blob: 5cbcd4b81bf8f6d64b866be6407c1e0a2a582d8f [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34#include <linux/page_counter.h>
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
37#include <linux/mm.h>
38#include <linux/sched/mm.h>
39#include <linux/shmem_fs.h>
40#include <linux/hugetlb.h>
41#include <linux/pagemap.h>
42#include <linux/smp.h>
43#include <linux/page-flags.h>
44#include <linux/backing-dev.h>
45#include <linux/bit_spinlock.h>
46#include <linux/rcupdate.h>
47#include <linux/limits.h>
48#include <linux/export.h>
49#include <linux/mutex.h>
50#include <linux/rbtree.h>
51#include <linux/slab.h>
52#include <linux/swap.h>
53#include <linux/swapops.h>
54#include <linux/spinlock.h>
55#include <linux/eventfd.h>
56#include <linux/poll.h>
57#include <linux/sort.h>
58#include <linux/fs.h>
59#include <linux/seq_file.h>
60#include <linux/vmpressure.h>
61#include <linux/mm_inline.h>
62#include <linux/swap_cgroup.h>
63#include <linux/cpu.h>
64#include <linux/oom.h>
65#include <linux/lockdep.h>
66#include <linux/file.h>
67#include <linux/tracehook.h>
68#include "internal.h"
69#include <net/sock.h>
70#include <net/ip.h>
71#include "slab.h"
72
73#include <linux/uaccess.h>
74
75#include <trace/events/vmscan.h>
76
77struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78EXPORT_SYMBOL(memory_cgrp_subsys);
79
80struct mem_cgroup *root_mem_cgroup __read_mostly;
81
82#define MEM_CGROUP_RECLAIM_RETRIES 5
83
84/* Socket memory accounting disabled? */
85static bool cgroup_memory_nosocket;
86
87/* Kernel memory accounting disabled? */
88static bool cgroup_memory_nokmem;
89
90/* Whether the swap controller is active */
91#ifdef CONFIG_MEMCG_SWAP
92int do_swap_account __read_mostly;
93#else
94#define do_swap_account 0
95#endif
96
97/* Whether legacy memory+swap accounting is active */
98static bool do_memsw_account(void)
99{
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101}
102
103static const char *const mem_cgroup_lru_names[] = {
104 "inactive_anon",
105 "active_anon",
106 "inactive_file",
107 "active_file",
108 "unevictable",
109};
110
111#define THRESHOLDS_EVENTS_TARGET 128
112#define SOFTLIMIT_EVENTS_TARGET 1024
113#define NUMAINFO_EVENTS_TARGET 1024
114
115/*
116 * Cgroups above their limits are maintained in a RB-Tree, independent of
117 * their hierarchy representation
118 */
119
120struct mem_cgroup_tree_per_node {
121 struct rb_root rb_root;
122 struct rb_node *rb_rightmost;
123 spinlock_t lock;
124};
125
126struct mem_cgroup_tree {
127 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
128};
129
130static struct mem_cgroup_tree soft_limit_tree __read_mostly;
131
132/* for OOM */
133struct mem_cgroup_eventfd_list {
134 struct list_head list;
135 struct eventfd_ctx *eventfd;
136};
137
138/*
139 * cgroup_event represents events which userspace want to receive.
140 */
141struct mem_cgroup_event {
142 /*
143 * memcg which the event belongs to.
144 */
145 struct mem_cgroup *memcg;
146 /*
147 * eventfd to signal userspace about the event.
148 */
149 struct eventfd_ctx *eventfd;
150 /*
151 * Each of these stored in a list by the cgroup.
152 */
153 struct list_head list;
154 /*
155 * register_event() callback will be used to add new userspace
156 * waiter for changes related to this event. Use eventfd_signal()
157 * on eventfd to send notification to userspace.
158 */
159 int (*register_event)(struct mem_cgroup *memcg,
160 struct eventfd_ctx *eventfd, const char *args);
161 /*
162 * unregister_event() callback will be called when userspace closes
163 * the eventfd or on cgroup removing. This callback must be set,
164 * if you want provide notification functionality.
165 */
166 void (*unregister_event)(struct mem_cgroup *memcg,
167 struct eventfd_ctx *eventfd);
168 /*
169 * All fields below needed to unregister event when
170 * userspace closes eventfd.
171 */
172 poll_table pt;
173 wait_queue_head_t *wqh;
174 wait_queue_entry_t wait;
175 struct work_struct remove;
176};
177
178static void mem_cgroup_threshold(struct mem_cgroup *memcg);
179static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
180
181/* Stuffs for move charges at task migration. */
182/*
183 * Types of charges to be moved.
184 */
185#define MOVE_ANON 0x1U
186#define MOVE_FILE 0x2U
187#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
188
189/* "mc" and its members are protected by cgroup_mutex */
190static struct move_charge_struct {
191 spinlock_t lock; /* for from, to */
192 struct mm_struct *mm;
193 struct mem_cgroup *from;
194 struct mem_cgroup *to;
195 unsigned long flags;
196 unsigned long precharge;
197 unsigned long moved_charge;
198 unsigned long moved_swap;
199 struct task_struct *moving_task; /* a task moving charges */
200 wait_queue_head_t waitq; /* a waitq for other context */
201} mc = {
202 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
203 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
204};
205
206/*
207 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
208 * limit reclaim to prevent infinite loops, if they ever occur.
209 */
210#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
211#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
212
213enum charge_type {
214 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
215 MEM_CGROUP_CHARGE_TYPE_ANON,
216 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
217 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
218 NR_CHARGE_TYPE,
219};
220
221/* for encoding cft->private value on file */
222enum res_type {
223 _MEM,
224 _MEMSWAP,
225 _OOM_TYPE,
226 _KMEM,
227 _TCP,
228};
229
230#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
231#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
232#define MEMFILE_ATTR(val) ((val) & 0xffff)
233/* Used for OOM nofiier */
234#define OOM_CONTROL (0)
235
236/* Some nice accessors for the vmpressure. */
237struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
238{
239 if (!memcg)
240 memcg = root_mem_cgroup;
241 return &memcg->vmpressure;
242}
243
244struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
245{
246 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
247}
248
249static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
250{
251 return (memcg == root_mem_cgroup);
252}
253
254#ifndef CONFIG_SLOB
255/*
256 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
257 * The main reason for not using cgroup id for this:
258 * this works better in sparse environments, where we have a lot of memcgs,
259 * but only a few kmem-limited. Or also, if we have, for instance, 200
260 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
261 * 200 entry array for that.
262 *
263 * The current size of the caches array is stored in memcg_nr_cache_ids. It
264 * will double each time we have to increase it.
265 */
266static DEFINE_IDA(memcg_cache_ida);
267int memcg_nr_cache_ids;
268
269/* Protects memcg_nr_cache_ids */
270static DECLARE_RWSEM(memcg_cache_ids_sem);
271
272void memcg_get_cache_ids(void)
273{
274 down_read(&memcg_cache_ids_sem);
275}
276
277void memcg_put_cache_ids(void)
278{
279 up_read(&memcg_cache_ids_sem);
280}
281
282/*
283 * MIN_SIZE is different than 1, because we would like to avoid going through
284 * the alloc/free process all the time. In a small machine, 4 kmem-limited
285 * cgroups is a reasonable guess. In the future, it could be a parameter or
286 * tunable, but that is strictly not necessary.
287 *
288 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
289 * this constant directly from cgroup, but it is understandable that this is
290 * better kept as an internal representation in cgroup.c. In any case, the
291 * cgrp_id space is not getting any smaller, and we don't have to necessarily
292 * increase ours as well if it increases.
293 */
294#define MEMCG_CACHES_MIN_SIZE 4
295#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
296
297/*
298 * A lot of the calls to the cache allocation functions are expected to be
299 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
300 * conditional to this static branch, we'll have to allow modules that does
301 * kmem_cache_alloc and the such to see this symbol as well
302 */
303DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
304EXPORT_SYMBOL(memcg_kmem_enabled_key);
305
306struct workqueue_struct *memcg_kmem_cache_wq;
307
308#endif /* !CONFIG_SLOB */
309
310/**
311 * mem_cgroup_css_from_page - css of the memcg associated with a page
312 * @page: page of interest
313 *
314 * If memcg is bound to the default hierarchy, css of the memcg associated
315 * with @page is returned. The returned css remains associated with @page
316 * until it is released.
317 *
318 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
319 * is returned.
320 */
321struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
322{
323 struct mem_cgroup *memcg;
324
325 memcg = page->mem_cgroup;
326
327 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
328 memcg = root_mem_cgroup;
329
330 return &memcg->css;
331}
332
333/**
334 * page_cgroup_ino - return inode number of the memcg a page is charged to
335 * @page: the page
336 *
337 * Look up the closest online ancestor of the memory cgroup @page is charged to
338 * and return its inode number or 0 if @page is not charged to any cgroup. It
339 * is safe to call this function without holding a reference to @page.
340 *
341 * Note, this function is inherently racy, because there is nothing to prevent
342 * the cgroup inode from getting torn down and potentially reallocated a moment
343 * after page_cgroup_ino() returns, so it only should be used by callers that
344 * do not care (such as procfs interfaces).
345 */
346ino_t page_cgroup_ino(struct page *page)
347{
348 struct mem_cgroup *memcg;
349 unsigned long ino = 0;
350
351 rcu_read_lock();
352 memcg = READ_ONCE(page->mem_cgroup);
353 while (memcg && !(memcg->css.flags & CSS_ONLINE))
354 memcg = parent_mem_cgroup(memcg);
355 if (memcg)
356 ino = cgroup_ino(memcg->css.cgroup);
357 rcu_read_unlock();
358 return ino;
359}
360
361static struct mem_cgroup_per_node *
362mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
363{
364 int nid = page_to_nid(page);
365
366 return memcg->nodeinfo[nid];
367}
368
369static struct mem_cgroup_tree_per_node *
370soft_limit_tree_node(int nid)
371{
372 return soft_limit_tree.rb_tree_per_node[nid];
373}
374
375static struct mem_cgroup_tree_per_node *
376soft_limit_tree_from_page(struct page *page)
377{
378 int nid = page_to_nid(page);
379
380 return soft_limit_tree.rb_tree_per_node[nid];
381}
382
383static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
384 struct mem_cgroup_tree_per_node *mctz,
385 unsigned long new_usage_in_excess)
386{
387 struct rb_node **p = &mctz->rb_root.rb_node;
388 struct rb_node *parent = NULL;
389 struct mem_cgroup_per_node *mz_node;
390 bool rightmost = true;
391
392 if (mz->on_tree)
393 return;
394
395 mz->usage_in_excess = new_usage_in_excess;
396 if (!mz->usage_in_excess)
397 return;
398 while (*p) {
399 parent = *p;
400 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
401 tree_node);
402 if (mz->usage_in_excess < mz_node->usage_in_excess) {
403 p = &(*p)->rb_left;
404 rightmost = false;
405 }
406
407 /*
408 * We can't avoid mem cgroups that are over their soft
409 * limit by the same amount
410 */
411 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
412 p = &(*p)->rb_right;
413 }
414
415 if (rightmost)
416 mctz->rb_rightmost = &mz->tree_node;
417
418 rb_link_node(&mz->tree_node, parent, p);
419 rb_insert_color(&mz->tree_node, &mctz->rb_root);
420 mz->on_tree = true;
421}
422
423static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
424 struct mem_cgroup_tree_per_node *mctz)
425{
426 if (!mz->on_tree)
427 return;
428
429 if (&mz->tree_node == mctz->rb_rightmost)
430 mctz->rb_rightmost = rb_prev(&mz->tree_node);
431
432 rb_erase(&mz->tree_node, &mctz->rb_root);
433 mz->on_tree = false;
434}
435
436static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
437 struct mem_cgroup_tree_per_node *mctz)
438{
439 unsigned long flags;
440
441 spin_lock_irqsave(&mctz->lock, flags);
442 __mem_cgroup_remove_exceeded(mz, mctz);
443 spin_unlock_irqrestore(&mctz->lock, flags);
444}
445
446static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
447{
448 unsigned long nr_pages = page_counter_read(&memcg->memory);
449 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
450 unsigned long excess = 0;
451
452 if (nr_pages > soft_limit)
453 excess = nr_pages - soft_limit;
454
455 return excess;
456}
457
458static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
459{
460 unsigned long excess;
461 struct mem_cgroup_per_node *mz;
462 struct mem_cgroup_tree_per_node *mctz;
463
464 mctz = soft_limit_tree_from_page(page);
465 if (!mctz)
466 return;
467 /*
468 * Necessary to update all ancestors when hierarchy is used.
469 * because their event counter is not touched.
470 */
471 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
472 mz = mem_cgroup_page_nodeinfo(memcg, page);
473 excess = soft_limit_excess(memcg);
474 /*
475 * We have to update the tree if mz is on RB-tree or
476 * mem is over its softlimit.
477 */
478 if (excess || mz->on_tree) {
479 unsigned long flags;
480
481 spin_lock_irqsave(&mctz->lock, flags);
482 /* if on-tree, remove it */
483 if (mz->on_tree)
484 __mem_cgroup_remove_exceeded(mz, mctz);
485 /*
486 * Insert again. mz->usage_in_excess will be updated.
487 * If excess is 0, no tree ops.
488 */
489 __mem_cgroup_insert_exceeded(mz, mctz, excess);
490 spin_unlock_irqrestore(&mctz->lock, flags);
491 }
492 }
493}
494
495static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
496{
497 struct mem_cgroup_tree_per_node *mctz;
498 struct mem_cgroup_per_node *mz;
499 int nid;
500
501 for_each_node(nid) {
502 mz = mem_cgroup_nodeinfo(memcg, nid);
503 mctz = soft_limit_tree_node(nid);
504 if (mctz)
505 mem_cgroup_remove_exceeded(mz, mctz);
506 }
507}
508
509static struct mem_cgroup_per_node *
510__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
511{
512 struct mem_cgroup_per_node *mz;
513
514retry:
515 mz = NULL;
516 if (!mctz->rb_rightmost)
517 goto done; /* Nothing to reclaim from */
518
519 mz = rb_entry(mctz->rb_rightmost,
520 struct mem_cgroup_per_node, tree_node);
521 /*
522 * Remove the node now but someone else can add it back,
523 * we will to add it back at the end of reclaim to its correct
524 * position in the tree.
525 */
526 __mem_cgroup_remove_exceeded(mz, mctz);
527 if (!soft_limit_excess(mz->memcg) ||
528 !css_tryget_online(&mz->memcg->css))
529 goto retry;
530done:
531 return mz;
532}
533
534static struct mem_cgroup_per_node *
535mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
536{
537 struct mem_cgroup_per_node *mz;
538
539 spin_lock_irq(&mctz->lock);
540 mz = __mem_cgroup_largest_soft_limit_node(mctz);
541 spin_unlock_irq(&mctz->lock);
542 return mz;
543}
544
545/*
546 * Return page count for single (non recursive) @memcg.
547 *
548 * Implementation Note: reading percpu statistics for memcg.
549 *
550 * Both of vmstat[] and percpu_counter has threshold and do periodic
551 * synchronization to implement "quick" read. There are trade-off between
552 * reading cost and precision of value. Then, we may have a chance to implement
553 * a periodic synchronization of counter in memcg's counter.
554 *
555 * But this _read() function is used for user interface now. The user accounts
556 * memory usage by memory cgroup and he _always_ requires exact value because
557 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
558 * have to visit all online cpus and make sum. So, for now, unnecessary
559 * synchronization is not implemented. (just implemented for cpu hotplug)
560 *
561 * If there are kernel internal actions which can make use of some not-exact
562 * value, and reading all cpu value can be performance bottleneck in some
563 * common workload, threshold and synchronization as vmstat[] should be
564 * implemented.
565 *
566 * The parameter idx can be of type enum memcg_event_item or vm_event_item.
567 */
568
569static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
570 int event)
571{
572 unsigned long val = 0;
573 int cpu;
574
575 for_each_possible_cpu(cpu)
576 val += per_cpu(memcg->stat->events[event], cpu);
577 return val;
578}
579
580static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
581 struct page *page,
582 bool compound, int nr_pages)
583{
584 /*
585 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
586 * counted as CACHE even if it's on ANON LRU.
587 */
588 if (PageAnon(page))
589 __this_cpu_add(memcg->stat->count[MEMCG_RSS], nr_pages);
590 else {
591 __this_cpu_add(memcg->stat->count[MEMCG_CACHE], nr_pages);
592 if (PageSwapBacked(page))
593 __this_cpu_add(memcg->stat->count[NR_SHMEM], nr_pages);
594 }
595
596 if (compound) {
597 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
598 __this_cpu_add(memcg->stat->count[MEMCG_RSS_HUGE], nr_pages);
599 }
600
601 /* pagein of a big page is an event. So, ignore page size */
602 if (nr_pages > 0)
603 __this_cpu_inc(memcg->stat->events[PGPGIN]);
604 else {
605 __this_cpu_inc(memcg->stat->events[PGPGOUT]);
606 nr_pages = -nr_pages; /* for event */
607 }
608
609 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
610}
611
612unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
613 int nid, unsigned int lru_mask)
614{
615 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
616 unsigned long nr = 0;
617 enum lru_list lru;
618
619 VM_BUG_ON((unsigned)nid >= nr_node_ids);
620
621 for_each_lru(lru) {
622 if (!(BIT(lru) & lru_mask))
623 continue;
624 nr += mem_cgroup_get_lru_size(lruvec, lru);
625 }
626 return nr;
627}
628
629static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
630 unsigned int lru_mask)
631{
632 unsigned long nr = 0;
633 int nid;
634
635 for_each_node_state(nid, N_MEMORY)
636 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
637 return nr;
638}
639
640static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
641 enum mem_cgroup_events_target target)
642{
643 unsigned long val, next;
644
645 val = __this_cpu_read(memcg->stat->nr_page_events);
646 next = __this_cpu_read(memcg->stat->targets[target]);
647 /* from time_after() in jiffies.h */
648 if ((long)(next - val) < 0) {
649 switch (target) {
650 case MEM_CGROUP_TARGET_THRESH:
651 next = val + THRESHOLDS_EVENTS_TARGET;
652 break;
653 case MEM_CGROUP_TARGET_SOFTLIMIT:
654 next = val + SOFTLIMIT_EVENTS_TARGET;
655 break;
656 case MEM_CGROUP_TARGET_NUMAINFO:
657 next = val + NUMAINFO_EVENTS_TARGET;
658 break;
659 default:
660 break;
661 }
662 __this_cpu_write(memcg->stat->targets[target], next);
663 return true;
664 }
665 return false;
666}
667
668/*
669 * Check events in order.
670 *
671 */
672static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
673{
674 /* threshold event is triggered in finer grain than soft limit */
675 if (unlikely(mem_cgroup_event_ratelimit(memcg,
676 MEM_CGROUP_TARGET_THRESH))) {
677 bool do_softlimit;
678 bool do_numainfo __maybe_unused;
679
680 do_softlimit = mem_cgroup_event_ratelimit(memcg,
681 MEM_CGROUP_TARGET_SOFTLIMIT);
682#if MAX_NUMNODES > 1
683 do_numainfo = mem_cgroup_event_ratelimit(memcg,
684 MEM_CGROUP_TARGET_NUMAINFO);
685#endif
686 mem_cgroup_threshold(memcg);
687 if (unlikely(do_softlimit))
688 mem_cgroup_update_tree(memcg, page);
689#if MAX_NUMNODES > 1
690 if (unlikely(do_numainfo))
691 atomic_inc(&memcg->numainfo_events);
692#endif
693 }
694}
695
696struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
697{
698 /*
699 * mm_update_next_owner() may clear mm->owner to NULL
700 * if it races with swapoff, page migration, etc.
701 * So this can be called with p == NULL.
702 */
703 if (unlikely(!p))
704 return NULL;
705
706 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
707}
708EXPORT_SYMBOL(mem_cgroup_from_task);
709
710static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
711{
712 struct mem_cgroup *memcg = NULL;
713
714 rcu_read_lock();
715 do {
716 /*
717 * Page cache insertions can happen withou an
718 * actual mm context, e.g. during disk probing
719 * on boot, loopback IO, acct() writes etc.
720 */
721 if (unlikely(!mm))
722 memcg = root_mem_cgroup;
723 else {
724 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
725 if (unlikely(!memcg))
726 memcg = root_mem_cgroup;
727 }
728 } while (!css_tryget(&memcg->css));
729 rcu_read_unlock();
730 return memcg;
731}
732
733/**
734 * mem_cgroup_iter - iterate over memory cgroup hierarchy
735 * @root: hierarchy root
736 * @prev: previously returned memcg, NULL on first invocation
737 * @reclaim: cookie for shared reclaim walks, NULL for full walks
738 *
739 * Returns references to children of the hierarchy below @root, or
740 * @root itself, or %NULL after a full round-trip.
741 *
742 * Caller must pass the return value in @prev on subsequent
743 * invocations for reference counting, or use mem_cgroup_iter_break()
744 * to cancel a hierarchy walk before the round-trip is complete.
745 *
746 * Reclaimers can specify a zone and a priority level in @reclaim to
747 * divide up the memcgs in the hierarchy among all concurrent
748 * reclaimers operating on the same zone and priority.
749 */
750struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
751 struct mem_cgroup *prev,
752 struct mem_cgroup_reclaim_cookie *reclaim)
753{
754 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
755 struct cgroup_subsys_state *css = NULL;
756 struct mem_cgroup *memcg = NULL;
757 struct mem_cgroup *pos = NULL;
758
759 if (mem_cgroup_disabled())
760 return NULL;
761
762 if (!root)
763 root = root_mem_cgroup;
764
765 if (prev && !reclaim)
766 pos = prev;
767
768 if (!root->use_hierarchy && root != root_mem_cgroup) {
769 if (prev)
770 goto out;
771 return root;
772 }
773
774 rcu_read_lock();
775
776 if (reclaim) {
777 struct mem_cgroup_per_node *mz;
778
779 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
780 iter = &mz->iter[reclaim->priority];
781
782 if (prev && reclaim->generation != iter->generation)
783 goto out_unlock;
784
785 while (1) {
786 pos = READ_ONCE(iter->position);
787 if (!pos || css_tryget(&pos->css))
788 break;
789 /*
790 * css reference reached zero, so iter->position will
791 * be cleared by ->css_released. However, we should not
792 * rely on this happening soon, because ->css_released
793 * is called from a work queue, and by busy-waiting we
794 * might block it. So we clear iter->position right
795 * away.
796 */
797 (void)cmpxchg(&iter->position, pos, NULL);
798 }
799 }
800
801 if (pos)
802 css = &pos->css;
803
804 for (;;) {
805 css = css_next_descendant_pre(css, &root->css);
806 if (!css) {
807 /*
808 * Reclaimers share the hierarchy walk, and a
809 * new one might jump in right at the end of
810 * the hierarchy - make sure they see at least
811 * one group and restart from the beginning.
812 */
813 if (!prev)
814 continue;
815 break;
816 }
817
818 /*
819 * Verify the css and acquire a reference. The root
820 * is provided by the caller, so we know it's alive
821 * and kicking, and don't take an extra reference.
822 */
823 memcg = mem_cgroup_from_css(css);
824
825 if (css == &root->css)
826 break;
827
828 if (css_tryget(css))
829 break;
830
831 memcg = NULL;
832 }
833
834 if (reclaim) {
835 /*
836 * The position could have already been updated by a competing
837 * thread, so check that the value hasn't changed since we read
838 * it to avoid reclaiming from the same cgroup twice.
839 */
840 (void)cmpxchg(&iter->position, pos, memcg);
841
842 if (pos)
843 css_put(&pos->css);
844
845 if (!memcg)
846 iter->generation++;
847 else if (!prev)
848 reclaim->generation = iter->generation;
849 }
850
851out_unlock:
852 rcu_read_unlock();
853out:
854 if (prev && prev != root)
855 css_put(&prev->css);
856
857 return memcg;
858}
859
860/**
861 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
862 * @root: hierarchy root
863 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
864 */
865void mem_cgroup_iter_break(struct mem_cgroup *root,
866 struct mem_cgroup *prev)
867{
868 if (!root)
869 root = root_mem_cgroup;
870 if (prev && prev != root)
871 css_put(&prev->css);
872}
873
874static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
875 struct mem_cgroup *dead_memcg)
876{
877 struct mem_cgroup_reclaim_iter *iter;
878 struct mem_cgroup_per_node *mz;
879 int nid;
880 int i;
881
882 for_each_node(nid) {
883 mz = mem_cgroup_nodeinfo(from, nid);
884 for (i = 0; i <= DEF_PRIORITY; i++) {
885 iter = &mz->iter[i];
886 cmpxchg(&iter->position,
887 dead_memcg, NULL);
888 }
889 }
890}
891
892static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
893{
894 struct mem_cgroup *memcg = dead_memcg;
895 struct mem_cgroup *last;
896
897 do {
898 __invalidate_reclaim_iterators(memcg, dead_memcg);
899 last = memcg;
900 } while ((memcg = parent_mem_cgroup(memcg)));
901
902 /*
903 * When cgruop1 non-hierarchy mode is used,
904 * parent_mem_cgroup() does not walk all the way up to the
905 * cgroup root (root_mem_cgroup). So we have to handle
906 * dead_memcg from cgroup root separately.
907 */
908 if (last != root_mem_cgroup)
909 __invalidate_reclaim_iterators(root_mem_cgroup,
910 dead_memcg);
911}
912
913/*
914 * Iteration constructs for visiting all cgroups (under a tree). If
915 * loops are exited prematurely (break), mem_cgroup_iter_break() must
916 * be used for reference counting.
917 */
918#define for_each_mem_cgroup_tree(iter, root) \
919 for (iter = mem_cgroup_iter(root, NULL, NULL); \
920 iter != NULL; \
921 iter = mem_cgroup_iter(root, iter, NULL))
922
923#define for_each_mem_cgroup(iter) \
924 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
925 iter != NULL; \
926 iter = mem_cgroup_iter(NULL, iter, NULL))
927
928/**
929 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
930 * @memcg: hierarchy root
931 * @fn: function to call for each task
932 * @arg: argument passed to @fn
933 *
934 * This function iterates over tasks attached to @memcg or to any of its
935 * descendants and calls @fn for each task. If @fn returns a non-zero
936 * value, the function breaks the iteration loop and returns the value.
937 * Otherwise, it will iterate over all tasks and return 0.
938 *
939 * This function must not be called for the root memory cgroup.
940 */
941int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
942 int (*fn)(struct task_struct *, void *), void *arg)
943{
944 struct mem_cgroup *iter;
945 int ret = 0;
946
947 BUG_ON(memcg == root_mem_cgroup);
948
949 for_each_mem_cgroup_tree(iter, memcg) {
950 struct css_task_iter it;
951 struct task_struct *task;
952
953 css_task_iter_start(&iter->css, 0, &it);
954 while (!ret && (task = css_task_iter_next(&it)))
955 ret = fn(task, arg);
956 css_task_iter_end(&it);
957 if (ret) {
958 mem_cgroup_iter_break(memcg, iter);
959 break;
960 }
961 }
962 return ret;
963}
964
965/**
966 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
967 * @page: the page
968 * @zone: zone of the page
969 *
970 * This function is only safe when following the LRU page isolation
971 * and putback protocol: the LRU lock must be held, and the page must
972 * either be PageLRU() or the caller must have isolated/allocated it.
973 */
974struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
975{
976 struct mem_cgroup_per_node *mz;
977 struct mem_cgroup *memcg;
978 struct lruvec *lruvec;
979
980 if (mem_cgroup_disabled()) {
981 lruvec = &pgdat->lruvec;
982 goto out;
983 }
984
985 memcg = page->mem_cgroup;
986 /*
987 * Swapcache readahead pages are added to the LRU - and
988 * possibly migrated - before they are charged.
989 */
990 if (!memcg)
991 memcg = root_mem_cgroup;
992
993 mz = mem_cgroup_page_nodeinfo(memcg, page);
994 lruvec = &mz->lruvec;
995out:
996 /*
997 * Since a node can be onlined after the mem_cgroup was created,
998 * we have to be prepared to initialize lruvec->zone here;
999 * and if offlined then reonlined, we need to reinitialize it.
1000 */
1001 if (unlikely(lruvec->pgdat != pgdat))
1002 lruvec->pgdat = pgdat;
1003 return lruvec;
1004}
1005
1006/**
1007 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1008 * @lruvec: mem_cgroup per zone lru vector
1009 * @lru: index of lru list the page is sitting on
1010 * @zid: zone id of the accounted pages
1011 * @nr_pages: positive when adding or negative when removing
1012 *
1013 * This function must be called under lru_lock, just before a page is added
1014 * to or just after a page is removed from an lru list (that ordering being
1015 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1016 */
1017void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1018 int zid, int nr_pages)
1019{
1020 struct mem_cgroup_per_node *mz;
1021 unsigned long *lru_size;
1022 long size;
1023
1024 if (mem_cgroup_disabled())
1025 return;
1026
1027 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1028 lru_size = &mz->lru_zone_size[zid][lru];
1029
1030 if (nr_pages < 0)
1031 *lru_size += nr_pages;
1032
1033 size = *lru_size;
1034 if (WARN_ONCE(size < 0,
1035 "%s(%p, %d, %d): lru_size %ld\n",
1036 __func__, lruvec, lru, nr_pages, size)) {
1037 VM_BUG_ON(1);
1038 *lru_size = 0;
1039 }
1040
1041 if (nr_pages > 0)
1042 *lru_size += nr_pages;
1043}
1044
1045bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1046{
1047 struct mem_cgroup *task_memcg;
1048 struct task_struct *p;
1049 bool ret;
1050
1051 p = find_lock_task_mm(task);
1052 if (p) {
1053 task_memcg = get_mem_cgroup_from_mm(p->mm);
1054 task_unlock(p);
1055 } else {
1056 /*
1057 * All threads may have already detached their mm's, but the oom
1058 * killer still needs to detect if they have already been oom
1059 * killed to prevent needlessly killing additional tasks.
1060 */
1061 rcu_read_lock();
1062 task_memcg = mem_cgroup_from_task(task);
1063 css_get(&task_memcg->css);
1064 rcu_read_unlock();
1065 }
1066 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1067 css_put(&task_memcg->css);
1068 return ret;
1069}
1070
1071/**
1072 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1073 * @memcg: the memory cgroup
1074 *
1075 * Returns the maximum amount of memory @mem can be charged with, in
1076 * pages.
1077 */
1078static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1079{
1080 unsigned long margin = 0;
1081 unsigned long count;
1082 unsigned long limit;
1083
1084 count = page_counter_read(&memcg->memory);
1085 limit = READ_ONCE(memcg->memory.limit);
1086 if (count < limit)
1087 margin = limit - count;
1088
1089 if (do_memsw_account()) {
1090 count = page_counter_read(&memcg->memsw);
1091 limit = READ_ONCE(memcg->memsw.limit);
1092 if (count <= limit)
1093 margin = min(margin, limit - count);
1094 else
1095 margin = 0;
1096 }
1097
1098 return margin;
1099}
1100
1101/*
1102 * A routine for checking "mem" is under move_account() or not.
1103 *
1104 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1105 * moving cgroups. This is for waiting at high-memory pressure
1106 * caused by "move".
1107 */
1108static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1109{
1110 struct mem_cgroup *from;
1111 struct mem_cgroup *to;
1112 bool ret = false;
1113 /*
1114 * Unlike task_move routines, we access mc.to, mc.from not under
1115 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1116 */
1117 spin_lock(&mc.lock);
1118 from = mc.from;
1119 to = mc.to;
1120 if (!from)
1121 goto unlock;
1122
1123 ret = mem_cgroup_is_descendant(from, memcg) ||
1124 mem_cgroup_is_descendant(to, memcg);
1125unlock:
1126 spin_unlock(&mc.lock);
1127 return ret;
1128}
1129
1130static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1131{
1132 if (mc.moving_task && current != mc.moving_task) {
1133 if (mem_cgroup_under_move(memcg)) {
1134 DEFINE_WAIT(wait);
1135 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1136 /* moving charge context might have finished. */
1137 if (mc.moving_task)
1138 schedule();
1139 finish_wait(&mc.waitq, &wait);
1140 return true;
1141 }
1142 }
1143 return false;
1144}
1145
1146unsigned int memcg1_stats[] = {
1147 MEMCG_CACHE,
1148 MEMCG_RSS,
1149 MEMCG_RSS_HUGE,
1150 NR_SHMEM,
1151 NR_FILE_MAPPED,
1152 NR_FILE_DIRTY,
1153 NR_WRITEBACK,
1154 MEMCG_SWAP,
1155};
1156
1157static const char *const memcg1_stat_names[] = {
1158 "cache",
1159 "rss",
1160 "rss_huge",
1161 "shmem",
1162 "mapped_file",
1163 "dirty",
1164 "writeback",
1165 "swap",
1166};
1167
1168#define K(x) ((x) << (PAGE_SHIFT-10))
1169/**
1170 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1171 * @memcg: The memory cgroup that went over limit
1172 * @p: Task that is going to be killed
1173 *
1174 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1175 * enabled
1176 */
1177void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1178{
1179 struct mem_cgroup *iter;
1180 unsigned int i;
1181
1182 rcu_read_lock();
1183
1184 if (p) {
1185 pr_info("Task in ");
1186 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1187 pr_cont(" killed as a result of limit of ");
1188 } else {
1189 pr_info("Memory limit reached of cgroup ");
1190 }
1191
1192 pr_cont_cgroup_path(memcg->css.cgroup);
1193 pr_cont("\n");
1194
1195 rcu_read_unlock();
1196
1197 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1198 K((u64)page_counter_read(&memcg->memory)),
1199 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1200 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1201 K((u64)page_counter_read(&memcg->memsw)),
1202 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1203 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1204 K((u64)page_counter_read(&memcg->kmem)),
1205 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1206
1207 for_each_mem_cgroup_tree(iter, memcg) {
1208 pr_info("Memory cgroup stats for ");
1209 pr_cont_cgroup_path(iter->css.cgroup);
1210 pr_cont(":");
1211
1212 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1213 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1214 continue;
1215 pr_cont(" %s:%luKB", memcg1_stat_names[i],
1216 K(memcg_page_state(iter, memcg1_stats[i])));
1217 }
1218
1219 for (i = 0; i < NR_LRU_LISTS; i++)
1220 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1221 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1222
1223 pr_cont("\n");
1224 }
1225}
1226
1227/*
1228 * This function returns the number of memcg under hierarchy tree. Returns
1229 * 1(self count) if no children.
1230 */
1231static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1232{
1233 int num = 0;
1234 struct mem_cgroup *iter;
1235
1236 for_each_mem_cgroup_tree(iter, memcg)
1237 num++;
1238 return num;
1239}
1240
1241/*
1242 * Return the memory (and swap, if configured) limit for a memcg.
1243 */
1244unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1245{
1246 unsigned long limit;
1247
1248 limit = memcg->memory.limit;
1249 if (mem_cgroup_swappiness(memcg)) {
1250 unsigned long memsw_limit;
1251 unsigned long swap_limit;
1252
1253 memsw_limit = memcg->memsw.limit;
1254 swap_limit = memcg->swap.limit;
1255 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1256 limit = min(limit + swap_limit, memsw_limit);
1257 }
1258 return limit;
1259}
1260
1261static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1262 int order)
1263{
1264 struct oom_control oc = {
1265 .zonelist = NULL,
1266 .nodemask = NULL,
1267 .memcg = memcg,
1268 .gfp_mask = gfp_mask,
1269 .order = order,
1270 };
1271 bool ret;
1272
1273 mutex_lock(&oom_lock);
1274 ret = out_of_memory(&oc);
1275 mutex_unlock(&oom_lock);
1276 return ret;
1277}
1278
1279#if MAX_NUMNODES > 1
1280
1281/**
1282 * test_mem_cgroup_node_reclaimable
1283 * @memcg: the target memcg
1284 * @nid: the node ID to be checked.
1285 * @noswap : specify true here if the user wants flle only information.
1286 *
1287 * This function returns whether the specified memcg contains any
1288 * reclaimable pages on a node. Returns true if there are any reclaimable
1289 * pages in the node.
1290 */
1291static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1292 int nid, bool noswap)
1293{
1294 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1295 return true;
1296 if (noswap || !total_swap_pages)
1297 return false;
1298 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1299 return true;
1300 return false;
1301
1302}
1303
1304/*
1305 * Always updating the nodemask is not very good - even if we have an empty
1306 * list or the wrong list here, we can start from some node and traverse all
1307 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1308 *
1309 */
1310static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1311{
1312 int nid;
1313 /*
1314 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1315 * pagein/pageout changes since the last update.
1316 */
1317 if (!atomic_read(&memcg->numainfo_events))
1318 return;
1319 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1320 return;
1321
1322 /* make a nodemask where this memcg uses memory from */
1323 memcg->scan_nodes = node_states[N_MEMORY];
1324
1325 for_each_node_mask(nid, node_states[N_MEMORY]) {
1326
1327 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1328 node_clear(nid, memcg->scan_nodes);
1329 }
1330
1331 atomic_set(&memcg->numainfo_events, 0);
1332 atomic_set(&memcg->numainfo_updating, 0);
1333}
1334
1335/*
1336 * Selecting a node where we start reclaim from. Because what we need is just
1337 * reducing usage counter, start from anywhere is O,K. Considering
1338 * memory reclaim from current node, there are pros. and cons.
1339 *
1340 * Freeing memory from current node means freeing memory from a node which
1341 * we'll use or we've used. So, it may make LRU bad. And if several threads
1342 * hit limits, it will see a contention on a node. But freeing from remote
1343 * node means more costs for memory reclaim because of memory latency.
1344 *
1345 * Now, we use round-robin. Better algorithm is welcomed.
1346 */
1347int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1348{
1349 int node;
1350
1351 mem_cgroup_may_update_nodemask(memcg);
1352 node = memcg->last_scanned_node;
1353
1354 node = next_node_in(node, memcg->scan_nodes);
1355 /*
1356 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1357 * last time it really checked all the LRUs due to rate limiting.
1358 * Fallback to the current node in that case for simplicity.
1359 */
1360 if (unlikely(node == MAX_NUMNODES))
1361 node = numa_node_id();
1362
1363 memcg->last_scanned_node = node;
1364 return node;
1365}
1366#else
1367int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1368{
1369 return 0;
1370}
1371#endif
1372
1373static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1374 pg_data_t *pgdat,
1375 gfp_t gfp_mask,
1376 unsigned long *total_scanned)
1377{
1378 struct mem_cgroup *victim = NULL;
1379 int total = 0;
1380 int loop = 0;
1381 unsigned long excess;
1382 unsigned long nr_scanned;
1383 struct mem_cgroup_reclaim_cookie reclaim = {
1384 .pgdat = pgdat,
1385 .priority = 0,
1386 };
1387
1388 excess = soft_limit_excess(root_memcg);
1389
1390 while (1) {
1391 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1392 if (!victim) {
1393 loop++;
1394 if (loop >= 2) {
1395 /*
1396 * If we have not been able to reclaim
1397 * anything, it might because there are
1398 * no reclaimable pages under this hierarchy
1399 */
1400 if (!total)
1401 break;
1402 /*
1403 * We want to do more targeted reclaim.
1404 * excess >> 2 is not to excessive so as to
1405 * reclaim too much, nor too less that we keep
1406 * coming back to reclaim from this cgroup
1407 */
1408 if (total >= (excess >> 2) ||
1409 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1410 break;
1411 }
1412 continue;
1413 }
1414 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1415 pgdat, &nr_scanned);
1416 *total_scanned += nr_scanned;
1417 if (!soft_limit_excess(root_memcg))
1418 break;
1419 }
1420 mem_cgroup_iter_break(root_memcg, victim);
1421 return total;
1422}
1423
1424#ifdef CONFIG_LOCKDEP
1425static struct lockdep_map memcg_oom_lock_dep_map = {
1426 .name = "memcg_oom_lock",
1427};
1428#endif
1429
1430static DEFINE_SPINLOCK(memcg_oom_lock);
1431
1432/*
1433 * Check OOM-Killer is already running under our hierarchy.
1434 * If someone is running, return false.
1435 */
1436static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1437{
1438 struct mem_cgroup *iter, *failed = NULL;
1439
1440 spin_lock(&memcg_oom_lock);
1441
1442 for_each_mem_cgroup_tree(iter, memcg) {
1443 if (iter->oom_lock) {
1444 /*
1445 * this subtree of our hierarchy is already locked
1446 * so we cannot give a lock.
1447 */
1448 failed = iter;
1449 mem_cgroup_iter_break(memcg, iter);
1450 break;
1451 } else
1452 iter->oom_lock = true;
1453 }
1454
1455 if (failed) {
1456 /*
1457 * OK, we failed to lock the whole subtree so we have
1458 * to clean up what we set up to the failing subtree
1459 */
1460 for_each_mem_cgroup_tree(iter, memcg) {
1461 if (iter == failed) {
1462 mem_cgroup_iter_break(memcg, iter);
1463 break;
1464 }
1465 iter->oom_lock = false;
1466 }
1467 } else
1468 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1469
1470 spin_unlock(&memcg_oom_lock);
1471
1472 return !failed;
1473}
1474
1475static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1476{
1477 struct mem_cgroup *iter;
1478
1479 spin_lock(&memcg_oom_lock);
1480 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1481 for_each_mem_cgroup_tree(iter, memcg)
1482 iter->oom_lock = false;
1483 spin_unlock(&memcg_oom_lock);
1484}
1485
1486static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1487{
1488 struct mem_cgroup *iter;
1489
1490 spin_lock(&memcg_oom_lock);
1491 for_each_mem_cgroup_tree(iter, memcg)
1492 iter->under_oom++;
1493 spin_unlock(&memcg_oom_lock);
1494}
1495
1496static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1497{
1498 struct mem_cgroup *iter;
1499
1500 /*
1501 * When a new child is created while the hierarchy is under oom,
1502 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1503 */
1504 spin_lock(&memcg_oom_lock);
1505 for_each_mem_cgroup_tree(iter, memcg)
1506 if (iter->under_oom > 0)
1507 iter->under_oom--;
1508 spin_unlock(&memcg_oom_lock);
1509}
1510
1511static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1512
1513struct oom_wait_info {
1514 struct mem_cgroup *memcg;
1515 wait_queue_entry_t wait;
1516};
1517
1518static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1519 unsigned mode, int sync, void *arg)
1520{
1521 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1522 struct mem_cgroup *oom_wait_memcg;
1523 struct oom_wait_info *oom_wait_info;
1524
1525 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1526 oom_wait_memcg = oom_wait_info->memcg;
1527
1528 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1529 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1530 return 0;
1531 return autoremove_wake_function(wait, mode, sync, arg);
1532}
1533
1534static void memcg_oom_recover(struct mem_cgroup *memcg)
1535{
1536 /*
1537 * For the following lockless ->under_oom test, the only required
1538 * guarantee is that it must see the state asserted by an OOM when
1539 * this function is called as a result of userland actions
1540 * triggered by the notification of the OOM. This is trivially
1541 * achieved by invoking mem_cgroup_mark_under_oom() before
1542 * triggering notification.
1543 */
1544 if (memcg && memcg->under_oom)
1545 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1546}
1547
1548static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1549{
1550 if (!current->memcg_may_oom)
1551 return;
1552 /*
1553 * We are in the middle of the charge context here, so we
1554 * don't want to block when potentially sitting on a callstack
1555 * that holds all kinds of filesystem and mm locks.
1556 *
1557 * Also, the caller may handle a failed allocation gracefully
1558 * (like optional page cache readahead) and so an OOM killer
1559 * invocation might not even be necessary.
1560 *
1561 * That's why we don't do anything here except remember the
1562 * OOM context and then deal with it at the end of the page
1563 * fault when the stack is unwound, the locks are released,
1564 * and when we know whether the fault was overall successful.
1565 */
1566 css_get(&memcg->css);
1567 current->memcg_in_oom = memcg;
1568 current->memcg_oom_gfp_mask = mask;
1569 current->memcg_oom_order = order;
1570}
1571
1572/**
1573 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1574 * @handle: actually kill/wait or just clean up the OOM state
1575 *
1576 * This has to be called at the end of a page fault if the memcg OOM
1577 * handler was enabled.
1578 *
1579 * Memcg supports userspace OOM handling where failed allocations must
1580 * sleep on a waitqueue until the userspace task resolves the
1581 * situation. Sleeping directly in the charge context with all kinds
1582 * of locks held is not a good idea, instead we remember an OOM state
1583 * in the task and mem_cgroup_oom_synchronize() has to be called at
1584 * the end of the page fault to complete the OOM handling.
1585 *
1586 * Returns %true if an ongoing memcg OOM situation was detected and
1587 * completed, %false otherwise.
1588 */
1589bool mem_cgroup_oom_synchronize(bool handle)
1590{
1591 struct mem_cgroup *memcg = current->memcg_in_oom;
1592 struct oom_wait_info owait;
1593 bool locked;
1594
1595 /* OOM is global, do not handle */
1596 if (!memcg)
1597 return false;
1598
1599 if (!handle)
1600 goto cleanup;
1601
1602 owait.memcg = memcg;
1603 owait.wait.flags = 0;
1604 owait.wait.func = memcg_oom_wake_function;
1605 owait.wait.private = current;
1606 INIT_LIST_HEAD(&owait.wait.entry);
1607
1608 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1609 mem_cgroup_mark_under_oom(memcg);
1610
1611 locked = mem_cgroup_oom_trylock(memcg);
1612
1613 if (locked)
1614 mem_cgroup_oom_notify(memcg);
1615
1616 if (locked && !memcg->oom_kill_disable) {
1617 mem_cgroup_unmark_under_oom(memcg);
1618 finish_wait(&memcg_oom_waitq, &owait.wait);
1619 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1620 current->memcg_oom_order);
1621 } else {
1622 schedule();
1623 mem_cgroup_unmark_under_oom(memcg);
1624 finish_wait(&memcg_oom_waitq, &owait.wait);
1625 }
1626
1627 if (locked) {
1628 mem_cgroup_oom_unlock(memcg);
1629 /*
1630 * There is no guarantee that an OOM-lock contender
1631 * sees the wakeups triggered by the OOM kill
1632 * uncharges. Wake any sleepers explicitely.
1633 */
1634 memcg_oom_recover(memcg);
1635 }
1636cleanup:
1637 current->memcg_in_oom = NULL;
1638 css_put(&memcg->css);
1639 return true;
1640}
1641
1642/**
1643 * lock_page_memcg - lock a page->mem_cgroup binding
1644 * @page: the page
1645 *
1646 * This function protects unlocked LRU pages from being moved to
1647 * another cgroup.
1648 *
1649 * It ensures lifetime of the returned memcg. Caller is responsible
1650 * for the lifetime of the page; __unlock_page_memcg() is available
1651 * when @page might get freed inside the locked section.
1652 */
1653struct mem_cgroup *lock_page_memcg(struct page *page)
1654{
1655 struct mem_cgroup *memcg;
1656 unsigned long flags;
1657
1658 /*
1659 * The RCU lock is held throughout the transaction. The fast
1660 * path can get away without acquiring the memcg->move_lock
1661 * because page moving starts with an RCU grace period.
1662 *
1663 * The RCU lock also protects the memcg from being freed when
1664 * the page state that is going to change is the only thing
1665 * preventing the page itself from being freed. E.g. writeback
1666 * doesn't hold a page reference and relies on PG_writeback to
1667 * keep off truncation, migration and so forth.
1668 */
1669 rcu_read_lock();
1670
1671 if (mem_cgroup_disabled())
1672 return NULL;
1673again:
1674 memcg = page->mem_cgroup;
1675 if (unlikely(!memcg))
1676 return NULL;
1677
1678 if (atomic_read(&memcg->moving_account) <= 0)
1679 return memcg;
1680
1681 spin_lock_irqsave(&memcg->move_lock, flags);
1682 if (memcg != page->mem_cgroup) {
1683 spin_unlock_irqrestore(&memcg->move_lock, flags);
1684 goto again;
1685 }
1686
1687 /*
1688 * When charge migration first begins, we can have locked and
1689 * unlocked page stat updates happening concurrently. Track
1690 * the task who has the lock for unlock_page_memcg().
1691 */
1692 memcg->move_lock_task = current;
1693 memcg->move_lock_flags = flags;
1694
1695 return memcg;
1696}
1697EXPORT_SYMBOL(lock_page_memcg);
1698
1699/**
1700 * __unlock_page_memcg - unlock and unpin a memcg
1701 * @memcg: the memcg
1702 *
1703 * Unlock and unpin a memcg returned by lock_page_memcg().
1704 */
1705void __unlock_page_memcg(struct mem_cgroup *memcg)
1706{
1707 if (memcg && memcg->move_lock_task == current) {
1708 unsigned long flags = memcg->move_lock_flags;
1709
1710 memcg->move_lock_task = NULL;
1711 memcg->move_lock_flags = 0;
1712
1713 spin_unlock_irqrestore(&memcg->move_lock, flags);
1714 }
1715
1716 rcu_read_unlock();
1717}
1718
1719/**
1720 * unlock_page_memcg - unlock a page->mem_cgroup binding
1721 * @page: the page
1722 */
1723void unlock_page_memcg(struct page *page)
1724{
1725 __unlock_page_memcg(page->mem_cgroup);
1726}
1727EXPORT_SYMBOL(unlock_page_memcg);
1728
1729/*
1730 * size of first charge trial. "32" comes from vmscan.c's magic value.
1731 * TODO: maybe necessary to use big numbers in big irons.
1732 */
1733#define CHARGE_BATCH 32U
1734struct memcg_stock_pcp {
1735 struct mem_cgroup *cached; /* this never be root cgroup */
1736 unsigned int nr_pages;
1737 struct work_struct work;
1738 unsigned long flags;
1739#define FLUSHING_CACHED_CHARGE 0
1740};
1741static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1742static DEFINE_MUTEX(percpu_charge_mutex);
1743
1744/**
1745 * consume_stock: Try to consume stocked charge on this cpu.
1746 * @memcg: memcg to consume from.
1747 * @nr_pages: how many pages to charge.
1748 *
1749 * The charges will only happen if @memcg matches the current cpu's memcg
1750 * stock, and at least @nr_pages are available in that stock. Failure to
1751 * service an allocation will refill the stock.
1752 *
1753 * returns true if successful, false otherwise.
1754 */
1755static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1756{
1757 struct memcg_stock_pcp *stock;
1758 unsigned long flags;
1759 bool ret = false;
1760
1761 if (nr_pages > CHARGE_BATCH)
1762 return ret;
1763
1764 local_irq_save(flags);
1765
1766 stock = this_cpu_ptr(&memcg_stock);
1767 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1768 stock->nr_pages -= nr_pages;
1769 ret = true;
1770 }
1771
1772 local_irq_restore(flags);
1773
1774 return ret;
1775}
1776
1777/*
1778 * Returns stocks cached in percpu and reset cached information.
1779 */
1780static void drain_stock(struct memcg_stock_pcp *stock)
1781{
1782 struct mem_cgroup *old = stock->cached;
1783
1784 if (stock->nr_pages) {
1785 page_counter_uncharge(&old->memory, stock->nr_pages);
1786 if (do_memsw_account())
1787 page_counter_uncharge(&old->memsw, stock->nr_pages);
1788 css_put_many(&old->css, stock->nr_pages);
1789 stock->nr_pages = 0;
1790 }
1791 stock->cached = NULL;
1792}
1793
1794static void drain_local_stock(struct work_struct *dummy)
1795{
1796 struct memcg_stock_pcp *stock;
1797 unsigned long flags;
1798
1799 /*
1800 * The only protection from memory hotplug vs. drain_stock races is
1801 * that we always operate on local CPU stock here with IRQ disabled
1802 */
1803 local_irq_save(flags);
1804
1805 stock = this_cpu_ptr(&memcg_stock);
1806 drain_stock(stock);
1807 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1808
1809 local_irq_restore(flags);
1810}
1811
1812/*
1813 * Cache charges(val) to local per_cpu area.
1814 * This will be consumed by consume_stock() function, later.
1815 */
1816static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1817{
1818 struct memcg_stock_pcp *stock;
1819 unsigned long flags;
1820
1821 local_irq_save(flags);
1822
1823 stock = this_cpu_ptr(&memcg_stock);
1824 if (stock->cached != memcg) { /* reset if necessary */
1825 drain_stock(stock);
1826 stock->cached = memcg;
1827 }
1828 stock->nr_pages += nr_pages;
1829
1830 if (stock->nr_pages > CHARGE_BATCH)
1831 drain_stock(stock);
1832
1833 local_irq_restore(flags);
1834}
1835
1836/*
1837 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1838 * of the hierarchy under it.
1839 */
1840static void drain_all_stock(struct mem_cgroup *root_memcg)
1841{
1842 int cpu, curcpu;
1843
1844 /* If someone's already draining, avoid adding running more workers. */
1845 if (!mutex_trylock(&percpu_charge_mutex))
1846 return;
1847 /*
1848 * Notify other cpus that system-wide "drain" is running
1849 * We do not care about races with the cpu hotplug because cpu down
1850 * as well as workers from this path always operate on the local
1851 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1852 */
1853 curcpu = get_cpu();
1854 for_each_online_cpu(cpu) {
1855 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1856 struct mem_cgroup *memcg;
1857
1858 memcg = stock->cached;
1859 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
1860 continue;
1861 if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
1862 css_put(&memcg->css);
1863 continue;
1864 }
1865 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1866 if (cpu == curcpu)
1867 drain_local_stock(&stock->work);
1868 else
1869 schedule_work_on(cpu, &stock->work);
1870 }
1871 css_put(&memcg->css);
1872 }
1873 put_cpu();
1874 mutex_unlock(&percpu_charge_mutex);
1875}
1876
1877static int memcg_hotplug_cpu_dead(unsigned int cpu)
1878{
1879 struct memcg_stock_pcp *stock;
1880
1881 stock = &per_cpu(memcg_stock, cpu);
1882 drain_stock(stock);
1883 return 0;
1884}
1885
1886static void reclaim_high(struct mem_cgroup *memcg,
1887 unsigned int nr_pages,
1888 gfp_t gfp_mask)
1889{
1890 do {
1891 if (page_counter_read(&memcg->memory) <= memcg->high)
1892 continue;
1893 mem_cgroup_event(memcg, MEMCG_HIGH);
1894 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1895 } while ((memcg = parent_mem_cgroup(memcg)));
1896}
1897
1898static void high_work_func(struct work_struct *work)
1899{
1900 struct mem_cgroup *memcg;
1901
1902 memcg = container_of(work, struct mem_cgroup, high_work);
1903 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1904}
1905
1906/*
1907 * Scheduled by try_charge() to be executed from the userland return path
1908 * and reclaims memory over the high limit.
1909 */
1910void mem_cgroup_handle_over_high(void)
1911{
1912 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1913 struct mem_cgroup *memcg;
1914
1915 if (likely(!nr_pages))
1916 return;
1917
1918 memcg = get_mem_cgroup_from_mm(current->mm);
1919 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1920 css_put(&memcg->css);
1921 current->memcg_nr_pages_over_high = 0;
1922}
1923
1924static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1925 unsigned int nr_pages)
1926{
1927 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1928 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1929 struct mem_cgroup *mem_over_limit;
1930 struct page_counter *counter;
1931 unsigned long nr_reclaimed;
1932 bool may_swap = true;
1933 bool drained = false;
1934
1935 if (mem_cgroup_is_root(memcg))
1936 return 0;
1937retry:
1938 if (consume_stock(memcg, nr_pages))
1939 return 0;
1940
1941 if (!do_memsw_account() ||
1942 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1943 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1944 goto done_restock;
1945 if (do_memsw_account())
1946 page_counter_uncharge(&memcg->memsw, batch);
1947 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1948 } else {
1949 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1950 may_swap = false;
1951 }
1952
1953 if (batch > nr_pages) {
1954 batch = nr_pages;
1955 goto retry;
1956 }
1957
1958 /*
1959 * Unlike in global OOM situations, memcg is not in a physical
1960 * memory shortage. Allow dying and OOM-killed tasks to
1961 * bypass the last charges so that they can exit quickly and
1962 * free their memory.
1963 */
1964 if (unlikely(tsk_is_oom_victim(current) ||
1965 fatal_signal_pending(current) ||
1966 current->flags & PF_EXITING))
1967 goto force;
1968
1969 /*
1970 * Prevent unbounded recursion when reclaim operations need to
1971 * allocate memory. This might exceed the limits temporarily,
1972 * but we prefer facilitating memory reclaim and getting back
1973 * under the limit over triggering OOM kills in these cases.
1974 */
1975 if (unlikely(current->flags & PF_MEMALLOC))
1976 goto force;
1977
1978 if (unlikely(task_in_memcg_oom(current)))
1979 goto nomem;
1980
1981 if (!gfpflags_allow_blocking(gfp_mask))
1982 goto nomem;
1983
1984 mem_cgroup_event(mem_over_limit, MEMCG_MAX);
1985
1986 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1987 gfp_mask, may_swap);
1988
1989 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1990 goto retry;
1991
1992 if (!drained) {
1993 drain_all_stock(mem_over_limit);
1994 drained = true;
1995 goto retry;
1996 }
1997
1998 if (gfp_mask & __GFP_NORETRY)
1999 goto nomem;
2000 /*
2001 * Even though the limit is exceeded at this point, reclaim
2002 * may have been able to free some pages. Retry the charge
2003 * before killing the task.
2004 *
2005 * Only for regular pages, though: huge pages are rather
2006 * unlikely to succeed so close to the limit, and we fall back
2007 * to regular pages anyway in case of failure.
2008 */
2009 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2010 goto retry;
2011 /*
2012 * At task move, charge accounts can be doubly counted. So, it's
2013 * better to wait until the end of task_move if something is going on.
2014 */
2015 if (mem_cgroup_wait_acct_move(mem_over_limit))
2016 goto retry;
2017
2018 if (nr_retries--)
2019 goto retry;
2020
2021 if (gfp_mask & __GFP_NOFAIL)
2022 goto force;
2023
2024 if (fatal_signal_pending(current))
2025 goto force;
2026
2027 mem_cgroup_event(mem_over_limit, MEMCG_OOM);
2028
2029 mem_cgroup_oom(mem_over_limit, gfp_mask,
2030 get_order(nr_pages * PAGE_SIZE));
2031nomem:
2032 if (!(gfp_mask & __GFP_NOFAIL))
2033 return -ENOMEM;
2034force:
2035 /*
2036 * The allocation either can't fail or will lead to more memory
2037 * being freed very soon. Allow memory usage go over the limit
2038 * temporarily by force charging it.
2039 */
2040 page_counter_charge(&memcg->memory, nr_pages);
2041 if (do_memsw_account())
2042 page_counter_charge(&memcg->memsw, nr_pages);
2043 css_get_many(&memcg->css, nr_pages);
2044
2045 return 0;
2046
2047done_restock:
2048 css_get_many(&memcg->css, batch);
2049 if (batch > nr_pages)
2050 refill_stock(memcg, batch - nr_pages);
2051
2052 /*
2053 * If the hierarchy is above the normal consumption range, schedule
2054 * reclaim on returning to userland. We can perform reclaim here
2055 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2056 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2057 * not recorded as it most likely matches current's and won't
2058 * change in the meantime. As high limit is checked again before
2059 * reclaim, the cost of mismatch is negligible.
2060 */
2061 do {
2062 if (page_counter_read(&memcg->memory) > memcg->high) {
2063 /* Don't bother a random interrupted task */
2064 if (in_interrupt()) {
2065 schedule_work(&memcg->high_work);
2066 break;
2067 }
2068 current->memcg_nr_pages_over_high += batch;
2069 set_notify_resume(current);
2070 break;
2071 }
2072 } while ((memcg = parent_mem_cgroup(memcg)));
2073
2074 return 0;
2075}
2076
2077static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2078{
2079 if (mem_cgroup_is_root(memcg))
2080 return;
2081
2082 page_counter_uncharge(&memcg->memory, nr_pages);
2083 if (do_memsw_account())
2084 page_counter_uncharge(&memcg->memsw, nr_pages);
2085
2086 css_put_many(&memcg->css, nr_pages);
2087}
2088
2089static void lock_page_lru(struct page *page, int *isolated)
2090{
2091 struct zone *zone = page_zone(page);
2092
2093 spin_lock_irq(zone_lru_lock(zone));
2094 if (PageLRU(page)) {
2095 struct lruvec *lruvec;
2096
2097 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2098 ClearPageLRU(page);
2099 del_page_from_lru_list(page, lruvec, page_lru(page));
2100 *isolated = 1;
2101 } else
2102 *isolated = 0;
2103}
2104
2105static void unlock_page_lru(struct page *page, int isolated)
2106{
2107 struct zone *zone = page_zone(page);
2108
2109 if (isolated) {
2110 struct lruvec *lruvec;
2111
2112 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2113 VM_BUG_ON_PAGE(PageLRU(page), page);
2114 SetPageLRU(page);
2115 add_page_to_lru_list(page, lruvec, page_lru(page));
2116 }
2117 spin_unlock_irq(zone_lru_lock(zone));
2118}
2119
2120static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2121 bool lrucare)
2122{
2123 int isolated;
2124
2125 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2126
2127 /*
2128 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2129 * may already be on some other mem_cgroup's LRU. Take care of it.
2130 */
2131 if (lrucare)
2132 lock_page_lru(page, &isolated);
2133
2134 /*
2135 * Nobody should be changing or seriously looking at
2136 * page->mem_cgroup at this point:
2137 *
2138 * - the page is uncharged
2139 *
2140 * - the page is off-LRU
2141 *
2142 * - an anonymous fault has exclusive page access, except for
2143 * a locked page table
2144 *
2145 * - a page cache insertion, a swapin fault, or a migration
2146 * have the page locked
2147 */
2148 page->mem_cgroup = memcg;
2149
2150 if (lrucare)
2151 unlock_page_lru(page, isolated);
2152}
2153
2154#ifndef CONFIG_SLOB
2155static int memcg_alloc_cache_id(void)
2156{
2157 int id, size;
2158 int err;
2159
2160 id = ida_simple_get(&memcg_cache_ida,
2161 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2162 if (id < 0)
2163 return id;
2164
2165 if (id < memcg_nr_cache_ids)
2166 return id;
2167
2168 /*
2169 * There's no space for the new id in memcg_caches arrays,
2170 * so we have to grow them.
2171 */
2172 down_write(&memcg_cache_ids_sem);
2173
2174 size = 2 * (id + 1);
2175 if (size < MEMCG_CACHES_MIN_SIZE)
2176 size = MEMCG_CACHES_MIN_SIZE;
2177 else if (size > MEMCG_CACHES_MAX_SIZE)
2178 size = MEMCG_CACHES_MAX_SIZE;
2179
2180 err = memcg_update_all_caches(size);
2181 if (!err)
2182 err = memcg_update_all_list_lrus(size);
2183 if (!err)
2184 memcg_nr_cache_ids = size;
2185
2186 up_write(&memcg_cache_ids_sem);
2187
2188 if (err) {
2189 ida_simple_remove(&memcg_cache_ida, id);
2190 return err;
2191 }
2192 return id;
2193}
2194
2195static void memcg_free_cache_id(int id)
2196{
2197 ida_simple_remove(&memcg_cache_ida, id);
2198}
2199
2200struct memcg_kmem_cache_create_work {
2201 struct mem_cgroup *memcg;
2202 struct kmem_cache *cachep;
2203 struct work_struct work;
2204};
2205
2206static void memcg_kmem_cache_create_func(struct work_struct *w)
2207{
2208 struct memcg_kmem_cache_create_work *cw =
2209 container_of(w, struct memcg_kmem_cache_create_work, work);
2210 struct mem_cgroup *memcg = cw->memcg;
2211 struct kmem_cache *cachep = cw->cachep;
2212
2213 memcg_create_kmem_cache(memcg, cachep);
2214
2215 css_put(&memcg->css);
2216 kfree(cw);
2217}
2218
2219/*
2220 * Enqueue the creation of a per-memcg kmem_cache.
2221 */
2222static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2223 struct kmem_cache *cachep)
2224{
2225 struct memcg_kmem_cache_create_work *cw;
2226
2227 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2228 if (!cw)
2229 return;
2230
2231 css_get(&memcg->css);
2232
2233 cw->memcg = memcg;
2234 cw->cachep = cachep;
2235 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2236
2237 queue_work(memcg_kmem_cache_wq, &cw->work);
2238}
2239
2240static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2241 struct kmem_cache *cachep)
2242{
2243 /*
2244 * We need to stop accounting when we kmalloc, because if the
2245 * corresponding kmalloc cache is not yet created, the first allocation
2246 * in __memcg_schedule_kmem_cache_create will recurse.
2247 *
2248 * However, it is better to enclose the whole function. Depending on
2249 * the debugging options enabled, INIT_WORK(), for instance, can
2250 * trigger an allocation. This too, will make us recurse. Because at
2251 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2252 * the safest choice is to do it like this, wrapping the whole function.
2253 */
2254 current->memcg_kmem_skip_account = 1;
2255 __memcg_schedule_kmem_cache_create(memcg, cachep);
2256 current->memcg_kmem_skip_account = 0;
2257}
2258
2259static inline bool memcg_kmem_bypass(void)
2260{
2261 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2262 return true;
2263 return false;
2264}
2265
2266/**
2267 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2268 * @cachep: the original global kmem cache
2269 *
2270 * Return the kmem_cache we're supposed to use for a slab allocation.
2271 * We try to use the current memcg's version of the cache.
2272 *
2273 * If the cache does not exist yet, if we are the first user of it, we
2274 * create it asynchronously in a workqueue and let the current allocation
2275 * go through with the original cache.
2276 *
2277 * This function takes a reference to the cache it returns to assure it
2278 * won't get destroyed while we are working with it. Once the caller is
2279 * done with it, memcg_kmem_put_cache() must be called to release the
2280 * reference.
2281 */
2282struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2283{
2284 struct mem_cgroup *memcg;
2285 struct kmem_cache *memcg_cachep;
2286 int kmemcg_id;
2287
2288 VM_BUG_ON(!is_root_cache(cachep));
2289
2290 if (memcg_kmem_bypass())
2291 return cachep;
2292
2293 if (current->memcg_kmem_skip_account)
2294 return cachep;
2295
2296 memcg = get_mem_cgroup_from_mm(current->mm);
2297 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2298 if (kmemcg_id < 0)
2299 goto out;
2300
2301 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2302 if (likely(memcg_cachep))
2303 return memcg_cachep;
2304
2305 /*
2306 * If we are in a safe context (can wait, and not in interrupt
2307 * context), we could be be predictable and return right away.
2308 * This would guarantee that the allocation being performed
2309 * already belongs in the new cache.
2310 *
2311 * However, there are some clashes that can arrive from locking.
2312 * For instance, because we acquire the slab_mutex while doing
2313 * memcg_create_kmem_cache, this means no further allocation
2314 * could happen with the slab_mutex held. So it's better to
2315 * defer everything.
2316 */
2317 memcg_schedule_kmem_cache_create(memcg, cachep);
2318out:
2319 css_put(&memcg->css);
2320 return cachep;
2321}
2322
2323/**
2324 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2325 * @cachep: the cache returned by memcg_kmem_get_cache
2326 */
2327void memcg_kmem_put_cache(struct kmem_cache *cachep)
2328{
2329 if (!is_root_cache(cachep))
2330 css_put(&cachep->memcg_params.memcg->css);
2331}
2332
2333/**
2334 * memcg_kmem_charge: charge a kmem page
2335 * @page: page to charge
2336 * @gfp: reclaim mode
2337 * @order: allocation order
2338 * @memcg: memory cgroup to charge
2339 *
2340 * Returns 0 on success, an error code on failure.
2341 */
2342int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2343 struct mem_cgroup *memcg)
2344{
2345 unsigned int nr_pages = 1 << order;
2346 struct page_counter *counter;
2347 int ret;
2348
2349 ret = try_charge(memcg, gfp, nr_pages);
2350 if (ret)
2351 return ret;
2352
2353 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2354 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2355
2356 /*
2357 * Enforce __GFP_NOFAIL allocation because callers are not
2358 * prepared to see failures and likely do not have any failure
2359 * handling code.
2360 */
2361 if (gfp & __GFP_NOFAIL) {
2362 page_counter_charge(&memcg->kmem, nr_pages);
2363 return 0;
2364 }
2365 cancel_charge(memcg, nr_pages);
2366 return -ENOMEM;
2367 }
2368
2369 page->mem_cgroup = memcg;
2370
2371 return 0;
2372}
2373
2374/**
2375 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2376 * @page: page to charge
2377 * @gfp: reclaim mode
2378 * @order: allocation order
2379 *
2380 * Returns 0 on success, an error code on failure.
2381 */
2382int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2383{
2384 struct mem_cgroup *memcg;
2385 int ret = 0;
2386
2387 if (memcg_kmem_bypass())
2388 return 0;
2389
2390 memcg = get_mem_cgroup_from_mm(current->mm);
2391 if (!mem_cgroup_is_root(memcg)) {
2392 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2393 if (!ret)
2394 __SetPageKmemcg(page);
2395 }
2396 css_put(&memcg->css);
2397 return ret;
2398}
2399/**
2400 * memcg_kmem_uncharge: uncharge a kmem page
2401 * @page: page to uncharge
2402 * @order: allocation order
2403 */
2404void memcg_kmem_uncharge(struct page *page, int order)
2405{
2406 struct mem_cgroup *memcg = page->mem_cgroup;
2407 unsigned int nr_pages = 1 << order;
2408
2409 if (!memcg)
2410 return;
2411
2412 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2413
2414 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2415 page_counter_uncharge(&memcg->kmem, nr_pages);
2416
2417 page_counter_uncharge(&memcg->memory, nr_pages);
2418 if (do_memsw_account())
2419 page_counter_uncharge(&memcg->memsw, nr_pages);
2420
2421 page->mem_cgroup = NULL;
2422
2423 /* slab pages do not have PageKmemcg flag set */
2424 if (PageKmemcg(page))
2425 __ClearPageKmemcg(page);
2426
2427 css_put_many(&memcg->css, nr_pages);
2428}
2429#endif /* !CONFIG_SLOB */
2430
2431#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2432
2433/*
2434 * Because tail pages are not marked as "used", set it. We're under
2435 * zone_lru_lock and migration entries setup in all page mappings.
2436 */
2437void mem_cgroup_split_huge_fixup(struct page *head)
2438{
2439 int i;
2440
2441 if (mem_cgroup_disabled())
2442 return;
2443
2444 for (i = 1; i < HPAGE_PMD_NR; i++)
2445 head[i].mem_cgroup = head->mem_cgroup;
2446
2447 __this_cpu_sub(head->mem_cgroup->stat->count[MEMCG_RSS_HUGE],
2448 HPAGE_PMD_NR);
2449}
2450#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2451
2452#ifdef CONFIG_MEMCG_SWAP
2453static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2454 int nr_entries)
2455{
2456 this_cpu_add(memcg->stat->count[MEMCG_SWAP], nr_entries);
2457}
2458
2459/**
2460 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2461 * @entry: swap entry to be moved
2462 * @from: mem_cgroup which the entry is moved from
2463 * @to: mem_cgroup which the entry is moved to
2464 *
2465 * It succeeds only when the swap_cgroup's record for this entry is the same
2466 * as the mem_cgroup's id of @from.
2467 *
2468 * Returns 0 on success, -EINVAL on failure.
2469 *
2470 * The caller must have charged to @to, IOW, called page_counter_charge() about
2471 * both res and memsw, and called css_get().
2472 */
2473static int mem_cgroup_move_swap_account(swp_entry_t entry,
2474 struct mem_cgroup *from, struct mem_cgroup *to)
2475{
2476 unsigned short old_id, new_id;
2477
2478 old_id = mem_cgroup_id(from);
2479 new_id = mem_cgroup_id(to);
2480
2481 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2482 mem_cgroup_swap_statistics(from, -1);
2483 mem_cgroup_swap_statistics(to, 1);
2484 return 0;
2485 }
2486 return -EINVAL;
2487}
2488#else
2489static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2490 struct mem_cgroup *from, struct mem_cgroup *to)
2491{
2492 return -EINVAL;
2493}
2494#endif
2495
2496static DEFINE_MUTEX(memcg_limit_mutex);
2497
2498static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2499 unsigned long limit)
2500{
2501 unsigned long curusage;
2502 unsigned long oldusage;
2503 bool enlarge = false;
2504 int retry_count;
2505 int ret;
2506
2507 /*
2508 * For keeping hierarchical_reclaim simple, how long we should retry
2509 * is depends on callers. We set our retry-count to be function
2510 * of # of children which we should visit in this loop.
2511 */
2512 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2513 mem_cgroup_count_children(memcg);
2514
2515 oldusage = page_counter_read(&memcg->memory);
2516
2517 do {
2518 if (signal_pending(current)) {
2519 ret = -EINTR;
2520 break;
2521 }
2522
2523 mutex_lock(&memcg_limit_mutex);
2524 if (limit > memcg->memsw.limit) {
2525 mutex_unlock(&memcg_limit_mutex);
2526 ret = -EINVAL;
2527 break;
2528 }
2529 if (limit > memcg->memory.limit)
2530 enlarge = true;
2531 ret = page_counter_limit(&memcg->memory, limit);
2532 mutex_unlock(&memcg_limit_mutex);
2533
2534 if (!ret)
2535 break;
2536
2537 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2538
2539 curusage = page_counter_read(&memcg->memory);
2540 /* Usage is reduced ? */
2541 if (curusage >= oldusage)
2542 retry_count--;
2543 else
2544 oldusage = curusage;
2545 } while (retry_count);
2546
2547 if (!ret && enlarge)
2548 memcg_oom_recover(memcg);
2549
2550 return ret;
2551}
2552
2553static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2554 unsigned long limit)
2555{
2556 unsigned long curusage;
2557 unsigned long oldusage;
2558 bool enlarge = false;
2559 int retry_count;
2560 int ret;
2561
2562 /* see mem_cgroup_resize_res_limit */
2563 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2564 mem_cgroup_count_children(memcg);
2565
2566 oldusage = page_counter_read(&memcg->memsw);
2567
2568 do {
2569 if (signal_pending(current)) {
2570 ret = -EINTR;
2571 break;
2572 }
2573
2574 mutex_lock(&memcg_limit_mutex);
2575 if (limit < memcg->memory.limit) {
2576 mutex_unlock(&memcg_limit_mutex);
2577 ret = -EINVAL;
2578 break;
2579 }
2580 if (limit > memcg->memsw.limit)
2581 enlarge = true;
2582 ret = page_counter_limit(&memcg->memsw, limit);
2583 mutex_unlock(&memcg_limit_mutex);
2584
2585 if (!ret)
2586 break;
2587
2588 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2589
2590 curusage = page_counter_read(&memcg->memsw);
2591 /* Usage is reduced ? */
2592 if (curusage >= oldusage)
2593 retry_count--;
2594 else
2595 oldusage = curusage;
2596 } while (retry_count);
2597
2598 if (!ret && enlarge)
2599 memcg_oom_recover(memcg);
2600
2601 return ret;
2602}
2603
2604unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2605 gfp_t gfp_mask,
2606 unsigned long *total_scanned)
2607{
2608 unsigned long nr_reclaimed = 0;
2609 struct mem_cgroup_per_node *mz, *next_mz = NULL;
2610 unsigned long reclaimed;
2611 int loop = 0;
2612 struct mem_cgroup_tree_per_node *mctz;
2613 unsigned long excess;
2614 unsigned long nr_scanned;
2615
2616 if (order > 0)
2617 return 0;
2618
2619 mctz = soft_limit_tree_node(pgdat->node_id);
2620
2621 /*
2622 * Do not even bother to check the largest node if the root
2623 * is empty. Do it lockless to prevent lock bouncing. Races
2624 * are acceptable as soft limit is best effort anyway.
2625 */
2626 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2627 return 0;
2628
2629 /*
2630 * This loop can run a while, specially if mem_cgroup's continuously
2631 * keep exceeding their soft limit and putting the system under
2632 * pressure
2633 */
2634 do {
2635 if (next_mz)
2636 mz = next_mz;
2637 else
2638 mz = mem_cgroup_largest_soft_limit_node(mctz);
2639 if (!mz)
2640 break;
2641
2642 nr_scanned = 0;
2643 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2644 gfp_mask, &nr_scanned);
2645 nr_reclaimed += reclaimed;
2646 *total_scanned += nr_scanned;
2647 spin_lock_irq(&mctz->lock);
2648 __mem_cgroup_remove_exceeded(mz, mctz);
2649
2650 /*
2651 * If we failed to reclaim anything from this memory cgroup
2652 * it is time to move on to the next cgroup
2653 */
2654 next_mz = NULL;
2655 if (!reclaimed)
2656 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2657
2658 excess = soft_limit_excess(mz->memcg);
2659 /*
2660 * One school of thought says that we should not add
2661 * back the node to the tree if reclaim returns 0.
2662 * But our reclaim could return 0, simply because due
2663 * to priority we are exposing a smaller subset of
2664 * memory to reclaim from. Consider this as a longer
2665 * term TODO.
2666 */
2667 /* If excess == 0, no tree ops */
2668 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2669 spin_unlock_irq(&mctz->lock);
2670 css_put(&mz->memcg->css);
2671 loop++;
2672 /*
2673 * Could not reclaim anything and there are no more
2674 * mem cgroups to try or we seem to be looping without
2675 * reclaiming anything.
2676 */
2677 if (!nr_reclaimed &&
2678 (next_mz == NULL ||
2679 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2680 break;
2681 } while (!nr_reclaimed);
2682 if (next_mz)
2683 css_put(&next_mz->memcg->css);
2684 return nr_reclaimed;
2685}
2686
2687/*
2688 * Test whether @memcg has children, dead or alive. Note that this
2689 * function doesn't care whether @memcg has use_hierarchy enabled and
2690 * returns %true if there are child csses according to the cgroup
2691 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2692 */
2693static inline bool memcg_has_children(struct mem_cgroup *memcg)
2694{
2695 bool ret;
2696
2697 rcu_read_lock();
2698 ret = css_next_child(NULL, &memcg->css);
2699 rcu_read_unlock();
2700 return ret;
2701}
2702
2703/*
2704 * Reclaims as many pages from the given memcg as possible.
2705 *
2706 * Caller is responsible for holding css reference for memcg.
2707 */
2708static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2709{
2710 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2711
2712 /* we call try-to-free pages for make this cgroup empty */
2713 lru_add_drain_all();
2714 /* try to free all pages in this cgroup */
2715 while (nr_retries && page_counter_read(&memcg->memory)) {
2716 int progress;
2717
2718 if (signal_pending(current))
2719 return -EINTR;
2720
2721 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2722 GFP_KERNEL, true);
2723 if (!progress) {
2724 nr_retries--;
2725 /* maybe some writeback is necessary */
2726 congestion_wait(BLK_RW_ASYNC, HZ/10);
2727 }
2728
2729 }
2730
2731 return 0;
2732}
2733
2734static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2735 char *buf, size_t nbytes,
2736 loff_t off)
2737{
2738 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2739
2740 if (mem_cgroup_is_root(memcg))
2741 return -EINVAL;
2742 return mem_cgroup_force_empty(memcg) ?: nbytes;
2743}
2744
2745static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2746 struct cftype *cft)
2747{
2748 return mem_cgroup_from_css(css)->use_hierarchy;
2749}
2750
2751static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2752 struct cftype *cft, u64 val)
2753{
2754 int retval = 0;
2755 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2756 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2757
2758 if (memcg->use_hierarchy == val)
2759 return 0;
2760
2761 /*
2762 * If parent's use_hierarchy is set, we can't make any modifications
2763 * in the child subtrees. If it is unset, then the change can
2764 * occur, provided the current cgroup has no children.
2765 *
2766 * For the root cgroup, parent_mem is NULL, we allow value to be
2767 * set if there are no children.
2768 */
2769 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2770 (val == 1 || val == 0)) {
2771 if (!memcg_has_children(memcg))
2772 memcg->use_hierarchy = val;
2773 else
2774 retval = -EBUSY;
2775 } else
2776 retval = -EINVAL;
2777
2778 return retval;
2779}
2780
2781static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2782{
2783 struct mem_cgroup *iter;
2784 int i;
2785
2786 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2787
2788 for_each_mem_cgroup_tree(iter, memcg) {
2789 for (i = 0; i < MEMCG_NR_STAT; i++)
2790 stat[i] += memcg_page_state(iter, i);
2791 }
2792}
2793
2794static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2795{
2796 struct mem_cgroup *iter;
2797 int i;
2798
2799 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2800
2801 for_each_mem_cgroup_tree(iter, memcg) {
2802 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2803 events[i] += memcg_sum_events(iter, i);
2804 }
2805}
2806
2807static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2808{
2809 unsigned long val = 0;
2810
2811 if (mem_cgroup_is_root(memcg)) {
2812 struct mem_cgroup *iter;
2813
2814 for_each_mem_cgroup_tree(iter, memcg) {
2815 val += memcg_page_state(iter, MEMCG_CACHE);
2816 val += memcg_page_state(iter, MEMCG_RSS);
2817 if (swap)
2818 val += memcg_page_state(iter, MEMCG_SWAP);
2819 }
2820 } else {
2821 if (!swap)
2822 val = page_counter_read(&memcg->memory);
2823 else
2824 val = page_counter_read(&memcg->memsw);
2825 }
2826 return val;
2827}
2828
2829enum {
2830 RES_USAGE,
2831 RES_LIMIT,
2832 RES_MAX_USAGE,
2833 RES_FAILCNT,
2834 RES_SOFT_LIMIT,
2835};
2836
2837static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2838 struct cftype *cft)
2839{
2840 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2841 struct page_counter *counter;
2842
2843 switch (MEMFILE_TYPE(cft->private)) {
2844 case _MEM:
2845 counter = &memcg->memory;
2846 break;
2847 case _MEMSWAP:
2848 counter = &memcg->memsw;
2849 break;
2850 case _KMEM:
2851 counter = &memcg->kmem;
2852 break;
2853 case _TCP:
2854 counter = &memcg->tcpmem;
2855 break;
2856 default:
2857 BUG();
2858 }
2859
2860 switch (MEMFILE_ATTR(cft->private)) {
2861 case RES_USAGE:
2862 if (counter == &memcg->memory)
2863 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2864 if (counter == &memcg->memsw)
2865 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2866 return (u64)page_counter_read(counter) * PAGE_SIZE;
2867 case RES_LIMIT:
2868 return (u64)counter->limit * PAGE_SIZE;
2869 case RES_MAX_USAGE:
2870 return (u64)counter->watermark * PAGE_SIZE;
2871 case RES_FAILCNT:
2872 return counter->failcnt;
2873 case RES_SOFT_LIMIT:
2874 return (u64)memcg->soft_limit * PAGE_SIZE;
2875 default:
2876 BUG();
2877 }
2878}
2879
2880#ifndef CONFIG_SLOB
2881static int memcg_online_kmem(struct mem_cgroup *memcg)
2882{
2883 int memcg_id;
2884
2885 if (cgroup_memory_nokmem)
2886 return 0;
2887
2888 BUG_ON(memcg->kmemcg_id >= 0);
2889 BUG_ON(memcg->kmem_state);
2890
2891 memcg_id = memcg_alloc_cache_id();
2892 if (memcg_id < 0)
2893 return memcg_id;
2894
2895 static_branch_inc(&memcg_kmem_enabled_key);
2896 /*
2897 * A memory cgroup is considered kmem-online as soon as it gets
2898 * kmemcg_id. Setting the id after enabling static branching will
2899 * guarantee no one starts accounting before all call sites are
2900 * patched.
2901 */
2902 memcg->kmemcg_id = memcg_id;
2903 memcg->kmem_state = KMEM_ONLINE;
2904 INIT_LIST_HEAD(&memcg->kmem_caches);
2905
2906 return 0;
2907}
2908
2909static void memcg_offline_kmem(struct mem_cgroup *memcg)
2910{
2911 struct cgroup_subsys_state *css;
2912 struct mem_cgroup *parent, *child;
2913 int kmemcg_id;
2914
2915 if (memcg->kmem_state != KMEM_ONLINE)
2916 return;
2917 /*
2918 * Clear the online state before clearing memcg_caches array
2919 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2920 * guarantees that no cache will be created for this cgroup
2921 * after we are done (see memcg_create_kmem_cache()).
2922 */
2923 memcg->kmem_state = KMEM_ALLOCATED;
2924
2925 memcg_deactivate_kmem_caches(memcg);
2926
2927 kmemcg_id = memcg->kmemcg_id;
2928 BUG_ON(kmemcg_id < 0);
2929
2930 parent = parent_mem_cgroup(memcg);
2931 if (!parent)
2932 parent = root_mem_cgroup;
2933
2934 /*
2935 * Change kmemcg_id of this cgroup and all its descendants to the
2936 * parent's id, and then move all entries from this cgroup's list_lrus
2937 * to ones of the parent. After we have finished, all list_lrus
2938 * corresponding to this cgroup are guaranteed to remain empty. The
2939 * ordering is imposed by list_lru_node->lock taken by
2940 * memcg_drain_all_list_lrus().
2941 */
2942 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2943 css_for_each_descendant_pre(css, &memcg->css) {
2944 child = mem_cgroup_from_css(css);
2945 BUG_ON(child->kmemcg_id != kmemcg_id);
2946 child->kmemcg_id = parent->kmemcg_id;
2947 if (!memcg->use_hierarchy)
2948 break;
2949 }
2950 rcu_read_unlock();
2951
2952 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2953
2954 memcg_free_cache_id(kmemcg_id);
2955}
2956
2957static void memcg_free_kmem(struct mem_cgroup *memcg)
2958{
2959 /* css_alloc() failed, offlining didn't happen */
2960 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2961 memcg_offline_kmem(memcg);
2962
2963 if (memcg->kmem_state == KMEM_ALLOCATED) {
2964 memcg_destroy_kmem_caches(memcg);
2965 static_branch_dec(&memcg_kmem_enabled_key);
2966 WARN_ON(page_counter_read(&memcg->kmem));
2967 }
2968}
2969#else
2970static int memcg_online_kmem(struct mem_cgroup *memcg)
2971{
2972 return 0;
2973}
2974static void memcg_offline_kmem(struct mem_cgroup *memcg)
2975{
2976}
2977static void memcg_free_kmem(struct mem_cgroup *memcg)
2978{
2979}
2980#endif /* !CONFIG_SLOB */
2981
2982static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2983 unsigned long limit)
2984{
2985 int ret;
2986
2987 mutex_lock(&memcg_limit_mutex);
2988 ret = page_counter_limit(&memcg->kmem, limit);
2989 mutex_unlock(&memcg_limit_mutex);
2990 return ret;
2991}
2992
2993static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2994{
2995 int ret;
2996
2997 mutex_lock(&memcg_limit_mutex);
2998
2999 ret = page_counter_limit(&memcg->tcpmem, limit);
3000 if (ret)
3001 goto out;
3002
3003 if (!memcg->tcpmem_active) {
3004 /*
3005 * The active flag needs to be written after the static_key
3006 * update. This is what guarantees that the socket activation
3007 * function is the last one to run. See mem_cgroup_sk_alloc()
3008 * for details, and note that we don't mark any socket as
3009 * belonging to this memcg until that flag is up.
3010 *
3011 * We need to do this, because static_keys will span multiple
3012 * sites, but we can't control their order. If we mark a socket
3013 * as accounted, but the accounting functions are not patched in
3014 * yet, we'll lose accounting.
3015 *
3016 * We never race with the readers in mem_cgroup_sk_alloc(),
3017 * because when this value change, the code to process it is not
3018 * patched in yet.
3019 */
3020 static_branch_inc(&memcg_sockets_enabled_key);
3021 memcg->tcpmem_active = true;
3022 }
3023out:
3024 mutex_unlock(&memcg_limit_mutex);
3025 return ret;
3026}
3027
3028/*
3029 * The user of this function is...
3030 * RES_LIMIT.
3031 */
3032static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3033 char *buf, size_t nbytes, loff_t off)
3034{
3035 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3036 unsigned long nr_pages;
3037 int ret;
3038
3039 buf = strstrip(buf);
3040 ret = page_counter_memparse(buf, "-1", &nr_pages);
3041 if (ret)
3042 return ret;
3043
3044 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3045 case RES_LIMIT:
3046 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3047 ret = -EINVAL;
3048 break;
3049 }
3050 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3051 case _MEM:
3052 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3053 break;
3054 case _MEMSWAP:
3055 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3056 break;
3057 case _KMEM:
3058 ret = memcg_update_kmem_limit(memcg, nr_pages);
3059 break;
3060 case _TCP:
3061 ret = memcg_update_tcp_limit(memcg, nr_pages);
3062 break;
3063 }
3064 break;
3065 case RES_SOFT_LIMIT:
3066 memcg->soft_limit = nr_pages;
3067 ret = 0;
3068 break;
3069 }
3070 return ret ?: nbytes;
3071}
3072
3073static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3074 size_t nbytes, loff_t off)
3075{
3076 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3077 struct page_counter *counter;
3078
3079 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3080 case _MEM:
3081 counter = &memcg->memory;
3082 break;
3083 case _MEMSWAP:
3084 counter = &memcg->memsw;
3085 break;
3086 case _KMEM:
3087 counter = &memcg->kmem;
3088 break;
3089 case _TCP:
3090 counter = &memcg->tcpmem;
3091 break;
3092 default:
3093 BUG();
3094 }
3095
3096 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3097 case RES_MAX_USAGE:
3098 page_counter_reset_watermark(counter);
3099 break;
3100 case RES_FAILCNT:
3101 counter->failcnt = 0;
3102 break;
3103 default:
3104 BUG();
3105 }
3106
3107 return nbytes;
3108}
3109
3110static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3111 struct cftype *cft)
3112{
3113 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3114}
3115
3116#ifdef CONFIG_MMU
3117static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3118 struct cftype *cft, u64 val)
3119{
3120 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3121
3122 if (val & ~MOVE_MASK)
3123 return -EINVAL;
3124
3125 /*
3126 * No kind of locking is needed in here, because ->can_attach() will
3127 * check this value once in the beginning of the process, and then carry
3128 * on with stale data. This means that changes to this value will only
3129 * affect task migrations starting after the change.
3130 */
3131 memcg->move_charge_at_immigrate = val;
3132 return 0;
3133}
3134#else
3135static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3136 struct cftype *cft, u64 val)
3137{
3138 return -ENOSYS;
3139}
3140#endif
3141
3142#ifdef CONFIG_NUMA
3143static int memcg_numa_stat_show(struct seq_file *m, void *v)
3144{
3145 struct numa_stat {
3146 const char *name;
3147 unsigned int lru_mask;
3148 };
3149
3150 static const struct numa_stat stats[] = {
3151 { "total", LRU_ALL },
3152 { "file", LRU_ALL_FILE },
3153 { "anon", LRU_ALL_ANON },
3154 { "unevictable", BIT(LRU_UNEVICTABLE) },
3155 };
3156 const struct numa_stat *stat;
3157 int nid;
3158 unsigned long nr;
3159 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3160
3161 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3162 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3163 seq_printf(m, "%s=%lu", stat->name, nr);
3164 for_each_node_state(nid, N_MEMORY) {
3165 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3166 stat->lru_mask);
3167 seq_printf(m, " N%d=%lu", nid, nr);
3168 }
3169 seq_putc(m, '\n');
3170 }
3171
3172 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3173 struct mem_cgroup *iter;
3174
3175 nr = 0;
3176 for_each_mem_cgroup_tree(iter, memcg)
3177 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3178 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3179 for_each_node_state(nid, N_MEMORY) {
3180 nr = 0;
3181 for_each_mem_cgroup_tree(iter, memcg)
3182 nr += mem_cgroup_node_nr_lru_pages(
3183 iter, nid, stat->lru_mask);
3184 seq_printf(m, " N%d=%lu", nid, nr);
3185 }
3186 seq_putc(m, '\n');
3187 }
3188
3189 return 0;
3190}
3191#endif /* CONFIG_NUMA */
3192
3193/* Universal VM events cgroup1 shows, original sort order */
3194unsigned int memcg1_events[] = {
3195 PGPGIN,
3196 PGPGOUT,
3197 PGFAULT,
3198 PGMAJFAULT,
3199};
3200
3201static const char *const memcg1_event_names[] = {
3202 "pgpgin",
3203 "pgpgout",
3204 "pgfault",
3205 "pgmajfault",
3206};
3207
3208static int memcg_stat_show(struct seq_file *m, void *v)
3209{
3210 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3211 unsigned long memory, memsw;
3212 struct mem_cgroup *mi;
3213 unsigned int i;
3214
3215 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3216 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3217
3218 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3219 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3220 continue;
3221 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3222 memcg_page_state(memcg, memcg1_stats[i]) *
3223 PAGE_SIZE);
3224 }
3225
3226 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3227 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3228 memcg_sum_events(memcg, memcg1_events[i]));
3229
3230 for (i = 0; i < NR_LRU_LISTS; i++)
3231 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3232 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3233
3234 /* Hierarchical information */
3235 memory = memsw = PAGE_COUNTER_MAX;
3236 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3237 memory = min(memory, mi->memory.limit);
3238 memsw = min(memsw, mi->memsw.limit);
3239 }
3240 seq_printf(m, "hierarchical_memory_limit %llu\n",
3241 (u64)memory * PAGE_SIZE);
3242 if (do_memsw_account())
3243 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3244 (u64)memsw * PAGE_SIZE);
3245
3246 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3247 unsigned long long val = 0;
3248
3249 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3250 continue;
3251 for_each_mem_cgroup_tree(mi, memcg)
3252 val += memcg_page_state(mi, memcg1_stats[i]) *
3253 PAGE_SIZE;
3254 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val);
3255 }
3256
3257 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) {
3258 unsigned long long val = 0;
3259
3260 for_each_mem_cgroup_tree(mi, memcg)
3261 val += memcg_sum_events(mi, memcg1_events[i]);
3262 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val);
3263 }
3264
3265 for (i = 0; i < NR_LRU_LISTS; i++) {
3266 unsigned long long val = 0;
3267
3268 for_each_mem_cgroup_tree(mi, memcg)
3269 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3270 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3271 }
3272
3273#ifdef CONFIG_DEBUG_VM
3274 {
3275 pg_data_t *pgdat;
3276 struct mem_cgroup_per_node *mz;
3277 struct zone_reclaim_stat *rstat;
3278 unsigned long recent_rotated[2] = {0, 0};
3279 unsigned long recent_scanned[2] = {0, 0};
3280
3281 for_each_online_pgdat(pgdat) {
3282 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3283 rstat = &mz->lruvec.reclaim_stat;
3284
3285 recent_rotated[0] += rstat->recent_rotated[0];
3286 recent_rotated[1] += rstat->recent_rotated[1];
3287 recent_scanned[0] += rstat->recent_scanned[0];
3288 recent_scanned[1] += rstat->recent_scanned[1];
3289 }
3290 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3291 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3292 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3293 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3294 }
3295#endif
3296
3297 return 0;
3298}
3299
3300static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3301 struct cftype *cft)
3302{
3303 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3304
3305 return mem_cgroup_swappiness(memcg);
3306}
3307
3308static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3309 struct cftype *cft, u64 val)
3310{
3311 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3312
3313 if (val > 100)
3314 return -EINVAL;
3315
3316 if (css->parent)
3317 memcg->swappiness = val;
3318 else
3319 vm_swappiness = val;
3320
3321 return 0;
3322}
3323
3324static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3325{
3326 struct mem_cgroup_threshold_ary *t;
3327 unsigned long usage;
3328 int i;
3329
3330 rcu_read_lock();
3331 if (!swap)
3332 t = rcu_dereference(memcg->thresholds.primary);
3333 else
3334 t = rcu_dereference(memcg->memsw_thresholds.primary);
3335
3336 if (!t)
3337 goto unlock;
3338
3339 usage = mem_cgroup_usage(memcg, swap);
3340
3341 /*
3342 * current_threshold points to threshold just below or equal to usage.
3343 * If it's not true, a threshold was crossed after last
3344 * call of __mem_cgroup_threshold().
3345 */
3346 i = t->current_threshold;
3347
3348 /*
3349 * Iterate backward over array of thresholds starting from
3350 * current_threshold and check if a threshold is crossed.
3351 * If none of thresholds below usage is crossed, we read
3352 * only one element of the array here.
3353 */
3354 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3355 eventfd_signal(t->entries[i].eventfd, 1);
3356
3357 /* i = current_threshold + 1 */
3358 i++;
3359
3360 /*
3361 * Iterate forward over array of thresholds starting from
3362 * current_threshold+1 and check if a threshold is crossed.
3363 * If none of thresholds above usage is crossed, we read
3364 * only one element of the array here.
3365 */
3366 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3367 eventfd_signal(t->entries[i].eventfd, 1);
3368
3369 /* Update current_threshold */
3370 t->current_threshold = i - 1;
3371unlock:
3372 rcu_read_unlock();
3373}
3374
3375static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3376{
3377 while (memcg) {
3378 __mem_cgroup_threshold(memcg, false);
3379 if (do_memsw_account())
3380 __mem_cgroup_threshold(memcg, true);
3381
3382 memcg = parent_mem_cgroup(memcg);
3383 }
3384}
3385
3386static int compare_thresholds(const void *a, const void *b)
3387{
3388 const struct mem_cgroup_threshold *_a = a;
3389 const struct mem_cgroup_threshold *_b = b;
3390
3391 if (_a->threshold > _b->threshold)
3392 return 1;
3393
3394 if (_a->threshold < _b->threshold)
3395 return -1;
3396
3397 return 0;
3398}
3399
3400static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3401{
3402 struct mem_cgroup_eventfd_list *ev;
3403
3404 spin_lock(&memcg_oom_lock);
3405
3406 list_for_each_entry(ev, &memcg->oom_notify, list)
3407 eventfd_signal(ev->eventfd, 1);
3408
3409 spin_unlock(&memcg_oom_lock);
3410 return 0;
3411}
3412
3413static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3414{
3415 struct mem_cgroup *iter;
3416
3417 for_each_mem_cgroup_tree(iter, memcg)
3418 mem_cgroup_oom_notify_cb(iter);
3419}
3420
3421static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3422 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3423{
3424 struct mem_cgroup_thresholds *thresholds;
3425 struct mem_cgroup_threshold_ary *new;
3426 unsigned long threshold;
3427 unsigned long usage;
3428 int i, size, ret;
3429
3430 ret = page_counter_memparse(args, "-1", &threshold);
3431 if (ret)
3432 return ret;
3433
3434 mutex_lock(&memcg->thresholds_lock);
3435
3436 if (type == _MEM) {
3437 thresholds = &memcg->thresholds;
3438 usage = mem_cgroup_usage(memcg, false);
3439 } else if (type == _MEMSWAP) {
3440 thresholds = &memcg->memsw_thresholds;
3441 usage = mem_cgroup_usage(memcg, true);
3442 } else
3443 BUG();
3444
3445 /* Check if a threshold crossed before adding a new one */
3446 if (thresholds->primary)
3447 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3448
3449 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3450
3451 /* Allocate memory for new array of thresholds */
3452 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3453 GFP_KERNEL);
3454 if (!new) {
3455 ret = -ENOMEM;
3456 goto unlock;
3457 }
3458 new->size = size;
3459
3460 /* Copy thresholds (if any) to new array */
3461 if (thresholds->primary) {
3462 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3463 sizeof(struct mem_cgroup_threshold));
3464 }
3465
3466 /* Add new threshold */
3467 new->entries[size - 1].eventfd = eventfd;
3468 new->entries[size - 1].threshold = threshold;
3469
3470 /* Sort thresholds. Registering of new threshold isn't time-critical */
3471 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3472 compare_thresholds, NULL);
3473
3474 /* Find current threshold */
3475 new->current_threshold = -1;
3476 for (i = 0; i < size; i++) {
3477 if (new->entries[i].threshold <= usage) {
3478 /*
3479 * new->current_threshold will not be used until
3480 * rcu_assign_pointer(), so it's safe to increment
3481 * it here.
3482 */
3483 ++new->current_threshold;
3484 } else
3485 break;
3486 }
3487
3488 /* Free old spare buffer and save old primary buffer as spare */
3489 kfree(thresholds->spare);
3490 thresholds->spare = thresholds->primary;
3491
3492 rcu_assign_pointer(thresholds->primary, new);
3493
3494 /* To be sure that nobody uses thresholds */
3495 synchronize_rcu();
3496
3497unlock:
3498 mutex_unlock(&memcg->thresholds_lock);
3499
3500 return ret;
3501}
3502
3503static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3504 struct eventfd_ctx *eventfd, const char *args)
3505{
3506 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3507}
3508
3509static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3510 struct eventfd_ctx *eventfd, const char *args)
3511{
3512 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3513}
3514
3515static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3516 struct eventfd_ctx *eventfd, enum res_type type)
3517{
3518 struct mem_cgroup_thresholds *thresholds;
3519 struct mem_cgroup_threshold_ary *new;
3520 unsigned long usage;
3521 int i, j, size, entries;
3522
3523 mutex_lock(&memcg->thresholds_lock);
3524
3525 if (type == _MEM) {
3526 thresholds = &memcg->thresholds;
3527 usage = mem_cgroup_usage(memcg, false);
3528 } else if (type == _MEMSWAP) {
3529 thresholds = &memcg->memsw_thresholds;
3530 usage = mem_cgroup_usage(memcg, true);
3531 } else
3532 BUG();
3533
3534 if (!thresholds->primary)
3535 goto unlock;
3536
3537 /* Check if a threshold crossed before removing */
3538 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3539
3540 /* Calculate new number of threshold */
3541 size = entries = 0;
3542 for (i = 0; i < thresholds->primary->size; i++) {
3543 if (thresholds->primary->entries[i].eventfd != eventfd)
3544 size++;
3545 else
3546 entries++;
3547 }
3548
3549 new = thresholds->spare;
3550
3551 /* If no items related to eventfd have been cleared, nothing to do */
3552 if (!entries)
3553 goto unlock;
3554
3555 /* Set thresholds array to NULL if we don't have thresholds */
3556 if (!size) {
3557 kfree(new);
3558 new = NULL;
3559 goto swap_buffers;
3560 }
3561
3562 new->size = size;
3563
3564 /* Copy thresholds and find current threshold */
3565 new->current_threshold = -1;
3566 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3567 if (thresholds->primary->entries[i].eventfd == eventfd)
3568 continue;
3569
3570 new->entries[j] = thresholds->primary->entries[i];
3571 if (new->entries[j].threshold <= usage) {
3572 /*
3573 * new->current_threshold will not be used
3574 * until rcu_assign_pointer(), so it's safe to increment
3575 * it here.
3576 */
3577 ++new->current_threshold;
3578 }
3579 j++;
3580 }
3581
3582swap_buffers:
3583 /* Swap primary and spare array */
3584 thresholds->spare = thresholds->primary;
3585
3586 rcu_assign_pointer(thresholds->primary, new);
3587
3588 /* To be sure that nobody uses thresholds */
3589 synchronize_rcu();
3590
3591 /* If all events are unregistered, free the spare array */
3592 if (!new) {
3593 kfree(thresholds->spare);
3594 thresholds->spare = NULL;
3595 }
3596unlock:
3597 mutex_unlock(&memcg->thresholds_lock);
3598}
3599
3600static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3601 struct eventfd_ctx *eventfd)
3602{
3603 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3604}
3605
3606static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3607 struct eventfd_ctx *eventfd)
3608{
3609 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3610}
3611
3612static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3613 struct eventfd_ctx *eventfd, const char *args)
3614{
3615 struct mem_cgroup_eventfd_list *event;
3616
3617 event = kmalloc(sizeof(*event), GFP_KERNEL);
3618 if (!event)
3619 return -ENOMEM;
3620
3621 spin_lock(&memcg_oom_lock);
3622
3623 event->eventfd = eventfd;
3624 list_add(&event->list, &memcg->oom_notify);
3625
3626 /* already in OOM ? */
3627 if (memcg->under_oom)
3628 eventfd_signal(eventfd, 1);
3629 spin_unlock(&memcg_oom_lock);
3630
3631 return 0;
3632}
3633
3634static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3635 struct eventfd_ctx *eventfd)
3636{
3637 struct mem_cgroup_eventfd_list *ev, *tmp;
3638
3639 spin_lock(&memcg_oom_lock);
3640
3641 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3642 if (ev->eventfd == eventfd) {
3643 list_del(&ev->list);
3644 kfree(ev);
3645 }
3646 }
3647
3648 spin_unlock(&memcg_oom_lock);
3649}
3650
3651static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3652{
3653 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3654
3655 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3656 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3657 seq_printf(sf, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
3658 return 0;
3659}
3660
3661static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3662 struct cftype *cft, u64 val)
3663{
3664 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3665
3666 /* cannot set to root cgroup and only 0 and 1 are allowed */
3667 if (!css->parent || !((val == 0) || (val == 1)))
3668 return -EINVAL;
3669
3670 memcg->oom_kill_disable = val;
3671 if (!val)
3672 memcg_oom_recover(memcg);
3673
3674 return 0;
3675}
3676
3677#ifdef CONFIG_CGROUP_WRITEBACK
3678
3679struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3680{
3681 return &memcg->cgwb_list;
3682}
3683
3684static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3685{
3686 return wb_domain_init(&memcg->cgwb_domain, gfp);
3687}
3688
3689static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3690{
3691 wb_domain_exit(&memcg->cgwb_domain);
3692}
3693
3694static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3695{
3696 wb_domain_size_changed(&memcg->cgwb_domain);
3697}
3698
3699struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3700{
3701 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3702
3703 if (!memcg->css.parent)
3704 return NULL;
3705
3706 return &memcg->cgwb_domain;
3707}
3708
3709/**
3710 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3711 * @wb: bdi_writeback in question
3712 * @pfilepages: out parameter for number of file pages
3713 * @pheadroom: out parameter for number of allocatable pages according to memcg
3714 * @pdirty: out parameter for number of dirty pages
3715 * @pwriteback: out parameter for number of pages under writeback
3716 *
3717 * Determine the numbers of file, headroom, dirty, and writeback pages in
3718 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3719 * is a bit more involved.
3720 *
3721 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3722 * headroom is calculated as the lowest headroom of itself and the
3723 * ancestors. Note that this doesn't consider the actual amount of
3724 * available memory in the system. The caller should further cap
3725 * *@pheadroom accordingly.
3726 */
3727void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3728 unsigned long *pheadroom, unsigned long *pdirty,
3729 unsigned long *pwriteback)
3730{
3731 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3732 struct mem_cgroup *parent;
3733
3734 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3735
3736 /* this should eventually include NR_UNSTABLE_NFS */
3737 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3738 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3739 (1 << LRU_ACTIVE_FILE));
3740 *pheadroom = PAGE_COUNTER_MAX;
3741
3742 while ((parent = parent_mem_cgroup(memcg))) {
3743 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3744 unsigned long used = page_counter_read(&memcg->memory);
3745
3746 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3747 memcg = parent;
3748 }
3749}
3750
3751#else /* CONFIG_CGROUP_WRITEBACK */
3752
3753static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3754{
3755 return 0;
3756}
3757
3758static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3759{
3760}
3761
3762static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3763{
3764}
3765
3766#endif /* CONFIG_CGROUP_WRITEBACK */
3767
3768/*
3769 * DO NOT USE IN NEW FILES.
3770 *
3771 * "cgroup.event_control" implementation.
3772 *
3773 * This is way over-engineered. It tries to support fully configurable
3774 * events for each user. Such level of flexibility is completely
3775 * unnecessary especially in the light of the planned unified hierarchy.
3776 *
3777 * Please deprecate this and replace with something simpler if at all
3778 * possible.
3779 */
3780
3781/*
3782 * Unregister event and free resources.
3783 *
3784 * Gets called from workqueue.
3785 */
3786static void memcg_event_remove(struct work_struct *work)
3787{
3788 struct mem_cgroup_event *event =
3789 container_of(work, struct mem_cgroup_event, remove);
3790 struct mem_cgroup *memcg = event->memcg;
3791
3792 remove_wait_queue(event->wqh, &event->wait);
3793
3794 event->unregister_event(memcg, event->eventfd);
3795
3796 /* Notify userspace the event is going away. */
3797 eventfd_signal(event->eventfd, 1);
3798
3799 eventfd_ctx_put(event->eventfd);
3800 kfree(event);
3801 css_put(&memcg->css);
3802}
3803
3804/*
3805 * Gets called on POLLHUP on eventfd when user closes it.
3806 *
3807 * Called with wqh->lock held and interrupts disabled.
3808 */
3809static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3810 int sync, void *key)
3811{
3812 struct mem_cgroup_event *event =
3813 container_of(wait, struct mem_cgroup_event, wait);
3814 struct mem_cgroup *memcg = event->memcg;
3815 unsigned long flags = (unsigned long)key;
3816
3817 if (flags & POLLHUP) {
3818 /*
3819 * If the event has been detached at cgroup removal, we
3820 * can simply return knowing the other side will cleanup
3821 * for us.
3822 *
3823 * We can't race against event freeing since the other
3824 * side will require wqh->lock via remove_wait_queue(),
3825 * which we hold.
3826 */
3827 spin_lock(&memcg->event_list_lock);
3828 if (!list_empty(&event->list)) {
3829 list_del_init(&event->list);
3830 /*
3831 * We are in atomic context, but cgroup_event_remove()
3832 * may sleep, so we have to call it in workqueue.
3833 */
3834 schedule_work(&event->remove);
3835 }
3836 spin_unlock(&memcg->event_list_lock);
3837 }
3838
3839 return 0;
3840}
3841
3842static void memcg_event_ptable_queue_proc(struct file *file,
3843 wait_queue_head_t *wqh, poll_table *pt)
3844{
3845 struct mem_cgroup_event *event =
3846 container_of(pt, struct mem_cgroup_event, pt);
3847
3848 event->wqh = wqh;
3849 add_wait_queue(wqh, &event->wait);
3850}
3851
3852/*
3853 * DO NOT USE IN NEW FILES.
3854 *
3855 * Parse input and register new cgroup event handler.
3856 *
3857 * Input must be in format '<event_fd> <control_fd> <args>'.
3858 * Interpretation of args is defined by control file implementation.
3859 */
3860static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3861 char *buf, size_t nbytes, loff_t off)
3862{
3863 struct cgroup_subsys_state *css = of_css(of);
3864 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3865 struct mem_cgroup_event *event;
3866 struct cgroup_subsys_state *cfile_css;
3867 unsigned int efd, cfd;
3868 struct fd efile;
3869 struct fd cfile;
3870 const char *name;
3871 char *endp;
3872 int ret;
3873
3874 buf = strstrip(buf);
3875
3876 efd = simple_strtoul(buf, &endp, 10);
3877 if (*endp != ' ')
3878 return -EINVAL;
3879 buf = endp + 1;
3880
3881 cfd = simple_strtoul(buf, &endp, 10);
3882 if ((*endp != ' ') && (*endp != '\0'))
3883 return -EINVAL;
3884 buf = endp + 1;
3885
3886 event = kzalloc(sizeof(*event), GFP_KERNEL);
3887 if (!event)
3888 return -ENOMEM;
3889
3890 event->memcg = memcg;
3891 INIT_LIST_HEAD(&event->list);
3892 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3893 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3894 INIT_WORK(&event->remove, memcg_event_remove);
3895
3896 efile = fdget(efd);
3897 if (!efile.file) {
3898 ret = -EBADF;
3899 goto out_kfree;
3900 }
3901
3902 event->eventfd = eventfd_ctx_fileget(efile.file);
3903 if (IS_ERR(event->eventfd)) {
3904 ret = PTR_ERR(event->eventfd);
3905 goto out_put_efile;
3906 }
3907
3908 cfile = fdget(cfd);
3909 if (!cfile.file) {
3910 ret = -EBADF;
3911 goto out_put_eventfd;
3912 }
3913
3914 /* the process need read permission on control file */
3915 /* AV: shouldn't we check that it's been opened for read instead? */
3916 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3917 if (ret < 0)
3918 goto out_put_cfile;
3919
3920 /*
3921 * Determine the event callbacks and set them in @event. This used
3922 * to be done via struct cftype but cgroup core no longer knows
3923 * about these events. The following is crude but the whole thing
3924 * is for compatibility anyway.
3925 *
3926 * DO NOT ADD NEW FILES.
3927 */
3928 name = cfile.file->f_path.dentry->d_name.name;
3929
3930 if (!strcmp(name, "memory.usage_in_bytes")) {
3931 event->register_event = mem_cgroup_usage_register_event;
3932 event->unregister_event = mem_cgroup_usage_unregister_event;
3933 } else if (!strcmp(name, "memory.oom_control")) {
3934 event->register_event = mem_cgroup_oom_register_event;
3935 event->unregister_event = mem_cgroup_oom_unregister_event;
3936 } else if (!strcmp(name, "memory.pressure_level")) {
3937 event->register_event = vmpressure_register_event;
3938 event->unregister_event = vmpressure_unregister_event;
3939 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3940 event->register_event = memsw_cgroup_usage_register_event;
3941 event->unregister_event = memsw_cgroup_usage_unregister_event;
3942 } else {
3943 ret = -EINVAL;
3944 goto out_put_cfile;
3945 }
3946
3947 /*
3948 * Verify @cfile should belong to @css. Also, remaining events are
3949 * automatically removed on cgroup destruction but the removal is
3950 * asynchronous, so take an extra ref on @css.
3951 */
3952 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3953 &memory_cgrp_subsys);
3954 ret = -EINVAL;
3955 if (IS_ERR(cfile_css))
3956 goto out_put_cfile;
3957 if (cfile_css != css) {
3958 css_put(cfile_css);
3959 goto out_put_cfile;
3960 }
3961
3962 ret = event->register_event(memcg, event->eventfd, buf);
3963 if (ret)
3964 goto out_put_css;
3965
3966 efile.file->f_op->poll(efile.file, &event->pt);
3967
3968 spin_lock(&memcg->event_list_lock);
3969 list_add(&event->list, &memcg->event_list);
3970 spin_unlock(&memcg->event_list_lock);
3971
3972 fdput(cfile);
3973 fdput(efile);
3974
3975 return nbytes;
3976
3977out_put_css:
3978 css_put(css);
3979out_put_cfile:
3980 fdput(cfile);
3981out_put_eventfd:
3982 eventfd_ctx_put(event->eventfd);
3983out_put_efile:
3984 fdput(efile);
3985out_kfree:
3986 kfree(event);
3987
3988 return ret;
3989}
3990
3991static struct cftype mem_cgroup_legacy_files[] = {
3992 {
3993 .name = "usage_in_bytes",
3994 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3995 .read_u64 = mem_cgroup_read_u64,
3996 },
3997 {
3998 .name = "max_usage_in_bytes",
3999 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4000 .write = mem_cgroup_reset,
4001 .read_u64 = mem_cgroup_read_u64,
4002 },
4003 {
4004 .name = "limit_in_bytes",
4005 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4006 .write = mem_cgroup_write,
4007 .read_u64 = mem_cgroup_read_u64,
4008 },
4009 {
4010 .name = "soft_limit_in_bytes",
4011 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4012 .write = mem_cgroup_write,
4013 .read_u64 = mem_cgroup_read_u64,
4014 },
4015 {
4016 .name = "failcnt",
4017 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4018 .write = mem_cgroup_reset,
4019 .read_u64 = mem_cgroup_read_u64,
4020 },
4021 {
4022 .name = "stat",
4023 .seq_show = memcg_stat_show,
4024 },
4025 {
4026 .name = "force_empty",
4027 .write = mem_cgroup_force_empty_write,
4028 },
4029 {
4030 .name = "use_hierarchy",
4031 .write_u64 = mem_cgroup_hierarchy_write,
4032 .read_u64 = mem_cgroup_hierarchy_read,
4033 },
4034 {
4035 .name = "cgroup.event_control", /* XXX: for compat */
4036 .write = memcg_write_event_control,
4037 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4038 },
4039 {
4040 .name = "swappiness",
4041 .read_u64 = mem_cgroup_swappiness_read,
4042 .write_u64 = mem_cgroup_swappiness_write,
4043 },
4044 {
4045 .name = "move_charge_at_immigrate",
4046 .read_u64 = mem_cgroup_move_charge_read,
4047 .write_u64 = mem_cgroup_move_charge_write,
4048 },
4049 {
4050 .name = "oom_control",
4051 .seq_show = mem_cgroup_oom_control_read,
4052 .write_u64 = mem_cgroup_oom_control_write,
4053 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4054 },
4055 {
4056 .name = "pressure_level",
4057 },
4058#ifdef CONFIG_NUMA
4059 {
4060 .name = "numa_stat",
4061 .seq_show = memcg_numa_stat_show,
4062 },
4063#endif
4064 {
4065 .name = "kmem.limit_in_bytes",
4066 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4067 .write = mem_cgroup_write,
4068 .read_u64 = mem_cgroup_read_u64,
4069 },
4070 {
4071 .name = "kmem.usage_in_bytes",
4072 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4073 .read_u64 = mem_cgroup_read_u64,
4074 },
4075 {
4076 .name = "kmem.failcnt",
4077 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4078 .write = mem_cgroup_reset,
4079 .read_u64 = mem_cgroup_read_u64,
4080 },
4081 {
4082 .name = "kmem.max_usage_in_bytes",
4083 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4084 .write = mem_cgroup_reset,
4085 .read_u64 = mem_cgroup_read_u64,
4086 },
4087#ifdef CONFIG_SLABINFO
4088 {
4089 .name = "kmem.slabinfo",
4090 .seq_start = memcg_slab_start,
4091 .seq_next = memcg_slab_next,
4092 .seq_stop = memcg_slab_stop,
4093 .seq_show = memcg_slab_show,
4094 },
4095#endif
4096 {
4097 .name = "kmem.tcp.limit_in_bytes",
4098 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4099 .write = mem_cgroup_write,
4100 .read_u64 = mem_cgroup_read_u64,
4101 },
4102 {
4103 .name = "kmem.tcp.usage_in_bytes",
4104 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4105 .read_u64 = mem_cgroup_read_u64,
4106 },
4107 {
4108 .name = "kmem.tcp.failcnt",
4109 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4110 .write = mem_cgroup_reset,
4111 .read_u64 = mem_cgroup_read_u64,
4112 },
4113 {
4114 .name = "kmem.tcp.max_usage_in_bytes",
4115 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4116 .write = mem_cgroup_reset,
4117 .read_u64 = mem_cgroup_read_u64,
4118 },
4119 { }, /* terminate */
4120};
4121
4122/*
4123 * Private memory cgroup IDR
4124 *
4125 * Swap-out records and page cache shadow entries need to store memcg
4126 * references in constrained space, so we maintain an ID space that is
4127 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4128 * memory-controlled cgroups to 64k.
4129 *
4130 * However, there usually are many references to the oflline CSS after
4131 * the cgroup has been destroyed, such as page cache or reclaimable
4132 * slab objects, that don't need to hang on to the ID. We want to keep
4133 * those dead CSS from occupying IDs, or we might quickly exhaust the
4134 * relatively small ID space and prevent the creation of new cgroups
4135 * even when there are much fewer than 64k cgroups - possibly none.
4136 *
4137 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4138 * be freed and recycled when it's no longer needed, which is usually
4139 * when the CSS is offlined.
4140 *
4141 * The only exception to that are records of swapped out tmpfs/shmem
4142 * pages that need to be attributed to live ancestors on swapin. But
4143 * those references are manageable from userspace.
4144 */
4145
4146static DEFINE_IDR(mem_cgroup_idr);
4147
4148static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4149{
4150 if (memcg->id.id > 0) {
4151 idr_remove(&mem_cgroup_idr, memcg->id.id);
4152 memcg->id.id = 0;
4153 }
4154}
4155
4156static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4157{
4158 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4159 atomic_add(n, &memcg->id.ref);
4160}
4161
4162static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4163{
4164 VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4165 if (atomic_sub_and_test(n, &memcg->id.ref)) {
4166 mem_cgroup_id_remove(memcg);
4167
4168 /* Memcg ID pins CSS */
4169 css_put(&memcg->css);
4170 }
4171}
4172
4173static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4174{
4175 mem_cgroup_id_get_many(memcg, 1);
4176}
4177
4178static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4179{
4180 mem_cgroup_id_put_many(memcg, 1);
4181}
4182
4183/**
4184 * mem_cgroup_from_id - look up a memcg from a memcg id
4185 * @id: the memcg id to look up
4186 *
4187 * Caller must hold rcu_read_lock().
4188 */
4189struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4190{
4191 WARN_ON_ONCE(!rcu_read_lock_held());
4192 return idr_find(&mem_cgroup_idr, id);
4193}
4194
4195static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4196{
4197 struct mem_cgroup_per_node *pn;
4198 int tmp = node;
4199 /*
4200 * This routine is called against possible nodes.
4201 * But it's BUG to call kmalloc() against offline node.
4202 *
4203 * TODO: this routine can waste much memory for nodes which will
4204 * never be onlined. It's better to use memory hotplug callback
4205 * function.
4206 */
4207 if (!node_state(node, N_NORMAL_MEMORY))
4208 tmp = -1;
4209 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4210 if (!pn)
4211 return 1;
4212
4213 pn->lruvec_stat = alloc_percpu(struct lruvec_stat);
4214 if (!pn->lruvec_stat) {
4215 kfree(pn);
4216 return 1;
4217 }
4218
4219 lruvec_init(&pn->lruvec);
4220 pn->usage_in_excess = 0;
4221 pn->on_tree = false;
4222 pn->memcg = memcg;
4223
4224 memcg->nodeinfo[node] = pn;
4225 return 0;
4226}
4227
4228static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4229{
4230 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4231
4232 if (!pn)
4233 return;
4234
4235 free_percpu(pn->lruvec_stat);
4236 kfree(pn);
4237}
4238
4239static void __mem_cgroup_free(struct mem_cgroup *memcg)
4240{
4241 int node;
4242
4243 for_each_node(node)
4244 free_mem_cgroup_per_node_info(memcg, node);
4245 free_percpu(memcg->stat);
4246 kfree(memcg);
4247}
4248
4249static void mem_cgroup_free(struct mem_cgroup *memcg)
4250{
4251 memcg_wb_domain_exit(memcg);
4252 __mem_cgroup_free(memcg);
4253}
4254
4255static struct mem_cgroup *mem_cgroup_alloc(void)
4256{
4257 struct mem_cgroup *memcg;
4258 size_t size;
4259 int node;
4260
4261 size = sizeof(struct mem_cgroup);
4262 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4263
4264 memcg = kzalloc(size, GFP_KERNEL);
4265 if (!memcg)
4266 return NULL;
4267
4268 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4269 1, MEM_CGROUP_ID_MAX,
4270 GFP_KERNEL);
4271 if (memcg->id.id < 0)
4272 goto fail;
4273
4274 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4275 if (!memcg->stat)
4276 goto fail;
4277
4278 for_each_node(node)
4279 if (alloc_mem_cgroup_per_node_info(memcg, node))
4280 goto fail;
4281
4282 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4283 goto fail;
4284
4285 INIT_WORK(&memcg->high_work, high_work_func);
4286 memcg->last_scanned_node = MAX_NUMNODES;
4287 INIT_LIST_HEAD(&memcg->oom_notify);
4288 mutex_init(&memcg->thresholds_lock);
4289 spin_lock_init(&memcg->move_lock);
4290 vmpressure_init(&memcg->vmpressure);
4291 INIT_LIST_HEAD(&memcg->event_list);
4292 spin_lock_init(&memcg->event_list_lock);
4293 memcg->socket_pressure = jiffies;
4294#ifndef CONFIG_SLOB
4295 memcg->kmemcg_id = -1;
4296#endif
4297#ifdef CONFIG_CGROUP_WRITEBACK
4298 INIT_LIST_HEAD(&memcg->cgwb_list);
4299#endif
4300 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4301 return memcg;
4302fail:
4303 mem_cgroup_id_remove(memcg);
4304 __mem_cgroup_free(memcg);
4305 return NULL;
4306}
4307
4308static struct cgroup_subsys_state * __ref
4309mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4310{
4311 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4312 struct mem_cgroup *memcg;
4313 long error = -ENOMEM;
4314
4315 memcg = mem_cgroup_alloc();
4316 if (!memcg)
4317 return ERR_PTR(error);
4318
4319 memcg->high = PAGE_COUNTER_MAX;
4320 memcg->soft_limit = PAGE_COUNTER_MAX;
4321 if (parent) {
4322 memcg->swappiness = mem_cgroup_swappiness(parent);
4323 memcg->oom_kill_disable = parent->oom_kill_disable;
4324 }
4325 if (parent && parent->use_hierarchy) {
4326 memcg->use_hierarchy = true;
4327 page_counter_init(&memcg->memory, &parent->memory);
4328 page_counter_init(&memcg->swap, &parent->swap);
4329 page_counter_init(&memcg->memsw, &parent->memsw);
4330 page_counter_init(&memcg->kmem, &parent->kmem);
4331 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4332 } else {
4333 page_counter_init(&memcg->memory, NULL);
4334 page_counter_init(&memcg->swap, NULL);
4335 page_counter_init(&memcg->memsw, NULL);
4336 page_counter_init(&memcg->kmem, NULL);
4337 page_counter_init(&memcg->tcpmem, NULL);
4338 /*
4339 * Deeper hierachy with use_hierarchy == false doesn't make
4340 * much sense so let cgroup subsystem know about this
4341 * unfortunate state in our controller.
4342 */
4343 if (parent != root_mem_cgroup)
4344 memory_cgrp_subsys.broken_hierarchy = true;
4345 }
4346
4347 /* The following stuff does not apply to the root */
4348 if (!parent) {
4349 root_mem_cgroup = memcg;
4350 return &memcg->css;
4351 }
4352
4353 error = memcg_online_kmem(memcg);
4354 if (error)
4355 goto fail;
4356
4357 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4358 static_branch_inc(&memcg_sockets_enabled_key);
4359
4360 return &memcg->css;
4361fail:
4362 mem_cgroup_id_remove(memcg);
4363 mem_cgroup_free(memcg);
4364 return ERR_PTR(-ENOMEM);
4365}
4366
4367static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4368{
4369 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4370
4371 /* Online state pins memcg ID, memcg ID pins CSS */
4372 atomic_set(&memcg->id.ref, 1);
4373 css_get(css);
4374 return 0;
4375}
4376
4377static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4378{
4379 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4380 struct mem_cgroup_event *event, *tmp;
4381
4382 /*
4383 * Unregister events and notify userspace.
4384 * Notify userspace about cgroup removing only after rmdir of cgroup
4385 * directory to avoid race between userspace and kernelspace.
4386 */
4387 spin_lock(&memcg->event_list_lock);
4388 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4389 list_del_init(&event->list);
4390 schedule_work(&event->remove);
4391 }
4392 spin_unlock(&memcg->event_list_lock);
4393
4394 memcg->low = 0;
4395
4396 memcg_offline_kmem(memcg);
4397 wb_memcg_offline(memcg);
4398
4399 mem_cgroup_id_put(memcg);
4400}
4401
4402static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4403{
4404 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4405
4406 invalidate_reclaim_iterators(memcg);
4407}
4408
4409static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4410{
4411 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4412
4413 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4414 static_branch_dec(&memcg_sockets_enabled_key);
4415
4416 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4417 static_branch_dec(&memcg_sockets_enabled_key);
4418
4419 vmpressure_cleanup(&memcg->vmpressure);
4420 cancel_work_sync(&memcg->high_work);
4421 mem_cgroup_remove_from_trees(memcg);
4422 memcg_free_kmem(memcg);
4423 mem_cgroup_free(memcg);
4424}
4425
4426/**
4427 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4428 * @css: the target css
4429 *
4430 * Reset the states of the mem_cgroup associated with @css. This is
4431 * invoked when the userland requests disabling on the default hierarchy
4432 * but the memcg is pinned through dependency. The memcg should stop
4433 * applying policies and should revert to the vanilla state as it may be
4434 * made visible again.
4435 *
4436 * The current implementation only resets the essential configurations.
4437 * This needs to be expanded to cover all the visible parts.
4438 */
4439static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4440{
4441 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4442
4443 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4444 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4445 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4446 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4447 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4448 memcg->low = 0;
4449 memcg->high = PAGE_COUNTER_MAX;
4450 memcg->soft_limit = PAGE_COUNTER_MAX;
4451 memcg_wb_domain_size_changed(memcg);
4452}
4453
4454#ifdef CONFIG_MMU
4455/* Handlers for move charge at task migration. */
4456static int mem_cgroup_do_precharge(unsigned long count)
4457{
4458 int ret;
4459
4460 /* Try a single bulk charge without reclaim first, kswapd may wake */
4461 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4462 if (!ret) {
4463 mc.precharge += count;
4464 return ret;
4465 }
4466
4467 /* Try charges one by one with reclaim, but do not retry */
4468 while (count--) {
4469 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4470 if (ret)
4471 return ret;
4472 mc.precharge++;
4473 cond_resched();
4474 }
4475 return 0;
4476}
4477
4478union mc_target {
4479 struct page *page;
4480 swp_entry_t ent;
4481};
4482
4483enum mc_target_type {
4484 MC_TARGET_NONE = 0,
4485 MC_TARGET_PAGE,
4486 MC_TARGET_SWAP,
4487 MC_TARGET_DEVICE,
4488};
4489
4490static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4491 unsigned long addr, pte_t ptent)
4492{
4493 struct page *page = _vm_normal_page(vma, addr, ptent, true);
4494
4495 if (!page || !page_mapped(page))
4496 return NULL;
4497 if (PageAnon(page)) {
4498 if (!(mc.flags & MOVE_ANON))
4499 return NULL;
4500 } else {
4501 if (!(mc.flags & MOVE_FILE))
4502 return NULL;
4503 }
4504 if (!get_page_unless_zero(page))
4505 return NULL;
4506
4507 return page;
4508}
4509
4510#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
4511static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4512 pte_t ptent, swp_entry_t *entry)
4513{
4514 struct page *page = NULL;
4515 swp_entry_t ent = pte_to_swp_entry(ptent);
4516
4517 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4518 return NULL;
4519
4520 /*
4521 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4522 * a device and because they are not accessible by CPU they are store
4523 * as special swap entry in the CPU page table.
4524 */
4525 if (is_device_private_entry(ent)) {
4526 page = device_private_entry_to_page(ent);
4527 /*
4528 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4529 * a refcount of 1 when free (unlike normal page)
4530 */
4531 if (!page_ref_add_unless(page, 1, 1))
4532 return NULL;
4533 return page;
4534 }
4535
4536 /*
4537 * Because lookup_swap_cache() updates some statistics counter,
4538 * we call find_get_page() with swapper_space directly.
4539 */
4540 page = find_get_page(swap_address_space(ent), swp_offset(ent));
4541 if (do_memsw_account())
4542 entry->val = ent.val;
4543
4544 return page;
4545}
4546#else
4547static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4548 pte_t ptent, swp_entry_t *entry)
4549{
4550 return NULL;
4551}
4552#endif
4553
4554static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4555 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4556{
4557 struct page *page = NULL;
4558 struct address_space *mapping;
4559 pgoff_t pgoff;
4560
4561 if (!vma->vm_file) /* anonymous vma */
4562 return NULL;
4563 if (!(mc.flags & MOVE_FILE))
4564 return NULL;
4565
4566 mapping = vma->vm_file->f_mapping;
4567 pgoff = linear_page_index(vma, addr);
4568
4569 /* page is moved even if it's not RSS of this task(page-faulted). */
4570#ifdef CONFIG_SWAP
4571 /* shmem/tmpfs may report page out on swap: account for that too. */
4572 if (shmem_mapping(mapping)) {
4573 page = find_get_entry(mapping, pgoff);
4574 if (radix_tree_exceptional_entry(page)) {
4575 swp_entry_t swp = radix_to_swp_entry(page);
4576 if (do_memsw_account())
4577 *entry = swp;
4578 page = find_get_page(swap_address_space(swp),
4579 swp_offset(swp));
4580 }
4581 } else
4582 page = find_get_page(mapping, pgoff);
4583#else
4584 page = find_get_page(mapping, pgoff);
4585#endif
4586 return page;
4587}
4588
4589/**
4590 * mem_cgroup_move_account - move account of the page
4591 * @page: the page
4592 * @compound: charge the page as compound or small page
4593 * @from: mem_cgroup which the page is moved from.
4594 * @to: mem_cgroup which the page is moved to. @from != @to.
4595 *
4596 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4597 *
4598 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4599 * from old cgroup.
4600 */
4601static int mem_cgroup_move_account(struct page *page,
4602 bool compound,
4603 struct mem_cgroup *from,
4604 struct mem_cgroup *to)
4605{
4606 unsigned long flags;
4607 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4608 int ret;
4609 bool anon;
4610
4611 VM_BUG_ON(from == to);
4612 VM_BUG_ON_PAGE(PageLRU(page), page);
4613 VM_BUG_ON(compound && !PageTransHuge(page));
4614
4615 /*
4616 * Prevent mem_cgroup_migrate() from looking at
4617 * page->mem_cgroup of its source page while we change it.
4618 */
4619 ret = -EBUSY;
4620 if (!trylock_page(page))
4621 goto out;
4622
4623 ret = -EINVAL;
4624 if (page->mem_cgroup != from)
4625 goto out_unlock;
4626
4627 anon = PageAnon(page);
4628
4629 spin_lock_irqsave(&from->move_lock, flags);
4630
4631 if (!anon && page_mapped(page)) {
4632 __this_cpu_sub(from->stat->count[NR_FILE_MAPPED], nr_pages);
4633 __this_cpu_add(to->stat->count[NR_FILE_MAPPED], nr_pages);
4634 }
4635
4636 /*
4637 * move_lock grabbed above and caller set from->moving_account, so
4638 * mod_memcg_page_state will serialize updates to PageDirty.
4639 * So mapping should be stable for dirty pages.
4640 */
4641 if (!anon && PageDirty(page)) {
4642 struct address_space *mapping = page_mapping(page);
4643
4644 if (mapping_cap_account_dirty(mapping)) {
4645 __this_cpu_sub(from->stat->count[NR_FILE_DIRTY],
4646 nr_pages);
4647 __this_cpu_add(to->stat->count[NR_FILE_DIRTY],
4648 nr_pages);
4649 }
4650 }
4651
4652 if (PageWriteback(page)) {
4653 __this_cpu_sub(from->stat->count[NR_WRITEBACK], nr_pages);
4654 __this_cpu_add(to->stat->count[NR_WRITEBACK], nr_pages);
4655 }
4656
4657 /*
4658 * It is safe to change page->mem_cgroup here because the page
4659 * is referenced, charged, and isolated - we can't race with
4660 * uncharging, charging, migration, or LRU putback.
4661 */
4662
4663 /* caller should have done css_get */
4664 page->mem_cgroup = to;
4665 spin_unlock_irqrestore(&from->move_lock, flags);
4666
4667 ret = 0;
4668
4669 local_irq_disable();
4670 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4671 memcg_check_events(to, page);
4672 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4673 memcg_check_events(from, page);
4674 local_irq_enable();
4675out_unlock:
4676 unlock_page(page);
4677out:
4678 return ret;
4679}
4680
4681/**
4682 * get_mctgt_type - get target type of moving charge
4683 * @vma: the vma the pte to be checked belongs
4684 * @addr: the address corresponding to the pte to be checked
4685 * @ptent: the pte to be checked
4686 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4687 *
4688 * Returns
4689 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4690 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4691 * move charge. if @target is not NULL, the page is stored in target->page
4692 * with extra refcnt got(Callers should handle it).
4693 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4694 * target for charge migration. if @target is not NULL, the entry is stored
4695 * in target->ent.
4696 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
4697 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4698 * For now we such page is charge like a regular page would be as for all
4699 * intent and purposes it is just special memory taking the place of a
4700 * regular page.
4701 *
4702 * See Documentations/vm/hmm.txt and include/linux/hmm.h
4703 *
4704 * Called with pte lock held.
4705 */
4706
4707static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4708 unsigned long addr, pte_t ptent, union mc_target *target)
4709{
4710 struct page *page = NULL;
4711 enum mc_target_type ret = MC_TARGET_NONE;
4712 swp_entry_t ent = { .val = 0 };
4713
4714 if (pte_present(ptent))
4715 page = mc_handle_present_pte(vma, addr, ptent);
4716 else if (is_swap_pte(ptent))
4717 page = mc_handle_swap_pte(vma, ptent, &ent);
4718 else if (pte_none(ptent))
4719 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4720
4721 if (!page && !ent.val)
4722 return ret;
4723 if (page) {
4724 /*
4725 * Do only loose check w/o serialization.
4726 * mem_cgroup_move_account() checks the page is valid or
4727 * not under LRU exclusion.
4728 */
4729 if (page->mem_cgroup == mc.from) {
4730 ret = MC_TARGET_PAGE;
4731 if (is_device_private_page(page) ||
4732 is_device_public_page(page))
4733 ret = MC_TARGET_DEVICE;
4734 if (target)
4735 target->page = page;
4736 }
4737 if (!ret || !target)
4738 put_page(page);
4739 }
4740 /*
4741 * There is a swap entry and a page doesn't exist or isn't charged.
4742 * But we cannot move a tail-page in a THP.
4743 */
4744 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
4745 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4746 ret = MC_TARGET_SWAP;
4747 if (target)
4748 target->ent = ent;
4749 }
4750 return ret;
4751}
4752
4753#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4754/*
4755 * We don't consider PMD mapped swapping or file mapped pages because THP does
4756 * not support them for now.
4757 * Caller should make sure that pmd_trans_huge(pmd) is true.
4758 */
4759static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4760 unsigned long addr, pmd_t pmd, union mc_target *target)
4761{
4762 struct page *page = NULL;
4763 enum mc_target_type ret = MC_TARGET_NONE;
4764
4765 if (unlikely(is_swap_pmd(pmd))) {
4766 VM_BUG_ON(thp_migration_supported() &&
4767 !is_pmd_migration_entry(pmd));
4768 return ret;
4769 }
4770 page = pmd_page(pmd);
4771 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4772 if (!(mc.flags & MOVE_ANON))
4773 return ret;
4774 if (page->mem_cgroup == mc.from) {
4775 ret = MC_TARGET_PAGE;
4776 if (target) {
4777 get_page(page);
4778 target->page = page;
4779 }
4780 }
4781 return ret;
4782}
4783#else
4784static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4785 unsigned long addr, pmd_t pmd, union mc_target *target)
4786{
4787 return MC_TARGET_NONE;
4788}
4789#endif
4790
4791static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4792 unsigned long addr, unsigned long end,
4793 struct mm_walk *walk)
4794{
4795 struct vm_area_struct *vma = walk->vma;
4796 pte_t *pte;
4797 spinlock_t *ptl;
4798
4799 ptl = pmd_trans_huge_lock(pmd, vma);
4800 if (ptl) {
4801 /*
4802 * Note their can not be MC_TARGET_DEVICE for now as we do not
4803 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
4804 * MEMORY_DEVICE_PRIVATE but this might change.
4805 */
4806 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4807 mc.precharge += HPAGE_PMD_NR;
4808 spin_unlock(ptl);
4809 return 0;
4810 }
4811
4812 if (pmd_trans_unstable(pmd))
4813 return 0;
4814 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4815 for (; addr != end; pte++, addr += PAGE_SIZE)
4816 if (get_mctgt_type(vma, addr, *pte, NULL))
4817 mc.precharge++; /* increment precharge temporarily */
4818 pte_unmap_unlock(pte - 1, ptl);
4819 cond_resched();
4820
4821 return 0;
4822}
4823
4824static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4825{
4826 unsigned long precharge;
4827
4828 struct mm_walk mem_cgroup_count_precharge_walk = {
4829 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4830 .mm = mm,
4831 };
4832 down_read(&mm->mmap_sem);
4833 walk_page_range(0, mm->highest_vm_end,
4834 &mem_cgroup_count_precharge_walk);
4835 up_read(&mm->mmap_sem);
4836
4837 precharge = mc.precharge;
4838 mc.precharge = 0;
4839
4840 return precharge;
4841}
4842
4843static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4844{
4845 unsigned long precharge = mem_cgroup_count_precharge(mm);
4846
4847 VM_BUG_ON(mc.moving_task);
4848 mc.moving_task = current;
4849 return mem_cgroup_do_precharge(precharge);
4850}
4851
4852/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4853static void __mem_cgroup_clear_mc(void)
4854{
4855 struct mem_cgroup *from = mc.from;
4856 struct mem_cgroup *to = mc.to;
4857
4858 /* we must uncharge all the leftover precharges from mc.to */
4859 if (mc.precharge) {
4860 cancel_charge(mc.to, mc.precharge);
4861 mc.precharge = 0;
4862 }
4863 /*
4864 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4865 * we must uncharge here.
4866 */
4867 if (mc.moved_charge) {
4868 cancel_charge(mc.from, mc.moved_charge);
4869 mc.moved_charge = 0;
4870 }
4871 /* we must fixup refcnts and charges */
4872 if (mc.moved_swap) {
4873 /* uncharge swap account from the old cgroup */
4874 if (!mem_cgroup_is_root(mc.from))
4875 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4876
4877 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4878
4879 /*
4880 * we charged both to->memory and to->memsw, so we
4881 * should uncharge to->memory.
4882 */
4883 if (!mem_cgroup_is_root(mc.to))
4884 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4885
4886 css_put_many(&mc.to->css, mc.moved_swap);
4887
4888 mc.moved_swap = 0;
4889 }
4890 memcg_oom_recover(from);
4891 memcg_oom_recover(to);
4892 wake_up_all(&mc.waitq);
4893}
4894
4895static void mem_cgroup_clear_mc(void)
4896{
4897 struct mm_struct *mm = mc.mm;
4898
4899 /*
4900 * we must clear moving_task before waking up waiters at the end of
4901 * task migration.
4902 */
4903 mc.moving_task = NULL;
4904 __mem_cgroup_clear_mc();
4905 spin_lock(&mc.lock);
4906 mc.from = NULL;
4907 mc.to = NULL;
4908 mc.mm = NULL;
4909 spin_unlock(&mc.lock);
4910
4911 mmput(mm);
4912}
4913
4914static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4915{
4916 struct cgroup_subsys_state *css;
4917 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4918 struct mem_cgroup *from;
4919 struct task_struct *leader, *p;
4920 struct mm_struct *mm;
4921 unsigned long move_flags;
4922 int ret = 0;
4923
4924 /* charge immigration isn't supported on the default hierarchy */
4925 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4926 return 0;
4927
4928 /*
4929 * Multi-process migrations only happen on the default hierarchy
4930 * where charge immigration is not used. Perform charge
4931 * immigration if @tset contains a leader and whine if there are
4932 * multiple.
4933 */
4934 p = NULL;
4935 cgroup_taskset_for_each_leader(leader, css, tset) {
4936 WARN_ON_ONCE(p);
4937 p = leader;
4938 memcg = mem_cgroup_from_css(css);
4939 }
4940 if (!p)
4941 return 0;
4942
4943 /*
4944 * We are now commited to this value whatever it is. Changes in this
4945 * tunable will only affect upcoming migrations, not the current one.
4946 * So we need to save it, and keep it going.
4947 */
4948 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4949 if (!move_flags)
4950 return 0;
4951
4952 from = mem_cgroup_from_task(p);
4953
4954 VM_BUG_ON(from == memcg);
4955
4956 mm = get_task_mm(p);
4957 if (!mm)
4958 return 0;
4959 /* We move charges only when we move a owner of the mm */
4960 if (mm->owner == p) {
4961 VM_BUG_ON(mc.from);
4962 VM_BUG_ON(mc.to);
4963 VM_BUG_ON(mc.precharge);
4964 VM_BUG_ON(mc.moved_charge);
4965 VM_BUG_ON(mc.moved_swap);
4966
4967 spin_lock(&mc.lock);
4968 mc.mm = mm;
4969 mc.from = from;
4970 mc.to = memcg;
4971 mc.flags = move_flags;
4972 spin_unlock(&mc.lock);
4973 /* We set mc.moving_task later */
4974
4975 ret = mem_cgroup_precharge_mc(mm);
4976 if (ret)
4977 mem_cgroup_clear_mc();
4978 } else {
4979 mmput(mm);
4980 }
4981 return ret;
4982}
4983
4984static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4985{
4986 if (mc.to)
4987 mem_cgroup_clear_mc();
4988}
4989
4990static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4991 unsigned long addr, unsigned long end,
4992 struct mm_walk *walk)
4993{
4994 int ret = 0;
4995 struct vm_area_struct *vma = walk->vma;
4996 pte_t *pte;
4997 spinlock_t *ptl;
4998 enum mc_target_type target_type;
4999 union mc_target target;
5000 struct page *page;
5001
5002 ptl = pmd_trans_huge_lock(pmd, vma);
5003 if (ptl) {
5004 if (mc.precharge < HPAGE_PMD_NR) {
5005 spin_unlock(ptl);
5006 return 0;
5007 }
5008 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5009 if (target_type == MC_TARGET_PAGE) {
5010 page = target.page;
5011 if (!isolate_lru_page(page)) {
5012 if (!mem_cgroup_move_account(page, true,
5013 mc.from, mc.to)) {
5014 mc.precharge -= HPAGE_PMD_NR;
5015 mc.moved_charge += HPAGE_PMD_NR;
5016 }
5017 putback_lru_page(page);
5018 }
5019 put_page(page);
5020 } else if (target_type == MC_TARGET_DEVICE) {
5021 page = target.page;
5022 if (!mem_cgroup_move_account(page, true,
5023 mc.from, mc.to)) {
5024 mc.precharge -= HPAGE_PMD_NR;
5025 mc.moved_charge += HPAGE_PMD_NR;
5026 }
5027 put_page(page);
5028 }
5029 spin_unlock(ptl);
5030 return 0;
5031 }
5032
5033 if (pmd_trans_unstable(pmd))
5034 return 0;
5035retry:
5036 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5037 for (; addr != end; addr += PAGE_SIZE) {
5038 pte_t ptent = *(pte++);
5039 bool device = false;
5040 swp_entry_t ent;
5041
5042 if (!mc.precharge)
5043 break;
5044
5045 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5046 case MC_TARGET_DEVICE:
5047 device = true;
5048 /* fall through */
5049 case MC_TARGET_PAGE:
5050 page = target.page;
5051 /*
5052 * We can have a part of the split pmd here. Moving it
5053 * can be done but it would be too convoluted so simply
5054 * ignore such a partial THP and keep it in original
5055 * memcg. There should be somebody mapping the head.
5056 */
5057 if (PageTransCompound(page))
5058 goto put;
5059 if (!device && isolate_lru_page(page))
5060 goto put;
5061 if (!mem_cgroup_move_account(page, false,
5062 mc.from, mc.to)) {
5063 mc.precharge--;
5064 /* we uncharge from mc.from later. */
5065 mc.moved_charge++;
5066 }
5067 if (!device)
5068 putback_lru_page(page);
5069put: /* get_mctgt_type() gets the page */
5070 put_page(page);
5071 break;
5072 case MC_TARGET_SWAP:
5073 ent = target.ent;
5074 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5075 mc.precharge--;
5076 mem_cgroup_id_get_many(mc.to, 1);
5077 /* we fixup other refcnts and charges later. */
5078 mc.moved_swap++;
5079 }
5080 break;
5081 default:
5082 break;
5083 }
5084 }
5085 pte_unmap_unlock(pte - 1, ptl);
5086 cond_resched();
5087
5088 if (addr != end) {
5089 /*
5090 * We have consumed all precharges we got in can_attach().
5091 * We try charge one by one, but don't do any additional
5092 * charges to mc.to if we have failed in charge once in attach()
5093 * phase.
5094 */
5095 ret = mem_cgroup_do_precharge(1);
5096 if (!ret)
5097 goto retry;
5098 }
5099
5100 return ret;
5101}
5102
5103static void mem_cgroup_move_charge(void)
5104{
5105 struct mm_walk mem_cgroup_move_charge_walk = {
5106 .pmd_entry = mem_cgroup_move_charge_pte_range,
5107 .mm = mc.mm,
5108 };
5109
5110 lru_add_drain_all();
5111 /*
5112 * Signal lock_page_memcg() to take the memcg's move_lock
5113 * while we're moving its pages to another memcg. Then wait
5114 * for already started RCU-only updates to finish.
5115 */
5116 atomic_inc(&mc.from->moving_account);
5117 synchronize_rcu();
5118retry:
5119 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5120 /*
5121 * Someone who are holding the mmap_sem might be waiting in
5122 * waitq. So we cancel all extra charges, wake up all waiters,
5123 * and retry. Because we cancel precharges, we might not be able
5124 * to move enough charges, but moving charge is a best-effort
5125 * feature anyway, so it wouldn't be a big problem.
5126 */
5127 __mem_cgroup_clear_mc();
5128 cond_resched();
5129 goto retry;
5130 }
5131 /*
5132 * When we have consumed all precharges and failed in doing
5133 * additional charge, the page walk just aborts.
5134 */
5135 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5136
5137 up_read(&mc.mm->mmap_sem);
5138 atomic_dec(&mc.from->moving_account);
5139}
5140
5141static void mem_cgroup_move_task(void)
5142{
5143 if (mc.to) {
5144 mem_cgroup_move_charge();
5145 mem_cgroup_clear_mc();
5146 }
5147}
5148#else /* !CONFIG_MMU */
5149static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5150{
5151 return 0;
5152}
5153static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5154{
5155}
5156static void mem_cgroup_move_task(void)
5157{
5158}
5159#endif
5160
5161/*
5162 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5163 * to verify whether we're attached to the default hierarchy on each mount
5164 * attempt.
5165 */
5166static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5167{
5168 /*
5169 * use_hierarchy is forced on the default hierarchy. cgroup core
5170 * guarantees that @root doesn't have any children, so turning it
5171 * on for the root memcg is enough.
5172 */
5173 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5174 root_mem_cgroup->use_hierarchy = true;
5175 else
5176 root_mem_cgroup->use_hierarchy = false;
5177}
5178
5179static u64 memory_current_read(struct cgroup_subsys_state *css,
5180 struct cftype *cft)
5181{
5182 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5183
5184 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5185}
5186
5187static int memory_low_show(struct seq_file *m, void *v)
5188{
5189 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5190 unsigned long low = READ_ONCE(memcg->low);
5191
5192 if (low == PAGE_COUNTER_MAX)
5193 seq_puts(m, "max\n");
5194 else
5195 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5196
5197 return 0;
5198}
5199
5200static ssize_t memory_low_write(struct kernfs_open_file *of,
5201 char *buf, size_t nbytes, loff_t off)
5202{
5203 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5204 unsigned long low;
5205 int err;
5206
5207 buf = strstrip(buf);
5208 err = page_counter_memparse(buf, "max", &low);
5209 if (err)
5210 return err;
5211
5212 memcg->low = low;
5213
5214 return nbytes;
5215}
5216
5217static int memory_high_show(struct seq_file *m, void *v)
5218{
5219 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5220 unsigned long high = READ_ONCE(memcg->high);
5221
5222 if (high == PAGE_COUNTER_MAX)
5223 seq_puts(m, "max\n");
5224 else
5225 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5226
5227 return 0;
5228}
5229
5230static ssize_t memory_high_write(struct kernfs_open_file *of,
5231 char *buf, size_t nbytes, loff_t off)
5232{
5233 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5234 unsigned long nr_pages;
5235 unsigned long high;
5236 int err;
5237
5238 buf = strstrip(buf);
5239 err = page_counter_memparse(buf, "max", &high);
5240 if (err)
5241 return err;
5242
5243 memcg->high = high;
5244
5245 nr_pages = page_counter_read(&memcg->memory);
5246 if (nr_pages > high)
5247 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5248 GFP_KERNEL, true);
5249
5250 memcg_wb_domain_size_changed(memcg);
5251 return nbytes;
5252}
5253
5254static int memory_max_show(struct seq_file *m, void *v)
5255{
5256 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5257 unsigned long max = READ_ONCE(memcg->memory.limit);
5258
5259 if (max == PAGE_COUNTER_MAX)
5260 seq_puts(m, "max\n");
5261 else
5262 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5263
5264 return 0;
5265}
5266
5267static ssize_t memory_max_write(struct kernfs_open_file *of,
5268 char *buf, size_t nbytes, loff_t off)
5269{
5270 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5271 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5272 bool drained = false;
5273 unsigned long max;
5274 int err;
5275
5276 buf = strstrip(buf);
5277 err = page_counter_memparse(buf, "max", &max);
5278 if (err)
5279 return err;
5280
5281 xchg(&memcg->memory.limit, max);
5282
5283 for (;;) {
5284 unsigned long nr_pages = page_counter_read(&memcg->memory);
5285
5286 if (nr_pages <= max)
5287 break;
5288
5289 if (signal_pending(current)) {
5290 err = -EINTR;
5291 break;
5292 }
5293
5294 if (!drained) {
5295 drain_all_stock(memcg);
5296 drained = true;
5297 continue;
5298 }
5299
5300 if (nr_reclaims) {
5301 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5302 GFP_KERNEL, true))
5303 nr_reclaims--;
5304 continue;
5305 }
5306
5307 mem_cgroup_event(memcg, MEMCG_OOM);
5308 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5309 break;
5310 }
5311
5312 memcg_wb_domain_size_changed(memcg);
5313 return nbytes;
5314}
5315
5316static int memory_events_show(struct seq_file *m, void *v)
5317{
5318 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5319
5320 seq_printf(m, "low %lu\n", memcg_sum_events(memcg, MEMCG_LOW));
5321 seq_printf(m, "high %lu\n", memcg_sum_events(memcg, MEMCG_HIGH));
5322 seq_printf(m, "max %lu\n", memcg_sum_events(memcg, MEMCG_MAX));
5323 seq_printf(m, "oom %lu\n", memcg_sum_events(memcg, MEMCG_OOM));
5324 seq_printf(m, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
5325
5326 return 0;
5327}
5328
5329static int memory_stat_show(struct seq_file *m, void *v)
5330{
5331 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5332 unsigned long stat[MEMCG_NR_STAT];
5333 unsigned long events[MEMCG_NR_EVENTS];
5334 int i;
5335
5336 /*
5337 * Provide statistics on the state of the memory subsystem as
5338 * well as cumulative event counters that show past behavior.
5339 *
5340 * This list is ordered following a combination of these gradients:
5341 * 1) generic big picture -> specifics and details
5342 * 2) reflecting userspace activity -> reflecting kernel heuristics
5343 *
5344 * Current memory state:
5345 */
5346
5347 tree_stat(memcg, stat);
5348 tree_events(memcg, events);
5349
5350 seq_printf(m, "anon %llu\n",
5351 (u64)stat[MEMCG_RSS] * PAGE_SIZE);
5352 seq_printf(m, "file %llu\n",
5353 (u64)stat[MEMCG_CACHE] * PAGE_SIZE);
5354 seq_printf(m, "kernel_stack %llu\n",
5355 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5356 seq_printf(m, "slab %llu\n",
5357 (u64)(stat[NR_SLAB_RECLAIMABLE] +
5358 stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5359 seq_printf(m, "sock %llu\n",
5360 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5361
5362 seq_printf(m, "shmem %llu\n",
5363 (u64)stat[NR_SHMEM] * PAGE_SIZE);
5364 seq_printf(m, "file_mapped %llu\n",
5365 (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE);
5366 seq_printf(m, "file_dirty %llu\n",
5367 (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE);
5368 seq_printf(m, "file_writeback %llu\n",
5369 (u64)stat[NR_WRITEBACK] * PAGE_SIZE);
5370
5371 for (i = 0; i < NR_LRU_LISTS; i++) {
5372 struct mem_cgroup *mi;
5373 unsigned long val = 0;
5374
5375 for_each_mem_cgroup_tree(mi, memcg)
5376 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5377 seq_printf(m, "%s %llu\n",
5378 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5379 }
5380
5381 seq_printf(m, "slab_reclaimable %llu\n",
5382 (u64)stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5383 seq_printf(m, "slab_unreclaimable %llu\n",
5384 (u64)stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5385
5386 /* Accumulated memory events */
5387
5388 seq_printf(m, "pgfault %lu\n", events[PGFAULT]);
5389 seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]);
5390
5391 seq_printf(m, "pgrefill %lu\n", events[PGREFILL]);
5392 seq_printf(m, "pgscan %lu\n", events[PGSCAN_KSWAPD] +
5393 events[PGSCAN_DIRECT]);
5394 seq_printf(m, "pgsteal %lu\n", events[PGSTEAL_KSWAPD] +
5395 events[PGSTEAL_DIRECT]);
5396 seq_printf(m, "pgactivate %lu\n", events[PGACTIVATE]);
5397 seq_printf(m, "pgdeactivate %lu\n", events[PGDEACTIVATE]);
5398 seq_printf(m, "pglazyfree %lu\n", events[PGLAZYFREE]);
5399 seq_printf(m, "pglazyfreed %lu\n", events[PGLAZYFREED]);
5400
5401 seq_printf(m, "workingset_refault %lu\n",
5402 stat[WORKINGSET_REFAULT]);
5403 seq_printf(m, "workingset_activate %lu\n",
5404 stat[WORKINGSET_ACTIVATE]);
5405 seq_printf(m, "workingset_nodereclaim %lu\n",
5406 stat[WORKINGSET_NODERECLAIM]);
5407
5408 return 0;
5409}
5410
5411static struct cftype memory_files[] = {
5412 {
5413 .name = "current",
5414 .flags = CFTYPE_NOT_ON_ROOT,
5415 .read_u64 = memory_current_read,
5416 },
5417 {
5418 .name = "low",
5419 .flags = CFTYPE_NOT_ON_ROOT,
5420 .seq_show = memory_low_show,
5421 .write = memory_low_write,
5422 },
5423 {
5424 .name = "high",
5425 .flags = CFTYPE_NOT_ON_ROOT,
5426 .seq_show = memory_high_show,
5427 .write = memory_high_write,
5428 },
5429 {
5430 .name = "max",
5431 .flags = CFTYPE_NOT_ON_ROOT,
5432 .seq_show = memory_max_show,
5433 .write = memory_max_write,
5434 },
5435 {
5436 .name = "events",
5437 .flags = CFTYPE_NOT_ON_ROOT,
5438 .file_offset = offsetof(struct mem_cgroup, events_file),
5439 .seq_show = memory_events_show,
5440 },
5441 {
5442 .name = "stat",
5443 .flags = CFTYPE_NOT_ON_ROOT,
5444 .seq_show = memory_stat_show,
5445 },
5446 { } /* terminate */
5447};
5448
5449struct cgroup_subsys memory_cgrp_subsys = {
5450 .css_alloc = mem_cgroup_css_alloc,
5451 .css_online = mem_cgroup_css_online,
5452 .css_offline = mem_cgroup_css_offline,
5453 .css_released = mem_cgroup_css_released,
5454 .css_free = mem_cgroup_css_free,
5455 .css_reset = mem_cgroup_css_reset,
5456 .can_attach = mem_cgroup_can_attach,
5457 .cancel_attach = mem_cgroup_cancel_attach,
5458 .post_attach = mem_cgroup_move_task,
5459 .bind = mem_cgroup_bind,
5460 .dfl_cftypes = memory_files,
5461 .legacy_cftypes = mem_cgroup_legacy_files,
5462 .early_init = 0,
5463};
5464
5465/**
5466 * mem_cgroup_low - check if memory consumption is below the normal range
5467 * @root: the top ancestor of the sub-tree being checked
5468 * @memcg: the memory cgroup to check
5469 *
5470 * Returns %true if memory consumption of @memcg, and that of all
5471 * ancestors up to (but not including) @root, is below the normal range.
5472 *
5473 * @root is exclusive; it is never low when looked at directly and isn't
5474 * checked when traversing the hierarchy.
5475 *
5476 * Excluding @root enables using memory.low to prioritize memory usage
5477 * between cgroups within a subtree of the hierarchy that is limited by
5478 * memory.high or memory.max.
5479 *
5480 * For example, given cgroup A with children B and C:
5481 *
5482 * A
5483 * / \
5484 * B C
5485 *
5486 * and
5487 *
5488 * 1. A/memory.current > A/memory.high
5489 * 2. A/B/memory.current < A/B/memory.low
5490 * 3. A/C/memory.current >= A/C/memory.low
5491 *
5492 * As 'A' is high, i.e. triggers reclaim from 'A', and 'B' is low, we
5493 * should reclaim from 'C' until 'A' is no longer high or until we can
5494 * no longer reclaim from 'C'. If 'A', i.e. @root, isn't excluded by
5495 * mem_cgroup_low when reclaming from 'A', then 'B' won't be considered
5496 * low and we will reclaim indiscriminately from both 'B' and 'C'.
5497 */
5498bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5499{
5500 if (mem_cgroup_disabled())
5501 return false;
5502
5503 if (!root)
5504 root = root_mem_cgroup;
5505 if (memcg == root)
5506 return false;
5507
5508 for (; memcg != root; memcg = parent_mem_cgroup(memcg)) {
5509 if (page_counter_read(&memcg->memory) >= memcg->low)
5510 return false;
5511 }
5512
5513 return true;
5514}
5515
5516/**
5517 * mem_cgroup_try_charge - try charging a page
5518 * @page: page to charge
5519 * @mm: mm context of the victim
5520 * @gfp_mask: reclaim mode
5521 * @memcgp: charged memcg return
5522 * @compound: charge the page as compound or small page
5523 *
5524 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5525 * pages according to @gfp_mask if necessary.
5526 *
5527 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5528 * Otherwise, an error code is returned.
5529 *
5530 * After page->mapping has been set up, the caller must finalize the
5531 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5532 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5533 */
5534int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5535 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5536 bool compound)
5537{
5538 struct mem_cgroup *memcg = NULL;
5539 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5540 int ret = 0;
5541
5542 if (mem_cgroup_disabled())
5543 goto out;
5544
5545 if (PageSwapCache(page)) {
5546 /*
5547 * Every swap fault against a single page tries to charge the
5548 * page, bail as early as possible. shmem_unuse() encounters
5549 * already charged pages, too. The USED bit is protected by
5550 * the page lock, which serializes swap cache removal, which
5551 * in turn serializes uncharging.
5552 */
5553 VM_BUG_ON_PAGE(!PageLocked(page), page);
5554 if (compound_head(page)->mem_cgroup)
5555 goto out;
5556
5557 if (do_swap_account) {
5558 swp_entry_t ent = { .val = page_private(page), };
5559 unsigned short id = lookup_swap_cgroup_id(ent);
5560
5561 rcu_read_lock();
5562 memcg = mem_cgroup_from_id(id);
5563 if (memcg && !css_tryget_online(&memcg->css))
5564 memcg = NULL;
5565 rcu_read_unlock();
5566 }
5567 }
5568
5569 if (!memcg)
5570 memcg = get_mem_cgroup_from_mm(mm);
5571
5572 ret = try_charge(memcg, gfp_mask, nr_pages);
5573
5574 css_put(&memcg->css);
5575out:
5576 *memcgp = memcg;
5577 return ret;
5578}
5579
5580/**
5581 * mem_cgroup_commit_charge - commit a page charge
5582 * @page: page to charge
5583 * @memcg: memcg to charge the page to
5584 * @lrucare: page might be on LRU already
5585 * @compound: charge the page as compound or small page
5586 *
5587 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5588 * after page->mapping has been set up. This must happen atomically
5589 * as part of the page instantiation, i.e. under the page table lock
5590 * for anonymous pages, under the page lock for page and swap cache.
5591 *
5592 * In addition, the page must not be on the LRU during the commit, to
5593 * prevent racing with task migration. If it might be, use @lrucare.
5594 *
5595 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5596 */
5597void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5598 bool lrucare, bool compound)
5599{
5600 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5601
5602 VM_BUG_ON_PAGE(!page->mapping, page);
5603 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5604
5605 if (mem_cgroup_disabled())
5606 return;
5607 /*
5608 * Swap faults will attempt to charge the same page multiple
5609 * times. But reuse_swap_page() might have removed the page
5610 * from swapcache already, so we can't check PageSwapCache().
5611 */
5612 if (!memcg)
5613 return;
5614
5615 commit_charge(page, memcg, lrucare);
5616
5617 local_irq_disable();
5618 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5619 memcg_check_events(memcg, page);
5620 local_irq_enable();
5621
5622 if (do_memsw_account() && PageSwapCache(page)) {
5623 swp_entry_t entry = { .val = page_private(page) };
5624 /*
5625 * The swap entry might not get freed for a long time,
5626 * let's not wait for it. The page already received a
5627 * memory+swap charge, drop the swap entry duplicate.
5628 */
5629 mem_cgroup_uncharge_swap(entry, nr_pages);
5630 }
5631}
5632
5633/**
5634 * mem_cgroup_cancel_charge - cancel a page charge
5635 * @page: page to charge
5636 * @memcg: memcg to charge the page to
5637 * @compound: charge the page as compound or small page
5638 *
5639 * Cancel a charge transaction started by mem_cgroup_try_charge().
5640 */
5641void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5642 bool compound)
5643{
5644 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5645
5646 if (mem_cgroup_disabled())
5647 return;
5648 /*
5649 * Swap faults will attempt to charge the same page multiple
5650 * times. But reuse_swap_page() might have removed the page
5651 * from swapcache already, so we can't check PageSwapCache().
5652 */
5653 if (!memcg)
5654 return;
5655
5656 cancel_charge(memcg, nr_pages);
5657}
5658
5659struct uncharge_gather {
5660 struct mem_cgroup *memcg;
5661 unsigned long pgpgout;
5662 unsigned long nr_anon;
5663 unsigned long nr_file;
5664 unsigned long nr_kmem;
5665 unsigned long nr_huge;
5666 unsigned long nr_shmem;
5667 struct page *dummy_page;
5668};
5669
5670static inline void uncharge_gather_clear(struct uncharge_gather *ug)
5671{
5672 memset(ug, 0, sizeof(*ug));
5673}
5674
5675static void uncharge_batch(const struct uncharge_gather *ug)
5676{
5677 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
5678 unsigned long flags;
5679
5680 if (!mem_cgroup_is_root(ug->memcg)) {
5681 page_counter_uncharge(&ug->memcg->memory, nr_pages);
5682 if (do_memsw_account())
5683 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
5684 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
5685 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
5686 memcg_oom_recover(ug->memcg);
5687 }
5688
5689 local_irq_save(flags);
5690 __this_cpu_sub(ug->memcg->stat->count[MEMCG_RSS], ug->nr_anon);
5691 __this_cpu_sub(ug->memcg->stat->count[MEMCG_CACHE], ug->nr_file);
5692 __this_cpu_sub(ug->memcg->stat->count[MEMCG_RSS_HUGE], ug->nr_huge);
5693 __this_cpu_sub(ug->memcg->stat->count[NR_SHMEM], ug->nr_shmem);
5694 __this_cpu_add(ug->memcg->stat->events[PGPGOUT], ug->pgpgout);
5695 __this_cpu_add(ug->memcg->stat->nr_page_events, nr_pages);
5696 memcg_check_events(ug->memcg, ug->dummy_page);
5697 local_irq_restore(flags);
5698
5699 if (!mem_cgroup_is_root(ug->memcg))
5700 css_put_many(&ug->memcg->css, nr_pages);
5701}
5702
5703static void uncharge_page(struct page *page, struct uncharge_gather *ug)
5704{
5705 VM_BUG_ON_PAGE(PageLRU(page), page);
5706 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
5707 !PageHWPoison(page) , page);
5708
5709 if (!page->mem_cgroup)
5710 return;
5711
5712 /*
5713 * Nobody should be changing or seriously looking at
5714 * page->mem_cgroup at this point, we have fully
5715 * exclusive access to the page.
5716 */
5717
5718 if (ug->memcg != page->mem_cgroup) {
5719 if (ug->memcg) {
5720 uncharge_batch(ug);
5721 uncharge_gather_clear(ug);
5722 }
5723 ug->memcg = page->mem_cgroup;
5724 }
5725
5726 if (!PageKmemcg(page)) {
5727 unsigned int nr_pages = 1;
5728
5729 if (PageTransHuge(page)) {
5730 nr_pages <<= compound_order(page);
5731 ug->nr_huge += nr_pages;
5732 }
5733 if (PageAnon(page))
5734 ug->nr_anon += nr_pages;
5735 else {
5736 ug->nr_file += nr_pages;
5737 if (PageSwapBacked(page))
5738 ug->nr_shmem += nr_pages;
5739 }
5740 ug->pgpgout++;
5741 } else {
5742 ug->nr_kmem += 1 << compound_order(page);
5743 __ClearPageKmemcg(page);
5744 }
5745
5746 ug->dummy_page = page;
5747 page->mem_cgroup = NULL;
5748}
5749
5750static void uncharge_list(struct list_head *page_list)
5751{
5752 struct uncharge_gather ug;
5753 struct list_head *next;
5754
5755 uncharge_gather_clear(&ug);
5756
5757 /*
5758 * Note that the list can be a single page->lru; hence the
5759 * do-while loop instead of a simple list_for_each_entry().
5760 */
5761 next = page_list->next;
5762 do {
5763 struct page *page;
5764
5765 page = list_entry(next, struct page, lru);
5766 next = page->lru.next;
5767
5768 uncharge_page(page, &ug);
5769 } while (next != page_list);
5770
5771 if (ug.memcg)
5772 uncharge_batch(&ug);
5773}
5774
5775/**
5776 * mem_cgroup_uncharge - uncharge a page
5777 * @page: page to uncharge
5778 *
5779 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5780 * mem_cgroup_commit_charge().
5781 */
5782void mem_cgroup_uncharge(struct page *page)
5783{
5784 struct uncharge_gather ug;
5785
5786 if (mem_cgroup_disabled())
5787 return;
5788
5789 /* Don't touch page->lru of any random page, pre-check: */
5790 if (!page->mem_cgroup)
5791 return;
5792
5793 uncharge_gather_clear(&ug);
5794 uncharge_page(page, &ug);
5795 uncharge_batch(&ug);
5796}
5797
5798/**
5799 * mem_cgroup_uncharge_list - uncharge a list of page
5800 * @page_list: list of pages to uncharge
5801 *
5802 * Uncharge a list of pages previously charged with
5803 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5804 */
5805void mem_cgroup_uncharge_list(struct list_head *page_list)
5806{
5807 if (mem_cgroup_disabled())
5808 return;
5809
5810 if (!list_empty(page_list))
5811 uncharge_list(page_list);
5812}
5813
5814/**
5815 * mem_cgroup_migrate - charge a page's replacement
5816 * @oldpage: currently circulating page
5817 * @newpage: replacement page
5818 *
5819 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5820 * be uncharged upon free.
5821 *
5822 * Both pages must be locked, @newpage->mapping must be set up.
5823 */
5824void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5825{
5826 struct mem_cgroup *memcg;
5827 unsigned int nr_pages;
5828 bool compound;
5829 unsigned long flags;
5830
5831 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5832 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5833 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5834 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5835 newpage);
5836
5837 if (mem_cgroup_disabled())
5838 return;
5839
5840 /* Page cache replacement: new page already charged? */
5841 if (newpage->mem_cgroup)
5842 return;
5843
5844 /* Swapcache readahead pages can get replaced before being charged */
5845 memcg = oldpage->mem_cgroup;
5846 if (!memcg)
5847 return;
5848
5849 /* Force-charge the new page. The old one will be freed soon */
5850 compound = PageTransHuge(newpage);
5851 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5852
5853 page_counter_charge(&memcg->memory, nr_pages);
5854 if (do_memsw_account())
5855 page_counter_charge(&memcg->memsw, nr_pages);
5856 css_get_many(&memcg->css, nr_pages);
5857
5858 commit_charge(newpage, memcg, false);
5859
5860 local_irq_save(flags);
5861 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5862 memcg_check_events(memcg, newpage);
5863 local_irq_restore(flags);
5864}
5865
5866DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5867EXPORT_SYMBOL(memcg_sockets_enabled_key);
5868
5869void mem_cgroup_sk_alloc(struct sock *sk)
5870{
5871 struct mem_cgroup *memcg;
5872
5873 if (!mem_cgroup_sockets_enabled)
5874 return;
5875
5876 /* Do not associate the sock with unrelated interrupted task's memcg. */
5877 if (in_interrupt())
5878 return;
5879
5880 rcu_read_lock();
5881 memcg = mem_cgroup_from_task(current);
5882 if (memcg == root_mem_cgroup)
5883 goto out;
5884 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5885 goto out;
5886 if (css_tryget_online(&memcg->css))
5887 sk->sk_memcg = memcg;
5888out:
5889 rcu_read_unlock();
5890}
5891
5892void mem_cgroup_sk_free(struct sock *sk)
5893{
5894 if (sk->sk_memcg)
5895 css_put(&sk->sk_memcg->css);
5896}
5897
5898/**
5899 * mem_cgroup_charge_skmem - charge socket memory
5900 * @memcg: memcg to charge
5901 * @nr_pages: number of pages to charge
5902 *
5903 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5904 * @memcg's configured limit, %false if the charge had to be forced.
5905 */
5906bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5907{
5908 gfp_t gfp_mask = GFP_KERNEL;
5909
5910 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5911 struct page_counter *fail;
5912
5913 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5914 memcg->tcpmem_pressure = 0;
5915 return true;
5916 }
5917 page_counter_charge(&memcg->tcpmem, nr_pages);
5918 memcg->tcpmem_pressure = 1;
5919 return false;
5920 }
5921
5922 /* Don't block in the packet receive path */
5923 if (in_softirq())
5924 gfp_mask = GFP_NOWAIT;
5925
5926 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5927
5928 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5929 return true;
5930
5931 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5932 return false;
5933}
5934
5935/**
5936 * mem_cgroup_uncharge_skmem - uncharge socket memory
5937 * @memcg - memcg to uncharge
5938 * @nr_pages - number of pages to uncharge
5939 */
5940void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5941{
5942 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5943 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5944 return;
5945 }
5946
5947 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5948
5949 refill_stock(memcg, nr_pages);
5950}
5951
5952static int __init cgroup_memory(char *s)
5953{
5954 char *token;
5955
5956 while ((token = strsep(&s, ",")) != NULL) {
5957 if (!*token)
5958 continue;
5959 if (!strcmp(token, "nosocket"))
5960 cgroup_memory_nosocket = true;
5961 if (!strcmp(token, "nokmem"))
5962 cgroup_memory_nokmem = true;
5963 }
5964 return 0;
5965}
5966__setup("cgroup.memory=", cgroup_memory);
5967
5968/*
5969 * subsys_initcall() for memory controller.
5970 *
5971 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5972 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5973 * basically everything that doesn't depend on a specific mem_cgroup structure
5974 * should be initialized from here.
5975 */
5976static int __init mem_cgroup_init(void)
5977{
5978 int cpu, node;
5979
5980#ifndef CONFIG_SLOB
5981 /*
5982 * Kmem cache creation is mostly done with the slab_mutex held,
5983 * so use a workqueue with limited concurrency to avoid stalling
5984 * all worker threads in case lots of cgroups are created and
5985 * destroyed simultaneously.
5986 */
5987 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
5988 BUG_ON(!memcg_kmem_cache_wq);
5989#endif
5990
5991 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5992 memcg_hotplug_cpu_dead);
5993
5994 for_each_possible_cpu(cpu)
5995 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5996 drain_local_stock);
5997
5998 for_each_node(node) {
5999 struct mem_cgroup_tree_per_node *rtpn;
6000
6001 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6002 node_online(node) ? node : NUMA_NO_NODE);
6003
6004 rtpn->rb_root = RB_ROOT;
6005 rtpn->rb_rightmost = NULL;
6006 spin_lock_init(&rtpn->lock);
6007 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6008 }
6009
6010 return 0;
6011}
6012subsys_initcall(mem_cgroup_init);
6013
6014#ifdef CONFIG_MEMCG_SWAP
6015static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6016{
6017 while (!atomic_inc_not_zero(&memcg->id.ref)) {
6018 /*
6019 * The root cgroup cannot be destroyed, so it's refcount must
6020 * always be >= 1.
6021 */
6022 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6023 VM_BUG_ON(1);
6024 break;
6025 }
6026 memcg = parent_mem_cgroup(memcg);
6027 if (!memcg)
6028 memcg = root_mem_cgroup;
6029 }
6030 return memcg;
6031}
6032
6033/**
6034 * mem_cgroup_swapout - transfer a memsw charge to swap
6035 * @page: page whose memsw charge to transfer
6036 * @entry: swap entry to move the charge to
6037 *
6038 * Transfer the memsw charge of @page to @entry.
6039 */
6040void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6041{
6042 struct mem_cgroup *memcg, *swap_memcg;
6043 unsigned int nr_entries;
6044 unsigned short oldid;
6045
6046 VM_BUG_ON_PAGE(PageLRU(page), page);
6047 VM_BUG_ON_PAGE(page_count(page), page);
6048
6049 if (!do_memsw_account())
6050 return;
6051
6052 memcg = page->mem_cgroup;
6053
6054 /* Readahead page, never charged */
6055 if (!memcg)
6056 return;
6057
6058 /*
6059 * In case the memcg owning these pages has been offlined and doesn't
6060 * have an ID allocated to it anymore, charge the closest online
6061 * ancestor for the swap instead and transfer the memory+swap charge.
6062 */
6063 swap_memcg = mem_cgroup_id_get_online(memcg);
6064 nr_entries = hpage_nr_pages(page);
6065 /* Get references for the tail pages, too */
6066 if (nr_entries > 1)
6067 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6068 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6069 nr_entries);
6070 VM_BUG_ON_PAGE(oldid, page);
6071 mem_cgroup_swap_statistics(swap_memcg, nr_entries);
6072
6073 page->mem_cgroup = NULL;
6074
6075 if (!mem_cgroup_is_root(memcg))
6076 page_counter_uncharge(&memcg->memory, nr_entries);
6077
6078 if (memcg != swap_memcg) {
6079 if (!mem_cgroup_is_root(swap_memcg))
6080 page_counter_charge(&swap_memcg->memsw, nr_entries);
6081 page_counter_uncharge(&memcg->memsw, nr_entries);
6082 }
6083
6084 /*
6085 * Interrupts should be disabled here because the caller holds the
6086 * mapping->tree_lock lock which is taken with interrupts-off. It is
6087 * important here to have the interrupts disabled because it is the
6088 * only synchronisation we have for udpating the per-CPU variables.
6089 */
6090 VM_BUG_ON(!irqs_disabled());
6091 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6092 -nr_entries);
6093 memcg_check_events(memcg, page);
6094
6095 if (!mem_cgroup_is_root(memcg))
6096 css_put_many(&memcg->css, nr_entries);
6097}
6098
6099/**
6100 * mem_cgroup_try_charge_swap - try charging swap space for a page
6101 * @page: page being added to swap
6102 * @entry: swap entry to charge
6103 *
6104 * Try to charge @page's memcg for the swap space at @entry.
6105 *
6106 * Returns 0 on success, -ENOMEM on failure.
6107 */
6108int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6109{
6110 unsigned int nr_pages = hpage_nr_pages(page);
6111 struct page_counter *counter;
6112 struct mem_cgroup *memcg;
6113 unsigned short oldid;
6114
6115 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6116 return 0;
6117
6118 memcg = page->mem_cgroup;
6119
6120 /* Readahead page, never charged */
6121 if (!memcg)
6122 return 0;
6123
6124 memcg = mem_cgroup_id_get_online(memcg);
6125
6126 if (!mem_cgroup_is_root(memcg) &&
6127 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6128 mem_cgroup_id_put(memcg);
6129 return -ENOMEM;
6130 }
6131
6132 /* Get references for the tail pages, too */
6133 if (nr_pages > 1)
6134 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6135 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6136 VM_BUG_ON_PAGE(oldid, page);
6137 mem_cgroup_swap_statistics(memcg, nr_pages);
6138
6139 return 0;
6140}
6141
6142/**
6143 * mem_cgroup_uncharge_swap - uncharge swap space
6144 * @entry: swap entry to uncharge
6145 * @nr_pages: the amount of swap space to uncharge
6146 */
6147void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6148{
6149 struct mem_cgroup *memcg;
6150 unsigned short id;
6151
6152 if (!do_swap_account)
6153 return;
6154
6155 id = swap_cgroup_record(entry, 0, nr_pages);
6156 rcu_read_lock();
6157 memcg = mem_cgroup_from_id(id);
6158 if (memcg) {
6159 if (!mem_cgroup_is_root(memcg)) {
6160 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6161 page_counter_uncharge(&memcg->swap, nr_pages);
6162 else
6163 page_counter_uncharge(&memcg->memsw, nr_pages);
6164 }
6165 mem_cgroup_swap_statistics(memcg, -nr_pages);
6166 mem_cgroup_id_put_many(memcg, nr_pages);
6167 }
6168 rcu_read_unlock();
6169}
6170
6171long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6172{
6173 long nr_swap_pages = get_nr_swap_pages();
6174
6175 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6176 return nr_swap_pages;
6177 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6178 nr_swap_pages = min_t(long, nr_swap_pages,
6179 READ_ONCE(memcg->swap.limit) -
6180 page_counter_read(&memcg->swap));
6181 return nr_swap_pages;
6182}
6183
6184bool mem_cgroup_swap_full(struct page *page)
6185{
6186 struct mem_cgroup *memcg;
6187
6188 VM_BUG_ON_PAGE(!PageLocked(page), page);
6189
6190 if (vm_swap_full())
6191 return true;
6192 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6193 return false;
6194
6195 memcg = page->mem_cgroup;
6196 if (!memcg)
6197 return false;
6198
6199 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6200 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
6201 return true;
6202
6203 return false;
6204}
6205
6206/* for remember boot option*/
6207#ifdef CONFIG_MEMCG_SWAP_ENABLED
6208static int really_do_swap_account __initdata = 1;
6209#else
6210static int really_do_swap_account __initdata;
6211#endif
6212
6213static int __init enable_swap_account(char *s)
6214{
6215 if (!strcmp(s, "1"))
6216 really_do_swap_account = 1;
6217 else if (!strcmp(s, "0"))
6218 really_do_swap_account = 0;
6219 return 1;
6220}
6221__setup("swapaccount=", enable_swap_account);
6222
6223static u64 swap_current_read(struct cgroup_subsys_state *css,
6224 struct cftype *cft)
6225{
6226 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6227
6228 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6229}
6230
6231static int swap_max_show(struct seq_file *m, void *v)
6232{
6233 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6234 unsigned long max = READ_ONCE(memcg->swap.limit);
6235
6236 if (max == PAGE_COUNTER_MAX)
6237 seq_puts(m, "max\n");
6238 else
6239 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6240
6241 return 0;
6242}
6243
6244static ssize_t swap_max_write(struct kernfs_open_file *of,
6245 char *buf, size_t nbytes, loff_t off)
6246{
6247 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6248 unsigned long max;
6249 int err;
6250
6251 buf = strstrip(buf);
6252 err = page_counter_memparse(buf, "max", &max);
6253 if (err)
6254 return err;
6255
6256 mutex_lock(&memcg_limit_mutex);
6257 err = page_counter_limit(&memcg->swap, max);
6258 mutex_unlock(&memcg_limit_mutex);
6259 if (err)
6260 return err;
6261
6262 return nbytes;
6263}
6264
6265static struct cftype swap_files[] = {
6266 {
6267 .name = "swap.current",
6268 .flags = CFTYPE_NOT_ON_ROOT,
6269 .read_u64 = swap_current_read,
6270 },
6271 {
6272 .name = "swap.max",
6273 .flags = CFTYPE_NOT_ON_ROOT,
6274 .seq_show = swap_max_show,
6275 .write = swap_max_write,
6276 },
6277 { } /* terminate */
6278};
6279
6280static struct cftype memsw_cgroup_files[] = {
6281 {
6282 .name = "memsw.usage_in_bytes",
6283 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6284 .read_u64 = mem_cgroup_read_u64,
6285 },
6286 {
6287 .name = "memsw.max_usage_in_bytes",
6288 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6289 .write = mem_cgroup_reset,
6290 .read_u64 = mem_cgroup_read_u64,
6291 },
6292 {
6293 .name = "memsw.limit_in_bytes",
6294 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6295 .write = mem_cgroup_write,
6296 .read_u64 = mem_cgroup_read_u64,
6297 },
6298 {
6299 .name = "memsw.failcnt",
6300 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6301 .write = mem_cgroup_reset,
6302 .read_u64 = mem_cgroup_read_u64,
6303 },
6304 { }, /* terminate */
6305};
6306
6307static int __init mem_cgroup_swap_init(void)
6308{
6309 if (!mem_cgroup_disabled() && really_do_swap_account) {
6310 do_swap_account = 1;
6311 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6312 swap_files));
6313 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6314 memsw_cgroup_files));
6315 }
6316 return 0;
6317}
6318subsys_initcall(mem_cgroup_swap_init);
6319
6320#endif /* CONFIG_MEMCG_SWAP */