blob: 12834f9f827236b89e15768e318fb60ddfda841f [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the TCP module.
7 *
8 * Version: @(#)tcp.h 1.0.5 05/23/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
17 */
18#ifndef _TCP_H
19#define _TCP_H
20
21#define FASTRETRANS_DEBUG 1
22
23#include <linux/list.h>
24#include <linux/tcp.h>
25#include <linux/bug.h>
26#include <linux/slab.h>
27#include <linux/cache.h>
28#include <linux/percpu.h>
29#include <linux/skbuff.h>
30#include <linux/cryptohash.h>
31#include <linux/kref.h>
32#include <linux/ktime.h>
33
34#include <net/inet_connection_sock.h>
35#include <net/inet_timewait_sock.h>
36#include <net/inet_hashtables.h>
37#include <net/checksum.h>
38#include <net/request_sock.h>
39#include <net/sock.h>
40#include <net/snmp.h>
41#include <net/ip.h>
42#include <net/tcp_states.h>
43#include <net/inet_ecn.h>
44#include <net/dst.h>
45
46#include <linux/seq_file.h>
47#include <linux/memcontrol.h>
48
49#include <linux/bpf.h>
50#include <linux/filter.h>
51#include <linux/bpf-cgroup.h>
52
53extern struct inet_hashinfo tcp_hashinfo;
54
55extern struct percpu_counter tcp_orphan_count;
56void tcp_time_wait(struct sock *sk, int state, int timeo);
57
58#define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER)
59#define MAX_TCP_OPTION_SPACE 40
60#define TCP_MIN_SND_MSS 48
61#define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
62
63/*
64 * Never offer a window over 32767 without using window scaling. Some
65 * poor stacks do signed 16bit maths!
66 */
67#define MAX_TCP_WINDOW 32767U
68
69/* Minimal accepted MSS. It is (60+60+8) - (20+20). */
70#define TCP_MIN_MSS 88U
71
72/* The least MTU to use for probing */
73#define TCP_BASE_MSS 1024
74
75/* probing interval, default to 10 minutes as per RFC4821 */
76#define TCP_PROBE_INTERVAL 600
77
78/* Specify interval when tcp mtu probing will stop */
79#define TCP_PROBE_THRESHOLD 8
80
81/* After receiving this amount of duplicate ACKs fast retransmit starts. */
82#define TCP_FASTRETRANS_THRESH 3
83
84/* Maximal number of ACKs sent quickly to accelerate slow-start. */
85#define TCP_MAX_QUICKACKS 16U
86
87/* Maximal number of window scale according to RFC1323 */
88#define TCP_MAX_WSCALE 14U
89
90/* urg_data states */
91#define TCP_URG_VALID 0x0100
92#define TCP_URG_NOTYET 0x0200
93#define TCP_URG_READ 0x0400
94
95#define TCP_RETR1 3 /*
96 * This is how many retries it does before it
97 * tries to figure out if the gateway is
98 * down. Minimal RFC value is 3; it corresponds
99 * to ~3sec-8min depending on RTO.
100 */
101
102#define TCP_RETR2 15 /*
103 * This should take at least
104 * 90 minutes to time out.
105 * RFC1122 says that the limit is 100 sec.
106 * 15 is ~13-30min depending on RTO.
107 */
108
109#define TCP_SYN_RETRIES 6 /* This is how many retries are done
110 * when active opening a connection.
111 * RFC1122 says the minimum retry MUST
112 * be at least 180secs. Nevertheless
113 * this value is corresponding to
114 * 63secs of retransmission with the
115 * current initial RTO.
116 */
117
118#define TCP_SYNACK_RETRIES 5 /* This is how may retries are done
119 * when passive opening a connection.
120 * This is corresponding to 31secs of
121 * retransmission with the current
122 * initial RTO.
123 */
124
125#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
126 * state, about 60 seconds */
127#define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
128 /* BSD style FIN_WAIT2 deadlock breaker.
129 * It used to be 3min, new value is 60sec,
130 * to combine FIN-WAIT-2 timeout with
131 * TIME-WAIT timer.
132 */
133
134#define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
135#if HZ >= 100
136#define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
137#define TCP_ATO_MIN ((unsigned)(HZ/25))
138#else
139#define TCP_DELACK_MIN 4U
140#define TCP_ATO_MIN 4U
141#endif
142#define TCP_RTO_MAX ((unsigned)(120*HZ))
143#define TCP_RTO_MIN ((unsigned)(HZ/5))
144#define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */
145#define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */
146#define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
147 * used as a fallback RTO for the
148 * initial data transmission if no
149 * valid RTT sample has been acquired,
150 * most likely due to retrans in 3WHS.
151 */
152
153#define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
154 * for local resources.
155 */
156#define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
157#define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
158#define TCP_KEEPALIVE_INTVL (75*HZ)
159
160#define MAX_TCP_KEEPIDLE 32767
161#define MAX_TCP_KEEPINTVL 32767
162#define MAX_TCP_KEEPCNT 127
163#define MAX_TCP_SYNCNT 127
164
165#define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */
166
167#define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
168#define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
169 * after this time. It should be equal
170 * (or greater than) TCP_TIMEWAIT_LEN
171 * to provide reliability equal to one
172 * provided by timewait state.
173 */
174#define TCP_PAWS_WINDOW 1 /* Replay window for per-host
175 * timestamps. It must be less than
176 * minimal timewait lifetime.
177 */
178/*
179 * TCP option
180 */
181
182#define TCPOPT_NOP 1 /* Padding */
183#define TCPOPT_EOL 0 /* End of options */
184#define TCPOPT_MSS 2 /* Segment size negotiating */
185#define TCPOPT_WINDOW 3 /* Window scaling */
186#define TCPOPT_SACK_PERM 4 /* SACK Permitted */
187#define TCPOPT_SACK 5 /* SACK Block */
188#define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
189#define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */
190#define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */
191#define TCPOPT_EXP 254 /* Experimental */
192/* Magic number to be after the option value for sharing TCP
193 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
194 */
195#define TCPOPT_FASTOPEN_MAGIC 0xF989
196
197/*
198 * TCP option lengths
199 */
200
201#define TCPOLEN_MSS 4
202#define TCPOLEN_WINDOW 3
203#define TCPOLEN_SACK_PERM 2
204#define TCPOLEN_TIMESTAMP 10
205#define TCPOLEN_MD5SIG 18
206#define TCPOLEN_FASTOPEN_BASE 2
207#define TCPOLEN_EXP_FASTOPEN_BASE 4
208
209/* But this is what stacks really send out. */
210#define TCPOLEN_TSTAMP_ALIGNED 12
211#define TCPOLEN_WSCALE_ALIGNED 4
212#define TCPOLEN_SACKPERM_ALIGNED 4
213#define TCPOLEN_SACK_BASE 2
214#define TCPOLEN_SACK_BASE_ALIGNED 4
215#define TCPOLEN_SACK_PERBLOCK 8
216#define TCPOLEN_MD5SIG_ALIGNED 20
217#define TCPOLEN_MSS_ALIGNED 4
218
219/* Flags in tp->nonagle */
220#define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
221#define TCP_NAGLE_CORK 2 /* Socket is corked */
222#define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */
223
224/* TCP thin-stream limits */
225#define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */
226
227/* TCP initial congestion window as per rfc6928 */
228#define TCP_INIT_CWND 10
229
230/* Bit Flags for sysctl_tcp_fastopen */
231#define TFO_CLIENT_ENABLE 1
232#define TFO_SERVER_ENABLE 2
233#define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */
234
235/* Accept SYN data w/o any cookie option */
236#define TFO_SERVER_COOKIE_NOT_REQD 0x200
237
238/* Force enable TFO on all listeners, i.e., not requiring the
239 * TCP_FASTOPEN socket option.
240 */
241#define TFO_SERVER_WO_SOCKOPT1 0x400
242
243
244/* sysctl variables for tcp */
245extern int sysctl_tcp_fastopen;
246extern int sysctl_tcp_retrans_collapse;
247extern int sysctl_tcp_stdurg;
248extern int sysctl_tcp_rfc1337;
249extern int sysctl_tcp_abort_on_overflow;
250extern int sysctl_tcp_max_orphans;
251extern int sysctl_tcp_fack;
252extern int sysctl_tcp_reordering;
253extern int sysctl_tcp_max_reordering;
254extern int sysctl_tcp_dsack;
255extern long sysctl_tcp_mem[3];
256extern int sysctl_tcp_wmem[3];
257extern int sysctl_tcp_rmem[3];
258extern int sysctl_tcp_app_win;
259extern int sysctl_tcp_adv_win_scale;
260extern int sysctl_tcp_frto;
261extern int sysctl_tcp_nometrics_save;
262extern int sysctl_tcp_moderate_rcvbuf;
263extern int sysctl_tcp_tso_win_divisor;
264extern int sysctl_tcp_workaround_signed_windows;
265extern int sysctl_tcp_slow_start_after_idle;
266extern int sysctl_tcp_thin_linear_timeouts;
267extern int sysctl_tcp_thin_dupack;
268extern int sysctl_tcp_early_retrans;
269extern int sysctl_tcp_recovery;
270#define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */
271
272extern int sysctl_tcp_limit_output_bytes;
273extern int sysctl_tcp_challenge_ack_limit;
274extern int sysctl_tcp_min_tso_segs;
275extern int sysctl_tcp_min_rtt_wlen;
276extern int sysctl_tcp_autocorking;
277extern int sysctl_tcp_invalid_ratelimit;
278extern int sysctl_tcp_pacing_ss_ratio;
279extern int sysctl_tcp_pacing_ca_ratio;
280extern int sysctl_tcp_default_init_rwnd;
281
282extern atomic_long_t tcp_memory_allocated;
283extern struct percpu_counter tcp_sockets_allocated;
284extern unsigned long tcp_memory_pressure;
285
286/* optimized version of sk_under_memory_pressure() for TCP sockets */
287static inline bool tcp_under_memory_pressure(const struct sock *sk)
288{
289 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
290 mem_cgroup_under_socket_pressure(sk->sk_memcg))
291 return true;
292
293 return READ_ONCE(tcp_memory_pressure);
294}
295/*
296 * The next routines deal with comparing 32 bit unsigned ints
297 * and worry about wraparound (automatic with unsigned arithmetic).
298 */
299
300static inline bool before(__u32 seq1, __u32 seq2)
301{
302 return (__s32)(seq1-seq2) < 0;
303}
304#define after(seq2, seq1) before(seq1, seq2)
305
306/* is s2<=s1<=s3 ? */
307static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
308{
309 return seq3 - seq2 >= seq1 - seq2;
310}
311
312static inline bool tcp_out_of_memory(struct sock *sk)
313{
314 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
315 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
316 return true;
317 return false;
318}
319
320void sk_forced_mem_schedule(struct sock *sk, int size);
321
322static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
323{
324 struct percpu_counter *ocp = sk->sk_prot->orphan_count;
325 int orphans = percpu_counter_read_positive(ocp);
326
327 if (orphans << shift > sysctl_tcp_max_orphans) {
328 orphans = percpu_counter_sum_positive(ocp);
329 if (orphans << shift > sysctl_tcp_max_orphans)
330 return true;
331 }
332 return false;
333}
334
335bool tcp_check_oom(struct sock *sk, int shift);
336
337
338extern struct proto tcp_prot;
339
340#define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field)
341#define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field)
342#define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
343#define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
344
345void tcp_tasklet_init(void);
346
347void tcp_v4_err(struct sk_buff *skb, u32);
348
349void tcp_shutdown(struct sock *sk, int how);
350
351int tcp_v4_early_demux(struct sk_buff *skb);
352int tcp_v4_rcv(struct sk_buff *skb);
353
354int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
355int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
356int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
357int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
358 int flags);
359int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
360 size_t size, int flags);
361ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
362 size_t size, int flags);
363void tcp_release_cb(struct sock *sk);
364void tcp_wfree(struct sk_buff *skb);
365void tcp_write_timer_handler(struct sock *sk);
366void tcp_delack_timer_handler(struct sock *sk);
367int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
368int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
369void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
370 const struct tcphdr *th);
371void tcp_rcv_space_adjust(struct sock *sk);
372int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
373void tcp_twsk_destructor(struct sock *sk);
374ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
375 struct pipe_inode_info *pipe, size_t len,
376 unsigned int flags);
377
378void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
379static inline void tcp_dec_quickack_mode(struct sock *sk,
380 const unsigned int pkts)
381{
382 struct inet_connection_sock *icsk = inet_csk(sk);
383
384 if (icsk->icsk_ack.quick) {
385 if (pkts >= icsk->icsk_ack.quick) {
386 icsk->icsk_ack.quick = 0;
387 /* Leaving quickack mode we deflate ATO. */
388 icsk->icsk_ack.ato = TCP_ATO_MIN;
389 } else
390 icsk->icsk_ack.quick -= pkts;
391 }
392}
393
394#define TCP_ECN_OK 1
395#define TCP_ECN_QUEUE_CWR 2
396#define TCP_ECN_DEMAND_CWR 4
397#define TCP_ECN_SEEN 8
398
399enum tcp_tw_status {
400 TCP_TW_SUCCESS = 0,
401 TCP_TW_RST = 1,
402 TCP_TW_ACK = 2,
403 TCP_TW_SYN = 3
404};
405
406
407enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
408 struct sk_buff *skb,
409 const struct tcphdr *th);
410struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
411 struct request_sock *req, bool fastopen);
412int tcp_child_process(struct sock *parent, struct sock *child,
413 struct sk_buff *skb);
414void tcp_enter_loss(struct sock *sk);
415void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
416void tcp_clear_retrans(struct tcp_sock *tp);
417void tcp_update_metrics(struct sock *sk);
418void tcp_init_metrics(struct sock *sk);
419void tcp_metrics_init(void);
420bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
421void tcp_disable_fack(struct tcp_sock *tp);
422void tcp_close(struct sock *sk, long timeout);
423void tcp_init_sock(struct sock *sk);
424unsigned int tcp_poll(struct file *file, struct socket *sock,
425 struct poll_table_struct *wait);
426int tcp_getsockopt(struct sock *sk, int level, int optname,
427 char __user *optval, int __user *optlen);
428int tcp_setsockopt(struct sock *sk, int level, int optname,
429 char __user *optval, unsigned int optlen);
430int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
431 char __user *optval, int __user *optlen);
432int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
433 char __user *optval, unsigned int optlen);
434void tcp_set_keepalive(struct sock *sk, int val);
435void tcp_syn_ack_timeout(const struct request_sock *req);
436int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
437 int flags, int *addr_len);
438void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
439 struct tcp_options_received *opt_rx,
440 int estab, struct tcp_fastopen_cookie *foc);
441const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
442
443/*
444 * TCP v4 functions exported for the inet6 API
445 */
446
447void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
448void tcp_v4_mtu_reduced(struct sock *sk);
449void tcp_req_err(struct sock *sk, u32 seq, bool abort);
450int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
451struct sock *tcp_create_openreq_child(const struct sock *sk,
452 struct request_sock *req,
453 struct sk_buff *skb);
454void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
455struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
456 struct request_sock *req,
457 struct dst_entry *dst,
458 struct request_sock *req_unhash,
459 bool *own_req);
460int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
461int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
462int tcp_connect(struct sock *sk);
463enum tcp_synack_type {
464 TCP_SYNACK_NORMAL,
465 TCP_SYNACK_FASTOPEN,
466 TCP_SYNACK_COOKIE,
467};
468struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
469 struct request_sock *req,
470 struct tcp_fastopen_cookie *foc,
471 enum tcp_synack_type synack_type);
472int tcp_disconnect(struct sock *sk, int flags);
473
474void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
475int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
476void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
477
478/* From syncookies.c */
479struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
480 struct request_sock *req,
481 struct dst_entry *dst, u32 tsoff);
482int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
483 u32 cookie);
484struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
485#ifdef CONFIG_SYN_COOKIES
486
487/* Syncookies use a monotonic timer which increments every 60 seconds.
488 * This counter is used both as a hash input and partially encoded into
489 * the cookie value. A cookie is only validated further if the delta
490 * between the current counter value and the encoded one is less than this,
491 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
492 * the counter advances immediately after a cookie is generated).
493 */
494#define MAX_SYNCOOKIE_AGE 2
495#define TCP_SYNCOOKIE_PERIOD (60 * HZ)
496#define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
497
498/* syncookies: remember time of last synqueue overflow
499 * But do not dirty this field too often (once per second is enough)
500 * It is racy as we do not hold a lock, but race is very minor.
501 */
502static inline void tcp_synq_overflow(const struct sock *sk)
503{
504 unsigned long last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
505 unsigned long now = jiffies;
506
507 if (!time_between32(now, last_overflow, last_overflow + HZ))
508 WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
509}
510
511/* syncookies: no recent synqueue overflow on this listening socket? */
512static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
513{
514 unsigned long last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
515
516 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
517 * then we're under synflood. However, we have to use
518 * 'last_overflow - HZ' as lower bound. That's because a concurrent
519 * tcp_synq_overflow() could update .ts_recent_stamp after we read
520 * jiffies but before we store .ts_recent_stamp into last_overflow,
521 * which could lead to rejecting a valid syncookie.
522 */
523 return !time_between32(jiffies, last_overflow - HZ,
524 last_overflow + TCP_SYNCOOKIE_VALID);
525}
526
527static inline u32 tcp_cookie_time(void)
528{
529 u64 val = get_jiffies_64();
530
531 do_div(val, TCP_SYNCOOKIE_PERIOD);
532 return val;
533}
534
535u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
536 u16 *mssp);
537__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
538u64 cookie_init_timestamp(struct request_sock *req);
539bool cookie_timestamp_decode(const struct net *net,
540 struct tcp_options_received *opt);
541bool cookie_ecn_ok(const struct tcp_options_received *opt,
542 const struct net *net, const struct dst_entry *dst);
543
544/* From net/ipv6/syncookies.c */
545int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
546 u32 cookie);
547struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
548
549u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
550 const struct tcphdr *th, u16 *mssp);
551__u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
552#endif
553/* tcp_output.c */
554
555u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
556 int min_tso_segs);
557void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
558 int nonagle);
559int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
560int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
561void tcp_retransmit_timer(struct sock *sk);
562void tcp_xmit_retransmit_queue(struct sock *);
563void tcp_simple_retransmit(struct sock *);
564void tcp_enter_recovery(struct sock *sk, bool ece_ack);
565int tcp_trim_head(struct sock *, struct sk_buff *, u32);
566int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int, gfp_t);
567
568void tcp_send_probe0(struct sock *);
569void tcp_send_partial(struct sock *);
570int tcp_write_wakeup(struct sock *, int mib);
571void tcp_send_fin(struct sock *sk);
572void tcp_send_active_reset(struct sock *sk, gfp_t priority);
573int tcp_send_synack(struct sock *);
574void tcp_push_one(struct sock *, unsigned int mss_now);
575void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
576void tcp_send_ack(struct sock *sk);
577void tcp_send_delayed_ack(struct sock *sk);
578void tcp_send_loss_probe(struct sock *sk);
579bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
580void tcp_skb_collapse_tstamp(struct sk_buff *skb,
581 const struct sk_buff *next_skb);
582
583/* tcp_input.c */
584void tcp_rearm_rto(struct sock *sk);
585void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
586void tcp_reset(struct sock *sk);
587void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
588void tcp_fin(struct sock *sk);
589
590/* tcp_timer.c */
591void tcp_init_xmit_timers(struct sock *);
592static inline void tcp_clear_xmit_timers(struct sock *sk)
593{
594 hrtimer_cancel(&tcp_sk(sk)->pacing_timer);
595 inet_csk_clear_xmit_timers(sk);
596}
597
598unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
599unsigned int tcp_current_mss(struct sock *sk);
600
601/* Bound MSS / TSO packet size with the half of the window */
602static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
603{
604 int cutoff;
605
606 /* When peer uses tiny windows, there is no use in packetizing
607 * to sub-MSS pieces for the sake of SWS or making sure there
608 * are enough packets in the pipe for fast recovery.
609 *
610 * On the other hand, for extremely large MSS devices, handling
611 * smaller than MSS windows in this way does make sense.
612 */
613 if (tp->max_window > TCP_MSS_DEFAULT)
614 cutoff = (tp->max_window >> 1);
615 else
616 cutoff = tp->max_window;
617
618 if (cutoff && pktsize > cutoff)
619 return max_t(int, cutoff, 68U - tp->tcp_header_len);
620 else
621 return pktsize;
622}
623
624/* tcp.c */
625void tcp_get_info(struct sock *, struct tcp_info *);
626
627/* Read 'sendfile()'-style from a TCP socket */
628int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
629 sk_read_actor_t recv_actor);
630
631void tcp_initialize_rcv_mss(struct sock *sk);
632
633int tcp_mtu_to_mss(struct sock *sk, int pmtu);
634int tcp_mss_to_mtu(struct sock *sk, int mss);
635void tcp_mtup_init(struct sock *sk);
636void tcp_init_buffer_space(struct sock *sk);
637
638static inline void tcp_bound_rto(const struct sock *sk)
639{
640 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
641 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
642}
643
644static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
645{
646 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
647}
648
649static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
650{
651 tp->pred_flags = htonl((tp->tcp_header_len << 26) |
652 ntohl(TCP_FLAG_ACK) |
653 snd_wnd);
654}
655
656static inline void tcp_fast_path_on(struct tcp_sock *tp)
657{
658 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
659}
660
661static inline void tcp_fast_path_check(struct sock *sk)
662{
663 struct tcp_sock *tp = tcp_sk(sk);
664
665 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
666 tp->rcv_wnd &&
667 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
668 !tp->urg_data)
669 tcp_fast_path_on(tp);
670}
671
672/* Compute the actual rto_min value */
673static inline u32 tcp_rto_min(struct sock *sk)
674{
675 const struct dst_entry *dst = __sk_dst_get(sk);
676 u32 rto_min = TCP_RTO_MIN;
677
678 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
679 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
680 return rto_min;
681}
682
683static inline u32 tcp_rto_min_us(struct sock *sk)
684{
685 return jiffies_to_usecs(tcp_rto_min(sk));
686}
687
688static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
689{
690 return dst_metric_locked(dst, RTAX_CC_ALGO);
691}
692
693/* Minimum RTT in usec. ~0 means not available. */
694static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
695{
696 return minmax_get(&tp->rtt_min);
697}
698
699/* Compute the actual receive window we are currently advertising.
700 * Rcv_nxt can be after the window if our peer push more data
701 * than the offered window.
702 */
703static inline u32 tcp_receive_window(const struct tcp_sock *tp)
704{
705 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
706
707 if (win < 0)
708 win = 0;
709 return (u32) win;
710}
711
712/* Choose a new window, without checks for shrinking, and without
713 * scaling applied to the result. The caller does these things
714 * if necessary. This is a "raw" window selection.
715 */
716u32 __tcp_select_window(struct sock *sk);
717
718void tcp_send_window_probe(struct sock *sk);
719
720/* TCP uses 32bit jiffies to save some space.
721 * Note that this is different from tcp_time_stamp, which
722 * historically has been the same until linux-4.13.
723 */
724#define tcp_jiffies32 ((u32)jiffies)
725
726/*
727 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
728 * It is no longer tied to jiffies, but to 1 ms clock.
729 * Note: double check if you want to use tcp_jiffies32 instead of this.
730 */
731#define TCP_TS_HZ 1000
732
733static inline u64 tcp_clock_ns(void)
734{
735 return local_clock();
736}
737
738static inline u64 tcp_clock_us(void)
739{
740 return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
741}
742
743/* This should only be used in contexts where tp->tcp_mstamp is up to date */
744static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
745{
746 return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
747}
748
749/* Could use tcp_clock_us() / 1000, but this version uses a single divide */
750static inline u32 tcp_time_stamp_raw(void)
751{
752 return div_u64(tcp_clock_ns(), NSEC_PER_SEC / TCP_TS_HZ);
753}
754
755
756/* Refresh 1us clock of a TCP socket,
757 * ensuring monotically increasing values.
758 */
759static inline void tcp_mstamp_refresh(struct tcp_sock *tp)
760{
761 u64 val = tcp_clock_us();
762
763 if (val > tp->tcp_mstamp)
764 tp->tcp_mstamp = val;
765}
766
767static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
768{
769 return max_t(s64, t1 - t0, 0);
770}
771
772static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
773{
774 return div_u64(skb->skb_mstamp, USEC_PER_SEC / TCP_TS_HZ);
775}
776
777
778#define tcp_flag_byte(th) (((u_int8_t *)th)[13])
779
780#define TCPHDR_FIN 0x01
781#define TCPHDR_SYN 0x02
782#define TCPHDR_RST 0x04
783#define TCPHDR_PSH 0x08
784#define TCPHDR_ACK 0x10
785#define TCPHDR_URG 0x20
786#define TCPHDR_ECE 0x40
787#define TCPHDR_CWR 0x80
788
789#define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
790
791/* This is what the send packet queuing engine uses to pass
792 * TCP per-packet control information to the transmission code.
793 * We also store the host-order sequence numbers in here too.
794 * This is 44 bytes if IPV6 is enabled.
795 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
796 */
797struct tcp_skb_cb {
798 __u32 seq; /* Starting sequence number */
799 __u32 end_seq; /* SEQ + FIN + SYN + datalen */
800 union {
801 /* Note : tcp_tw_isn is used in input path only
802 * (isn chosen by tcp_timewait_state_process())
803 *
804 * tcp_gso_segs/size are used in write queue only,
805 * cf tcp_skb_pcount()/tcp_skb_mss()
806 */
807 __u32 tcp_tw_isn;
808 struct {
809 u16 tcp_gso_segs;
810 u16 tcp_gso_size;
811 };
812
813 /* Used to stash the receive timestamp while this skb is in the
814 * out of order queue, as skb->tstamp is overwritten by the
815 * rbnode.
816 */
817 ktime_t swtstamp;
818 };
819 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */
820
821 __u8 sacked; /* State flags for SACK/FACK. */
822#define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */
823#define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */
824#define TCPCB_LOST 0x04 /* SKB is lost */
825#define TCPCB_TAGBITS 0x07 /* All tag bits */
826#define TCPCB_REPAIRED 0x10 /* SKB repaired (no skb_mstamp) */
827#define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */
828#define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
829 TCPCB_REPAIRED)
830
831 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */
832 __u8 txstamp_ack:1, /* Record TX timestamp for ack? */
833 eor:1, /* Is skb MSG_EOR marked? */
834 has_rxtstamp:1, /* SKB has a RX timestamp */
835 unused:5;
836 __u32 ack_seq; /* Sequence number ACK'd */
837 union {
838 struct {
839 /* There is space for up to 24 bytes */
840 __u32 in_flight:30,/* Bytes in flight at transmit */
841 is_app_limited:1, /* cwnd not fully used? */
842 unused:1;
843 /* pkts S/ACKed so far upon tx of skb, incl retrans: */
844 __u32 delivered;
845 /* start of send pipeline phase */
846 u64 first_tx_mstamp;
847 /* when we reached the "delivered" count */
848 u64 delivered_mstamp;
849 } tx; /* only used for outgoing skbs */
850 union {
851 struct inet_skb_parm h4;
852#if IS_ENABLED(CONFIG_IPV6)
853 struct inet6_skb_parm h6;
854#endif
855 } header; /* For incoming skbs */
856 struct {
857 __u32 key;
858 __u32 flags;
859 struct bpf_map *map;
860 void *data_end;
861 } bpf;
862 };
863};
864
865#define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
866
867
868#if IS_ENABLED(CONFIG_IPV6)
869/* This is the variant of inet6_iif() that must be used by TCP,
870 * as TCP moves IP6CB into a different location in skb->cb[]
871 */
872static inline int tcp_v6_iif(const struct sk_buff *skb)
873{
874 return TCP_SKB_CB(skb)->header.h6.iif;
875}
876
877static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
878{
879 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
880
881 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
882}
883
884/* TCP_SKB_CB reference means this can not be used from early demux */
885static inline int tcp_v6_sdif(const struct sk_buff *skb)
886{
887#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
888 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
889 return TCP_SKB_CB(skb)->header.h6.iif;
890#endif
891 return 0;
892}
893#endif
894
895static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
896{
897#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
898 if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
899 skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
900 return true;
901#endif
902 return false;
903}
904
905/* TCP_SKB_CB reference means this can not be used from early demux */
906static inline int tcp_v4_sdif(struct sk_buff *skb)
907{
908#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
909 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
910 return TCP_SKB_CB(skb)->header.h4.iif;
911#endif
912 return 0;
913}
914
915/* Due to TSO, an SKB can be composed of multiple actual
916 * packets. To keep these tracked properly, we use this.
917 */
918static inline int tcp_skb_pcount(const struct sk_buff *skb)
919{
920 return TCP_SKB_CB(skb)->tcp_gso_segs;
921}
922
923static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
924{
925 TCP_SKB_CB(skb)->tcp_gso_segs = segs;
926}
927
928static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
929{
930 TCP_SKB_CB(skb)->tcp_gso_segs += segs;
931}
932
933/* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
934static inline int tcp_skb_mss(const struct sk_buff *skb)
935{
936 return TCP_SKB_CB(skb)->tcp_gso_size;
937}
938
939static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
940{
941 return likely(!TCP_SKB_CB(skb)->eor);
942}
943
944/* Events passed to congestion control interface */
945enum tcp_ca_event {
946 CA_EVENT_TX_START, /* first transmit when no packets in flight */
947 CA_EVENT_CWND_RESTART, /* congestion window restart */
948 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
949 CA_EVENT_LOSS, /* loss timeout */
950 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */
951 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */
952};
953
954/* Information about inbound ACK, passed to cong_ops->in_ack_event() */
955enum tcp_ca_ack_event_flags {
956 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */
957 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */
958 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */
959};
960
961/*
962 * Interface for adding new TCP congestion control handlers
963 */
964#define TCP_CA_NAME_MAX 16
965#define TCP_CA_MAX 128
966#define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX)
967
968#define TCP_CA_UNSPEC 0
969
970/* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
971#define TCP_CONG_NON_RESTRICTED 0x1
972/* Requires ECN/ECT set on all packets */
973#define TCP_CONG_NEEDS_ECN 0x2
974
975union tcp_cc_info;
976
977struct ack_sample {
978 u32 pkts_acked;
979 s32 rtt_us;
980 u32 in_flight;
981};
982
983/* A rate sample measures the number of (original/retransmitted) data
984 * packets delivered "delivered" over an interval of time "interval_us".
985 * The tcp_rate.c code fills in the rate sample, and congestion
986 * control modules that define a cong_control function to run at the end
987 * of ACK processing can optionally chose to consult this sample when
988 * setting cwnd and pacing rate.
989 * A sample is invalid if "delivered" or "interval_us" is negative.
990 */
991struct rate_sample {
992 u64 prior_mstamp; /* starting timestamp for interval */
993 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */
994 s32 delivered; /* number of packets delivered over interval */
995 long interval_us; /* time for tp->delivered to incr "delivered" */
996 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */
997 int losses; /* number of packets marked lost upon ACK */
998 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */
999 u32 prior_in_flight; /* in flight before this ACK */
1000 bool is_app_limited; /* is sample from packet with bubble in pipe? */
1001 bool is_retrans; /* is sample from retransmission? */
1002};
1003
1004struct tcp_congestion_ops {
1005 struct list_head list;
1006 u32 key;
1007 u32 flags;
1008
1009 /* initialize private data (optional) */
1010 void (*init)(struct sock *sk);
1011 /* cleanup private data (optional) */
1012 void (*release)(struct sock *sk);
1013
1014 /* return slow start threshold (required) */
1015 u32 (*ssthresh)(struct sock *sk);
1016 /* do new cwnd calculation (required) */
1017 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1018 /* call before changing ca_state (optional) */
1019 void (*set_state)(struct sock *sk, u8 new_state);
1020 /* call when cwnd event occurs (optional) */
1021 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1022 /* call when ack arrives (optional) */
1023 void (*in_ack_event)(struct sock *sk, u32 flags);
1024 /* new value of cwnd after loss (required) */
1025 u32 (*undo_cwnd)(struct sock *sk);
1026 /* hook for packet ack accounting (optional) */
1027 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1028 /* suggest number of segments for each skb to transmit (optional) */
1029 u32 (*tso_segs_goal)(struct sock *sk);
1030 /* returns the multiplier used in tcp_sndbuf_expand (optional) */
1031 u32 (*sndbuf_expand)(struct sock *sk);
1032 /* call when packets are delivered to update cwnd and pacing rate,
1033 * after all the ca_state processing. (optional)
1034 */
1035 void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1036 /* get info for inet_diag (optional) */
1037 size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1038 union tcp_cc_info *info);
1039
1040 char name[TCP_CA_NAME_MAX];
1041 struct module *owner;
1042};
1043
1044int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1045void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1046
1047void tcp_assign_congestion_control(struct sock *sk);
1048void tcp_init_congestion_control(struct sock *sk);
1049void tcp_cleanup_congestion_control(struct sock *sk);
1050int tcp_set_default_congestion_control(const char *name);
1051void tcp_get_default_congestion_control(char *name);
1052void tcp_get_available_congestion_control(char *buf, size_t len);
1053void tcp_get_allowed_congestion_control(char *buf, size_t len);
1054int tcp_set_allowed_congestion_control(char *allowed);
1055int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1056 bool reinit, bool cap_net_admin);
1057u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1058void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1059
1060u32 tcp_reno_ssthresh(struct sock *sk);
1061u32 tcp_reno_undo_cwnd(struct sock *sk);
1062void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1063extern struct tcp_congestion_ops tcp_reno;
1064
1065struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1066u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca);
1067#ifdef CONFIG_INET
1068char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1069#else
1070static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1071{
1072 return NULL;
1073}
1074#endif
1075
1076static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1077{
1078 const struct inet_connection_sock *icsk = inet_csk(sk);
1079
1080 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1081}
1082
1083static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1084{
1085 struct inet_connection_sock *icsk = inet_csk(sk);
1086
1087 if (icsk->icsk_ca_ops->set_state)
1088 icsk->icsk_ca_ops->set_state(sk, ca_state);
1089 icsk->icsk_ca_state = ca_state;
1090}
1091
1092static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1093{
1094 const struct inet_connection_sock *icsk = inet_csk(sk);
1095
1096 if (icsk->icsk_ca_ops->cwnd_event)
1097 icsk->icsk_ca_ops->cwnd_event(sk, event);
1098}
1099
1100/* From tcp_rate.c */
1101void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1102void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1103 struct rate_sample *rs);
1104void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1105 bool is_sack_reneg, struct rate_sample *rs);
1106void tcp_rate_check_app_limited(struct sock *sk);
1107
1108/* These functions determine how the current flow behaves in respect of SACK
1109 * handling. SACK is negotiated with the peer, and therefore it can vary
1110 * between different flows.
1111 *
1112 * tcp_is_sack - SACK enabled
1113 * tcp_is_reno - No SACK
1114 * tcp_is_fack - FACK enabled, implies SACK enabled
1115 */
1116static inline int tcp_is_sack(const struct tcp_sock *tp)
1117{
1118 return tp->rx_opt.sack_ok;
1119}
1120
1121static inline bool tcp_is_reno(const struct tcp_sock *tp)
1122{
1123 return !tcp_is_sack(tp);
1124}
1125
1126static inline bool tcp_is_fack(const struct tcp_sock *tp)
1127{
1128 return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
1129}
1130
1131static inline void tcp_enable_fack(struct tcp_sock *tp)
1132{
1133 tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
1134}
1135
1136static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1137{
1138 return tp->sacked_out + tp->lost_out;
1139}
1140
1141/* This determines how many packets are "in the network" to the best
1142 * of our knowledge. In many cases it is conservative, but where
1143 * detailed information is available from the receiver (via SACK
1144 * blocks etc.) we can make more aggressive calculations.
1145 *
1146 * Use this for decisions involving congestion control, use just
1147 * tp->packets_out to determine if the send queue is empty or not.
1148 *
1149 * Read this equation as:
1150 *
1151 * "Packets sent once on transmission queue" MINUS
1152 * "Packets left network, but not honestly ACKed yet" PLUS
1153 * "Packets fast retransmitted"
1154 */
1155static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1156{
1157 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1158}
1159
1160#define TCP_INFINITE_SSTHRESH 0x7fffffff
1161
1162static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1163{
1164 return tp->snd_cwnd < tp->snd_ssthresh;
1165}
1166
1167static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1168{
1169 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1170}
1171
1172static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1173{
1174 return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1175 (1 << inet_csk(sk)->icsk_ca_state);
1176}
1177
1178/* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1179 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1180 * ssthresh.
1181 */
1182static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1183{
1184 const struct tcp_sock *tp = tcp_sk(sk);
1185
1186 if (tcp_in_cwnd_reduction(sk))
1187 return tp->snd_ssthresh;
1188 else
1189 return max(tp->snd_ssthresh,
1190 ((tp->snd_cwnd >> 1) +
1191 (tp->snd_cwnd >> 2)));
1192}
1193
1194/* Use define here intentionally to get WARN_ON location shown at the caller */
1195#define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
1196
1197void tcp_enter_cwr(struct sock *sk);
1198__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1199
1200/* The maximum number of MSS of available cwnd for which TSO defers
1201 * sending if not using sysctl_tcp_tso_win_divisor.
1202 */
1203static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1204{
1205 return 3;
1206}
1207
1208/* Returns end sequence number of the receiver's advertised window */
1209static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1210{
1211 return tp->snd_una + tp->snd_wnd;
1212}
1213
1214/* We follow the spirit of RFC2861 to validate cwnd but implement a more
1215 * flexible approach. The RFC suggests cwnd should not be raised unless
1216 * it was fully used previously. And that's exactly what we do in
1217 * congestion avoidance mode. But in slow start we allow cwnd to grow
1218 * as long as the application has used half the cwnd.
1219 * Example :
1220 * cwnd is 10 (IW10), but application sends 9 frames.
1221 * We allow cwnd to reach 18 when all frames are ACKed.
1222 * This check is safe because it's as aggressive as slow start which already
1223 * risks 100% overshoot. The advantage is that we discourage application to
1224 * either send more filler packets or data to artificially blow up the cwnd
1225 * usage, and allow application-limited process to probe bw more aggressively.
1226 */
1227static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1228{
1229 const struct tcp_sock *tp = tcp_sk(sk);
1230
1231 /* If in slow start, ensure cwnd grows to twice what was ACKed. */
1232 if (tcp_in_slow_start(tp))
1233 return tp->snd_cwnd < 2 * tp->max_packets_out;
1234
1235 return tp->is_cwnd_limited;
1236}
1237
1238/* Something is really bad, we could not queue an additional packet,
1239 * because qdisc is full or receiver sent a 0 window.
1240 * We do not want to add fuel to the fire, or abort too early,
1241 * so make sure the timer we arm now is at least 200ms in the future,
1242 * regardless of current icsk_rto value (as it could be ~2ms)
1243 */
1244static inline unsigned long tcp_probe0_base(const struct sock *sk)
1245{
1246 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1247}
1248
1249/* Variant of inet_csk_rto_backoff() used for zero window probes */
1250static inline unsigned long tcp_probe0_when(const struct sock *sk,
1251 unsigned long max_when)
1252{
1253 u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1254
1255 return (unsigned long)min_t(u64, when, max_when);
1256}
1257
1258static inline void tcp_check_probe_timer(struct sock *sk)
1259{
1260 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1261 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1262 tcp_probe0_base(sk), TCP_RTO_MAX);
1263}
1264
1265static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1266{
1267 tp->snd_wl1 = seq;
1268}
1269
1270static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1271{
1272 tp->snd_wl1 = seq;
1273}
1274
1275/*
1276 * Calculate(/check) TCP checksum
1277 */
1278static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1279 __be32 daddr, __wsum base)
1280{
1281 return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1282}
1283
1284static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1285{
1286 return __skb_checksum_complete(skb);
1287}
1288
1289static inline bool tcp_checksum_complete(struct sk_buff *skb)
1290{
1291 return !skb_csum_unnecessary(skb) &&
1292 __tcp_checksum_complete(skb);
1293}
1294
1295bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1296int tcp_filter(struct sock *sk, struct sk_buff *skb);
1297
1298#undef STATE_TRACE
1299
1300#ifdef STATE_TRACE
1301static const char *statename[]={
1302 "Unused","Established","Syn Sent","Syn Recv",
1303 "Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1304 "Close Wait","Last ACK","Listen","Closing"
1305};
1306#endif
1307void tcp_set_state(struct sock *sk, int state);
1308
1309void tcp_done(struct sock *sk);
1310
1311int tcp_abort(struct sock *sk, int err);
1312
1313static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1314{
1315 rx_opt->dsack = 0;
1316 rx_opt->num_sacks = 0;
1317}
1318
1319u32 tcp_default_init_rwnd(u32 mss);
1320void tcp_cwnd_restart(struct sock *sk, s32 delta);
1321
1322static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1323{
1324 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1325 struct tcp_sock *tp = tcp_sk(sk);
1326 s32 delta;
1327
1328 if (!sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1329 ca_ops->cong_control)
1330 return;
1331 delta = tcp_jiffies32 - tp->lsndtime;
1332 if (delta > inet_csk(sk)->icsk_rto)
1333 tcp_cwnd_restart(sk, delta);
1334}
1335
1336/* Determine a window scaling and initial window to offer. */
1337void tcp_select_initial_window(int __space, __u32 mss, __u32 *rcv_wnd,
1338 __u32 *window_clamp, int wscale_ok,
1339 __u8 *rcv_wscale, __u32 init_rcv_wnd);
1340
1341static inline int tcp_win_from_space(int space)
1342{
1343 int tcp_adv_win_scale = sysctl_tcp_adv_win_scale;
1344
1345 return tcp_adv_win_scale <= 0 ?
1346 (space>>(-tcp_adv_win_scale)) :
1347 space - (space>>tcp_adv_win_scale);
1348}
1349
1350/* Note: caller must be prepared to deal with negative returns */
1351static inline int tcp_space(const struct sock *sk)
1352{
1353 return tcp_win_from_space(sk->sk_rcvbuf -
1354 atomic_read(&sk->sk_rmem_alloc));
1355}
1356
1357static inline int tcp_full_space(const struct sock *sk)
1358{
1359 return tcp_win_from_space(sk->sk_rcvbuf);
1360}
1361
1362extern void tcp_openreq_init_rwin(struct request_sock *req,
1363 const struct sock *sk_listener,
1364 const struct dst_entry *dst);
1365
1366void tcp_enter_memory_pressure(struct sock *sk);
1367void tcp_leave_memory_pressure(struct sock *sk);
1368
1369static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1370{
1371 struct net *net = sock_net((struct sock *)tp);
1372
1373 return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1374}
1375
1376static inline int keepalive_time_when(const struct tcp_sock *tp)
1377{
1378 struct net *net = sock_net((struct sock *)tp);
1379
1380 return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1381}
1382
1383static inline int keepalive_probes(const struct tcp_sock *tp)
1384{
1385 struct net *net = sock_net((struct sock *)tp);
1386
1387 return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1388}
1389
1390static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1391{
1392 const struct inet_connection_sock *icsk = &tp->inet_conn;
1393
1394 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1395 tcp_jiffies32 - tp->rcv_tstamp);
1396}
1397
1398static inline int tcp_fin_time(const struct sock *sk)
1399{
1400 int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1401 const int rto = inet_csk(sk)->icsk_rto;
1402
1403 if (fin_timeout < (rto << 2) - (rto >> 1))
1404 fin_timeout = (rto << 2) - (rto >> 1);
1405
1406 return fin_timeout;
1407}
1408
1409static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1410 int paws_win)
1411{
1412 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1413 return true;
1414 if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1415 return true;
1416 /*
1417 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1418 * then following tcp messages have valid values. Ignore 0 value,
1419 * or else 'negative' tsval might forbid us to accept their packets.
1420 */
1421 if (!rx_opt->ts_recent)
1422 return true;
1423 return false;
1424}
1425
1426static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1427 int rst)
1428{
1429 if (tcp_paws_check(rx_opt, 0))
1430 return false;
1431
1432 /* RST segments are not recommended to carry timestamp,
1433 and, if they do, it is recommended to ignore PAWS because
1434 "their cleanup function should take precedence over timestamps."
1435 Certainly, it is mistake. It is necessary to understand the reasons
1436 of this constraint to relax it: if peer reboots, clock may go
1437 out-of-sync and half-open connections will not be reset.
1438 Actually, the problem would be not existing if all
1439 the implementations followed draft about maintaining clock
1440 via reboots. Linux-2.2 DOES NOT!
1441
1442 However, we can relax time bounds for RST segments to MSL.
1443 */
1444 if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1445 return false;
1446 return true;
1447}
1448
1449bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1450 int mib_idx, u32 *last_oow_ack_time);
1451
1452static inline void tcp_mib_init(struct net *net)
1453{
1454 /* See RFC 2012 */
1455 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1456 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1457 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1458 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1459}
1460
1461/* from STCP */
1462static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1463{
1464 tp->lost_skb_hint = NULL;
1465}
1466
1467static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1468{
1469 tcp_clear_retrans_hints_partial(tp);
1470 tp->retransmit_skb_hint = NULL;
1471}
1472
1473union tcp_md5_addr {
1474 struct in_addr a4;
1475#if IS_ENABLED(CONFIG_IPV6)
1476 struct in6_addr a6;
1477#endif
1478};
1479
1480/* - key database */
1481struct tcp_md5sig_key {
1482 struct hlist_node node;
1483 u8 keylen;
1484 u8 family; /* AF_INET or AF_INET6 */
1485 union tcp_md5_addr addr;
1486 u8 prefixlen;
1487 u8 key[TCP_MD5SIG_MAXKEYLEN];
1488 struct rcu_head rcu;
1489};
1490
1491/* - sock block */
1492struct tcp_md5sig_info {
1493 struct hlist_head head;
1494 struct rcu_head rcu;
1495};
1496
1497/* - pseudo header */
1498struct tcp4_pseudohdr {
1499 __be32 saddr;
1500 __be32 daddr;
1501 __u8 pad;
1502 __u8 protocol;
1503 __be16 len;
1504};
1505
1506struct tcp6_pseudohdr {
1507 struct in6_addr saddr;
1508 struct in6_addr daddr;
1509 __be32 len;
1510 __be32 protocol; /* including padding */
1511};
1512
1513union tcp_md5sum_block {
1514 struct tcp4_pseudohdr ip4;
1515#if IS_ENABLED(CONFIG_IPV6)
1516 struct tcp6_pseudohdr ip6;
1517#endif
1518};
1519
1520/* - pool: digest algorithm, hash description and scratch buffer */
1521struct tcp_md5sig_pool {
1522 struct ahash_request *md5_req;
1523 void *scratch;
1524};
1525
1526/* - functions */
1527int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1528 const struct sock *sk, const struct sk_buff *skb);
1529int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1530 int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1531 gfp_t gfp);
1532int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1533 int family, u8 prefixlen);
1534struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1535 const struct sock *addr_sk);
1536
1537#ifdef CONFIG_TCP_MD5SIG
1538struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1539 const union tcp_md5_addr *addr,
1540 int family);
1541#define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key)
1542#else
1543static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1544 const union tcp_md5_addr *addr,
1545 int family)
1546{
1547 return NULL;
1548}
1549#define tcp_twsk_md5_key(twsk) NULL
1550#endif
1551
1552bool tcp_alloc_md5sig_pool(void);
1553
1554struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1555static inline void tcp_put_md5sig_pool(void)
1556{
1557 local_bh_enable();
1558}
1559
1560int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1561 unsigned int header_len);
1562int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1563 const struct tcp_md5sig_key *key);
1564
1565/* From tcp_fastopen.c */
1566void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1567 struct tcp_fastopen_cookie *cookie, int *syn_loss,
1568 unsigned long *last_syn_loss);
1569void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1570 struct tcp_fastopen_cookie *cookie, bool syn_lost,
1571 u16 try_exp);
1572struct tcp_fastopen_request {
1573 /* Fast Open cookie. Size 0 means a cookie request */
1574 struct tcp_fastopen_cookie cookie;
1575 struct msghdr *data; /* data in MSG_FASTOPEN */
1576 size_t size;
1577 int copied; /* queued in tcp_connect() */
1578};
1579void tcp_free_fastopen_req(struct tcp_sock *tp);
1580
1581extern struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
1582int tcp_fastopen_reset_cipher(void *key, unsigned int len);
1583void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1584struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1585 struct request_sock *req,
1586 struct tcp_fastopen_cookie *foc);
1587void tcp_fastopen_init_key_once(bool publish);
1588bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1589 struct tcp_fastopen_cookie *cookie);
1590bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1591#define TCP_FASTOPEN_KEY_LENGTH 16
1592
1593/* Fastopen key context */
1594struct tcp_fastopen_context {
1595 struct crypto_cipher *tfm;
1596 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
1597 struct rcu_head rcu;
1598};
1599
1600extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1601void tcp_fastopen_active_disable(struct sock *sk);
1602bool tcp_fastopen_active_should_disable(struct sock *sk);
1603void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1604void tcp_fastopen_active_timeout_reset(void);
1605
1606/* Latencies incurred by various limits for a sender. They are
1607 * chronograph-like stats that are mutually exclusive.
1608 */
1609enum tcp_chrono {
1610 TCP_CHRONO_UNSPEC,
1611 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1612 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1613 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1614 __TCP_CHRONO_MAX,
1615};
1616
1617void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1618void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1619
1620static inline void tcp_init_send_head(struct sock *sk)
1621{
1622 sk->sk_send_head = NULL;
1623}
1624
1625/* write queue abstraction */
1626static inline void tcp_write_queue_purge(struct sock *sk)
1627{
1628 struct sk_buff *skb;
1629
1630 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1631 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1632 sk_wmem_free_skb(sk, skb);
1633 sk_mem_reclaim(sk);
1634 tcp_clear_all_retrans_hints(tcp_sk(sk));
1635 tcp_init_send_head(sk);
1636 tcp_sk(sk)->packets_out = 0;
1637 inet_csk(sk)->icsk_backoff = 0;
1638}
1639
1640static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1641{
1642 return skb_peek(&sk->sk_write_queue);
1643}
1644
1645static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1646{
1647 return skb_peek_tail(&sk->sk_write_queue);
1648}
1649
1650static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1651 const struct sk_buff *skb)
1652{
1653 return skb_queue_next(&sk->sk_write_queue, skb);
1654}
1655
1656static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1657 const struct sk_buff *skb)
1658{
1659 return skb_queue_prev(&sk->sk_write_queue, skb);
1660}
1661
1662#define tcp_for_write_queue(skb, sk) \
1663 skb_queue_walk(&(sk)->sk_write_queue, skb)
1664
1665#define tcp_for_write_queue_from(skb, sk) \
1666 skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1667
1668#define tcp_for_write_queue_from_safe(skb, tmp, sk) \
1669 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1670
1671static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1672{
1673 return sk->sk_send_head;
1674}
1675
1676static inline bool tcp_skb_is_last(const struct sock *sk,
1677 const struct sk_buff *skb)
1678{
1679 return skb_queue_is_last(&sk->sk_write_queue, skb);
1680}
1681
1682static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
1683{
1684 if (tcp_skb_is_last(sk, skb))
1685 sk->sk_send_head = NULL;
1686 else
1687 sk->sk_send_head = tcp_write_queue_next(sk, skb);
1688}
1689
1690static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1691{
1692 if (sk->sk_send_head == skb_unlinked) {
1693 sk->sk_send_head = NULL;
1694 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1695 }
1696 if (tcp_sk(sk)->highest_sack == skb_unlinked)
1697 tcp_sk(sk)->highest_sack = NULL;
1698}
1699
1700static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1701{
1702 struct sk_buff *skb = tcp_write_queue_head(sk);
1703
1704 if (skb == tcp_send_head(sk))
1705 skb = NULL;
1706
1707 return skb;
1708}
1709
1710static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1711{
1712 struct sk_buff *skb = tcp_send_head(sk);
1713
1714 /* empty retransmit queue, for example due to zero window */
1715 if (skb == tcp_write_queue_head(sk))
1716 return NULL;
1717
1718 return skb ? tcp_write_queue_prev(sk, skb) : tcp_write_queue_tail(sk);
1719}
1720
1721static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1722{
1723 __skb_queue_tail(&sk->sk_write_queue, skb);
1724}
1725
1726static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1727{
1728 __tcp_add_write_queue_tail(sk, skb);
1729
1730 /* Queue it, remembering where we must start sending. */
1731 if (sk->sk_send_head == NULL) {
1732 sk->sk_send_head = skb;
1733 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1734
1735 if (tcp_sk(sk)->highest_sack == NULL)
1736 tcp_sk(sk)->highest_sack = skb;
1737 }
1738}
1739
1740static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1741{
1742 __skb_queue_head(&sk->sk_write_queue, skb);
1743}
1744
1745/* Insert buff after skb on the write queue of sk. */
1746static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1747 struct sk_buff *buff,
1748 struct sock *sk)
1749{
1750 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1751}
1752
1753/* Insert new before skb on the write queue of sk. */
1754static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1755 struct sk_buff *skb,
1756 struct sock *sk)
1757{
1758 __skb_queue_before(&sk->sk_write_queue, skb, new);
1759
1760 if (sk->sk_send_head == skb)
1761 sk->sk_send_head = new;
1762}
1763
1764static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1765{
1766 __skb_unlink(skb, &sk->sk_write_queue);
1767}
1768
1769static inline bool tcp_write_queue_empty(struct sock *sk)
1770{
1771 return skb_queue_empty(&sk->sk_write_queue);
1772}
1773
1774static inline void tcp_push_pending_frames(struct sock *sk)
1775{
1776 if (tcp_send_head(sk)) {
1777 struct tcp_sock *tp = tcp_sk(sk);
1778
1779 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1780 }
1781}
1782
1783/* Start sequence of the skb just after the highest skb with SACKed
1784 * bit, valid only if sacked_out > 0 or when the caller has ensured
1785 * validity by itself.
1786 */
1787static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1788{
1789 if (!tp->sacked_out)
1790 return tp->snd_una;
1791
1792 if (tp->highest_sack == NULL)
1793 return tp->snd_nxt;
1794
1795 return TCP_SKB_CB(tp->highest_sack)->seq;
1796}
1797
1798static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1799{
1800 tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1801 tcp_write_queue_next(sk, skb);
1802}
1803
1804static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1805{
1806 return tcp_sk(sk)->highest_sack;
1807}
1808
1809static inline void tcp_highest_sack_reset(struct sock *sk)
1810{
1811 tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1812}
1813
1814/* Called when old skb is about to be deleted and replaced by new skb */
1815static inline void tcp_highest_sack_replace(struct sock *sk,
1816 struct sk_buff *old,
1817 struct sk_buff *new)
1818{
1819 if (old == tcp_highest_sack(sk))
1820 tcp_sk(sk)->highest_sack = new;
1821}
1822
1823/* This helper checks if socket has IP_TRANSPARENT set */
1824static inline bool inet_sk_transparent(const struct sock *sk)
1825{
1826 switch (sk->sk_state) {
1827 case TCP_TIME_WAIT:
1828 return inet_twsk(sk)->tw_transparent;
1829 case TCP_NEW_SYN_RECV:
1830 return inet_rsk(inet_reqsk(sk))->no_srccheck;
1831 }
1832 return inet_sk(sk)->transparent;
1833}
1834
1835/* Determines whether this is a thin stream (which may suffer from
1836 * increased latency). Used to trigger latency-reducing mechanisms.
1837 */
1838static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1839{
1840 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1841}
1842
1843/* /proc */
1844enum tcp_seq_states {
1845 TCP_SEQ_STATE_LISTENING,
1846 TCP_SEQ_STATE_ESTABLISHED,
1847};
1848
1849int tcp_seq_open(struct inode *inode, struct file *file);
1850
1851struct tcp_seq_afinfo {
1852 char *name;
1853 sa_family_t family;
1854 const struct file_operations *seq_fops;
1855 struct seq_operations seq_ops;
1856};
1857
1858struct tcp_iter_state {
1859 struct seq_net_private p;
1860 sa_family_t family;
1861 enum tcp_seq_states state;
1862 struct sock *syn_wait_sk;
1863 int bucket, offset, sbucket, num;
1864 loff_t last_pos;
1865};
1866
1867int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1868void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1869
1870extern struct request_sock_ops tcp_request_sock_ops;
1871extern struct request_sock_ops tcp6_request_sock_ops;
1872
1873void tcp_v4_destroy_sock(struct sock *sk);
1874
1875struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1876 netdev_features_t features);
1877struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1878int tcp_gro_complete(struct sk_buff *skb);
1879
1880void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1881
1882static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1883{
1884 struct net *net = sock_net((struct sock *)tp);
1885 return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1886}
1887
1888static inline bool tcp_stream_memory_free(const struct sock *sk)
1889{
1890 const struct tcp_sock *tp = tcp_sk(sk);
1891 u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1892
1893 return notsent_bytes < tcp_notsent_lowat(tp);
1894}
1895
1896#ifdef CONFIG_PROC_FS
1897int tcp4_proc_init(void);
1898void tcp4_proc_exit(void);
1899#endif
1900
1901int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1902int tcp_conn_request(struct request_sock_ops *rsk_ops,
1903 const struct tcp_request_sock_ops *af_ops,
1904 struct sock *sk, struct sk_buff *skb);
1905
1906/* TCP af-specific functions */
1907struct tcp_sock_af_ops {
1908#ifdef CONFIG_TCP_MD5SIG
1909 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk,
1910 const struct sock *addr_sk);
1911 int (*calc_md5_hash)(char *location,
1912 const struct tcp_md5sig_key *md5,
1913 const struct sock *sk,
1914 const struct sk_buff *skb);
1915 int (*md5_parse)(struct sock *sk,
1916 int optname,
1917 char __user *optval,
1918 int optlen);
1919#endif
1920};
1921
1922struct tcp_request_sock_ops {
1923 u16 mss_clamp;
1924#ifdef CONFIG_TCP_MD5SIG
1925 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1926 const struct sock *addr_sk);
1927 int (*calc_md5_hash) (char *location,
1928 const struct tcp_md5sig_key *md5,
1929 const struct sock *sk,
1930 const struct sk_buff *skb);
1931#endif
1932 void (*init_req)(struct request_sock *req,
1933 const struct sock *sk_listener,
1934 struct sk_buff *skb);
1935#ifdef CONFIG_SYN_COOKIES
1936 __u32 (*cookie_init_seq)(const struct sk_buff *skb,
1937 __u16 *mss);
1938#endif
1939 struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1940 const struct request_sock *req);
1941 u32 (*init_seq)(const struct sk_buff *skb);
1942 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
1943 int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1944 struct flowi *fl, struct request_sock *req,
1945 struct tcp_fastopen_cookie *foc,
1946 enum tcp_synack_type synack_type);
1947};
1948
1949#ifdef CONFIG_SYN_COOKIES
1950static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1951 const struct sock *sk, struct sk_buff *skb,
1952 __u16 *mss)
1953{
1954 tcp_synq_overflow(sk);
1955 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1956 return ops->cookie_init_seq(skb, mss);
1957}
1958#else
1959static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1960 const struct sock *sk, struct sk_buff *skb,
1961 __u16 *mss)
1962{
1963 return 0;
1964}
1965#endif
1966
1967int tcpv4_offload_init(void);
1968
1969void tcp_v4_init(void);
1970void tcp_init(void);
1971
1972/* tcp_recovery.c */
1973extern void tcp_rack_mark_lost(struct sock *sk);
1974extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
1975 u64 xmit_time);
1976extern void tcp_rack_reo_timeout(struct sock *sk);
1977
1978/* At how many usecs into the future should the RTO fire? */
1979static inline s64 tcp_rto_delta_us(const struct sock *sk)
1980{
1981 const struct sk_buff *skb = tcp_write_queue_head(sk);
1982 u32 rto = inet_csk(sk)->icsk_rto;
1983 u64 rto_time_stamp_us = skb->skb_mstamp + jiffies_to_usecs(rto);
1984
1985 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
1986}
1987
1988/*
1989 * Save and compile IPv4 options, return a pointer to it
1990 */
1991static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
1992 struct sk_buff *skb)
1993{
1994 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1995 struct ip_options_rcu *dopt = NULL;
1996
1997 if (opt->optlen) {
1998 int opt_size = sizeof(*dopt) + opt->optlen;
1999
2000 dopt = kmalloc(opt_size, GFP_ATOMIC);
2001 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2002 kfree(dopt);
2003 dopt = NULL;
2004 }
2005 }
2006 return dopt;
2007}
2008
2009/* locally generated TCP pure ACKs have skb->truesize == 2
2010 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2011 * This is much faster than dissecting the packet to find out.
2012 * (Think of GRE encapsulations, IPv4, IPv6, ...)
2013 */
2014static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2015{
2016 return skb->truesize == 2;
2017}
2018
2019static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2020{
2021 skb->truesize = 2;
2022}
2023
2024static inline int tcp_inq(struct sock *sk)
2025{
2026 struct tcp_sock *tp = tcp_sk(sk);
2027 int answ;
2028
2029 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2030 answ = 0;
2031 } else if (sock_flag(sk, SOCK_URGINLINE) ||
2032 !tp->urg_data ||
2033 before(tp->urg_seq, tp->copied_seq) ||
2034 !before(tp->urg_seq, tp->rcv_nxt)) {
2035
2036 answ = tp->rcv_nxt - tp->copied_seq;
2037
2038 /* Subtract 1, if FIN was received */
2039 if (answ && sock_flag(sk, SOCK_DONE))
2040 answ--;
2041 } else {
2042 answ = tp->urg_seq - tp->copied_seq;
2043 }
2044
2045 return answ;
2046}
2047
2048int tcp_peek_len(struct socket *sock);
2049
2050static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2051{
2052 u16 segs_in;
2053
2054 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2055 tp->segs_in += segs_in;
2056 if (skb->len > tcp_hdrlen(skb))
2057 tp->data_segs_in += segs_in;
2058}
2059
2060/*
2061 * TCP listen path runs lockless.
2062 * We forced "struct sock" to be const qualified to make sure
2063 * we don't modify one of its field by mistake.
2064 * Here, we increment sk_drops which is an atomic_t, so we can safely
2065 * make sock writable again.
2066 */
2067static inline void tcp_listendrop(const struct sock *sk)
2068{
2069 atomic_inc(&((struct sock *)sk)->sk_drops);
2070 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2071}
2072
2073enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2074
2075/*
2076 * Interface for adding Upper Level Protocols over TCP
2077 */
2078
2079#define TCP_ULP_NAME_MAX 16
2080#define TCP_ULP_MAX 128
2081#define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2082
2083struct tcp_ulp_ops {
2084 struct list_head list;
2085
2086 /* initialize ulp */
2087 int (*init)(struct sock *sk);
2088 /* cleanup ulp */
2089 void (*release)(struct sock *sk);
2090
2091 char name[TCP_ULP_NAME_MAX];
2092 struct module *owner;
2093};
2094int tcp_register_ulp(struct tcp_ulp_ops *type);
2095void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2096int tcp_set_ulp(struct sock *sk, const char *name);
2097void tcp_get_available_ulp(char *buf, size_t len);
2098void tcp_cleanup_ulp(struct sock *sk);
2099
2100#define MODULE_ALIAS_TCP_ULP(name) \
2101 __MODULE_INFO(alias, alias_userspace, name); \
2102 __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2103
2104/* Call BPF_SOCK_OPS program that returns an int. If the return value
2105 * is < 0, then the BPF op failed (for example if the loaded BPF
2106 * program does not support the chosen operation or there is no BPF
2107 * program loaded).
2108 */
2109#ifdef CONFIG_BPF
2110static inline int tcp_call_bpf(struct sock *sk, int op)
2111{
2112 struct bpf_sock_ops_kern sock_ops;
2113 int ret;
2114
2115 if (sk_fullsock(sk))
2116 sock_owned_by_me(sk);
2117
2118 memset(&sock_ops, 0, sizeof(sock_ops));
2119 sock_ops.sk = sk;
2120 sock_ops.op = op;
2121
2122 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2123 if (ret == 0)
2124 ret = sock_ops.reply;
2125 else
2126 ret = -1;
2127 return ret;
2128}
2129#else
2130static inline int tcp_call_bpf(struct sock *sk, int op)
2131{
2132 return -EPERM;
2133}
2134#endif
2135
2136static inline u32 tcp_timeout_init(struct sock *sk)
2137{
2138 int timeout;
2139
2140 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT);
2141
2142 if (timeout <= 0)
2143 timeout = TCP_TIMEOUT_INIT;
2144 return timeout;
2145}
2146
2147static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2148{
2149 int rwnd;
2150
2151 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT);
2152
2153 if (rwnd < 0)
2154 rwnd = 0;
2155 return rwnd;
2156}
2157
2158static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2159{
2160 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN) == 1);
2161}
2162#endif /* _TCP_H */