blob: 1d166be184f7b3fd4754925c46f89f9fe3a15558 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001#include "cgroup-internal.h"
2
3#include <linux/ctype.h>
4#include <linux/kmod.h>
5#include <linux/sort.h>
6#include <linux/delay.h>
7#include <linux/mm.h>
8#include <linux/sched/signal.h>
9#include <linux/sched/task.h>
10#include <linux/magic.h>
11#include <linux/slab.h>
12#include <linux/vmalloc.h>
13#include <linux/delayacct.h>
14#include <linux/pid_namespace.h>
15#include <linux/cgroupstats.h>
16
17#include <trace/events/cgroup.h>
18
19/*
20 * pidlists linger the following amount before being destroyed. The goal
21 * is avoiding frequent destruction in the middle of consecutive read calls
22 * Expiring in the middle is a performance problem not a correctness one.
23 * 1 sec should be enough.
24 */
25#define CGROUP_PIDLIST_DESTROY_DELAY HZ
26
27/* Controllers blocked by the commandline in v1 */
28static u16 cgroup_no_v1_mask;
29
30/*
31 * pidlist destructions need to be flushed on cgroup destruction. Use a
32 * separate workqueue as flush domain.
33 */
34static struct workqueue_struct *cgroup_pidlist_destroy_wq;
35
36/*
37 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
38 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
39 */
40static DEFINE_SPINLOCK(release_agent_path_lock);
41
42bool cgroup1_ssid_disabled(int ssid)
43{
44 return cgroup_no_v1_mask & (1 << ssid);
45}
46
47/**
48 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
49 * @from: attach to all cgroups of a given task
50 * @tsk: the task to be attached
51 */
52int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
53{
54 struct cgroup_root *root;
55 int retval = 0;
56
57 mutex_lock(&cgroup_mutex);
58 percpu_down_write(&cgroup_threadgroup_rwsem);
59 for_each_root(root) {
60 struct cgroup *from_cgrp;
61
62 if (root == &cgrp_dfl_root)
63 continue;
64
65 spin_lock_irq(&css_set_lock);
66 from_cgrp = task_cgroup_from_root(from, root);
67 spin_unlock_irq(&css_set_lock);
68
69 retval = cgroup_attach_task(from_cgrp, tsk, false);
70 if (retval)
71 break;
72 }
73 percpu_up_write(&cgroup_threadgroup_rwsem);
74 mutex_unlock(&cgroup_mutex);
75
76 return retval;
77}
78EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
79
80/**
81 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
82 * @to: cgroup to which the tasks will be moved
83 * @from: cgroup in which the tasks currently reside
84 *
85 * Locking rules between cgroup_post_fork() and the migration path
86 * guarantee that, if a task is forking while being migrated, the new child
87 * is guaranteed to be either visible in the source cgroup after the
88 * parent's migration is complete or put into the target cgroup. No task
89 * can slip out of migration through forking.
90 */
91int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
92{
93 DEFINE_CGROUP_MGCTX(mgctx);
94 struct cgrp_cset_link *link;
95 struct css_task_iter it;
96 struct task_struct *task;
97 int ret;
98
99 if (cgroup_on_dfl(to))
100 return -EINVAL;
101
102 ret = cgroup_migrate_vet_dst(to);
103 if (ret)
104 return ret;
105
106 mutex_lock(&cgroup_mutex);
107
108 percpu_down_write(&cgroup_threadgroup_rwsem);
109
110 /* all tasks in @from are being moved, all csets are source */
111 spin_lock_irq(&css_set_lock);
112 list_for_each_entry(link, &from->cset_links, cset_link)
113 cgroup_migrate_add_src(link->cset, to, &mgctx);
114 spin_unlock_irq(&css_set_lock);
115
116 ret = cgroup_migrate_prepare_dst(&mgctx);
117 if (ret)
118 goto out_err;
119
120 /*
121 * Migrate tasks one-by-one until @from is empty. This fails iff
122 * ->can_attach() fails.
123 */
124 do {
125 css_task_iter_start(&from->self, 0, &it);
126
127 do {
128 task = css_task_iter_next(&it);
129 } while (task && (task->flags & PF_EXITING));
130
131 if (task)
132 get_task_struct(task);
133 css_task_iter_end(&it);
134
135 if (task) {
136 ret = cgroup_migrate(task, false, &mgctx);
137 if (!ret)
138 trace_cgroup_transfer_tasks(to, task, false);
139 put_task_struct(task);
140 }
141 } while (task && !ret);
142out_err:
143 cgroup_migrate_finish(&mgctx);
144 percpu_up_write(&cgroup_threadgroup_rwsem);
145 mutex_unlock(&cgroup_mutex);
146 return ret;
147}
148
149/*
150 * Stuff for reading the 'tasks'/'procs' files.
151 *
152 * Reading this file can return large amounts of data if a cgroup has
153 * *lots* of attached tasks. So it may need several calls to read(),
154 * but we cannot guarantee that the information we produce is correct
155 * unless we produce it entirely atomically.
156 *
157 */
158
159/* which pidlist file are we talking about? */
160enum cgroup_filetype {
161 CGROUP_FILE_PROCS,
162 CGROUP_FILE_TASKS,
163};
164
165/*
166 * A pidlist is a list of pids that virtually represents the contents of one
167 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
168 * a pair (one each for procs, tasks) for each pid namespace that's relevant
169 * to the cgroup.
170 */
171struct cgroup_pidlist {
172 /*
173 * used to find which pidlist is wanted. doesn't change as long as
174 * this particular list stays in the list.
175 */
176 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
177 /* array of xids */
178 pid_t *list;
179 /* how many elements the above list has */
180 int length;
181 /* each of these stored in a list by its cgroup */
182 struct list_head links;
183 /* pointer to the cgroup we belong to, for list removal purposes */
184 struct cgroup *owner;
185 /* for delayed destruction */
186 struct delayed_work destroy_dwork;
187};
188
189/*
190 * The following two functions "fix" the issue where there are more pids
191 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
192 * TODO: replace with a kernel-wide solution to this problem
193 */
194#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
195static void *pidlist_allocate(int count)
196{
197 if (PIDLIST_TOO_LARGE(count))
198 return vmalloc(count * sizeof(pid_t));
199 else
200 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
201}
202
203static void pidlist_free(void *p)
204{
205 kvfree(p);
206}
207
208/*
209 * Used to destroy all pidlists lingering waiting for destroy timer. None
210 * should be left afterwards.
211 */
212void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
213{
214 struct cgroup_pidlist *l, *tmp_l;
215
216 mutex_lock(&cgrp->pidlist_mutex);
217 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
218 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
219 mutex_unlock(&cgrp->pidlist_mutex);
220
221 flush_workqueue(cgroup_pidlist_destroy_wq);
222 BUG_ON(!list_empty(&cgrp->pidlists));
223}
224
225static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
226{
227 struct delayed_work *dwork = to_delayed_work(work);
228 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
229 destroy_dwork);
230 struct cgroup_pidlist *tofree = NULL;
231
232 mutex_lock(&l->owner->pidlist_mutex);
233
234 /*
235 * Destroy iff we didn't get queued again. The state won't change
236 * as destroy_dwork can only be queued while locked.
237 */
238 if (!delayed_work_pending(dwork)) {
239 list_del(&l->links);
240 pidlist_free(l->list);
241 put_pid_ns(l->key.ns);
242 tofree = l;
243 }
244
245 mutex_unlock(&l->owner->pidlist_mutex);
246 kfree(tofree);
247}
248
249/*
250 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
251 * Returns the number of unique elements.
252 */
253static int pidlist_uniq(pid_t *list, int length)
254{
255 int src, dest = 1;
256
257 /*
258 * we presume the 0th element is unique, so i starts at 1. trivial
259 * edge cases first; no work needs to be done for either
260 */
261 if (length == 0 || length == 1)
262 return length;
263 /* src and dest walk down the list; dest counts unique elements */
264 for (src = 1; src < length; src++) {
265 /* find next unique element */
266 while (list[src] == list[src-1]) {
267 src++;
268 if (src == length)
269 goto after;
270 }
271 /* dest always points to where the next unique element goes */
272 list[dest] = list[src];
273 dest++;
274 }
275after:
276 return dest;
277}
278
279/*
280 * The two pid files - task and cgroup.procs - guaranteed that the result
281 * is sorted, which forced this whole pidlist fiasco. As pid order is
282 * different per namespace, each namespace needs differently sorted list,
283 * making it impossible to use, for example, single rbtree of member tasks
284 * sorted by task pointer. As pidlists can be fairly large, allocating one
285 * per open file is dangerous, so cgroup had to implement shared pool of
286 * pidlists keyed by cgroup and namespace.
287 */
288static int cmppid(const void *a, const void *b)
289{
290 return *(pid_t *)a - *(pid_t *)b;
291}
292
293static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
294 enum cgroup_filetype type)
295{
296 struct cgroup_pidlist *l;
297 /* don't need task_nsproxy() if we're looking at ourself */
298 struct pid_namespace *ns = task_active_pid_ns(current);
299
300 lockdep_assert_held(&cgrp->pidlist_mutex);
301
302 list_for_each_entry(l, &cgrp->pidlists, links)
303 if (l->key.type == type && l->key.ns == ns)
304 return l;
305 return NULL;
306}
307
308/*
309 * find the appropriate pidlist for our purpose (given procs vs tasks)
310 * returns with the lock on that pidlist already held, and takes care
311 * of the use count, or returns NULL with no locks held if we're out of
312 * memory.
313 */
314static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
315 enum cgroup_filetype type)
316{
317 struct cgroup_pidlist *l;
318
319 lockdep_assert_held(&cgrp->pidlist_mutex);
320
321 l = cgroup_pidlist_find(cgrp, type);
322 if (l)
323 return l;
324
325 /* entry not found; create a new one */
326 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
327 if (!l)
328 return l;
329
330 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
331 l->key.type = type;
332 /* don't need task_nsproxy() if we're looking at ourself */
333 l->key.ns = get_pid_ns(task_active_pid_ns(current));
334 l->owner = cgrp;
335 list_add(&l->links, &cgrp->pidlists);
336 return l;
337}
338
339/**
340 * cgroup_task_count - count the number of tasks in a cgroup.
341 * @cgrp: the cgroup in question
342 */
343int cgroup_task_count(const struct cgroup *cgrp)
344{
345 int count = 0;
346 struct cgrp_cset_link *link;
347
348 spin_lock_irq(&css_set_lock);
349 list_for_each_entry(link, &cgrp->cset_links, cset_link)
350 count += link->cset->nr_tasks;
351 spin_unlock_irq(&css_set_lock);
352 return count;
353}
354
355/*
356 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
357 */
358static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
359 struct cgroup_pidlist **lp)
360{
361 pid_t *array;
362 int length;
363 int pid, n = 0; /* used for populating the array */
364 struct css_task_iter it;
365 struct task_struct *tsk;
366 struct cgroup_pidlist *l;
367
368 lockdep_assert_held(&cgrp->pidlist_mutex);
369
370 /*
371 * If cgroup gets more users after we read count, we won't have
372 * enough space - tough. This race is indistinguishable to the
373 * caller from the case that the additional cgroup users didn't
374 * show up until sometime later on.
375 */
376 length = cgroup_task_count(cgrp);
377 array = pidlist_allocate(length);
378 if (!array)
379 return -ENOMEM;
380 /* now, populate the array */
381 css_task_iter_start(&cgrp->self, 0, &it);
382 while ((tsk = css_task_iter_next(&it))) {
383 if (unlikely(n == length))
384 break;
385 /* get tgid or pid for procs or tasks file respectively */
386 if (type == CGROUP_FILE_PROCS)
387 pid = task_tgid_vnr(tsk);
388 else
389 pid = task_pid_vnr(tsk);
390 if (pid > 0) /* make sure to only use valid results */
391 array[n++] = pid;
392 }
393 css_task_iter_end(&it);
394 length = n;
395 /* now sort & (if procs) strip out duplicates */
396 sort(array, length, sizeof(pid_t), cmppid, NULL);
397 if (type == CGROUP_FILE_PROCS)
398 length = pidlist_uniq(array, length);
399
400 l = cgroup_pidlist_find_create(cgrp, type);
401 if (!l) {
402 pidlist_free(array);
403 return -ENOMEM;
404 }
405
406 /* store array, freeing old if necessary */
407 pidlist_free(l->list);
408 l->list = array;
409 l->length = length;
410 *lp = l;
411 return 0;
412}
413
414/*
415 * seq_file methods for the tasks/procs files. The seq_file position is the
416 * next pid to display; the seq_file iterator is a pointer to the pid
417 * in the cgroup->l->list array.
418 */
419
420static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
421{
422 /*
423 * Initially we receive a position value that corresponds to
424 * one more than the last pid shown (or 0 on the first call or
425 * after a seek to the start). Use a binary-search to find the
426 * next pid to display, if any
427 */
428 struct kernfs_open_file *of = s->private;
429 struct cgroup *cgrp = seq_css(s)->cgroup;
430 struct cgroup_pidlist *l;
431 enum cgroup_filetype type = seq_cft(s)->private;
432 int index = 0, pid = *pos;
433 int *iter, ret;
434
435 mutex_lock(&cgrp->pidlist_mutex);
436
437 /*
438 * !NULL @of->priv indicates that this isn't the first start()
439 * after open. If the matching pidlist is around, we can use that.
440 * Look for it. Note that @of->priv can't be used directly. It
441 * could already have been destroyed.
442 */
443 if (of->priv)
444 of->priv = cgroup_pidlist_find(cgrp, type);
445
446 /*
447 * Either this is the first start() after open or the matching
448 * pidlist has been destroyed inbetween. Create a new one.
449 */
450 if (!of->priv) {
451 ret = pidlist_array_load(cgrp, type,
452 (struct cgroup_pidlist **)&of->priv);
453 if (ret)
454 return ERR_PTR(ret);
455 }
456 l = of->priv;
457
458 if (pid) {
459 int end = l->length;
460
461 while (index < end) {
462 int mid = (index + end) / 2;
463 if (l->list[mid] == pid) {
464 index = mid;
465 break;
466 } else if (l->list[mid] <= pid)
467 index = mid + 1;
468 else
469 end = mid;
470 }
471 }
472 /* If we're off the end of the array, we're done */
473 if (index >= l->length)
474 return NULL;
475 /* Update the abstract position to be the actual pid that we found */
476 iter = l->list + index;
477 *pos = *iter;
478 return iter;
479}
480
481static void cgroup_pidlist_stop(struct seq_file *s, void *v)
482{
483 struct kernfs_open_file *of = s->private;
484 struct cgroup_pidlist *l = of->priv;
485
486 if (l)
487 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
488 CGROUP_PIDLIST_DESTROY_DELAY);
489 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
490}
491
492static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
493{
494 struct kernfs_open_file *of = s->private;
495 struct cgroup_pidlist *l = of->priv;
496 pid_t *p = v;
497 pid_t *end = l->list + l->length;
498 /*
499 * Advance to the next pid in the array. If this goes off the
500 * end, we're done
501 */
502 p++;
503 if (p >= end) {
504 (*pos)++;
505 return NULL;
506 } else {
507 *pos = *p;
508 return p;
509 }
510}
511
512static int cgroup_pidlist_show(struct seq_file *s, void *v)
513{
514 seq_printf(s, "%d\n", *(int *)v);
515
516 return 0;
517}
518
519static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of,
520 char *buf, size_t nbytes, loff_t off,
521 bool threadgroup)
522{
523 struct cgroup *cgrp;
524 struct task_struct *task;
525 const struct cred *cred, *tcred;
526 ssize_t ret;
527
528 cgrp = cgroup_kn_lock_live(of->kn, false);
529 if (!cgrp)
530 return -ENODEV;
531
532 task = cgroup_procs_write_start(buf, threadgroup);
533 ret = PTR_ERR_OR_ZERO(task);
534 if (ret)
535 goto out_unlock;
536
537 /*
538 * Even if we're attaching all tasks in the thread group, we only
539 * need to check permissions on one of them.
540 */
541 cred = current_cred();
542 tcred = get_task_cred(task);
543 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
544 !uid_eq(cred->euid, tcred->uid) &&
545 !uid_eq(cred->euid, tcred->suid) &&
546 !ns_capable(tcred->user_ns, CAP_SYS_NICE))
547 ret = -EACCES;
548 put_cred(tcred);
549 if (ret)
550 goto out_finish;
551
552 ret = cgroup_attach_task(cgrp, task, threadgroup);
553
554out_finish:
555 cgroup_procs_write_finish(task);
556out_unlock:
557 cgroup_kn_unlock(of->kn);
558
559 return ret ?: nbytes;
560}
561
562static ssize_t cgroup1_procs_write(struct kernfs_open_file *of,
563 char *buf, size_t nbytes, loff_t off)
564{
565 return __cgroup1_procs_write(of, buf, nbytes, off, true);
566}
567
568static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of,
569 char *buf, size_t nbytes, loff_t off)
570{
571 return __cgroup1_procs_write(of, buf, nbytes, off, false);
572}
573
574static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
575 char *buf, size_t nbytes, loff_t off)
576{
577 struct cgroup *cgrp;
578
579 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
580
581 cgrp = cgroup_kn_lock_live(of->kn, false);
582 if (!cgrp)
583 return -ENODEV;
584 spin_lock(&release_agent_path_lock);
585 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
586 sizeof(cgrp->root->release_agent_path));
587 spin_unlock(&release_agent_path_lock);
588 cgroup_kn_unlock(of->kn);
589 return nbytes;
590}
591
592static int cgroup_release_agent_show(struct seq_file *seq, void *v)
593{
594 struct cgroup *cgrp = seq_css(seq)->cgroup;
595
596 spin_lock(&release_agent_path_lock);
597 seq_puts(seq, cgrp->root->release_agent_path);
598 spin_unlock(&release_agent_path_lock);
599 seq_putc(seq, '\n');
600 return 0;
601}
602
603static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
604{
605 seq_puts(seq, "0\n");
606 return 0;
607}
608
609static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
610 struct cftype *cft)
611{
612 return notify_on_release(css->cgroup);
613}
614
615static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
616 struct cftype *cft, u64 val)
617{
618 if (val)
619 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
620 else
621 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
622 return 0;
623}
624
625static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
626 struct cftype *cft)
627{
628 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
629}
630
631static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
632 struct cftype *cft, u64 val)
633{
634 if (val)
635 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
636 else
637 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
638 return 0;
639}
640
641/* cgroup core interface files for the legacy hierarchies */
642struct cftype cgroup1_base_files[] = {
643 {
644 .name = "cgroup.procs",
645 .seq_start = cgroup_pidlist_start,
646 .seq_next = cgroup_pidlist_next,
647 .seq_stop = cgroup_pidlist_stop,
648 .seq_show = cgroup_pidlist_show,
649 .private = CGROUP_FILE_PROCS,
650 .write = cgroup1_procs_write,
651 },
652 {
653 .name = "cgroup.clone_children",
654 .read_u64 = cgroup_clone_children_read,
655 .write_u64 = cgroup_clone_children_write,
656 },
657 {
658 .name = "cgroup.sane_behavior",
659 .flags = CFTYPE_ONLY_ON_ROOT,
660 .seq_show = cgroup_sane_behavior_show,
661 },
662 {
663 .name = "tasks",
664 .seq_start = cgroup_pidlist_start,
665 .seq_next = cgroup_pidlist_next,
666 .seq_stop = cgroup_pidlist_stop,
667 .seq_show = cgroup_pidlist_show,
668 .private = CGROUP_FILE_TASKS,
669 .write = cgroup1_tasks_write,
670 },
671 {
672 .name = "notify_on_release",
673 .read_u64 = cgroup_read_notify_on_release,
674 .write_u64 = cgroup_write_notify_on_release,
675 },
676 {
677 .name = "release_agent",
678 .flags = CFTYPE_ONLY_ON_ROOT,
679 .seq_show = cgroup_release_agent_show,
680 .write = cgroup_release_agent_write,
681 .max_write_len = PATH_MAX - 1,
682 },
683 { } /* terminate */
684};
685
686/* Display information about each subsystem and each hierarchy */
687static int proc_cgroupstats_show(struct seq_file *m, void *v)
688{
689 struct cgroup_subsys *ss;
690 int i;
691
692 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
693 /*
694 * ideally we don't want subsystems moving around while we do this.
695 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
696 * subsys/hierarchy state.
697 */
698 mutex_lock(&cgroup_mutex);
699
700 for_each_subsys(ss, i)
701 seq_printf(m, "%s\t%d\t%d\t%d\n",
702 ss->legacy_name, ss->root->hierarchy_id,
703 atomic_read(&ss->root->nr_cgrps),
704 cgroup_ssid_enabled(i));
705
706 mutex_unlock(&cgroup_mutex);
707 return 0;
708}
709
710static int cgroupstats_open(struct inode *inode, struct file *file)
711{
712 return single_open(file, proc_cgroupstats_show, NULL);
713}
714
715const struct file_operations proc_cgroupstats_operations = {
716 .open = cgroupstats_open,
717 .read = seq_read,
718 .llseek = seq_lseek,
719 .release = single_release,
720};
721
722/**
723 * cgroupstats_build - build and fill cgroupstats
724 * @stats: cgroupstats to fill information into
725 * @dentry: A dentry entry belonging to the cgroup for which stats have
726 * been requested.
727 *
728 * Build and fill cgroupstats so that taskstats can export it to user
729 * space.
730 */
731int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
732{
733 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
734 struct cgroup *cgrp;
735 struct css_task_iter it;
736 struct task_struct *tsk;
737
738 /* it should be kernfs_node belonging to cgroupfs and is a directory */
739 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
740 kernfs_type(kn) != KERNFS_DIR)
741 return -EINVAL;
742
743 mutex_lock(&cgroup_mutex);
744
745 /*
746 * We aren't being called from kernfs and there's no guarantee on
747 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
748 * @kn->priv is RCU safe. Let's do the RCU dancing.
749 */
750 rcu_read_lock();
751 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
752 if (!cgrp || cgroup_is_dead(cgrp)) {
753 rcu_read_unlock();
754 mutex_unlock(&cgroup_mutex);
755 return -ENOENT;
756 }
757 rcu_read_unlock();
758
759 css_task_iter_start(&cgrp->self, 0, &it);
760 while ((tsk = css_task_iter_next(&it))) {
761 switch (tsk->state) {
762 case TASK_RUNNING:
763 stats->nr_running++;
764 break;
765 case TASK_INTERRUPTIBLE:
766 stats->nr_sleeping++;
767 break;
768 case TASK_UNINTERRUPTIBLE:
769 stats->nr_uninterruptible++;
770 break;
771 case TASK_STOPPED:
772 stats->nr_stopped++;
773 break;
774 default:
775 if (delayacct_is_task_waiting_on_io(tsk))
776 stats->nr_io_wait++;
777 break;
778 }
779 }
780 css_task_iter_end(&it);
781
782 mutex_unlock(&cgroup_mutex);
783 return 0;
784}
785
786void cgroup1_check_for_release(struct cgroup *cgrp)
787{
788 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
789 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
790 schedule_work(&cgrp->release_agent_work);
791}
792
793/*
794 * Notify userspace when a cgroup is released, by running the
795 * configured release agent with the name of the cgroup (path
796 * relative to the root of cgroup file system) as the argument.
797 *
798 * Most likely, this user command will try to rmdir this cgroup.
799 *
800 * This races with the possibility that some other task will be
801 * attached to this cgroup before it is removed, or that some other
802 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
803 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
804 * unused, and this cgroup will be reprieved from its death sentence,
805 * to continue to serve a useful existence. Next time it's released,
806 * we will get notified again, if it still has 'notify_on_release' set.
807 *
808 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
809 * means only wait until the task is successfully execve()'d. The
810 * separate release agent task is forked by call_usermodehelper(),
811 * then control in this thread returns here, without waiting for the
812 * release agent task. We don't bother to wait because the caller of
813 * this routine has no use for the exit status of the release agent
814 * task, so no sense holding our caller up for that.
815 */
816void cgroup1_release_agent(struct work_struct *work)
817{
818 struct cgroup *cgrp =
819 container_of(work, struct cgroup, release_agent_work);
820 char *pathbuf = NULL, *agentbuf = NULL;
821 char *argv[3], *envp[3];
822 int ret;
823
824 mutex_lock(&cgroup_mutex);
825
826 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
827 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
828 if (!pathbuf || !agentbuf || !strlen(agentbuf))
829 goto out;
830
831 spin_lock_irq(&css_set_lock);
832 ret = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
833 spin_unlock_irq(&css_set_lock);
834 if (ret < 0 || ret >= PATH_MAX)
835 goto out;
836
837 argv[0] = agentbuf;
838 argv[1] = pathbuf;
839 argv[2] = NULL;
840
841 /* minimal command environment */
842 envp[0] = "HOME=/";
843 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
844 envp[2] = NULL;
845
846 mutex_unlock(&cgroup_mutex);
847 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
848 goto out_free;
849out:
850 mutex_unlock(&cgroup_mutex);
851out_free:
852 kfree(agentbuf);
853 kfree(pathbuf);
854}
855
856/*
857 * cgroup_rename - Only allow simple rename of directories in place.
858 */
859static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
860 const char *new_name_str)
861{
862 struct cgroup *cgrp = kn->priv;
863 int ret;
864
865 if (kernfs_type(kn) != KERNFS_DIR)
866 return -ENOTDIR;
867 if (kn->parent != new_parent)
868 return -EIO;
869
870 /*
871 * We're gonna grab cgroup_mutex which nests outside kernfs
872 * active_ref. kernfs_rename() doesn't require active_ref
873 * protection. Break them before grabbing cgroup_mutex.
874 */
875 kernfs_break_active_protection(new_parent);
876 kernfs_break_active_protection(kn);
877
878 mutex_lock(&cgroup_mutex);
879
880 ret = kernfs_rename(kn, new_parent, new_name_str);
881 if (!ret)
882 trace_cgroup_rename(cgrp);
883
884 mutex_unlock(&cgroup_mutex);
885
886 kernfs_unbreak_active_protection(kn);
887 kernfs_unbreak_active_protection(new_parent);
888 return ret;
889}
890
891static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
892{
893 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
894 struct cgroup_subsys *ss;
895 int ssid;
896
897 for_each_subsys(ss, ssid)
898 if (root->subsys_mask & (1 << ssid))
899 seq_show_option(seq, ss->legacy_name, NULL);
900 if (root->flags & CGRP_ROOT_NOPREFIX)
901 seq_puts(seq, ",noprefix");
902 if (root->flags & CGRP_ROOT_XATTR)
903 seq_puts(seq, ",xattr");
904 if (root->flags & CGRP_ROOT_CPUSET_V2_MODE)
905 seq_puts(seq, ",cpuset_v2_mode");
906
907 spin_lock(&release_agent_path_lock);
908 if (strlen(root->release_agent_path))
909 seq_show_option(seq, "release_agent",
910 root->release_agent_path);
911 spin_unlock(&release_agent_path_lock);
912
913 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
914 seq_puts(seq, ",clone_children");
915 if (strlen(root->name))
916 seq_show_option(seq, "name", root->name);
917 return 0;
918}
919
920static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
921{
922 char *token, *o = data;
923 bool all_ss = false, one_ss = false;
924 u16 mask = U16_MAX;
925 struct cgroup_subsys *ss;
926 int nr_opts = 0;
927 int i;
928
929#ifdef CONFIG_CPUSETS
930 mask = ~((u16)1 << cpuset_cgrp_id);
931#endif
932
933 memset(opts, 0, sizeof(*opts));
934
935 while ((token = strsep(&o, ",")) != NULL) {
936 nr_opts++;
937
938 if (!*token)
939 return -EINVAL;
940 if (!strcmp(token, "none")) {
941 /* Explicitly have no subsystems */
942 opts->none = true;
943 continue;
944 }
945 if (!strcmp(token, "all")) {
946 /* Mutually exclusive option 'all' + subsystem name */
947 if (one_ss)
948 return -EINVAL;
949 all_ss = true;
950 continue;
951 }
952 if (!strcmp(token, "noprefix")) {
953 opts->flags |= CGRP_ROOT_NOPREFIX;
954 continue;
955 }
956 if (!strcmp(token, "clone_children")) {
957 opts->cpuset_clone_children = true;
958 continue;
959 }
960 if (!strcmp(token, "cpuset_v2_mode")) {
961 opts->flags |= CGRP_ROOT_CPUSET_V2_MODE;
962 continue;
963 }
964 if (!strcmp(token, "xattr")) {
965 opts->flags |= CGRP_ROOT_XATTR;
966 continue;
967 }
968 if (!strncmp(token, "release_agent=", 14)) {
969 /* Specifying two release agents is forbidden */
970 if (opts->release_agent)
971 return -EINVAL;
972 opts->release_agent =
973 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
974 if (!opts->release_agent)
975 return -ENOMEM;
976 continue;
977 }
978 if (!strncmp(token, "name=", 5)) {
979 const char *name = token + 5;
980 /* Can't specify an empty name */
981 if (!strlen(name))
982 return -EINVAL;
983 /* Must match [\w.-]+ */
984 for (i = 0; i < strlen(name); i++) {
985 char c = name[i];
986 if (isalnum(c))
987 continue;
988 if ((c == '.') || (c == '-') || (c == '_'))
989 continue;
990 return -EINVAL;
991 }
992 /* Specifying two names is forbidden */
993 if (opts->name)
994 return -EINVAL;
995 opts->name = kstrndup(name,
996 MAX_CGROUP_ROOT_NAMELEN - 1,
997 GFP_KERNEL);
998 if (!opts->name)
999 return -ENOMEM;
1000
1001 continue;
1002 }
1003
1004 for_each_subsys(ss, i) {
1005 if (strcmp(token, ss->legacy_name))
1006 continue;
1007 if (!cgroup_ssid_enabled(i))
1008 continue;
1009 if (cgroup1_ssid_disabled(i))
1010 continue;
1011
1012 /* Mutually exclusive option 'all' + subsystem name */
1013 if (all_ss)
1014 return -EINVAL;
1015 opts->subsys_mask |= (1 << i);
1016 one_ss = true;
1017
1018 break;
1019 }
1020 if (i == CGROUP_SUBSYS_COUNT)
1021 return -ENOENT;
1022 }
1023
1024 /*
1025 * If the 'all' option was specified select all the subsystems,
1026 * otherwise if 'none', 'name=' and a subsystem name options were
1027 * not specified, let's default to 'all'
1028 */
1029 if (all_ss || (!one_ss && !opts->none && !opts->name))
1030 for_each_subsys(ss, i)
1031 if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i))
1032 opts->subsys_mask |= (1 << i);
1033
1034 /*
1035 * We either have to specify by name or by subsystems. (So all
1036 * empty hierarchies must have a name).
1037 */
1038 if (!opts->subsys_mask && !opts->name)
1039 return -EINVAL;
1040
1041 /*
1042 * Option noprefix was introduced just for backward compatibility
1043 * with the old cpuset, so we allow noprefix only if mounting just
1044 * the cpuset subsystem.
1045 */
1046 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1047 return -EINVAL;
1048
1049 /* Can't specify "none" and some subsystems */
1050 if (opts->subsys_mask && opts->none)
1051 return -EINVAL;
1052
1053 return 0;
1054}
1055
1056static int cgroup1_remount(struct kernfs_root *kf_root, int *flags, char *data)
1057{
1058 int ret = 0;
1059 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1060 struct cgroup_sb_opts opts;
1061 u16 added_mask, removed_mask;
1062
1063 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1064
1065 /* See what subsystems are wanted */
1066 ret = parse_cgroupfs_options(data, &opts);
1067 if (ret)
1068 goto out_unlock;
1069
1070 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1071 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1072 task_tgid_nr(current), current->comm);
1073
1074 added_mask = opts.subsys_mask & ~root->subsys_mask;
1075 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1076
1077 /* Don't allow flags or name to change at remount */
1078 if ((opts.flags ^ root->flags) ||
1079 (opts.name && strcmp(opts.name, root->name))) {
1080 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1081 opts.flags, opts.name ?: "", root->flags, root->name);
1082 ret = -EINVAL;
1083 goto out_unlock;
1084 }
1085
1086 /* remounting is not allowed for populated hierarchies */
1087 if (!list_empty(&root->cgrp.self.children)) {
1088 ret = -EBUSY;
1089 goto out_unlock;
1090 }
1091
1092 ret = rebind_subsystems(root, added_mask);
1093 if (ret)
1094 goto out_unlock;
1095
1096 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1097
1098 if (opts.release_agent) {
1099 spin_lock(&release_agent_path_lock);
1100 strcpy(root->release_agent_path, opts.release_agent);
1101 spin_unlock(&release_agent_path_lock);
1102 }
1103
1104 trace_cgroup_remount(root);
1105
1106 out_unlock:
1107 kfree(opts.release_agent);
1108 kfree(opts.name);
1109 mutex_unlock(&cgroup_mutex);
1110 return ret;
1111}
1112
1113struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
1114 .rename = cgroup1_rename,
1115 .show_options = cgroup1_show_options,
1116 .remount_fs = cgroup1_remount,
1117 .mkdir = cgroup_mkdir,
1118 .rmdir = cgroup_rmdir,
1119 .show_path = cgroup_show_path,
1120};
1121
1122struct dentry *cgroup1_mount(struct file_system_type *fs_type, int flags,
1123 void *data, unsigned long magic,
1124 struct cgroup_namespace *ns)
1125{
1126 struct super_block *pinned_sb = NULL;
1127 struct cgroup_sb_opts opts;
1128 struct cgroup_root *root;
1129 struct cgroup_subsys *ss;
1130 struct dentry *dentry;
1131 int i, ret;
1132 bool new_root = false;
1133
1134 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1135
1136 /* First find the desired set of subsystems */
1137 ret = parse_cgroupfs_options(data, &opts);
1138 if (ret)
1139 goto out_unlock;
1140
1141 /*
1142 * Destruction of cgroup root is asynchronous, so subsystems may
1143 * still be dying after the previous unmount. Let's drain the
1144 * dying subsystems. We just need to ensure that the ones
1145 * unmounted previously finish dying and don't care about new ones
1146 * starting. Testing ref liveliness is good enough.
1147 */
1148 for_each_subsys(ss, i) {
1149 if (!(opts.subsys_mask & (1 << i)) ||
1150 ss->root == &cgrp_dfl_root)
1151 continue;
1152
1153 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
1154 mutex_unlock(&cgroup_mutex);
1155 msleep(10);
1156 ret = restart_syscall();
1157 goto out_free;
1158 }
1159 cgroup_put(&ss->root->cgrp);
1160 }
1161
1162 for_each_root(root) {
1163 bool name_match = false;
1164
1165 if (root == &cgrp_dfl_root)
1166 continue;
1167
1168 /*
1169 * If we asked for a name then it must match. Also, if
1170 * name matches but sybsys_mask doesn't, we should fail.
1171 * Remember whether name matched.
1172 */
1173 if (opts.name) {
1174 if (strcmp(opts.name, root->name))
1175 continue;
1176 name_match = true;
1177 }
1178
1179 /*
1180 * If we asked for subsystems (or explicitly for no
1181 * subsystems) then they must match.
1182 */
1183 if ((opts.subsys_mask || opts.none) &&
1184 (opts.subsys_mask != root->subsys_mask)) {
1185 if (!name_match)
1186 continue;
1187 ret = -EBUSY;
1188 goto out_unlock;
1189 }
1190
1191 if (root->flags ^ opts.flags)
1192 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1193
1194 /*
1195 * We want to reuse @root whose lifetime is governed by its
1196 * ->cgrp. Let's check whether @root is alive and keep it
1197 * that way. As cgroup_kill_sb() can happen anytime, we
1198 * want to block it by pinning the sb so that @root doesn't
1199 * get killed before mount is complete.
1200 *
1201 * With the sb pinned, tryget_live can reliably indicate
1202 * whether @root can be reused. If it's being killed,
1203 * drain it. We can use wait_queue for the wait but this
1204 * path is super cold. Let's just sleep a bit and retry.
1205 */
1206 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
1207 if (IS_ERR(pinned_sb) ||
1208 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
1209 mutex_unlock(&cgroup_mutex);
1210 if (!IS_ERR_OR_NULL(pinned_sb))
1211 deactivate_super(pinned_sb);
1212 msleep(10);
1213 ret = restart_syscall();
1214 goto out_free;
1215 }
1216
1217 ret = 0;
1218 goto out_unlock;
1219 }
1220
1221 /*
1222 * No such thing, create a new one. name= matching without subsys
1223 * specification is allowed for already existing hierarchies but we
1224 * can't create new one without subsys specification.
1225 */
1226 if (!opts.subsys_mask && !opts.none) {
1227 ret = -EINVAL;
1228 goto out_unlock;
1229 }
1230
1231 /* Hierarchies may only be created in the initial cgroup namespace. */
1232 if (ns != &init_cgroup_ns) {
1233 ret = -EPERM;
1234 goto out_unlock;
1235 }
1236
1237 root = kzalloc(sizeof(*root), GFP_KERNEL);
1238 if (!root) {
1239 ret = -ENOMEM;
1240 goto out_unlock;
1241 }
1242 new_root = true;
1243
1244 init_cgroup_root(root, &opts);
1245
1246 ret = cgroup_setup_root(root, opts.subsys_mask, PERCPU_REF_INIT_DEAD);
1247 if (ret)
1248 cgroup_free_root(root);
1249
1250out_unlock:
1251 mutex_unlock(&cgroup_mutex);
1252out_free:
1253 kfree(opts.release_agent);
1254 kfree(opts.name);
1255
1256 if (ret)
1257 return ERR_PTR(ret);
1258
1259 dentry = cgroup_do_mount(&cgroup_fs_type, flags, root,
1260 CGROUP_SUPER_MAGIC, ns);
1261
1262 /*
1263 * There's a race window after we release cgroup_mutex and before
1264 * allocating a superblock. Make sure a concurrent process won't
1265 * be able to re-use the root during this window by delaying the
1266 * initialization of root refcnt.
1267 */
1268 if (new_root) {
1269 mutex_lock(&cgroup_mutex);
1270 percpu_ref_reinit(&root->cgrp.self.refcnt);
1271 mutex_unlock(&cgroup_mutex);
1272 }
1273
1274 /*
1275 * If @pinned_sb, we're reusing an existing root and holding an
1276 * extra ref on its sb. Mount is complete. Put the extra ref.
1277 */
1278 if (pinned_sb)
1279 deactivate_super(pinned_sb);
1280
1281 return dentry;
1282}
1283
1284static int __init cgroup1_wq_init(void)
1285{
1286 /*
1287 * Used to destroy pidlists and separate to serve as flush domain.
1288 * Cap @max_active to 1 too.
1289 */
1290 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
1291 0, 1);
1292 BUG_ON(!cgroup_pidlist_destroy_wq);
1293 return 0;
1294}
1295core_initcall(cgroup1_wq_init);
1296
1297static int __init cgroup_no_v1(char *str)
1298{
1299 struct cgroup_subsys *ss;
1300 char *token;
1301 int i;
1302
1303 while ((token = strsep(&str, ",")) != NULL) {
1304 if (!*token)
1305 continue;
1306
1307 if (!strcmp(token, "all")) {
1308 cgroup_no_v1_mask = U16_MAX;
1309 break;
1310 }
1311
1312 for_each_subsys(ss, i) {
1313 if (strcmp(token, ss->name) &&
1314 strcmp(token, ss->legacy_name))
1315 continue;
1316
1317 cgroup_no_v1_mask |= 1 << i;
1318 }
1319 }
1320 return 1;
1321}
1322__setup("cgroup_no_v1=", cgroup_no_v1);