd;
220 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
221 };
222
223 refcount_t skc_refcnt;
224 /* private: */
225 int skc_dontcopy_end[0];
226 union {
227 u32 skc_rxhash;
228 u32 skc_window_clamp;
229 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
230 };
231 /* public: */
232};
233
234/**
235 * struct sock - network layer representation of sockets
236 * @__sk_common: shared layout with inet_timewait_sock
237 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
238 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
239 * @sk_lock: synchronizer
240 * @sk_kern_sock: True if sock is using kernel lock classes
241 * @sk_rcvbuf: size of receive buffer in bytes
242 * @sk_wq: sock wait queue and async head
243 * @sk_rx_dst: receive input route used by early demux
244 * @sk_dst_cache: destination cache
245 * @sk_dst_pending_confirm: need to confirm neighbour
246 * @sk_policy: flow policy
247 * @sk_receive_queue: incoming packets
248 * @sk_wmem_alloc: transmit queue bytes committed
249 * @sk_tsq_flags: TCP Small Queues flags
250 * @sk_write_queue: Packet sending queue
251 * @sk_omem_alloc: "o" is "option" or "other"
252 * @sk_wmem_queued: persistent queue size
253 * @sk_forward_alloc: space allocated forward
254 * @sk_napi_id: id of the last napi context to receive data for sk
255 * @sk_ll_usec: usecs to busypoll when there is no data
256 * @sk_allocation: allocation mode
257 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
258 * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
259 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
260 * @sk_sndbuf: size of send buffer in bytes
261 * @__sk_flags_offset: empty field used to determine location of bitfield
262 * @sk_padding: unused element for alignment
263 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
264 * @sk_no_check_rx: allow zero checksum in RX packets
265 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
266 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
267 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
268 * @sk_gso_max_size: Maximum GSO segment size to build
269 * @sk_gso_max_segs: Maximum number of GSO segments
270 * @sk_lingertime: %SO_LINGER l_linger setting
271 * @sk_backlog: always used with the per-socket spinlock held
272 * @sk_callback_lock: used with the callbacks in the end of this struct
273 * @sk_error_queue: rarely used
274 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
275 * IPV6_ADDRFORM for instance)
276 * @sk_err: last error
277 * @sk_err_soft: errors that don't cause failure but are the cause of a
278 * persistent failure not just 'timed out'
279 * @sk_drops: raw/udp drops counter
280 * @sk_ack_backlog: current listen backlog
281 * @sk_max_ack_backlog: listen backlog set in listen()
282 * @sk_uid: user id of owner
283 * @sk_priority: %SO_PRIORITY setting
284 * @sk_type: socket type (%SOCK_STREAM, etc)
285 * @sk_protocol: which protocol this socket belongs in this network family
286 * @sk_peer_pid: &struct pid for this socket's peer
287 * @sk_peer_cred: %SO_PEERCRED setting
288 * @sk_rcvlowat: %SO_RCVLOWAT setting
289 * @sk_rcvtimeo: %SO_RCVTIMEO setting
290 * @sk_sndtimeo: %SO_SNDTIMEO setting
291 * @sk_txhash: computed flow hash for use on transmit
292 * @sk_filter: socket filtering instructions
293 * @sk_timer: sock cleanup timer
294 * @sk_stamp: time stamp of last packet received
295 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
296 * @sk_tsflags: SO_TIMESTAMPING socket options
297 * @sk_tskey: counter to disambiguate concurrent tstamp requests
298 * @sk_zckey: counter to order MSG_ZEROCOPY notifications
299 * @sk_socket: Identd and reporting IO signals
300 * @sk_user_data: RPC layer private data
301 * @sk_frag: cached page frag
302 * @sk_peek_off: current peek_offset value
303 * @sk_send_head: front of stuff to transmit
304 * @sk_security: used by security modules
305 * @sk_mark: generic packet mark
306 * @sk_cgrp_data: cgroup data for this cgroup
307 * @sk_memcg: this socket's memory cgroup association
308 * @sk_write_pending: a write to stream socket waits to start
309 * @sk_state_change: callback to indicate change in the state of the sock
310 * @sk_data_ready: callback to indicate there is data to be processed
311 * @sk_write_space: callback to indicate there is bf sending space available
312 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
313 * @sk_backlog_rcv: callback to process the backlog
314 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
315 * @sk_reuseport_cb: reuseport group container
316 * @sk_rcu: used during RCU grace period
317 */
318struct sock {
319 /*
320 * Now struct inet_timewait_sock also uses sock_common, so please just
321 * don't add nothing before this first member (__sk_common) --acme
322 */
323 struct sock_common __sk_common;
324#define sk_node __sk_common.skc_node
325#define sk_nulls_node __sk_common.skc_nulls_node
326#define sk_refcnt __sk_common.skc_refcnt
327#define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
328
329#define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
330#define sk_dontcopy_end __sk_common.skc_dontcopy_end
331#define sk_hash __sk_common.skc_hash
332#define sk_portpair __sk_common.skc_portpair
333#define sk_num __sk_common.skc_num
334#define sk_dport __sk_common.skc_dport
335#define sk_addrpair __sk_common.skc_addrpair
336#define sk_daddr __sk_common.skc_daddr
337#define sk_rcv_saddr __sk_common.skc_rcv_saddr
338#define sk_family __sk_common.skc_family
339#define sk_state __sk_common.skc_state
340#define sk_reuse __sk_common.skc_reuse
341#define sk_reuseport __sk_common.skc_reuseport
342#define sk_ipv6only __sk_common.skc_ipv6only
343#define sk_net_refcnt __sk_common.skc_net_refcnt
344#define sk_bound_dev_if __sk_common.skc_bound_dev_if
345#define sk_bind_node __sk_common.skc_bind_node
346#define sk_prot __sk_common.skc_prot
347#define sk_net __sk_common.skc_net
348#define sk_v6_daddr __sk_common.skc_v6_daddr
349#define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
350#define sk_cookie __sk_common.skc_cookie
351#define sk_incoming_cpu __sk_common.skc_incoming_cpu
352#define sk_flags __sk_common.skc_flags
353#define sk_rxhash __sk_common.skc_rxhash
354
355 socket_lock_t sk_lock;
356 atomic_t sk_drops;
357 int sk_rcvlowat;
358 struct sk_buff_head sk_error_queue;
359 struct sk_buff_head sk_receive_queue;
360 /*
361 * The backlog queue is special, it is always used with
362 * the per-socket spinlock held and requires low latency
363 * access. Therefore we special case it's implementation.
364 * Note : rmem_alloc is in this structure to fill a hole
365 * on 64bit arches, not because its logically part of
366 * backlog.
367 */
368 struct {
369 atomic_t rmem_alloc;
370 int len;
371 struct sk_buff *head;
372 struct sk_buff *tail;
373 } sk_backlog;
374#define sk_rmem_alloc sk_backlog.rmem_alloc
375
376 int sk_forward_alloc;
377#ifdef CONFIG_NET_RX_BUSY_POLL
378 unsigned int sk_ll_usec;
379 /* ===== mostly read cache line ===== */
380 unsigned int sk_napi_id;
381#endif
382 int sk_rcvbuf;
383
384 struct sk_filter __rcu *sk_filter;
385 union {
386 struct socket_wq __rcu *sk_wq;
387 struct socket_wq *sk_wq_raw;
388 };
389#ifdef CONFIG_XFRM
390 struct xfrm_policy __rcu *sk_policy[2];
391#endif
392 struct dst_entry *sk_rx_dst;
393 struct dst_entry __rcu *sk_dst_cache;
394 atomic_t sk_omem_alloc;
395 int sk_sndbuf;
396
397 /* ===== cache line for TX ===== */
398 int sk_wmem_queued;
399 refcount_t sk_wmem_alloc;
400 unsigned long sk_tsq_flags;
401 struct sk_buff *sk_send_head;
402 struct sk_buff_head sk_write_queue;
403 __s32 sk_peek_off;
404 int sk_write_pending;
405 __u32 sk_dst_pending_confirm;
406 u32 sk_pacing_status; /* see enum sk_pacing */
407 long sk_sndtimeo;
408 struct timer_list sk_timer;
409 __u32 sk_priority;
410 __u32 sk_mark;
411 u32 sk_pacing_rate; /* bytes per second */
412 u32 sk_max_pacing_rate;
413 struct page_frag sk_frag;
414 netdev_features_t sk_route_caps;
415 netdev_features_t sk_route_nocaps;
416 int sk_gso_type;
417 unsigned int sk_gso_max_size;
418 gfp_t sk_allocation;
419 __u32 sk_txhash;
420
421 /*
422 * Because of non atomicity rules, all
423 * changes are protected by socket lock.
424 */
425 unsigned int __sk_flags_offset[0];
426#ifdef __BIG_ENDIAN_BITFIELD
427#define SK_FL_PROTO_SHIFT 16
428#define SK_FL_PROTO_MASK 0x00ff0000
429
430#define SK_FL_TYPE_SHIFT 0
431#define SK_FL_TYPE_MASK 0x0000ffff
432#else
433#define SK_FL_PROTO_SHIFT 8
434#define SK_FL_PROTO_MASK 0x0000ff00
435
436#define SK_FL_TYPE_SHIFT 16
437#define SK_FL_TYPE_MASK 0xffff0000
438#endif
439
440 unsigned int sk_padding : 1,
441 sk_kern_sock : 1,
442 sk_no_check_tx : 1,
443 sk_no_check_rx : 1,
444 sk_userlocks : 4,
445 sk_protocol : 8,
446 sk_type : 16;
447#define SK_PROTOCOL_MAX U8_MAX
448 u16 sk_gso_max_segs;
449 unsigned long sk_lingertime;
450 struct proto *sk_prot_creator;
451 rwlock_t sk_callback_lock;
452 int sk_err,
453 sk_err_soft;
454 u32 sk_ack_backlog;
455 u32 sk_max_ack_backlog;
456 kuid_t sk_uid;
457 struct pid *sk_peer_pid;
458 const struct cred *sk_peer_cred;
459 long sk_rcvtimeo;
460 ktime_t sk_stamp;
461#if BITS_PER_LONG==32
462 seqlock_t sk_stamp_seq;
463#endif
464 u16 sk_tsflags;
465 u8 sk_shutdown;
466 u32 sk_tskey;
467 atomic_t sk_zckey;
468 struct socket *sk_socket;
469 void *sk_user_data;
470#ifdef CONFIG_SECURITY
471 void *sk_security;
472#endif
473 struct sock_cgroup_data sk_cgrp_data;
474 struct mem_cgroup *sk_memcg;
475 void (*sk_state_change)(struct sock *sk);
476 void (*sk_data_ready)(struct sock *sk);
477 void (*sk_write_space)(struct sock *sk);
478 void (*sk_error_report)(struct sock *sk);
479 int (*sk_backlog_rcv)(struct sock *sk,
480 struct sk_buff *skb);
481 void (*sk_destruct)(struct sock *sk);
482 struct sock_reuseport __rcu *sk_reuseport_cb;
483 struct rcu_head sk_rcu;
484};
485
486enum sk_pacing {
487 SK_PACING_NONE = 0,
488 SK_PACING_NEEDED = 1,
489 SK_PACING_FQ = 2,
490};
491
492#define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
493
494#define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk)))
495#define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr)
496
497/*
498 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
499 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
500 * on a socket means that the socket will reuse everybody else's port
501 * without looking at the other's sk_reuse value.
502 */
503
504#define SK_NO_REUSE 0
505#define SK_CAN_REUSE 1
506#define SK_FORCE_REUSE 2
507
508int sk_set_peek_off(struct sock *sk, int val);
509
510static inline int sk_peek_offset(struct sock *sk, int flags)
511{
512 if (unlikely(flags & MSG_PEEK)) {
513 return READ_ONCE(sk->sk_peek_off);
514 }
515
516 return 0;
517}
518
519static inline void sk_peek_offset_bwd(struct sock *sk, int val)
520{
521 s32 off = READ_ONCE(sk->sk_peek_off);
522
523 if (unlikely(off >= 0)) {
524 off = max_t(s32, off - val, 0);
525 WRITE_ONCE(sk->sk_peek_off, off);
526 }
527}
528
529static inline void sk_peek_offset_fwd(struct sock *sk, int val)
530{
531 sk_peek_offset_bwd(sk, -val);
532}
533
534/*
535 * Hashed lists helper routines
536 */
537static inline struct sock *sk_entry(const struct hlist_node *node)
538{
539 return hlist_entry(node, struct sock, sk_node);
540}
541
542static inline struct sock *__sk_head(const struct hlist_head *head)
543{
544 return hlist_entry(head->first, struct sock, sk_node);
545}
546
547static inline struct sock *sk_head(const struct hlist_head *head)
548{
549 return hlist_empty(head) ? NULL : __sk_head(head);
550}
551
552static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
553{
554 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
555}
556
557static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
558{
559 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
560}
561
562static inline struct sock *sk_next(const struct sock *sk)
563{
564 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
565}
566
567static inline struct sock *sk_nulls_next(const struct sock *sk)
568{
569 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
570 hlist_nulls_entry(sk->sk_nulls_node.next,
571 struct sock, sk_nulls_node) :
572 NULL;
573}
574
575static inline bool sk_unhashed(const struct sock *sk)
576{
577 return hlist_unhashed(&sk->sk_node);
578}
579
580static inline bool sk_hashed(const struct sock *sk)
581{
582 return !sk_unhashed(sk);
583}
584
585static inline void sk_node_init(struct hlist_node *node)
586{
587 node->pprev = NULL;
588}
589
590static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
591{
592 node->pprev = NULL;
593}
594
595static inline void __sk_del_node(struct sock *sk)
596{
597 __hlist_del(&sk->sk_node);
598}
599
600/* NB: equivalent to hlist_del_init_rcu */
601static inline bool __sk_del_node_init(struct sock *sk)
602{
603 if (sk_hashed(sk)) {
604 __sk_del_node(sk);
605 sk_node_init(&sk->sk_node);
606 return true;
607 }
608 return false;
609}
610
611/* Grab socket reference count. This operation is valid only
612 when sk is ALREADY grabbed f.e. it is found in hash table
613 or a list and the lookup is made under lock preventing hash table
614 modifications.
615 */
616
617static __always_inline void sock_hold(struct sock *sk)
618{
619 refcount_inc(&sk->sk_refcnt);
620}
621
622/* Ungrab socket in the context, which assumes that socket refcnt
623 cannot hit zero, f.e. it is true in context of any socketcall.
624 */
625static __always_inline void __sock_put(struct sock *sk)
626{
627 refcount_dec(&sk->sk_refcnt);
628}
629
630static inline bool sk_del_node_init(struct sock *sk)
631{
632 bool rc = __sk_del_node_init(sk);
633
634 if (rc) {
635 /* paranoid for a while -acme */
636 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
637 __sock_put(sk);
638 }
639 return rc;
640}
641#define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
642
643static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
644{
645 if (sk_hashed(sk)) {
646 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
647 return true;
648 }
649 return false;
650}
651
652static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
653{
654 bool rc = __sk_nulls_del_node_init_rcu(sk);
655
656 if (rc) {
657 /* paranoid for a while -acme */
658 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
659 __sock_put(sk);
660 }
661 return rc;
662}
663
664static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
665{
666 hlist_add_head(&sk->sk_node, list);
667}
668
669static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
670{
671 sock_hold(sk);
672 __sk_add_node(sk, list);
673}
674
675static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
676{
677 sock_hold(sk);
678 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
679 sk->sk_family == AF_INET6)
680 hlist_add_tail_rcu(&sk->sk_node, list);
681 else
682 hlist_add_head_rcu(&sk->sk_node, list);
683}
684
685static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
686{
687 sock_hold(sk);
688 hlist_add_tail_rcu(&sk->sk_node, list);
689}
690
691static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
692{
693 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
694}
695
696static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
697{
698 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
699}
700
701static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
702{
703 sock_hold(sk);
704 __sk_nulls_add_node_rcu(sk, list);
705}
706
707static inline void __sk_del_bind_node(struct sock *sk)
708{
709 __hlist_del(&sk->sk_bind_node);
710}
711
712static inline void sk_add_bind_node(struct sock *sk,
713 struct hlist_head *list)
714{
715 hlist_add_head(&sk->sk_bind_node, list);
716}
717
718#define sk_for_each(__sk, list) \
719 hlist_for_each_entry(__sk, list, sk_node)
720#define sk_for_each_rcu(__sk, list) \
721 hlist_for_each_entry_rcu(__sk, list, sk_node)
722#define sk_nulls_for_each(__sk, node, list) \
723 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
724#define sk_nulls_for_each_rcu(__sk, node, list) \
725 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
726#define sk_for_each_from(__sk) \
727 hlist_for_each_entry_from(__sk, sk_node)
728#define sk_nulls_for_each_from(__sk, node) \
729 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
730 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
731#define sk_for_each_safe(__sk, tmp, list) \
732 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
733#define sk_for_each_bound(__sk, list) \
734 hlist_for_each_entry(__sk, list, sk_bind_node)
735
736/**
737 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
738 * @tpos: the type * to use as a loop cursor.
739 * @pos: the &struct hlist_node to use as a loop cursor.
740 * @head: the head for your list.
741 * @offset: offset of hlist_node within the struct.
742 *
743 */
744#define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
745 for (pos = rcu_dereference((head)->first); \
746 pos != NULL && \
747 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
748 pos = rcu_dereference(pos->next))
749
750static inline struct user_namespace *sk_user_ns(struct sock *sk)
751{
752 /* Careful only use this in a context where these parameters
753 * can not change and must all be valid, such as recvmsg from
754 * userspace.
755 */
756 return sk->sk_socket->file->f_cred->user_ns;
757}
758
759/* Sock flags */
760enum sock_flags {
761 SOCK_DEAD,
762 SOCK_DONE,
763 SOCK_URGINLINE,
764 SOCK_KEEPOPEN,
765 SOCK_LINGER,
766 SOCK_DESTROY,
767 SOCK_BROADCAST,
768 SOCK_TIMESTAMP,
769 SOCK_ZAPPED,
770 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
771 SOCK_DBG, /* %SO_DEBUG setting */
772 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
773 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
774 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
775 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
776 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
777 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
778 SOCK_FASYNC, /* fasync() active */
779 SOCK_RXQ_OVFL,
780 SOCK_ZEROCOPY, /* buffers from userspace */
781 SOCK_WIFI_STATUS, /* push wifi status to userspace */
782 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
783 * Will use last 4 bytes of packet sent from
784 * user-space instead.
785 */
786 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
787 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
788 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
789};
790
791#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
792
793static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
794{
795 nsk->sk_flags = osk->sk_flags;
796}
797
798static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
799{
800 __set_bit(flag, &sk->sk_flags);
801}
802
803static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
804{
805 __clear_bit(flag, &sk->sk_flags);
806}
807
808static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
809{
810 return test_bit(flag, &sk->sk_flags);
811}
812
813#ifdef CONFIG_NET
814extern struct static_key memalloc_socks;
815static inline int sk_memalloc_socks(void)
816{
817 return static_key_false(&memalloc_socks);
818}
819
820void __receive_sock(struct file *file);
821#else
822
823static inline int sk_memalloc_socks(void)
824{
825 return 0;
826}
827
828static inline void __receive_sock(struct file *file)
829{ }
830#endif
831
832static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
833{
834 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
835}
836
837static inline void sk_acceptq_removed(struct sock *sk)
838{
839 sk->sk_ack_backlog--;
840}
841
842static inline void sk_acceptq_added(struct sock *sk)
843{
844 sk->sk_ack_backlog++;
845}
846
847static inline bool sk_acceptq_is_full(const struct sock *sk)
848{
849 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
850}
851
852/*
853 * Compute minimal free write space needed to queue new packets.
854 */
855static inline int sk_stream_min_wspace(const struct sock *sk)
856{
857 return sk->sk_wmem_queued >> 1;
858}
859
860static inline int sk_stream_wspace(const struct sock *sk)
861{
862 return sk->sk_sndbuf - sk->sk_wmem_queued;
863}
864
865void sk_stream_write_space(struct sock *sk);
866
867/* OOB backlog add */
868static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
869{
870 /* dont let skb dst not refcounted, we are going to leave rcu lock */
871 skb_dst_force(skb);
872
873 if (!sk->sk_backlog.tail)
874 sk->sk_backlog.head = skb;
875 else
876 sk->sk_backlog.tail->next = skb;
877
878 sk->sk_backlog.tail = skb;
879 skb->next = NULL;
880}
881
882/*
883 * Take into account size of receive queue and backlog queue
884 * Do not take into account this skb truesize,
885 * to allow even a single big packet to come.
886 */
887static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
888{
889 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
890
891 return qsize > limit;
892}
893
894/* The per-socket spinlock must be held here. */
895static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
896 unsigned int limit)
897{
898 if (sk_rcvqueues_full(sk, limit))
899 return -ENOBUFS;
900
901 /*
902 * If the skb was allocated from pfmemalloc reserves, only
903 * allow SOCK_MEMALLOC sockets to use it as this socket is
904 * helping free memory
905 */
906 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
907 return -ENOMEM;
908
909 __sk_add_backlog(sk, skb);
910 sk->sk_backlog.len += skb->truesize;
911 return 0;
912}
913
914int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
915
916static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
917{
918 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
919 return __sk_backlog_rcv(sk, skb);
920
921 return sk->sk_backlog_rcv(sk, skb);
922}
923
924static inline void sk_incoming_cpu_update(struct sock *sk)
925{
926 int cpu = raw_smp_processor_id();
927
928 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
929 WRITE_ONCE(sk->sk_incoming_cpu, cpu);
930}
931
932static inline void sock_rps_record_flow_hash(__u32 hash)
933{
934#ifdef CONFIG_RPS
935 struct rps_sock_flow_table *sock_flow_table;
936
937 rcu_read_lock();
938 sock_flow_table = rcu_dereference(rps_sock_flow_table);
939 rps_record_sock_flow(sock_flow_table, hash);
940 rcu_read_unlock();
941#endif
942}
943
944static inline void sock_rps_record_flow(const struct sock *sk)
945{
946#ifdef CONFIG_RPS
947 if (static_key_false(&rfs_needed)) {
948 /* Reading sk->sk_rxhash might incur an expensive cache line
949 * miss.
950 *
951 * TCP_ESTABLISHED does cover almost all states where RFS
952 * might be useful, and is cheaper [1] than testing :
953 * IPv4: inet_sk(sk)->inet_daddr
954 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
955 * OR an additional socket flag
956 * [1] : sk_state and sk_prot are in the same cache line.
957 */
958 if (sk->sk_state == TCP_ESTABLISHED)
959 sock_rps_record_flow_hash(sk->sk_rxhash);
960 }
961#endif
962}
963
964static inline void sock_rps_save_rxhash(struct sock *sk,
965 const struct sk_buff *skb)
966{
967#ifdef CONFIG_RPS
968 if (unlikely(sk->sk_rxhash != skb->hash))
969 sk->sk_rxhash = skb->hash;
970#endif
971}
972
973static inline void sock_rps_reset_rxhash(struct sock *sk)
974{
975#ifdef CONFIG_RPS
976 sk->sk_rxhash = 0;
977#endif
978}
979
980#define sk_wait_event(__sk, __timeo, __condition, __wait) \
981 ({ int __rc; \
982 release_sock(__sk); \
983 __rc = __condition; \
984 if (!__rc) { \
985 *(__timeo) = wait_woken(__wait, \
986 TASK_INTERRUPTIBLE, \
987 *(__timeo)); \
988 } \
989 sched_annotate_sleep(); \
990 lock_sock(__sk); \
991 __rc = __condition; \
992 __rc; \
993 })
994
995int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
996int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
997void sk_stream_wait_close(struct sock *sk, long timeo_p);
998int sk_stream_error(struct sock *sk, int flags, int err);
999void sk_stream_kill_queues(struct sock *sk);
1000void sk_set_memalloc(struct sock *sk);
1001void sk_clear_memalloc(struct sock *sk);
1002
1003void __sk_flush_backlog(struct sock *sk);
1004
1005static inline bool sk_flush_backlog(struct sock *sk)
1006{
1007 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1008 __sk_flush_backlog(sk);
1009 return true;
1010 }
1011 return false;
1012}
1013
1014int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1015
1016struct request_sock_ops;
1017struct timewait_sock_ops;
1018struct inet_hashinfo;
1019struct raw_hashinfo;
1020struct smc_hashinfo;
1021struct module;
1022
1023/*
1024 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1025 * un-modified. Special care is taken when initializing object to zero.
1026 */
1027static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1028{
1029 if (offsetof(struct sock, sk_node.next) != 0)
1030 memset(sk, 0, offsetof(struct sock, sk_node.next));
1031 memset(&sk->sk_node.pprev, 0,
1032 size - offsetof(struct sock, sk_node.pprev));
1033}
1034
1035/* Networking protocol blocks we attach to sockets.
1036 * socket layer -> transport layer interface
1037 */
1038struct proto {
1039 void (*close)(struct sock *sk,
1040 long timeout);
1041 int (*connect)(struct sock *sk,
1042 struct sockaddr *uaddr,
1043 int addr_len);
1044 int (*disconnect)(struct sock *sk, int flags);
1045
1046 struct sock * (*accept)(struct sock *sk, int flags, int *err,
1047 bool kern);
1048
1049 int (*ioctl)(struct sock *sk, int cmd,
1050 unsigned long arg);
1051 int (*init)(struct sock *sk);
1052 void (*destroy)(struct sock *sk);
1053 void (*shutdown)(struct sock *sk, int how);
1054 int (*setsockopt)(struct sock *sk, int level,
1055 int optname, char __user *optval,
1056 unsigned int optlen);
1057 int (*getsockopt)(struct sock *sk, int level,
1058 int optname, char __user *optval,
1059 int __user *option);
1060 void (*keepalive)(struct sock *sk, int valbool);
1061#ifdef CONFIG_COMPAT
1062 int (*compat_setsockopt)(struct sock *sk,
1063 int level,
1064 int optname, char __user *optval,
1065 unsigned int optlen);
1066 int (*compat_getsockopt)(struct sock *sk,
1067 int level,
1068 int optname, char __user *optval,
1069 int __user *option);
1070 int (*compat_ioctl)(struct sock *sk,
1071 unsigned int cmd, unsigned long arg);
1072#endif
1073 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1074 size_t len);
1075 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1076 size_t len, int noblock, int flags,
1077 int *addr_len);
1078 int (*sendpage)(struct sock *sk, struct page *page,
1079 int offset, size_t size, int flags);
1080 int (*bind)(struct sock *sk,
1081 struct sockaddr *uaddr, int addr_len);
1082
1083 int (*backlog_rcv) (struct sock *sk,
1084 struct sk_buff *skb);
1085
1086 void (*release_cb)(struct sock *sk);
1087
1088 /* Keeping track of sk's, looking them up, and port selection methods. */
1089 int (*hash)(struct sock *sk);
1090 void (*unhash)(struct sock *sk);
1091 void (*rehash)(struct sock *sk);
1092 int (*get_port)(struct sock *sk, unsigned short snum);
1093
1094 /* Keeping track of sockets in use */
1095#ifdef CONFIG_PROC_FS
1096 unsigned int inuse_idx;
1097#endif
1098
1099 bool (*stream_memory_free)(const struct sock *sk);
1100 /* Memory pressure */
1101 void (*enter_memory_pressure)(struct sock *sk);
1102 void (*leave_memory_pressure)(struct sock *sk);
1103 atomic_long_t *memory_allocated; /* Current allocated memory. */
1104 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1105 /*
1106 * Pressure flag: try to collapse.
1107 * Technical note: it is used by multiple contexts non atomically.
1108 * All the __sk_mem_schedule() is of this nature: accounting
1109 * is strict, actions are advisory and have some latency.
1110 */
1111 unsigned long *memory_pressure;
1112 long *sysctl_mem;
1113 int *sysctl_wmem;
1114 int *sysctl_rmem;
1115 int max_header;
1116 bool no_autobind;
1117
1118 struct kmem_cache *slab;
1119 unsigned int obj_size;
1120 int slab_flags;
1121
1122 struct percpu_counter *orphan_count;
1123
1124 struct request_sock_ops *rsk_prot;
1125 struct timewait_sock_ops *twsk_prot;
1126
1127 union {
1128 struct inet_hashinfo *hashinfo;
1129 struct udp_table *udp_table;
1130 struct raw_hashinfo *raw_hash;
1131 struct smc_hashinfo *smc_hash;
1132 } h;
1133
1134 struct module *owner;
1135
1136 char name[32];
1137
1138 struct list_head node;
1139#ifdef SOCK_REFCNT_DEBUG
1140 atomic_t socks;
1141#endif
1142 int (*diag_destroy)(struct sock *sk, int err);
1143} __randomize_layout;
1144
1145int proto_register(struct proto *prot, int alloc_slab);
1146void proto_unregister(struct proto *prot);
1147
1148#ifdef SOCK_REFCNT_DEBUG
1149static inline void sk_refcnt_debug_inc(struct sock *sk)
1150{
1151 atomic_inc(&sk->sk_prot->socks);
1152}
1153
1154static inline void sk_refcnt_debug_dec(struct sock *sk)
1155{
1156 atomic_dec(&sk->sk_prot->socks);
1157 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1158 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1159}
1160
1161static inline void sk_refcnt_debug_release(const struct sock *sk)
1162{
1163 if (refcount_read(&sk->sk_refcnt) != 1)
1164 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1165 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1166}
1167#else /* SOCK_REFCNT_DEBUG */
1168#define sk_refcnt_debug_inc(sk) do { } while (0)
1169#define sk_refcnt_debug_dec(sk) do { } while (0)
1170#define sk_refcnt_debug_release(sk) do { } while (0)
1171#endif /* SOCK_REFCNT_DEBUG */
1172
1173static inline bool sk_stream_memory_free(const struct sock *sk)
1174{
1175 if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1176 return false;
1177
1178 return sk->sk_prot->stream_memory_free ?
1179 sk->sk_prot->stream_memory_free(sk) : true;
1180}
1181
1182static inline bool sk_stream_is_writeable(const struct sock *sk)
1183{
1184 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1185 sk_stream_memory_free(sk);
1186}
1187
1188static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1189 struct cgroup *ancestor)
1190{
1191#ifdef CONFIG_SOCK_CGROUP_DATA
1192 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1193 ancestor);
1194#else
1195 return -ENOTSUPP;
1196#endif
1197}
1198
1199static inline bool sk_has_memory_pressure(const struct sock *sk)
1200{
1201 return sk->sk_prot->memory_pressure != NULL;
1202}
1203
1204static inline bool sk_under_memory_pressure(const struct sock *sk)
1205{
1206 if (!sk->sk_prot->memory_pressure)
1207 return false;
1208
1209 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1210 mem_cgroup_under_socket_pressure(sk->sk_memcg))
1211 return true;
1212
1213 return !!*sk->sk_prot->memory_pressure;
1214}
1215
1216static inline long
1217sk_memory_allocated(const struct sock *sk)
1218{
1219 return atomic_long_read(sk->sk_prot->memory_allocated);
1220}
1221
1222static inline long
1223sk_memory_allocated_add(struct sock *sk, int amt)
1224{
1225 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1226}
1227
1228static inline void
1229sk_memory_allocated_sub(struct sock *sk, int amt)
1230{
1231 atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1232}
1233
1234static inline void sk_sockets_allocated_dec(struct sock *sk)
1235{
1236 percpu_counter_dec(sk->sk_prot->sockets_allocated);
1237}
1238
1239static inline void sk_sockets_allocated_inc(struct sock *sk)
1240{
1241 percpu_counter_inc(sk->sk_prot->sockets_allocated);
1242}
1243
1244static inline u64
1245sk_sockets_allocated_read_positive(struct sock *sk)
1246{
1247 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1248}
1249
1250static inline int
1251proto_sockets_allocated_sum_positive(struct proto *prot)
1252{
1253 return percpu_counter_sum_positive(prot->sockets_allocated);
1254}
1255
1256static inline long
1257proto_memory_allocated(struct proto *prot)
1258{
1259 return atomic_long_read(prot->memory_allocated);
1260}
1261
1262static inline bool
1263proto_memory_pressure(struct proto *prot)
1264{
1265 if (!prot->memory_pressure)
1266 return false;
1267 return !!*prot->memory_pressure;
1268}
1269
1270
1271#ifdef CONFIG_PROC_FS
1272/* Called with local bh disabled */
1273void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1274int sock_prot_inuse_get(struct net *net, struct proto *proto);
1275#else
1276static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1277 int inc)
1278{
1279}
1280#endif
1281
1282
1283/* With per-bucket locks this operation is not-atomic, so that
1284 * this version is not worse.
1285 */
1286static inline int __sk_prot_rehash(struct sock *sk)
1287{
1288 sk->sk_prot->unhash(sk);
1289 return sk->sk_prot->hash(sk);
1290}
1291
1292/* About 10 seconds */
1293#define SOCK_DESTROY_TIME (10*HZ)
1294
1295/* Sockets 0-1023 can't be bound to unless you are superuser */
1296#define PROT_SOCK 1024
1297
1298#define SHUTDOWN_MASK 3
1299#define RCV_SHUTDOWN 1
1300#define SEND_SHUTDOWN 2
1301
1302#define SOCK_SNDBUF_LOCK 1
1303#define SOCK_RCVBUF_LOCK 2
1304#define SOCK_BINDADDR_LOCK 4
1305#define SOCK_BINDPORT_LOCK 8
1306
1307struct socket_alloc {
1308 struct socket socket;
1309 struct inode vfs_inode;
1310};
1311
1312static inline struct socket *SOCKET_I(struct inode *inode)
1313{
1314 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1315}
1316
1317static inline struct inode *SOCK_INODE(struct socket *socket)
1318{
1319 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1320}
1321
1322/*
1323 * Functions for memory accounting
1324 */
1325int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1326int __sk_mem_schedule(struct sock *sk, int size, int kind);
1327void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1328void __sk_mem_reclaim(struct sock *sk, int amount);
1329
1330/* We used to have PAGE_SIZE here, but systems with 64KB pages
1331 * do not necessarily have 16x time more memory than 4KB ones.
1332 */
1333#define SK_MEM_QUANTUM 4096
1334#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1335#define SK_MEM_SEND 0
1336#define SK_MEM_RECV 1
1337
1338/* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1339static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1340{
1341 long val = sk->sk_prot->sysctl_mem[index];
1342
1343#if PAGE_SIZE > SK_MEM_QUANTUM
1344 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1345#elif PAGE_SIZE < SK_MEM_QUANTUM
1346 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1347#endif
1348 return val;
1349}
1350
1351static inline int sk_mem_pages(int amt)
1352{
1353 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1354}
1355
1356static inline bool sk_has_account(struct sock *sk)
1357{
1358 /* return true if protocol supports memory accounting */
1359 return !!sk->sk_prot->memory_allocated;
1360}
1361
1362static inline bool sk_wmem_schedule(struct sock *sk, int size)
1363{
1364 if (!sk_has_account(sk))
1365 return true;
1366 return size <= sk->sk_forward_alloc ||
1367 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1368}
1369
1370static inline bool
1371sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1372{
1373 if (!sk_has_account(sk))
1374 return true;
1375 return size<= sk->sk_forward_alloc ||
1376 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1377 skb_pfmemalloc(skb);
1378}
1379
1380static inline void sk_mem_reclaim(struct sock *sk)
1381{
1382 if (!sk_has_account(sk))
1383 return;
1384 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1385 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1386}
1387
1388static inline void sk_mem_reclaim_partial(struct sock *sk)
1389{
1390 if (!sk_has_account(sk))
1391 return;
1392 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1393 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1394}
1395
1396static inline void sk_mem_charge(struct sock *sk, int size)
1397{
1398 if (!sk_has_account(sk))
1399 return;
1400 sk->sk_forward_alloc -= size;
1401}
1402
1403static inline void sk_mem_uncharge(struct sock *sk, int size)
1404{
1405 if (!sk_has_account(sk))
1406 return;
1407 sk->sk_forward_alloc += size;
1408
1409 /* Avoid a possible overflow.
1410 * TCP send queues can make this happen, if sk_mem_reclaim()
1411 * is not called and more than 2 GBytes are released at once.
1412 *
1413 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1414 * no need to hold that much forward allocation anyway.
1415 */
1416 if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1417 __sk_mem_reclaim(sk, 1 << 20);
1418}
1419
1420static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1421{
1422 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1423 sk->sk_wmem_queued -= skb->truesize;
1424 sk_mem_uncharge(sk, skb->truesize);
1425 __kfree_skb(skb);
1426}
1427
1428static inline void sock_release_ownership(struct sock *sk)
1429{
1430 if (sk->sk_lock.owned) {
1431 sk->sk_lock.owned = 0;
1432
1433 /* The sk_lock has mutex_unlock() semantics: */
1434 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1435 }
1436}
1437
1438/*
1439 * Macro so as to not evaluate some arguments when
1440 * lockdep is not enabled.
1441 *
1442 * Mark both the sk_lock and the sk_lock.slock as a
1443 * per-address-family lock class.
1444 */
1445#define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1446do { \
1447 sk->sk_lock.owned = 0; \
1448 init_waitqueue_head(&sk->sk_lock.wq); \
1449 spin_lock_init(&(sk)->sk_lock.slock); \
1450 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1451 sizeof((sk)->sk_lock)); \
1452 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1453 (skey), (sname)); \
1454 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1455} while (0)
1456
1457#ifdef CONFIG_LOCKDEP
1458static inline bool lockdep_sock_is_held(const struct sock *csk)
1459{
1460 struct sock *sk = (struct sock *)csk;
1461
1462 return lockdep_is_held(&sk->sk_lock) ||
1463 lockdep_is_held(&sk->sk_lock.slock);
1464}
1465#endif
1466
1467void lock_sock_nested(struct sock *sk, int subclass);
1468
1469static inline void lock_sock(struct sock *sk)
1470{
1471 lock_sock_nested(sk, 0);
1472}
1473
1474void __release_sock(struct sock *sk);
1475void release_sock(struct sock *sk);
1476
1477/* BH context may only use the following locking interface. */
1478#define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1479#define bh_lock_sock_nested(__sk) \
1480 spin_lock_nested(&((__sk)->sk_lock.slock), \
1481 SINGLE_DEPTH_NESTING)
1482#define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1483
1484bool lock_sock_fast(struct sock *sk);
1485/**
1486 * unlock_sock_fast - complement of lock_sock_fast
1487 * @sk: socket
1488 * @slow: slow mode
1489 *
1490 * fast unlock socket for user context.
1491 * If slow mode is on, we call regular release_sock()
1492 */
1493static inline void unlock_sock_fast(struct sock *sk, bool slow)
1494{
1495 if (slow)
1496 release_sock(sk);
1497 else
1498 spin_unlock_bh(&sk->sk_lock.slock);
1499}
1500
1501/* Used by processes to "lock" a socket state, so that
1502 * interrupts and bottom half handlers won't change it
1503 * from under us. It essentially blocks any incoming
1504 * packets, so that we won't get any new data or any
1505 * packets that change the state of the socket.
1506 *
1507 * While locked, BH processing will add new packets to
1508 * the backlog queue. This queue is processed by the
1509 * owner of the socket lock right before it is released.
1510 *
1511 * Since ~2.3.5 it is also exclusive sleep lock serializing
1512 * accesses from user process context.
1513 */
1514
1515static inline void sock_owned_by_me(const struct sock *sk)
1516{
1517#ifdef CONFIG_LOCKDEP
1518 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1519#endif
1520}
1521
1522static inline bool sock_owned_by_user(const struct sock *sk)
1523{
1524 sock_owned_by_me(sk);
1525 return sk->sk_lock.owned;
1526}
1527
1528/* no reclassification while locks are held */
1529static inline bool sock_allow_reclassification(const struct sock *csk)
1530{
1531 struct sock *sk = (struct sock *)csk;
1532
1533 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1534}
1535
1536struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1537 struct proto *prot, int kern);
1538void sk_free(struct sock *sk);
1539void sk_destruct(struct sock *sk);
1540struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1541void sk_free_unlock_clone(struct sock *sk);
1542
1543struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1544 gfp_t priority);
1545void __sock_wfree(struct sk_buff *skb);
1546void sock_wfree(struct sk_buff *skb);
1547struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1548 gfp_t priority);
1549void skb_orphan_partial(struct sk_buff *skb);
1550void sock_rfree(struct sk_buff *skb);
1551void sock_efree(struct sk_buff *skb);
1552#ifdef CONFIG_INET
1553void sock_edemux(struct sk_buff *skb);
1554#else
1555#define sock_edemux sock_efree
1556#endif
1557
1558int sock_setsockopt(struct socket *sock, int level, int op,
1559 char __user *optval, unsigned int optlen);
1560
1561int sock_getsockopt(struct socket *sock, int level, int op,
1562 char __user *optval, int __user *optlen);
1563struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1564 int noblock, int *errcode);
1565struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1566 unsigned long data_len, int noblock,
1567 int *errcode, int max_page_order);
1568void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1569void sock_kfree_s(struct sock *sk, void *mem, int size);
1570void sock_kzfree_s(struct sock *sk, void *mem, int size);
1571void sk_send_sigurg(struct sock *sk);
1572
1573struct sockcm_cookie {
1574 u32 mark;
1575 u16 tsflags;
1576};
1577
1578int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1579 struct sockcm_cookie *sockc);
1580int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1581 struct sockcm_cookie *sockc);
1582
1583/*
1584 * Functions to fill in entries in struct proto_ops when a protocol
1585 * does not implement a particular function.
1586 */
1587int sock_no_bind(struct socket *, struct sockaddr *, int);
1588int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1589int sock_no_socketpair(struct socket *, struct socket *);
1590int sock_no_accept(struct socket *, struct socket *, int, bool);
1591int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1592unsigned int sock_no_poll(struct file *, struct socket *,
1593 struct poll_table_struct *);
1594int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1595int sock_no_listen(struct socket *, int);
1596int sock_no_shutdown(struct socket *, int);
1597int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1598int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1599int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1600int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1601int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1602int sock_no_mmap(struct file *file, struct socket *sock,
1603 struct vm_area_struct *vma);
1604ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1605 size_t size, int flags);
1606ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1607 int offset, size_t size, int flags);
1608
1609/*
1610 * Functions to fill in entries in struct proto_ops when a protocol
1611 * uses the inet style.
1612 */
1613int sock_common_getsockopt(struct socket *sock, int level, int optname,
1614 char __user *optval, int __user *optlen);
1615int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1616 int flags);
1617int sock_common_setsockopt(struct socket *sock, int level, int optname,
1618 char __user *optval, unsigned int optlen);
1619int compat_sock_common_getsockopt(struct socket *sock, int level,
1620 int optname, char __user *optval, int __user *optlen);
1621int compat_sock_common_setsockopt(struct socket *sock, int level,
1622 int optname, char __user *optval, unsigned int optlen);
1623
1624void sk_common_release(struct sock *sk);
1625
1626/*
1627 * Default socket callbacks and setup code
1628 */
1629
1630/* Initialise core socket variables */
1631void sock_init_data(struct socket *sock, struct sock *sk);
1632
1633/*
1634 * Socket reference counting postulates.
1635 *
1636 * * Each user of socket SHOULD hold a reference count.
1637 * * Each access point to socket (an hash table bucket, reference from a list,
1638 * running timer, skb in flight MUST hold a reference count.
1639 * * When reference count hits 0, it means it will never increase back.
1640 * * When reference count hits 0, it means that no references from
1641 * outside exist to this socket and current process on current CPU
1642 * is last user and may/should destroy this socket.
1643 * * sk_free is called from any context: process, BH, IRQ. When
1644 * it is called, socket has no references from outside -> sk_free
1645 * may release descendant resources allocated by the socket, but
1646 * to the time when it is called, socket is NOT referenced by any
1647 * hash tables, lists etc.
1648 * * Packets, delivered from outside (from network or from another process)
1649 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1650 * when they sit in queue. Otherwise, packets will leak to hole, when
1651 * socket is looked up by one cpu and unhasing is made by another CPU.
1652 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1653 * (leak to backlog). Packet socket does all the processing inside
1654 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1655 * use separate SMP lock, so that they are prone too.
1656 */
1657
1658/* Ungrab socket and destroy it, if it was the last reference. */
1659static inline void sock_put(struct sock *sk)
1660{
1661 if (refcount_dec_and_test(&sk->sk_refcnt))
1662 sk_free(sk);
1663}
1664/* Generic version of sock_put(), dealing with all sockets
1665 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1666 */
1667void sock_gen_put(struct sock *sk);
1668
1669int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1670 unsigned int trim_cap, bool refcounted);
1671static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1672 const int nested)
1673{
1674 return __sk_receive_skb(sk, skb, nested, 1, true);
1675}
1676
1677static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1678{
1679 sk->sk_tx_queue_mapping = tx_queue;
1680}
1681
1682static inline void sk_tx_queue_clear(struct sock *sk)
1683{
1684 sk->sk_tx_queue_mapping = -1;
1685}
1686
1687static inline int sk_tx_queue_get(const struct sock *sk)
1688{
1689 return sk ? sk->sk_tx_queue_mapping : -1;
1690}
1691
1692static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1693{
1694 sk->sk_socket = sock;
1695}
1696
1697static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1698{
1699 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1700 return &rcu_dereference_raw(sk->sk_wq)->wait;
1701}
1702/* Detach socket from process context.
1703 * Announce socket dead, detach it from wait queue and inode.
1704 * Note that parent inode held reference count on this struct sock,
1705 * we do not release it in this function, because protocol
1706 * probably wants some additional cleanups or even continuing
1707 * to work with this socket (TCP).
1708 */
1709static inline void sock_orphan(struct sock *sk)
1710{
1711 write_lock_bh(&sk->sk_callback_lock);
1712 sock_set_flag(sk, SOCK_DEAD);
1713 sk_set_socket(sk, NULL);
1714 sk->sk_wq = NULL;
1715 write_unlock_bh(&sk->sk_callback_lock);
1716}
1717
1718static inline void sock_graft(struct sock *sk, struct socket *parent)
1719{
1720 WARN_ON(parent->sk);
1721 write_lock_bh(&sk->sk_callback_lock);
1722 sk->sk_wq = parent->wq;
1723 parent->sk = sk;
1724 sk_set_socket(sk, parent);
1725 sk->sk_uid = SOCK_INODE(parent)->i_uid;
1726 security_sock_graft(sk, parent);
1727 write_unlock_bh(&sk->sk_callback_lock);
1728}
1729
1730kuid_t sock_i_uid(struct sock *sk);
1731unsigned long sock_i_ino(struct sock *sk);
1732
1733static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1734{
1735 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1736}
1737
1738static inline u32 net_tx_rndhash(void)
1739{
1740 u32 v = prandom_u32();
1741
1742 return v ?: 1;
1743}
1744
1745static inline void sk_set_txhash(struct sock *sk)
1746{
1747 sk->sk_txhash = net_tx_rndhash();
1748}
1749
1750static inline void sk_rethink_txhash(struct sock *sk)
1751{
1752 if (sk->sk_txhash)
1753 sk_set_txhash(sk);
1754}
1755
1756static inline struct dst_entry *
1757__sk_dst_get(struct sock *sk)
1758{
1759 return rcu_dereference_check(sk->sk_dst_cache,
1760 lockdep_sock_is_held(sk));
1761}
1762
1763static inline struct dst_entry *
1764sk_dst_get(struct sock *sk)
1765{
1766 struct dst_entry *dst;
1767
1768 rcu_read_lock();
1769 dst = rcu_dereference(sk->sk_dst_cache);
1770 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1771 dst = NULL;
1772 rcu_read_unlock();
1773 return dst;
1774}
1775
1776static inline void dst_negative_advice(struct sock *sk)
1777{
1778 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1779
1780 sk_rethink_txhash(sk);
1781
1782 if (dst && dst->ops->negative_advice) {
1783 ndst = dst->ops->negative_advice(dst);
1784
1785 if (ndst != dst) {
1786 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1787 sk_tx_queue_clear(sk);
1788 sk->sk_dst_pending_confirm = 0;
1789 }
1790 }
1791}
1792
1793static inline void
1794__sk_dst_set(struct sock *sk, struct dst_entry *dst)
1795{
1796 struct dst_entry *old_dst;
1797
1798 sk_tx_queue_clear(sk);
1799 sk->sk_dst_pending_confirm = 0;
1800 old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1801 lockdep_sock_is_held(sk));
1802 rcu_assign_pointer(sk->sk_dst_cache, dst);
1803 dst_release(old_dst);
1804}
1805
1806static inline void
1807sk_dst_set(struct sock *sk, struct dst_entry *dst)
1808{
1809 struct dst_entry *old_dst;
1810
1811 sk_tx_queue_clear(sk);
1812 sk->sk_dst_pending_confirm = 0;
1813 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1814 dst_release(old_dst);
1815}
1816
1817static inline void
1818__sk_dst_reset(struct sock *sk)
1819{
1820 __sk_dst_set(sk, NULL);
1821}
1822
1823static inline void
1824sk_dst_reset(struct sock *sk)
1825{
1826 sk_dst_set(sk, NULL);
1827}
1828
1829struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1830
1831struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1832
1833static inline void sk_dst_confirm(struct sock *sk)
1834{
1835 if (!sk->sk_dst_pending_confirm)
1836 sk->sk_dst_pending_confirm = 1;
1837}
1838
1839static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1840{
1841 if (skb_get_dst_pending_confirm(skb)) {
1842 struct sock *sk = skb->sk;
1843 unsigned long now = jiffies;
1844
1845 /* avoid dirtying neighbour */
1846 if (n->confirmed != now)
1847 n->confirmed = now;
1848 if (sk && sk->sk_dst_pending_confirm)
1849 sk->sk_dst_pending_confirm = 0;
1850 }
1851}
1852
1853bool sk_mc_loop(struct sock *sk);
1854
1855static inline bool sk_can_gso(const struct sock *sk)
1856{
1857 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1858}
1859
1860void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1861
1862static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1863{
1864 sk->sk_route_nocaps |= flags;
1865 sk->sk_route_caps &= ~flags;
1866}
1867
1868static inline bool sk_check_csum_caps(struct sock *sk)
1869{
1870 return (sk->sk_route_caps & NETIF_F_HW_CSUM) ||
1871 (sk->sk_family == PF_INET &&
1872 (sk->sk_route_caps & NETIF_F_IP_CSUM)) ||
1873 (sk->sk_family == PF_INET6 &&
1874 (sk->sk_route_caps & NETIF_F_IPV6_CSUM));
1875}
1876
1877static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1878 struct iov_iter *from, char *to,
1879 int copy, int offset)
1880{
1881 if (skb->ip_summed == CHECKSUM_NONE) {
1882 __wsum csum = 0;
1883 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
1884 return -EFAULT;
1885 skb->csum = csum_block_add(skb->csum, csum, offset);
1886 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1887 if (!copy_from_iter_full_nocache(to, copy, from))
1888 return -EFAULT;
1889 } else if (!copy_from_iter_full(to, copy, from))
1890 return -EFAULT;
1891
1892 return 0;
1893}
1894
1895static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1896 struct iov_iter *from, int copy)
1897{
1898 int err, offset = skb->len;
1899
1900 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1901 copy, offset);
1902 if (err)
1903 __skb_trim(skb, offset);
1904
1905 return err;
1906}
1907
1908static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1909 struct sk_buff *skb,
1910 struct page *page,
1911 int off, int copy)
1912{
1913 int err;
1914
1915 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1916 copy, skb->len);
1917 if (err)
1918 return err;
1919
1920 skb->len += copy;
1921 skb->data_len += copy;
1922 skb->truesize += copy;
1923 sk->sk_wmem_queued += copy;
1924 sk_mem_charge(sk, copy);
1925 return 0;
1926}
1927
1928/**
1929 * sk_wmem_alloc_get - returns write allocations
1930 * @sk: socket
1931 *
1932 * Returns sk_wmem_alloc minus initial offset of one
1933 */
1934static inline int sk_wmem_alloc_get(const struct sock *sk)
1935{
1936 return refcount_read(&sk->sk_wmem_alloc) - 1;
1937}
1938
1939/**
1940 * sk_rmem_alloc_get - returns read allocations
1941 * @sk: socket
1942 *
1943 * Returns sk_rmem_alloc
1944 */
1945static inline int sk_rmem_alloc_get(const struct sock *sk)
1946{
1947 return atomic_read(&sk->sk_rmem_alloc);
1948}
1949
1950/**
1951 * sk_has_allocations - check if allocations are outstanding
1952 * @sk: socket
1953 *
1954 * Returns true if socket has write or read allocations
1955 */
1956static inline bool sk_has_allocations(const struct sock *sk)
1957{
1958 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1959}
1960
1961/**
1962 * skwq_has_sleeper - check if there are any waiting processes
1963 * @wq: struct socket_wq
1964 *
1965 * Returns true if socket_wq has waiting processes
1966 *
1967 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
1968 * barrier call. They were added due to the race found within the tcp code.
1969 *
1970 * Consider following tcp code paths::
1971 *
1972 * CPU1 CPU2
1973 * sys_select receive packet
1974 * ... ...
1975 * __add_wait_queue update tp->rcv_nxt
1976 * ... ...
1977 * tp->rcv_nxt check sock_def_readable
1978 * ... {
1979 * schedule rcu_read_lock();
1980 * wq = rcu_dereference(sk->sk_wq);
1981 * if (wq && waitqueue_active(&wq->wait))
1982 * wake_up_interruptible(&wq->wait)
1983 * ...
1984 * }
1985 *
1986 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1987 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1988 * could then endup calling schedule and sleep forever if there are no more
1989 * data on the socket.
1990 *
1991 */
1992static inline bool skwq_has_sleeper(struct socket_wq *wq)
1993{
1994 return wq && wq_has_sleeper(&wq->wait);
1995}
1996
1997/**
1998 * sock_poll_wait - place memory barrier behind the poll_wait call.
1999 * @filp: file
2000 * @wait_address: socket wait queue
2001 * @p: poll_table
2002 *
2003 * See the comments in the wq_has_sleeper function.
2004 */
2005static inline void sock_poll_wait(struct file *filp,
2006 wait_queue_head_t *wait_address, poll_table *p)
2007{
2008 if (!poll_does_not_wait(p) && wait_address) {
2009 poll_wait(filp, wait_address, p);
2010 /* We need to be sure we are in sync with the
2011 * socket flags modification.
2012 *
2013 * This memory barrier is paired in the wq_has_sleeper.
2014 */
2015 smp_mb();
2016 }
2017}
2018
2019static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2020{
2021 if (sk->sk_txhash) {
2022 skb->l4_hash = 1;
2023 skb->hash = sk->sk_txhash;
2024 }
2025}
2026
2027void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2028
2029/*
2030 * Queue a received datagram if it will fit. Stream and sequenced
2031 * protocols can't normally use this as they need to fit buffers in
2032 * and play with them.
2033 *
2034 * Inlined as it's very short and called for pretty much every
2035 * packet ever received.
2036 */
2037static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2038{
2039 skb_orphan(skb);
2040 skb->sk = sk;
2041 skb->destructor = sock_rfree;
2042 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2043 sk_mem_charge(sk, skb->truesize);
2044}
2045
2046void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2047 unsigned long expires);
2048
2049void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2050
2051int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2052 struct sk_buff *skb, unsigned int flags,
2053 void (*destructor)(struct sock *sk,
2054 struct sk_buff *skb));
2055int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2056int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2057
2058int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2059struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2060
2061/*
2062 * Recover an error report and clear atomically
2063 */
2064
2065static inline int sock_error(struct sock *sk)
2066{
2067 int err;
2068 if (likely(!sk->sk_err))
2069 return 0;
2070 err = xchg(&sk->sk_err, 0);
2071 return -err;
2072}
2073
2074static inline unsigned long sock_wspace(struct sock *sk)
2075{
2076 int amt = 0;
2077
2078 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2079 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2080 if (amt < 0)
2081 amt = 0;
2082 }
2083 return amt;
2084}
2085
2086/* Note:
2087 * We use sk->sk_wq_raw, from contexts knowing this
2088 * pointer is not NULL and cannot disappear/change.
2089 */
2090static inline void sk_set_bit(int nr, struct sock *sk)
2091{
2092 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2093 !sock_flag(sk, SOCK_FASYNC))
2094 return;
2095
2096 set_bit(nr, &sk->sk_wq_raw->flags);
2097}
2098
2099static inline void sk_clear_bit(int nr, struct sock *sk)
2100{
2101 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2102 !sock_flag(sk, SOCK_FASYNC))
2103 return;
2104
2105 clear_bit(nr, &sk->sk_wq_raw->flags);
2106}
2107
2108static inline void sk_wake_async(const struct sock *sk, int how, int band)
2109{
2110 if (sock_flag(sk, SOCK_FASYNC)) {
2111 rcu_read_lock();
2112 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2113 rcu_read_unlock();
2114 }
2115}
2116
2117/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2118 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2119 * Note: for send buffers, TCP works better if we can build two skbs at
2120 * minimum.
2121 */
2122#define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2123
2124#define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2125#define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2126
2127static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2128{
2129 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2130 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2131 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2132 }
2133}
2134
2135struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2136 bool force_schedule);
2137
2138/**
2139 * sk_page_frag - return an appropriate page_frag
2140 * @sk: socket
2141 *
2142 * Use the per task page_frag instead of the per socket one for
2143 * optimization when we know that we're in the normal context and owns
2144 * everything that's associated with %current.
2145 *
2146 * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest
2147 * inside other socket operations and end up recursing into sk_page_frag()
2148 * while it's already in use.
2149 */
2150static inline struct page_frag *sk_page_frag(struct sock *sk)
2151{
2152 if (gfpflags_normal_context(sk->sk_allocation))
2153 return &current->task_frag;
2154
2155 return &sk->sk_frag;
2156}
2157
2158bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2159
2160/*
2161 * Default write policy as shown to user space via poll/select/SIGIO
2162 */
2163static inline bool sock_writeable(const struct sock *sk)
2164{
2165 return refcount_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2166}
2167
2168static inline gfp_t gfp_any(void)
2169{
2170 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2171}
2172
2173static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2174{
2175 return noblock ? 0 : sk->sk_rcvtimeo;
2176}
2177
2178static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2179{
2180 return noblock ? 0 : sk->sk_sndtimeo;
2181}
2182
2183static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2184{
2185 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2186}
2187
2188/* Alas, with timeout socket operations are not restartable.
2189 * Compare this to poll().
2190 */
2191static inline int sock_intr_errno(long timeo)
2192{
2193 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2194}
2195
2196struct sock_skb_cb {
2197 u32 dropcount;
2198};
2199
2200/* Store sock_skb_cb at the end of skb->cb[] so protocol families
2201 * using skb->cb[] would keep using it directly and utilize its
2202 * alignement guarantee.
2203 */
2204#define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2205 sizeof(struct sock_skb_cb)))
2206
2207#define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2208 SOCK_SKB_CB_OFFSET))
2209
2210#define sock_skb_cb_check_size(size) \
2211 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2212
2213static inline void
2214sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2215{
2216 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2217 atomic_read(&sk->sk_drops) : 0;
2218}
2219
2220static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2221{
2222 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2223
2224 atomic_add(segs, &sk->sk_drops);
2225}
2226
2227static inline ktime_t sock_read_timestamp(struct sock *sk)
2228{
2229#if BITS_PER_LONG==32
2230 unsigned int seq;
2231 ktime_t kt;
2232
2233 do {
2234 seq = read_seqbegin(&sk->sk_stamp_seq);
2235 kt = sk->sk_stamp;
2236 } while (read_seqretry(&sk->sk_stamp_seq, seq));
2237
2238 return kt;
2239#else
2240 return READ_ONCE(sk->sk_stamp);
2241#endif
2242}
2243
2244static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2245{
2246#if BITS_PER_LONG==32
2247 write_seqlock(&sk->sk_stamp_seq);
2248 sk->sk_stamp = kt;
2249 write_sequnlock(&sk->sk_stamp_seq);
2250#else
2251 WRITE_ONCE(sk->sk_stamp, kt);
2252#endif
2253}
2254
2255void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2256 struct sk_buff *skb);
2257void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2258 struct sk_buff *skb);
2259
2260static inline void
2261sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2262{
2263 ktime_t kt = skb->tstamp;
2264 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2265
2266 /*
2267 * generate control messages if
2268 * - receive time stamping in software requested
2269 * - software time stamp available and wanted
2270 * - hardware time stamps available and wanted
2271 */
2272 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2273 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2274 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2275 (hwtstamps->hwtstamp &&
2276 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2277 __sock_recv_timestamp(msg, sk, skb);
2278 else
2279 sock_write_timestamp(sk, kt);
2280
2281 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2282 __sock_recv_wifi_status(msg, sk, skb);
2283}
2284
2285void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2286 struct sk_buff *skb);
2287
2288#define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2289static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2290 struct sk_buff *skb)
2291{
2292#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2293 (1UL << SOCK_RCVTSTAMP))
2294#define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2295 SOF_TIMESTAMPING_RAW_HARDWARE)
2296
2297 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2298 __sock_recv_ts_and_drops(msg, sk, skb);
2299 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2300 sock_write_timestamp(sk, skb->tstamp);
2301 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2302 sock_write_timestamp(sk, 0);
2303}
2304
2305void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2306
2307/**
2308 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2309 * @sk: socket sending this packet
2310 * @tsflags: timestamping flags to use
2311 * @tx_flags: completed with instructions for time stamping
2312 *
2313 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2314 */
2315static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags,
2316 __u8 *tx_flags)
2317{
2318 if (unlikely(tsflags))
2319 __sock_tx_timestamp(tsflags, tx_flags);
2320 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2321 *tx_flags |= SKBTX_WIFI_STATUS;
2322}
2323
2324/**
2325 * sk_eat_skb - Release a skb if it is no longer needed
2326 * @sk: socket to eat this skb from
2327 * @skb: socket buffer to eat
2328 *
2329 * This routine must be called with interrupts disabled or with the socket
2330 * locked so that the sk_buff queue operation is ok.
2331*/
2332static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2333{
2334 __skb_unlink(skb, &sk->sk_receive_queue);
2335 __kfree_skb(skb);
2336}
2337
2338static inline
2339struct net *sock_net(const struct sock *sk)
2340{
2341 return read_pnet(&sk->sk_net);
2342}
2343
2344static inline
2345void sock_net_set(struct sock *sk, struct net *net)
2346{
2347 write_pnet(&sk->sk_net, net);
2348}
2349
2350static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2351{
2352 if (skb->sk) {
2353 struct sock *sk = skb->sk;
2354
2355 skb->destructor = NULL;
2356 skb->sk = NULL;
2357 return sk;
2358 }
2359 return NULL;
2360}
2361
2362/* This helper checks if a socket is a full socket,
2363 * ie _not_ a timewait or request socket.
2364 */
2365static inline bool sk_fullsock(const struct sock *sk)
2366{
2367 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2368}
2369
2370/* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2371 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2372 */
2373static inline bool sk_listener(const struct sock *sk)
2374{
2375 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2376}
2377
2378/**
2379 * sk_state_load - read sk->sk_state for lockless contexts
2380 * @sk: socket pointer
2381 *
2382 * Paired with sk_state_store(). Used in places we do not hold socket lock :
2383 * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ...
2384 */
2385static inline int sk_state_load(const struct sock *sk)
2386{
2387 return smp_load_acquire(&sk->sk_state);
2388}
2389
2390/**
2391 * sk_state_store - update sk->sk_state
2392 * @sk: socket pointer
2393 * @newstate: new state
2394 *
2395 * Paired with sk_state_load(). Should be used in contexts where
2396 * state change might impact lockless readers.
2397 */
2398static inline void sk_state_store(struct sock *sk, int newstate)
2399{
2400 smp_store_release(&sk->sk_state, newstate);
2401}
2402
2403void sock_enable_timestamp(struct sock *sk, int flag);
2404int sock_get_timestamp(struct sock *, struct timeval __user *);
2405int sock_get_timestampns(struct sock *, struct timespec __user *);
2406int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2407 int type);
2408
2409bool sk_ns_capable(const struct sock *sk,
2410 struct user_namespace *user_ns, int cap);
2411bool sk_capable(const struct sock *sk, int cap);
2412bool sk_net_capable(const struct sock *sk, int cap);
2413
2414void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2415
2416/* Take into consideration the size of the struct sk_buff overhead in the
2417 * determination of these values, since that is non-constant across
2418 * platforms. This makes socket queueing behavior and performance
2419 * not depend upon such differences.
2420 */
2421#define _SK_MEM_PACKETS 256
2422#define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
2423#define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2424#define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2425
2426extern __u32 sysctl_wmem_max;
2427extern __u32 sysctl_rmem_max;
2428
2429extern int sysctl_tstamp_allow_data;
2430extern int sysctl_optmem_max;
2431
2432extern __u32 sysctl_wmem_default;
2433extern __u32 sysctl_rmem_default;
2434
2435#endif /* _SOCK_H */