blob: dbe44ecce064db58abcf5676905973e8b532d718 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/kernel.h>
12#include <linux/slab.h>
13#include <linux/backing-dev.h>
14#include <linux/mm.h>
15#include <linux/vmacache.h>
16#include <linux/shm.h>
17#include <linux/mman.h>
18#include <linux/pagemap.h>
19#include <linux/swap.h>
20#include <linux/syscalls.h>
21#include <linux/capability.h>
22#include <linux/init.h>
23#include <linux/file.h>
24#include <linux/fs.h>
25#include <linux/personality.h>
26#include <linux/security.h>
27#include <linux/hugetlb.h>
28#include <linux/shmem_fs.h>
29#include <linux/profile.h>
30#include <linux/export.h>
31#include <linux/mount.h>
32#include <linux/mempolicy.h>
33#include <linux/rmap.h>
34#include <linux/mmu_notifier.h>
35#include <linux/mmdebug.h>
36#include <linux/perf_event.h>
37#include <linux/audit.h>
38#include <linux/khugepaged.h>
39#include <linux/uprobes.h>
40#include <linux/rbtree_augmented.h>
41#include <linux/notifier.h>
42#include <linux/memory.h>
43#include <linux/printk.h>
44#include <linux/userfaultfd_k.h>
45#include <linux/moduleparam.h>
46#include <linux/pkeys.h>
47#include <linux/oom.h>
48#include <linux/sched/mm.h>
49
50#include <linux/uaccess.h>
51#include <asm/cacheflush.h>
52#include <asm/tlb.h>
53#include <asm/mmu_context.h>
54
55#include "internal.h"
56
57#ifndef arch_mmap_check
58#define arch_mmap_check(addr, len, flags) (0)
59#endif
60
61#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
62const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
63const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
64int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
65#endif
66#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
67const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
68const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
69int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
70#endif
71
72static bool ignore_rlimit_data;
73core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
74
75static void unmap_region(struct mm_struct *mm,
76 struct vm_area_struct *vma, struct vm_area_struct *prev,
77 unsigned long start, unsigned long end);
78
79/* description of effects of mapping type and prot in current implementation.
80 * this is due to the limited x86 page protection hardware. The expected
81 * behavior is in parens:
82 *
83 * map_type prot
84 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
85 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
86 * w: (no) no w: (no) no w: (yes) yes w: (no) no
87 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
88 *
89 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
90 * w: (no) no w: (no) no w: (copy) copy w: (no) no
91 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
92 */
93pgprot_t protection_map[16] __ro_after_init = {
94 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
95 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
96};
97
98pgprot_t vm_get_page_prot(unsigned long vm_flags)
99{
100 return __pgprot(pgprot_val(protection_map[vm_flags &
101 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
102 pgprot_val(arch_vm_get_page_prot(vm_flags)));
103}
104EXPORT_SYMBOL(vm_get_page_prot);
105
106static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
107{
108 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
109}
110
111/* Update vma->vm_page_prot to reflect vma->vm_flags. */
112void vma_set_page_prot(struct vm_area_struct *vma)
113{
114 unsigned long vm_flags = vma->vm_flags;
115 pgprot_t vm_page_prot;
116
117 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
118 if (vma_wants_writenotify(vma, vm_page_prot)) {
119 vm_flags &= ~VM_SHARED;
120 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
121 }
122 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
123 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
124}
125
126/*
127 * Requires inode->i_mapping->i_mmap_rwsem
128 */
129static void __remove_shared_vm_struct(struct vm_area_struct *vma,
130 struct file *file, struct address_space *mapping)
131{
132 if (vma->vm_flags & VM_DENYWRITE)
133 atomic_inc(&file_inode(file)->i_writecount);
134 if (vma->vm_flags & VM_SHARED)
135 mapping_unmap_writable(mapping);
136
137 flush_dcache_mmap_lock(mapping);
138 vma_interval_tree_remove(vma, &mapping->i_mmap);
139 flush_dcache_mmap_unlock(mapping);
140}
141
142/*
143 * Unlink a file-based vm structure from its interval tree, to hide
144 * vma from rmap and vmtruncate before freeing its page tables.
145 */
146void unlink_file_vma(struct vm_area_struct *vma)
147{
148 struct file *file = vma->vm_file;
149
150 if (file) {
151 struct address_space *mapping = file->f_mapping;
152 i_mmap_lock_write(mapping);
153 __remove_shared_vm_struct(vma, file, mapping);
154 i_mmap_unlock_write(mapping);
155 }
156}
157
158/*
159 * Close a vm structure and free it, returning the next.
160 */
161static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
162{
163 struct vm_area_struct *next = vma->vm_next;
164
165 might_sleep();
166 if (vma->vm_ops && vma->vm_ops->close)
167 vma->vm_ops->close(vma);
168 if (vma->vm_file)
169 fput(vma->vm_file);
170 mpol_put(vma_policy(vma));
171 kmem_cache_free(vm_area_cachep, vma);
172 return next;
173}
174
175static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
176 struct list_head *uf);
177SYSCALL_DEFINE1(brk, unsigned long, brk)
178{
179 unsigned long retval;
180 unsigned long newbrk, oldbrk;
181 struct mm_struct *mm = current->mm;
182 struct vm_area_struct *next;
183 unsigned long min_brk;
184 bool populate;
185 LIST_HEAD(uf);
186
187 if (down_write_killable(&mm->mmap_sem))
188 return -EINTR;
189
190#ifdef CONFIG_COMPAT_BRK
191 /*
192 * CONFIG_COMPAT_BRK can still be overridden by setting
193 * randomize_va_space to 2, which will still cause mm->start_brk
194 * to be arbitrarily shifted
195 */
196 if (current->brk_randomized)
197 min_brk = mm->start_brk;
198 else
199 min_brk = mm->end_data;
200#else
201 min_brk = mm->start_brk;
202#endif
203 if (brk < min_brk)
204 goto out;
205
206 /*
207 * Check against rlimit here. If this check is done later after the test
208 * of oldbrk with newbrk then it can escape the test and let the data
209 * segment grow beyond its set limit the in case where the limit is
210 * not page aligned -Ram Gupta
211 */
212 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
213 mm->end_data, mm->start_data))
214 goto out;
215
216 newbrk = PAGE_ALIGN(brk);
217 oldbrk = PAGE_ALIGN(mm->brk);
218 if (oldbrk == newbrk)
219 goto set_brk;
220
221 /* Always allow shrinking brk. */
222 if (brk <= mm->brk) {
223 if (!do_munmap(mm, newbrk, oldbrk-newbrk, &uf))
224 goto set_brk;
225 goto out;
226 }
227
228 /* Check against existing mmap mappings. */
229 next = find_vma(mm, oldbrk);
230 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
231 goto out;
232
233 /* Ok, looks good - let it rip. */
234 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
235 goto out;
236
237set_brk:
238 mm->brk = brk;
239 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
240 up_write(&mm->mmap_sem);
241 userfaultfd_unmap_complete(mm, &uf);
242 if (populate)
243 mm_populate(oldbrk, newbrk - oldbrk);
244 return brk;
245
246out:
247 retval = mm->brk;
248 up_write(&mm->mmap_sem);
249 return retval;
250}
251
252static long vma_compute_subtree_gap(struct vm_area_struct *vma)
253{
254 unsigned long max, prev_end, subtree_gap;
255
256 /*
257 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
258 * allow two stack_guard_gaps between them here, and when choosing
259 * an unmapped area; whereas when expanding we only require one.
260 * That's a little inconsistent, but keeps the code here simpler.
261 */
262 max = vm_start_gap(vma);
263 if (vma->vm_prev) {
264 prev_end = vm_end_gap(vma->vm_prev);
265 if (max > prev_end)
266 max -= prev_end;
267 else
268 max = 0;
269 }
270 if (vma->vm_rb.rb_left) {
271 subtree_gap = rb_entry(vma->vm_rb.rb_left,
272 struct vm_area_struct, vm_rb)->rb_subtree_gap;
273 if (subtree_gap > max)
274 max = subtree_gap;
275 }
276 if (vma->vm_rb.rb_right) {
277 subtree_gap = rb_entry(vma->vm_rb.rb_right,
278 struct vm_area_struct, vm_rb)->rb_subtree_gap;
279 if (subtree_gap > max)
280 max = subtree_gap;
281 }
282 return max;
283}
284
285#ifdef CONFIG_DEBUG_VM_RB
286static int browse_rb(struct mm_struct *mm)
287{
288 struct rb_root *root = &mm->mm_rb;
289 int i = 0, j, bug = 0;
290 struct rb_node *nd, *pn = NULL;
291 unsigned long prev = 0, pend = 0;
292
293 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
294 struct vm_area_struct *vma;
295 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
296 if (vma->vm_start < prev) {
297 pr_emerg("vm_start %lx < prev %lx\n",
298 vma->vm_start, prev);
299 bug = 1;
300 }
301 if (vma->vm_start < pend) {
302 pr_emerg("vm_start %lx < pend %lx\n",
303 vma->vm_start, pend);
304 bug = 1;
305 }
306 if (vma->vm_start > vma->vm_end) {
307 pr_emerg("vm_start %lx > vm_end %lx\n",
308 vma->vm_start, vma->vm_end);
309 bug = 1;
310 }
311 spin_lock(&mm->page_table_lock);
312 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
313 pr_emerg("free gap %lx, correct %lx\n",
314 vma->rb_subtree_gap,
315 vma_compute_subtree_gap(vma));
316 bug = 1;
317 }
318 spin_unlock(&mm->page_table_lock);
319 i++;
320 pn = nd;
321 prev = vma->vm_start;
322 pend = vma->vm_end;
323 }
324 j = 0;
325 for (nd = pn; nd; nd = rb_prev(nd))
326 j++;
327 if (i != j) {
328 pr_emerg("backwards %d, forwards %d\n", j, i);
329 bug = 1;
330 }
331 return bug ? -1 : i;
332}
333
334static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
335{
336 struct rb_node *nd;
337
338 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
339 struct vm_area_struct *vma;
340 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
341 VM_BUG_ON_VMA(vma != ignore &&
342 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
343 vma);
344 }
345}
346
347static void validate_mm(struct mm_struct *mm)
348{
349 int bug = 0;
350 int i = 0;
351 unsigned long highest_address = 0;
352 struct vm_area_struct *vma = mm->mmap;
353
354 while (vma) {
355 struct anon_vma *anon_vma = vma->anon_vma;
356 struct anon_vma_chain *avc;
357
358 if (anon_vma) {
359 anon_vma_lock_read(anon_vma);
360 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
361 anon_vma_interval_tree_verify(avc);
362 anon_vma_unlock_read(anon_vma);
363 }
364
365 highest_address = vm_end_gap(vma);
366 vma = vma->vm_next;
367 i++;
368 }
369 if (i != mm->map_count) {
370 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
371 bug = 1;
372 }
373 if (highest_address != mm->highest_vm_end) {
374 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
375 mm->highest_vm_end, highest_address);
376 bug = 1;
377 }
378 i = browse_rb(mm);
379 if (i != mm->map_count) {
380 if (i != -1)
381 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
382 bug = 1;
383 }
384 VM_BUG_ON_MM(bug, mm);
385}
386#else
387#define validate_mm_rb(root, ignore) do { } while (0)
388#define validate_mm(mm) do { } while (0)
389#endif
390
391RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
392 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
393
394/*
395 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
396 * vma->vm_prev->vm_end values changed, without modifying the vma's position
397 * in the rbtree.
398 */
399static void vma_gap_update(struct vm_area_struct *vma)
400{
401 /*
402 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
403 * function that does exacltly what we want.
404 */
405 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
406}
407
408static inline void vma_rb_insert(struct vm_area_struct *vma,
409 struct rb_root *root)
410{
411 /* All rb_subtree_gap values must be consistent prior to insertion */
412 validate_mm_rb(root, NULL);
413
414 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
415}
416
417static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
418{
419 /*
420 * Note rb_erase_augmented is a fairly large inline function,
421 * so make sure we instantiate it only once with our desired
422 * augmented rbtree callbacks.
423 */
424 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
425}
426
427static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
428 struct rb_root *root,
429 struct vm_area_struct *ignore)
430{
431 /*
432 * All rb_subtree_gap values must be consistent prior to erase,
433 * with the possible exception of the "next" vma being erased if
434 * next->vm_start was reduced.
435 */
436 validate_mm_rb(root, ignore);
437
438 __vma_rb_erase(vma, root);
439}
440
441static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
442 struct rb_root *root)
443{
444 /*
445 * All rb_subtree_gap values must be consistent prior to erase,
446 * with the possible exception of the vma being erased.
447 */
448 validate_mm_rb(root, vma);
449
450 __vma_rb_erase(vma, root);
451}
452
453/*
454 * vma has some anon_vma assigned, and is already inserted on that
455 * anon_vma's interval trees.
456 *
457 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
458 * vma must be removed from the anon_vma's interval trees using
459 * anon_vma_interval_tree_pre_update_vma().
460 *
461 * After the update, the vma will be reinserted using
462 * anon_vma_interval_tree_post_update_vma().
463 *
464 * The entire update must be protected by exclusive mmap_sem and by
465 * the root anon_vma's mutex.
466 */
467static inline void
468anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
469{
470 struct anon_vma_chain *avc;
471
472 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
473 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
474}
475
476static inline void
477anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
478{
479 struct anon_vma_chain *avc;
480
481 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
482 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
483}
484
485static int find_vma_links(struct mm_struct *mm, unsigned long addr,
486 unsigned long end, struct vm_area_struct **pprev,
487 struct rb_node ***rb_link, struct rb_node **rb_parent)
488{
489 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
490
491 __rb_link = &mm->mm_rb.rb_node;
492 rb_prev = __rb_parent = NULL;
493
494 while (*__rb_link) {
495 struct vm_area_struct *vma_tmp;
496
497 __rb_parent = *__rb_link;
498 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
499
500 if (vma_tmp->vm_end > addr) {
501 /* Fail if an existing vma overlaps the area */
502 if (vma_tmp->vm_start < end)
503 return -ENOMEM;
504 __rb_link = &__rb_parent->rb_left;
505 } else {
506 rb_prev = __rb_parent;
507 __rb_link = &__rb_parent->rb_right;
508 }
509 }
510
511 *pprev = NULL;
512 if (rb_prev)
513 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
514 *rb_link = __rb_link;
515 *rb_parent = __rb_parent;
516 return 0;
517}
518
519static unsigned long count_vma_pages_range(struct mm_struct *mm,
520 unsigned long addr, unsigned long end)
521{
522 unsigned long nr_pages = 0;
523 struct vm_area_struct *vma;
524
525 /* Find first overlaping mapping */
526 vma = find_vma_intersection(mm, addr, end);
527 if (!vma)
528 return 0;
529
530 nr_pages = (min(end, vma->vm_end) -
531 max(addr, vma->vm_start)) >> PAGE_SHIFT;
532
533 /* Iterate over the rest of the overlaps */
534 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
535 unsigned long overlap_len;
536
537 if (vma->vm_start > end)
538 break;
539
540 overlap_len = min(end, vma->vm_end) - vma->vm_start;
541 nr_pages += overlap_len >> PAGE_SHIFT;
542 }
543
544 return nr_pages;
545}
546
547void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
548 struct rb_node **rb_link, struct rb_node *rb_parent)
549{
550 /* Update tracking information for the gap following the new vma. */
551 if (vma->vm_next)
552 vma_gap_update(vma->vm_next);
553 else
554 mm->highest_vm_end = vm_end_gap(vma);
555
556 /*
557 * vma->vm_prev wasn't known when we followed the rbtree to find the
558 * correct insertion point for that vma. As a result, we could not
559 * update the vma vm_rb parents rb_subtree_gap values on the way down.
560 * So, we first insert the vma with a zero rb_subtree_gap value
561 * (to be consistent with what we did on the way down), and then
562 * immediately update the gap to the correct value. Finally we
563 * rebalance the rbtree after all augmented values have been set.
564 */
565 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
566 vma->rb_subtree_gap = 0;
567 vma_gap_update(vma);
568 vma_rb_insert(vma, &mm->mm_rb);
569}
570
571static void __vma_link_file(struct vm_area_struct *vma)
572{
573 struct file *file;
574
575 file = vma->vm_file;
576 if (file) {
577 struct address_space *mapping = file->f_mapping;
578
579 if (vma->vm_flags & VM_DENYWRITE)
580 atomic_dec(&file_inode(file)->i_writecount);
581 if (vma->vm_flags & VM_SHARED)
582 atomic_inc(&mapping->i_mmap_writable);
583
584 flush_dcache_mmap_lock(mapping);
585 vma_interval_tree_insert(vma, &mapping->i_mmap);
586 flush_dcache_mmap_unlock(mapping);
587 }
588}
589
590static void
591__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
592 struct vm_area_struct *prev, struct rb_node **rb_link,
593 struct rb_node *rb_parent)
594{
595 __vma_link_list(mm, vma, prev, rb_parent);
596 __vma_link_rb(mm, vma, rb_link, rb_parent);
597}
598
599static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
600 struct vm_area_struct *prev, struct rb_node **rb_link,
601 struct rb_node *rb_parent)
602{
603 struct address_space *mapping = NULL;
604
605 if (vma->vm_file) {
606 mapping = vma->vm_file->f_mapping;
607 i_mmap_lock_write(mapping);
608 }
609
610 __vma_link(mm, vma, prev, rb_link, rb_parent);
611 __vma_link_file(vma);
612
613 if (mapping)
614 i_mmap_unlock_write(mapping);
615
616 mm->map_count++;
617 validate_mm(mm);
618}
619
620/*
621 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
622 * mm's list and rbtree. It has already been inserted into the interval tree.
623 */
624static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
625{
626 struct vm_area_struct *prev;
627 struct rb_node **rb_link, *rb_parent;
628
629 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
630 &prev, &rb_link, &rb_parent))
631 BUG();
632 __vma_link(mm, vma, prev, rb_link, rb_parent);
633 mm->map_count++;
634}
635
636static __always_inline void __vma_unlink_common(struct mm_struct *mm,
637 struct vm_area_struct *vma,
638 struct vm_area_struct *prev,
639 bool has_prev,
640 struct vm_area_struct *ignore)
641{
642 struct vm_area_struct *next;
643
644 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
645 next = vma->vm_next;
646 if (has_prev)
647 prev->vm_next = next;
648 else {
649 prev = vma->vm_prev;
650 if (prev)
651 prev->vm_next = next;
652 else
653 mm->mmap = next;
654 }
655 if (next)
656 next->vm_prev = prev;
657
658 /* Kill the cache */
659 vmacache_invalidate(mm);
660}
661
662static inline void __vma_unlink_prev(struct mm_struct *mm,
663 struct vm_area_struct *vma,
664 struct vm_area_struct *prev)
665{
666 __vma_unlink_common(mm, vma, prev, true, vma);
667}
668
669/*
670 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
671 * is already present in an i_mmap tree without adjusting the tree.
672 * The following helper function should be used when such adjustments
673 * are necessary. The "insert" vma (if any) is to be inserted
674 * before we drop the necessary locks.
675 */
676int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
677 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
678 struct vm_area_struct *expand)
679{
680 struct mm_struct *mm = vma->vm_mm;
681 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
682 struct address_space *mapping = NULL;
683 struct rb_root_cached *root = NULL;
684 struct anon_vma *anon_vma = NULL;
685 struct file *file = vma->vm_file;
686 bool start_changed = false, end_changed = false;
687 long adjust_next = 0;
688 int remove_next = 0;
689
690 if (next && !insert) {
691 struct vm_area_struct *exporter = NULL, *importer = NULL;
692
693 if (end >= next->vm_end) {
694 /*
695 * vma expands, overlapping all the next, and
696 * perhaps the one after too (mprotect case 6).
697 * The only other cases that gets here are
698 * case 1, case 7 and case 8.
699 */
700 if (next == expand) {
701 /*
702 * The only case where we don't expand "vma"
703 * and we expand "next" instead is case 8.
704 */
705 VM_WARN_ON(end != next->vm_end);
706 /*
707 * remove_next == 3 means we're
708 * removing "vma" and that to do so we
709 * swapped "vma" and "next".
710 */
711 remove_next = 3;
712 VM_WARN_ON(file != next->vm_file);
713 swap(vma, next);
714 } else {
715 VM_WARN_ON(expand != vma);
716 /*
717 * case 1, 6, 7, remove_next == 2 is case 6,
718 * remove_next == 1 is case 1 or 7.
719 */
720 remove_next = 1 + (end > next->vm_end);
721 VM_WARN_ON(remove_next == 2 &&
722 end != next->vm_next->vm_end);
723 VM_WARN_ON(remove_next == 1 &&
724 end != next->vm_end);
725 /* trim end to next, for case 6 first pass */
726 end = next->vm_end;
727 }
728
729 exporter = next;
730 importer = vma;
731
732 /*
733 * If next doesn't have anon_vma, import from vma after
734 * next, if the vma overlaps with it.
735 */
736 if (remove_next == 2 && !next->anon_vma)
737 exporter = next->vm_next;
738
739 } else if (end > next->vm_start) {
740 /*
741 * vma expands, overlapping part of the next:
742 * mprotect case 5 shifting the boundary up.
743 */
744 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
745 exporter = next;
746 importer = vma;
747 VM_WARN_ON(expand != importer);
748 } else if (end < vma->vm_end) {
749 /*
750 * vma shrinks, and !insert tells it's not
751 * split_vma inserting another: so it must be
752 * mprotect case 4 shifting the boundary down.
753 */
754 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
755 exporter = vma;
756 importer = next;
757 VM_WARN_ON(expand != importer);
758 }
759
760 /*
761 * Easily overlooked: when mprotect shifts the boundary,
762 * make sure the expanding vma has anon_vma set if the
763 * shrinking vma had, to cover any anon pages imported.
764 */
765 if (exporter && exporter->anon_vma && !importer->anon_vma) {
766 int error;
767
768 importer->anon_vma = exporter->anon_vma;
769 error = anon_vma_clone(importer, exporter);
770 if (error)
771 return error;
772 }
773 }
774again:
775 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
776
777 if (file) {
778 mapping = file->f_mapping;
779 root = &mapping->i_mmap;
780 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
781
782 if (adjust_next)
783 uprobe_munmap(next, next->vm_start, next->vm_end);
784
785 i_mmap_lock_write(mapping);
786 if (insert) {
787 /*
788 * Put into interval tree now, so instantiated pages
789 * are visible to arm/parisc __flush_dcache_page
790 * throughout; but we cannot insert into address
791 * space until vma start or end is updated.
792 */
793 __vma_link_file(insert);
794 }
795 }
796
797 anon_vma = vma->anon_vma;
798 if (!anon_vma && adjust_next)
799 anon_vma = next->anon_vma;
800 if (anon_vma) {
801 VM_WARN_ON(adjust_next && next->anon_vma &&
802 anon_vma != next->anon_vma);
803 anon_vma_lock_write(anon_vma);
804 anon_vma_interval_tree_pre_update_vma(vma);
805 if (adjust_next)
806 anon_vma_interval_tree_pre_update_vma(next);
807 }
808
809 if (root) {
810 flush_dcache_mmap_lock(mapping);
811 vma_interval_tree_remove(vma, root);
812 if (adjust_next)
813 vma_interval_tree_remove(next, root);
814 }
815
816 if (start != vma->vm_start) {
817 vma->vm_start = start;
818 start_changed = true;
819 }
820 if (end != vma->vm_end) {
821 vma->vm_end = end;
822 end_changed = true;
823 }
824 vma->vm_pgoff = pgoff;
825 if (adjust_next) {
826 next->vm_start += adjust_next << PAGE_SHIFT;
827 next->vm_pgoff += adjust_next;
828 }
829
830 if (root) {
831 if (adjust_next)
832 vma_interval_tree_insert(next, root);
833 vma_interval_tree_insert(vma, root);
834 flush_dcache_mmap_unlock(mapping);
835 }
836
837 if (remove_next) {
838 /*
839 * vma_merge has merged next into vma, and needs
840 * us to remove next before dropping the locks.
841 */
842 if (remove_next != 3)
843 __vma_unlink_prev(mm, next, vma);
844 else
845 /*
846 * vma is not before next if they've been
847 * swapped.
848 *
849 * pre-swap() next->vm_start was reduced so
850 * tell validate_mm_rb to ignore pre-swap()
851 * "next" (which is stored in post-swap()
852 * "vma").
853 */
854 __vma_unlink_common(mm, next, NULL, false, vma);
855 if (file)
856 __remove_shared_vm_struct(next, file, mapping);
857 } else if (insert) {
858 /*
859 * split_vma has split insert from vma, and needs
860 * us to insert it before dropping the locks
861 * (it may either follow vma or precede it).
862 */
863 __insert_vm_struct(mm, insert);
864 } else {
865 if (start_changed)
866 vma_gap_update(vma);
867 if (end_changed) {
868 if (!next)
869 mm->highest_vm_end = vm_end_gap(vma);
870 else if (!adjust_next)
871 vma_gap_update(next);
872 }
873 }
874
875 if (anon_vma) {
876 anon_vma_interval_tree_post_update_vma(vma);
877 if (adjust_next)
878 anon_vma_interval_tree_post_update_vma(next);
879 anon_vma_unlock_write(anon_vma);
880 }
881 if (mapping)
882 i_mmap_unlock_write(mapping);
883
884 if (root) {
885 uprobe_mmap(vma);
886
887 if (adjust_next)
888 uprobe_mmap(next);
889 }
890
891 if (remove_next) {
892 if (file) {
893 uprobe_munmap(next, next->vm_start, next->vm_end);
894 fput(file);
895 }
896 if (next->anon_vma)
897 anon_vma_merge(vma, next);
898 mm->map_count--;
899 mpol_put(vma_policy(next));
900 kmem_cache_free(vm_area_cachep, next);
901 /*
902 * In mprotect's case 6 (see comments on vma_merge),
903 * we must remove another next too. It would clutter
904 * up the code too much to do both in one go.
905 */
906 if (remove_next != 3) {
907 /*
908 * If "next" was removed and vma->vm_end was
909 * expanded (up) over it, in turn
910 * "next->vm_prev->vm_end" changed and the
911 * "vma->vm_next" gap must be updated.
912 */
913 next = vma->vm_next;
914 } else {
915 /*
916 * For the scope of the comment "next" and
917 * "vma" considered pre-swap(): if "vma" was
918 * removed, next->vm_start was expanded (down)
919 * over it and the "next" gap must be updated.
920 * Because of the swap() the post-swap() "vma"
921 * actually points to pre-swap() "next"
922 * (post-swap() "next" as opposed is now a
923 * dangling pointer).
924 */
925 next = vma;
926 }
927 if (remove_next == 2) {
928 remove_next = 1;
929 end = next->vm_end;
930 goto again;
931 }
932 else if (next)
933 vma_gap_update(next);
934 else {
935 /*
936 * If remove_next == 2 we obviously can't
937 * reach this path.
938 *
939 * If remove_next == 3 we can't reach this
940 * path because pre-swap() next is always not
941 * NULL. pre-swap() "next" is not being
942 * removed and its next->vm_end is not altered
943 * (and furthermore "end" already matches
944 * next->vm_end in remove_next == 3).
945 *
946 * We reach this only in the remove_next == 1
947 * case if the "next" vma that was removed was
948 * the highest vma of the mm. However in such
949 * case next->vm_end == "end" and the extended
950 * "vma" has vma->vm_end == next->vm_end so
951 * mm->highest_vm_end doesn't need any update
952 * in remove_next == 1 case.
953 */
954 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
955 }
956 }
957 if (insert && file)
958 uprobe_mmap(insert);
959
960 validate_mm(mm);
961
962 return 0;
963}
964
965/*
966 * If the vma has a ->close operation then the driver probably needs to release
967 * per-vma resources, so we don't attempt to merge those.
968 */
969static inline int is_mergeable_vma(struct vm_area_struct *vma,
970 struct file *file, unsigned long vm_flags,
971 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
972 const char __user *anon_name)
973{
974 /*
975 * VM_SOFTDIRTY should not prevent from VMA merging, if we
976 * match the flags but dirty bit -- the caller should mark
977 * merged VMA as dirty. If dirty bit won't be excluded from
978 * comparison, we increase pressue on the memory system forcing
979 * the kernel to generate new VMAs when old one could be
980 * extended instead.
981 */
982 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
983 return 0;
984 if (vma->vm_file != file)
985 return 0;
986 if (vma->vm_ops && vma->vm_ops->close)
987 return 0;
988 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
989 return 0;
990 if (vma_get_anon_name(vma) != anon_name)
991 return 0;
992 return 1;
993}
994
995static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
996 struct anon_vma *anon_vma2,
997 struct vm_area_struct *vma)
998{
999 /*
1000 * The list_is_singular() test is to avoid merging VMA cloned from
1001 * parents. This can improve scalability caused by anon_vma lock.
1002 */
1003 if ((!anon_vma1 || !anon_vma2) && (!vma ||
1004 list_is_singular(&vma->anon_vma_chain)))
1005 return 1;
1006 return anon_vma1 == anon_vma2;
1007}
1008
1009/*
1010 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1011 * in front of (at a lower virtual address and file offset than) the vma.
1012 *
1013 * We cannot merge two vmas if they have differently assigned (non-NULL)
1014 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1015 *
1016 * We don't check here for the merged mmap wrapping around the end of pagecache
1017 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1018 * wrap, nor mmaps which cover the final page at index -1UL.
1019 */
1020static int
1021can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1022 struct anon_vma *anon_vma, struct file *file,
1023 pgoff_t vm_pgoff,
1024 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1025 const char __user *anon_name)
1026{
1027 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1028 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1029 if (vma->vm_pgoff == vm_pgoff)
1030 return 1;
1031 }
1032 return 0;
1033}
1034
1035/*
1036 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1037 * beyond (at a higher virtual address and file offset than) the vma.
1038 *
1039 * We cannot merge two vmas if they have differently assigned (non-NULL)
1040 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1041 */
1042static int
1043can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1044 struct anon_vma *anon_vma, struct file *file,
1045 pgoff_t vm_pgoff,
1046 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1047 const char __user *anon_name)
1048{
1049 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1050 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1051 pgoff_t vm_pglen;
1052 vm_pglen = vma_pages(vma);
1053 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1054 return 1;
1055 }
1056 return 0;
1057}
1058
1059/*
1060 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
1061 * figure out whether that can be merged with its predecessor or its
1062 * successor. Or both (it neatly fills a hole).
1063 *
1064 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1065 * certain not to be mapped by the time vma_merge is called; but when
1066 * called for mprotect, it is certain to be already mapped (either at
1067 * an offset within prev, or at the start of next), and the flags of
1068 * this area are about to be changed to vm_flags - and the no-change
1069 * case has already been eliminated.
1070 *
1071 * The following mprotect cases have to be considered, where AAAA is
1072 * the area passed down from mprotect_fixup, never extending beyond one
1073 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1074 *
1075 * AAAA AAAA AAAA AAAA
1076 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1077 * cannot merge might become might become might become
1078 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1079 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1080 * mremap move: PPPPXXXXXXXX 8
1081 * AAAA
1082 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1083 * might become case 1 below case 2 below case 3 below
1084 *
1085 * It is important for case 8 that the the vma NNNN overlapping the
1086 * region AAAA is never going to extended over XXXX. Instead XXXX must
1087 * be extended in region AAAA and NNNN must be removed. This way in
1088 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1089 * rmap_locks, the properties of the merged vma will be already
1090 * correct for the whole merged range. Some of those properties like
1091 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1092 * be correct for the whole merged range immediately after the
1093 * rmap_locks are released. Otherwise if XXXX would be removed and
1094 * NNNN would be extended over the XXXX range, remove_migration_ptes
1095 * or other rmap walkers (if working on addresses beyond the "end"
1096 * parameter) may establish ptes with the wrong permissions of NNNN
1097 * instead of the right permissions of XXXX.
1098 */
1099struct vm_area_struct *vma_merge(struct mm_struct *mm,
1100 struct vm_area_struct *prev, unsigned long addr,
1101 unsigned long end, unsigned long vm_flags,
1102 struct anon_vma *anon_vma, struct file *file,
1103 pgoff_t pgoff, struct mempolicy *policy,
1104 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1105 const char __user *anon_name)
1106{
1107 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1108 struct vm_area_struct *area, *next;
1109 int err;
1110
1111 /*
1112 * We later require that vma->vm_flags == vm_flags,
1113 * so this tests vma->vm_flags & VM_SPECIAL, too.
1114 */
1115 if (vm_flags & VM_SPECIAL)
1116 return NULL;
1117
1118 if (prev)
1119 next = prev->vm_next;
1120 else
1121 next = mm->mmap;
1122 area = next;
1123 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1124 next = next->vm_next;
1125
1126 /* verify some invariant that must be enforced by the caller */
1127 VM_WARN_ON(prev && addr <= prev->vm_start);
1128 VM_WARN_ON(area && end > area->vm_end);
1129 VM_WARN_ON(addr >= end);
1130
1131 /*
1132 * Can it merge with the predecessor?
1133 */
1134 if (prev && prev->vm_end == addr &&
1135 mpol_equal(vma_policy(prev), policy) &&
1136 can_vma_merge_after(prev, vm_flags,
1137 anon_vma, file, pgoff,
1138 vm_userfaultfd_ctx,
1139 anon_name)) {
1140 /*
1141 * OK, it can. Can we now merge in the successor as well?
1142 */
1143 if (next && end == next->vm_start &&
1144 mpol_equal(policy, vma_policy(next)) &&
1145 can_vma_merge_before(next, vm_flags,
1146 anon_vma, file,
1147 pgoff+pglen,
1148 vm_userfaultfd_ctx,
1149 anon_name) &&
1150 is_mergeable_anon_vma(prev->anon_vma,
1151 next->anon_vma, NULL)) {
1152 /* cases 1, 6 */
1153 err = __vma_adjust(prev, prev->vm_start,
1154 next->vm_end, prev->vm_pgoff, NULL,
1155 prev);
1156 } else /* cases 2, 5, 7 */
1157 err = __vma_adjust(prev, prev->vm_start,
1158 end, prev->vm_pgoff, NULL, prev);
1159 if (err)
1160 return NULL;
1161 khugepaged_enter_vma_merge(prev, vm_flags);
1162 return prev;
1163 }
1164
1165 /*
1166 * Can this new request be merged in front of next?
1167 */
1168 if (next && end == next->vm_start &&
1169 mpol_equal(policy, vma_policy(next)) &&
1170 can_vma_merge_before(next, vm_flags,
1171 anon_vma, file, pgoff+pglen,
1172 vm_userfaultfd_ctx,
1173 anon_name)) {
1174 if (prev && addr < prev->vm_end) /* case 4 */
1175 err = __vma_adjust(prev, prev->vm_start,
1176 addr, prev->vm_pgoff, NULL, next);
1177 else { /* cases 3, 8 */
1178 err = __vma_adjust(area, addr, next->vm_end,
1179 next->vm_pgoff - pglen, NULL, next);
1180 /*
1181 * In case 3 area is already equal to next and
1182 * this is a noop, but in case 8 "area" has
1183 * been removed and next was expanded over it.
1184 */
1185 area = next;
1186 }
1187 if (err)
1188 return NULL;
1189 khugepaged_enter_vma_merge(area, vm_flags);
1190 return area;
1191 }
1192
1193 return NULL;
1194}
1195
1196/*
1197 * Rough compatbility check to quickly see if it's even worth looking
1198 * at sharing an anon_vma.
1199 *
1200 * They need to have the same vm_file, and the flags can only differ
1201 * in things that mprotect may change.
1202 *
1203 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1204 * we can merge the two vma's. For example, we refuse to merge a vma if
1205 * there is a vm_ops->close() function, because that indicates that the
1206 * driver is doing some kind of reference counting. But that doesn't
1207 * really matter for the anon_vma sharing case.
1208 */
1209static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1210{
1211 return a->vm_end == b->vm_start &&
1212 mpol_equal(vma_policy(a), vma_policy(b)) &&
1213 a->vm_file == b->vm_file &&
1214 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1215 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1216}
1217
1218/*
1219 * Do some basic sanity checking to see if we can re-use the anon_vma
1220 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1221 * the same as 'old', the other will be the new one that is trying
1222 * to share the anon_vma.
1223 *
1224 * NOTE! This runs with mm_sem held for reading, so it is possible that
1225 * the anon_vma of 'old' is concurrently in the process of being set up
1226 * by another page fault trying to merge _that_. But that's ok: if it
1227 * is being set up, that automatically means that it will be a singleton
1228 * acceptable for merging, so we can do all of this optimistically. But
1229 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1230 *
1231 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1232 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1233 * is to return an anon_vma that is "complex" due to having gone through
1234 * a fork).
1235 *
1236 * We also make sure that the two vma's are compatible (adjacent,
1237 * and with the same memory policies). That's all stable, even with just
1238 * a read lock on the mm_sem.
1239 */
1240static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1241{
1242 if (anon_vma_compatible(a, b)) {
1243 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1244
1245 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1246 return anon_vma;
1247 }
1248 return NULL;
1249}
1250
1251/*
1252 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1253 * neighbouring vmas for a suitable anon_vma, before it goes off
1254 * to allocate a new anon_vma. It checks because a repetitive
1255 * sequence of mprotects and faults may otherwise lead to distinct
1256 * anon_vmas being allocated, preventing vma merge in subsequent
1257 * mprotect.
1258 */
1259struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1260{
1261 struct anon_vma *anon_vma;
1262 struct vm_area_struct *near;
1263
1264 near = vma->vm_next;
1265 if (!near)
1266 goto try_prev;
1267
1268 anon_vma = reusable_anon_vma(near, vma, near);
1269 if (anon_vma)
1270 return anon_vma;
1271try_prev:
1272 near = vma->vm_prev;
1273 if (!near)
1274 goto none;
1275
1276 anon_vma = reusable_anon_vma(near, near, vma);
1277 if (anon_vma)
1278 return anon_vma;
1279none:
1280 /*
1281 * There's no absolute need to look only at touching neighbours:
1282 * we could search further afield for "compatible" anon_vmas.
1283 * But it would probably just be a waste of time searching,
1284 * or lead to too many vmas hanging off the same anon_vma.
1285 * We're trying to allow mprotect remerging later on,
1286 * not trying to minimize memory used for anon_vmas.
1287 */
1288 return NULL;
1289}
1290
1291/*
1292 * If a hint addr is less than mmap_min_addr change hint to be as
1293 * low as possible but still greater than mmap_min_addr
1294 */
1295static inline unsigned long round_hint_to_min(unsigned long hint)
1296{
1297 hint &= PAGE_MASK;
1298 if (((void *)hint != NULL) &&
1299 (hint < mmap_min_addr))
1300 return PAGE_ALIGN(mmap_min_addr);
1301 return hint;
1302}
1303
1304static inline int mlock_future_check(struct mm_struct *mm,
1305 unsigned long flags,
1306 unsigned long len)
1307{
1308 unsigned long locked, lock_limit;
1309
1310 /* mlock MCL_FUTURE? */
1311 if (flags & VM_LOCKED) {
1312 locked = len >> PAGE_SHIFT;
1313 locked += mm->locked_vm;
1314 lock_limit = rlimit(RLIMIT_MEMLOCK);
1315 lock_limit >>= PAGE_SHIFT;
1316 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1317 return -EAGAIN;
1318 }
1319 return 0;
1320}
1321
1322static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1323{
1324 if (S_ISREG(inode->i_mode))
1325 return MAX_LFS_FILESIZE;
1326
1327 if (S_ISBLK(inode->i_mode))
1328 return MAX_LFS_FILESIZE;
1329
1330 /* Special "we do even unsigned file positions" case */
1331 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1332 return 0;
1333
1334 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1335 return ULONG_MAX;
1336}
1337
1338static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1339 unsigned long pgoff, unsigned long len)
1340{
1341 u64 maxsize = file_mmap_size_max(file, inode);
1342
1343 if (maxsize && len > maxsize)
1344 return false;
1345 maxsize -= len;
1346 if (pgoff > maxsize >> PAGE_SHIFT)
1347 return false;
1348 return true;
1349}
1350
1351/*
1352 * The caller must hold down_write(&current->mm->mmap_sem).
1353 */
1354unsigned long do_mmap(struct file *file, unsigned long addr,
1355 unsigned long len, unsigned long prot,
1356 unsigned long flags, vm_flags_t vm_flags,
1357 unsigned long pgoff, unsigned long *populate,
1358 struct list_head *uf)
1359{
1360 struct mm_struct *mm = current->mm;
1361 int pkey = 0;
1362
1363 *populate = 0;
1364
1365 if (!len)
1366 return -EINVAL;
1367
1368 /*
1369 * Does the application expect PROT_READ to imply PROT_EXEC?
1370 *
1371 * (the exception is when the underlying filesystem is noexec
1372 * mounted, in which case we dont add PROT_EXEC.)
1373 */
1374 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1375 if (!(file && path_noexec(&file->f_path)))
1376 prot |= PROT_EXEC;
1377
1378 if (!(flags & MAP_FIXED))
1379 addr = round_hint_to_min(addr);
1380
1381 /* Careful about overflows.. */
1382 len = PAGE_ALIGN(len);
1383 if (!len)
1384 return -ENOMEM;
1385
1386 /* offset overflow? */
1387 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1388 return -EOVERFLOW;
1389
1390 /* Too many mappings? */
1391 if (mm->map_count > sysctl_max_map_count)
1392 return -ENOMEM;
1393
1394 /* Obtain the address to map to. we verify (or select) it and ensure
1395 * that it represents a valid section of the address space.
1396 */
1397 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1398 if (offset_in_page(addr))
1399 return addr;
1400
1401 if (prot == PROT_EXEC) {
1402 pkey = execute_only_pkey(mm);
1403 if (pkey < 0)
1404 pkey = 0;
1405 }
1406
1407 /* Do simple checking here so the lower-level routines won't have
1408 * to. we assume access permissions have been handled by the open
1409 * of the memory object, so we don't do any here.
1410 */
1411 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1412 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1413
1414 if (flags & MAP_LOCKED)
1415 if (!can_do_mlock())
1416 return -EPERM;
1417
1418 if (mlock_future_check(mm, vm_flags, len))
1419 return -EAGAIN;
1420
1421 if (file) {
1422 struct inode *inode = file_inode(file);
1423
1424 if (!file_mmap_ok(file, inode, pgoff, len))
1425 return -EOVERFLOW;
1426
1427 switch (flags & MAP_TYPE) {
1428 case MAP_SHARED:
1429 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1430 return -EACCES;
1431
1432 /*
1433 * Make sure we don't allow writing to an append-only
1434 * file..
1435 */
1436 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1437 return -EACCES;
1438
1439 /*
1440 * Make sure there are no mandatory locks on the file.
1441 */
1442 if (locks_verify_locked(file))
1443 return -EAGAIN;
1444
1445 vm_flags |= VM_SHARED | VM_MAYSHARE;
1446 if (!(file->f_mode & FMODE_WRITE))
1447 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1448
1449 /* fall through */
1450 case MAP_PRIVATE:
1451 if (!(file->f_mode & FMODE_READ))
1452 return -EACCES;
1453 if (path_noexec(&file->f_path)) {
1454 if (vm_flags & VM_EXEC)
1455 return -EPERM;
1456 vm_flags &= ~VM_MAYEXEC;
1457 }
1458
1459 if (!file->f_op->mmap)
1460 return -ENODEV;
1461 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1462 return -EINVAL;
1463 break;
1464
1465 default:
1466 return -EINVAL;
1467 }
1468 } else {
1469 switch (flags & MAP_TYPE) {
1470 case MAP_SHARED:
1471 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1472 return -EINVAL;
1473 /*
1474 * Ignore pgoff.
1475 */
1476 pgoff = 0;
1477 vm_flags |= VM_SHARED | VM_MAYSHARE;
1478 break;
1479 case MAP_PRIVATE:
1480 /*
1481 * Set pgoff according to addr for anon_vma.
1482 */
1483 pgoff = addr >> PAGE_SHIFT;
1484 break;
1485 default:
1486 return -EINVAL;
1487 }
1488 }
1489
1490 /*
1491 * Set 'VM_NORESERVE' if we should not account for the
1492 * memory use of this mapping.
1493 */
1494 if (flags & MAP_NORESERVE) {
1495 /* We honor MAP_NORESERVE if allowed to overcommit */
1496 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1497 vm_flags |= VM_NORESERVE;
1498
1499 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1500 if (file && is_file_hugepages(file))
1501 vm_flags |= VM_NORESERVE;
1502 }
1503
1504 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1505 if (!IS_ERR_VALUE(addr) &&
1506 ((vm_flags & VM_LOCKED) ||
1507 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1508 *populate = len;
1509 return addr;
1510}
1511
1512SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1513 unsigned long, prot, unsigned long, flags,
1514 unsigned long, fd, unsigned long, pgoff)
1515{
1516 struct file *file = NULL;
1517 unsigned long retval;
1518
1519 if (!(flags & MAP_ANONYMOUS)) {
1520 audit_mmap_fd(fd, flags);
1521 file = fget(fd);
1522 if (!file)
1523 return -EBADF;
1524 if (is_file_hugepages(file))
1525 len = ALIGN(len, huge_page_size(hstate_file(file)));
1526 retval = -EINVAL;
1527 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1528 goto out_fput;
1529 } else if (flags & MAP_HUGETLB) {
1530 struct user_struct *user = NULL;
1531 struct hstate *hs;
1532
1533 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1534 if (!hs)
1535 return -EINVAL;
1536
1537 len = ALIGN(len, huge_page_size(hs));
1538 /*
1539 * VM_NORESERVE is used because the reservations will be
1540 * taken when vm_ops->mmap() is called
1541 * A dummy user value is used because we are not locking
1542 * memory so no accounting is necessary
1543 */
1544 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1545 VM_NORESERVE,
1546 &user, HUGETLB_ANONHUGE_INODE,
1547 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1548 if (IS_ERR(file))
1549 return PTR_ERR(file);
1550 }
1551
1552 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1553
1554 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1555out_fput:
1556 if (file)
1557 fput(file);
1558 return retval;
1559}
1560
1561#ifdef __ARCH_WANT_SYS_OLD_MMAP
1562struct mmap_arg_struct {
1563 unsigned long addr;
1564 unsigned long len;
1565 unsigned long prot;
1566 unsigned long flags;
1567 unsigned long fd;
1568 unsigned long offset;
1569};
1570
1571SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1572{
1573 struct mmap_arg_struct a;
1574
1575 if (copy_from_user(&a, arg, sizeof(a)))
1576 return -EFAULT;
1577 if (offset_in_page(a.offset))
1578 return -EINVAL;
1579
1580 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1581 a.offset >> PAGE_SHIFT);
1582}
1583#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1584
1585/*
1586 * Some shared mappigns will want the pages marked read-only
1587 * to track write events. If so, we'll downgrade vm_page_prot
1588 * to the private version (using protection_map[] without the
1589 * VM_SHARED bit).
1590 */
1591int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1592{
1593 vm_flags_t vm_flags = vma->vm_flags;
1594 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1595
1596 /* If it was private or non-writable, the write bit is already clear */
1597 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1598 return 0;
1599
1600 /* The backer wishes to know when pages are first written to? */
1601 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1602 return 1;
1603
1604 /* The open routine did something to the protections that pgprot_modify
1605 * won't preserve? */
1606 if (pgprot_val(vm_page_prot) !=
1607 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1608 return 0;
1609
1610 /* Do we need to track softdirty? */
1611 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1612 return 1;
1613
1614 /* Specialty mapping? */
1615 if (vm_flags & VM_PFNMAP)
1616 return 0;
1617
1618 /* Can the mapping track the dirty pages? */
1619 return vma->vm_file && vma->vm_file->f_mapping &&
1620 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1621}
1622
1623/*
1624 * We account for memory if it's a private writeable mapping,
1625 * not hugepages and VM_NORESERVE wasn't set.
1626 */
1627static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1628{
1629 /*
1630 * hugetlb has its own accounting separate from the core VM
1631 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1632 */
1633 if (file && is_file_hugepages(file))
1634 return 0;
1635
1636 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1637}
1638
1639unsigned long mmap_region(struct file *file, unsigned long addr,
1640 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1641 struct list_head *uf)
1642{
1643 struct mm_struct *mm = current->mm;
1644 struct vm_area_struct *vma, *prev;
1645 int error;
1646 struct rb_node **rb_link, *rb_parent;
1647 unsigned long charged = 0;
1648
1649 /* Check against address space limit. */
1650 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1651 unsigned long nr_pages;
1652
1653 /*
1654 * MAP_FIXED may remove pages of mappings that intersects with
1655 * requested mapping. Account for the pages it would unmap.
1656 */
1657 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1658
1659 if (!may_expand_vm(mm, vm_flags,
1660 (len >> PAGE_SHIFT) - nr_pages))
1661 return -ENOMEM;
1662 }
1663
1664 /* Clear old maps */
1665 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1666 &rb_parent)) {
1667 if (do_munmap(mm, addr, len, uf))
1668 return -ENOMEM;
1669 }
1670
1671 /*
1672 * Private writable mapping: check memory availability
1673 */
1674 if (accountable_mapping(file, vm_flags)) {
1675 charged = len >> PAGE_SHIFT;
1676 if (security_vm_enough_memory_mm(mm, charged))
1677 return -ENOMEM;
1678 vm_flags |= VM_ACCOUNT;
1679 }
1680
1681 /*
1682 * Can we just expand an old mapping?
1683 */
1684 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1685 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1686 if (vma)
1687 goto out;
1688
1689 /*
1690 * Determine the object being mapped and call the appropriate
1691 * specific mapper. the address has already been validated, but
1692 * not unmapped, but the maps are removed from the list.
1693 */
1694 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1695 if (!vma) {
1696 error = -ENOMEM;
1697 goto unacct_error;
1698 }
1699
1700 vma->vm_mm = mm;
1701 vma->vm_start = addr;
1702 vma->vm_end = addr + len;
1703 vma->vm_flags = vm_flags;
1704 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1705 vma->vm_pgoff = pgoff;
1706 INIT_LIST_HEAD(&vma->anon_vma_chain);
1707
1708 if (file) {
1709 if (vm_flags & VM_DENYWRITE) {
1710 error = deny_write_access(file);
1711 if (error)
1712 goto free_vma;
1713 }
1714 if (vm_flags & VM_SHARED) {
1715 error = mapping_map_writable(file->f_mapping);
1716 if (error)
1717 goto allow_write_and_free_vma;
1718 }
1719
1720 /* ->mmap() can change vma->vm_file, but must guarantee that
1721 * vma_link() below can deny write-access if VM_DENYWRITE is set
1722 * and map writably if VM_SHARED is set. This usually means the
1723 * new file must not have been exposed to user-space, yet.
1724 */
1725 vma->vm_file = get_file(file);
1726 error = call_mmap(file, vma);
1727 if (error)
1728 goto unmap_and_free_vma;
1729
1730 /* Can addr have changed??
1731 *
1732 * Answer: Yes, several device drivers can do it in their
1733 * f_op->mmap method. -DaveM
1734 * Bug: If addr is changed, prev, rb_link, rb_parent should
1735 * be updated for vma_link()
1736 */
1737 WARN_ON_ONCE(addr != vma->vm_start);
1738
1739 addr = vma->vm_start;
1740 vm_flags = vma->vm_flags;
1741 } else if (vm_flags & VM_SHARED) {
1742 error = shmem_zero_setup(vma);
1743 if (error)
1744 goto free_vma;
1745 }
1746
1747 vma_link(mm, vma, prev, rb_link, rb_parent);
1748 /* Once vma denies write, undo our temporary denial count */
1749 if (file) {
1750 if (vm_flags & VM_SHARED)
1751 mapping_unmap_writable(file->f_mapping);
1752 if (vm_flags & VM_DENYWRITE)
1753 allow_write_access(file);
1754 }
1755 file = vma->vm_file;
1756out:
1757 perf_event_mmap(vma);
1758
1759 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1760 if (vm_flags & VM_LOCKED) {
1761 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1762 vma == get_gate_vma(current->mm)))
1763 mm->locked_vm += (len >> PAGE_SHIFT);
1764 else
1765 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1766 }
1767
1768 if (file)
1769 uprobe_mmap(vma);
1770
1771 /*
1772 * New (or expanded) vma always get soft dirty status.
1773 * Otherwise user-space soft-dirty page tracker won't
1774 * be able to distinguish situation when vma area unmapped,
1775 * then new mapped in-place (which must be aimed as
1776 * a completely new data area).
1777 */
1778 vma->vm_flags |= VM_SOFTDIRTY;
1779
1780 vma_set_page_prot(vma);
1781
1782 return addr;
1783
1784unmap_and_free_vma:
1785 vma->vm_file = NULL;
1786 fput(file);
1787
1788 /* Undo any partial mapping done by a device driver. */
1789 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1790 charged = 0;
1791 if (vm_flags & VM_SHARED)
1792 mapping_unmap_writable(file->f_mapping);
1793allow_write_and_free_vma:
1794 if (vm_flags & VM_DENYWRITE)
1795 allow_write_access(file);
1796free_vma:
1797 kmem_cache_free(vm_area_cachep, vma);
1798unacct_error:
1799 if (charged)
1800 vm_unacct_memory(charged);
1801 return error;
1802}
1803
1804unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1805{
1806 /*
1807 * We implement the search by looking for an rbtree node that
1808 * immediately follows a suitable gap. That is,
1809 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1810 * - gap_end = vma->vm_start >= info->low_limit + length;
1811 * - gap_end - gap_start >= length
1812 */
1813
1814 struct mm_struct *mm = current->mm;
1815 struct vm_area_struct *vma;
1816 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1817
1818 /* Adjust search length to account for worst case alignment overhead */
1819 length = info->length + info->align_mask;
1820 if (length < info->length)
1821 return -ENOMEM;
1822
1823 /* Adjust search limits by the desired length */
1824 if (info->high_limit < length)
1825 return -ENOMEM;
1826 high_limit = info->high_limit - length;
1827
1828 if (info->low_limit > high_limit)
1829 return -ENOMEM;
1830 low_limit = info->low_limit + length;
1831
1832 /* Check if rbtree root looks promising */
1833 if (RB_EMPTY_ROOT(&mm->mm_rb))
1834 goto check_highest;
1835 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1836 if (vma->rb_subtree_gap < length)
1837 goto check_highest;
1838
1839 while (true) {
1840 /* Visit left subtree if it looks promising */
1841 gap_end = vm_start_gap(vma);
1842 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1843 struct vm_area_struct *left =
1844 rb_entry(vma->vm_rb.rb_left,
1845 struct vm_area_struct, vm_rb);
1846 if (left->rb_subtree_gap >= length) {
1847 vma = left;
1848 continue;
1849 }
1850 }
1851
1852 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1853check_current:
1854 /* Check if current node has a suitable gap */
1855 if (gap_start > high_limit)
1856 return -ENOMEM;
1857 if (gap_end >= low_limit &&
1858 gap_end > gap_start && gap_end - gap_start >= length)
1859 goto found;
1860
1861 /* Visit right subtree if it looks promising */
1862 if (vma->vm_rb.rb_right) {
1863 struct vm_area_struct *right =
1864 rb_entry(vma->vm_rb.rb_right,
1865 struct vm_area_struct, vm_rb);
1866 if (right->rb_subtree_gap >= length) {
1867 vma = right;
1868 continue;
1869 }
1870 }
1871
1872 /* Go back up the rbtree to find next candidate node */
1873 while (true) {
1874 struct rb_node *prev = &vma->vm_rb;
1875 if (!rb_parent(prev))
1876 goto check_highest;
1877 vma = rb_entry(rb_parent(prev),
1878 struct vm_area_struct, vm_rb);
1879 if (prev == vma->vm_rb.rb_left) {
1880 gap_start = vm_end_gap(vma->vm_prev);
1881 gap_end = vm_start_gap(vma);
1882 goto check_current;
1883 }
1884 }
1885 }
1886
1887check_highest:
1888 /* Check highest gap, which does not precede any rbtree node */
1889 gap_start = mm->highest_vm_end;
1890 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1891 if (gap_start > high_limit)
1892 return -ENOMEM;
1893
1894found:
1895 /* We found a suitable gap. Clip it with the original low_limit. */
1896 if (gap_start < info->low_limit)
1897 gap_start = info->low_limit;
1898
1899 /* Adjust gap address to the desired alignment */
1900 gap_start += (info->align_offset - gap_start) & info->align_mask;
1901
1902 VM_BUG_ON(gap_start + info->length > info->high_limit);
1903 VM_BUG_ON(gap_start + info->length > gap_end);
1904 return gap_start;
1905}
1906
1907unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1908{
1909 struct mm_struct *mm = current->mm;
1910 struct vm_area_struct *vma;
1911 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1912
1913 /* Adjust search length to account for worst case alignment overhead */
1914 length = info->length + info->align_mask;
1915 if (length < info->length)
1916 return -ENOMEM;
1917
1918 /*
1919 * Adjust search limits by the desired length.
1920 * See implementation comment at top of unmapped_area().
1921 */
1922 gap_end = info->high_limit;
1923 if (gap_end < length)
1924 return -ENOMEM;
1925 high_limit = gap_end - length;
1926
1927 if (info->low_limit > high_limit)
1928 return -ENOMEM;
1929 low_limit = info->low_limit + length;
1930
1931 /* Check highest gap, which does not precede any rbtree node */
1932 gap_start = mm->highest_vm_end;
1933 if (gap_start <= high_limit)
1934 goto found_highest;
1935
1936 /* Check if rbtree root looks promising */
1937 if (RB_EMPTY_ROOT(&mm->mm_rb))
1938 return -ENOMEM;
1939 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1940 if (vma->rb_subtree_gap < length)
1941 return -ENOMEM;
1942
1943 while (true) {
1944 /* Visit right subtree if it looks promising */
1945 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1946 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1947 struct vm_area_struct *right =
1948 rb_entry(vma->vm_rb.rb_right,
1949 struct vm_area_struct, vm_rb);
1950 if (right->rb_subtree_gap >= length) {
1951 vma = right;
1952 continue;
1953 }
1954 }
1955
1956check_current:
1957 /* Check if current node has a suitable gap */
1958 gap_end = vm_start_gap(vma);
1959 if (gap_end < low_limit)
1960 return -ENOMEM;
1961 if (gap_start <= high_limit &&
1962 gap_end > gap_start && gap_end - gap_start >= length)
1963 goto found;
1964
1965 /* Visit left subtree if it looks promising */
1966 if (vma->vm_rb.rb_left) {
1967 struct vm_area_struct *left =
1968 rb_entry(vma->vm_rb.rb_left,
1969 struct vm_area_struct, vm_rb);
1970 if (left->rb_subtree_gap >= length) {
1971 vma = left;
1972 continue;
1973 }
1974 }
1975
1976 /* Go back up the rbtree to find next candidate node */
1977 while (true) {
1978 struct rb_node *prev = &vma->vm_rb;
1979 if (!rb_parent(prev))
1980 return -ENOMEM;
1981 vma = rb_entry(rb_parent(prev),
1982 struct vm_area_struct, vm_rb);
1983 if (prev == vma->vm_rb.rb_right) {
1984 gap_start = vma->vm_prev ?
1985 vm_end_gap(vma->vm_prev) : 0;
1986 goto check_current;
1987 }
1988 }
1989 }
1990
1991found:
1992 /* We found a suitable gap. Clip it with the original high_limit. */
1993 if (gap_end > info->high_limit)
1994 gap_end = info->high_limit;
1995
1996found_highest:
1997 /* Compute highest gap address at the desired alignment */
1998 gap_end -= info->length;
1999 gap_end -= (gap_end - info->align_offset) & info->align_mask;
2000
2001 VM_BUG_ON(gap_end < info->low_limit);
2002 VM_BUG_ON(gap_end < gap_start);
2003 return gap_end;
2004}
2005
2006/* Get an address range which is currently unmapped.
2007 * For shmat() with addr=0.
2008 *
2009 * Ugly calling convention alert:
2010 * Return value with the low bits set means error value,
2011 * ie
2012 * if (ret & ~PAGE_MASK)
2013 * error = ret;
2014 *
2015 * This function "knows" that -ENOMEM has the bits set.
2016 */
2017#ifndef HAVE_ARCH_UNMAPPED_AREA
2018unsigned long
2019arch_get_unmapped_area(struct file *filp, unsigned long addr,
2020 unsigned long len, unsigned long pgoff, unsigned long flags)
2021{
2022 struct mm_struct *mm = current->mm;
2023 struct vm_area_struct *vma, *prev;
2024 struct vm_unmapped_area_info info;
2025
2026 if (len > TASK_SIZE - mmap_min_addr)
2027 return -ENOMEM;
2028
2029 if (flags & MAP_FIXED)
2030 return addr;
2031
2032 if (addr) {
2033 addr = PAGE_ALIGN(addr);
2034 vma = find_vma_prev(mm, addr, &prev);
2035 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2036 (!vma || addr + len <= vm_start_gap(vma)) &&
2037 (!prev || addr >= vm_end_gap(prev)))
2038 return addr;
2039 }
2040
2041 info.flags = 0;
2042 info.length = len;
2043 info.low_limit = mm->mmap_base;
2044 info.high_limit = TASK_SIZE;
2045 info.align_mask = 0;
2046 info.align_offset = 0;
2047 return vm_unmapped_area(&info);
2048}
2049#endif
2050
2051/*
2052 * This mmap-allocator allocates new areas top-down from below the
2053 * stack's low limit (the base):
2054 */
2055#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2056unsigned long
2057arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
2058 const unsigned long len, const unsigned long pgoff,
2059 const unsigned long flags)
2060{
2061 struct vm_area_struct *vma, *prev;
2062 struct mm_struct *mm = current->mm;
2063 unsigned long addr = addr0;
2064 struct vm_unmapped_area_info info;
2065
2066 /* requested length too big for entire address space */
2067 if (len > TASK_SIZE - mmap_min_addr)
2068 return -ENOMEM;
2069
2070 if (flags & MAP_FIXED)
2071 return addr;
2072
2073 /* requesting a specific address */
2074 if (addr) {
2075 addr = PAGE_ALIGN(addr);
2076 vma = find_vma_prev(mm, addr, &prev);
2077 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2078 (!vma || addr + len <= vm_start_gap(vma)) &&
2079 (!prev || addr >= vm_end_gap(prev)))
2080 return addr;
2081 }
2082
2083 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2084 info.length = len;
2085 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2086 info.high_limit = mm->mmap_base;
2087 info.align_mask = 0;
2088 info.align_offset = 0;
2089 addr = vm_unmapped_area(&info);
2090
2091 /*
2092 * A failed mmap() very likely causes application failure,
2093 * so fall back to the bottom-up function here. This scenario
2094 * can happen with large stack limits and large mmap()
2095 * allocations.
2096 */
2097 if (offset_in_page(addr)) {
2098 VM_BUG_ON(addr != -ENOMEM);
2099 info.flags = 0;
2100 info.low_limit = TASK_UNMAPPED_BASE;
2101 info.high_limit = TASK_SIZE;
2102 addr = vm_unmapped_area(&info);
2103 }
2104
2105 return addr;
2106}
2107#endif
2108
2109unsigned long
2110get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2111 unsigned long pgoff, unsigned long flags)
2112{
2113 unsigned long (*get_area)(struct file *, unsigned long,
2114 unsigned long, unsigned long, unsigned long);
2115
2116 unsigned long error = arch_mmap_check(addr, len, flags);
2117 if (error)
2118 return error;
2119
2120 /* Careful about overflows.. */
2121 if (len > TASK_SIZE)
2122 return -ENOMEM;
2123
2124 get_area = current->mm->get_unmapped_area;
2125 if (file) {
2126 if (file->f_op->get_unmapped_area)
2127 get_area = file->f_op->get_unmapped_area;
2128 } else if (flags & MAP_SHARED) {
2129 /*
2130 * mmap_region() will call shmem_zero_setup() to create a file,
2131 * so use shmem's get_unmapped_area in case it can be huge.
2132 * do_mmap_pgoff() will clear pgoff, so match alignment.
2133 */
2134 pgoff = 0;
2135 get_area = shmem_get_unmapped_area;
2136 }
2137
2138 addr = get_area(file, addr, len, pgoff, flags);
2139 if (IS_ERR_VALUE(addr))
2140 return addr;
2141
2142 if (addr > TASK_SIZE - len)
2143 return -ENOMEM;
2144 if (offset_in_page(addr))
2145 return -EINVAL;
2146
2147 error = security_mmap_addr(addr);
2148 return error ? error : addr;
2149}
2150
2151EXPORT_SYMBOL(get_unmapped_area);
2152
2153/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2154struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2155{
2156 struct rb_node *rb_node;
2157 struct vm_area_struct *vma;
2158
2159 /* Check the cache first. */
2160 vma = vmacache_find(mm, addr);
2161 if (likely(vma))
2162 return vma;
2163
2164 rb_node = mm->mm_rb.rb_node;
2165
2166 while (rb_node) {
2167 struct vm_area_struct *tmp;
2168
2169 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2170
2171 if (tmp->vm_end > addr) {
2172 vma = tmp;
2173 if (tmp->vm_start <= addr)
2174 break;
2175 rb_node = rb_node->rb_left;
2176 } else
2177 rb_node = rb_node->rb_right;
2178 }
2179
2180 if (vma)
2181 vmacache_update(addr, vma);
2182 return vma;
2183}
2184
2185EXPORT_SYMBOL(find_vma);
2186
2187/*
2188 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2189 */
2190struct vm_area_struct *
2191find_vma_prev(struct mm_struct *mm, unsigned long addr,
2192 struct vm_area_struct **pprev)
2193{
2194 struct vm_area_struct *vma;
2195
2196 vma = find_vma(mm, addr);
2197 if (vma) {
2198 *pprev = vma->vm_prev;
2199 } else {
2200 struct rb_node *rb_node = mm->mm_rb.rb_node;
2201 *pprev = NULL;
2202 while (rb_node) {
2203 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2204 rb_node = rb_node->rb_right;
2205 }
2206 }
2207 return vma;
2208}
2209
2210/*
2211 * Verify that the stack growth is acceptable and
2212 * update accounting. This is shared with both the
2213 * grow-up and grow-down cases.
2214 */
2215static int acct_stack_growth(struct vm_area_struct *vma,
2216 unsigned long size, unsigned long grow)
2217{
2218 struct mm_struct *mm = vma->vm_mm;
2219 unsigned long new_start;
2220
2221 /* address space limit tests */
2222 if (!may_expand_vm(mm, vma->vm_flags, grow))
2223 return -ENOMEM;
2224
2225 /* Stack limit test */
2226 if (size > rlimit(RLIMIT_STACK))
2227 return -ENOMEM;
2228
2229 /* mlock limit tests */
2230 if (vma->vm_flags & VM_LOCKED) {
2231 unsigned long locked;
2232 unsigned long limit;
2233 locked = mm->locked_vm + grow;
2234 limit = rlimit(RLIMIT_MEMLOCK);
2235 limit >>= PAGE_SHIFT;
2236 if (locked > limit && !capable(CAP_IPC_LOCK))
2237 return -ENOMEM;
2238 }
2239
2240 /* Check to ensure the stack will not grow into a hugetlb-only region */
2241 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2242 vma->vm_end - size;
2243 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2244 return -EFAULT;
2245
2246 /*
2247 * Overcommit.. This must be the final test, as it will
2248 * update security statistics.
2249 */
2250 if (security_vm_enough_memory_mm(mm, grow))
2251 return -ENOMEM;
2252
2253 return 0;
2254}
2255
2256#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2257/*
2258 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2259 * vma is the last one with address > vma->vm_end. Have to extend vma.
2260 */
2261int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2262{
2263 struct mm_struct *mm = vma->vm_mm;
2264 struct vm_area_struct *next;
2265 unsigned long gap_addr;
2266 int error = 0;
2267
2268 if (!(vma->vm_flags & VM_GROWSUP))
2269 return -EFAULT;
2270
2271 /* Guard against exceeding limits of the address space. */
2272 address &= PAGE_MASK;
2273 if (address >= (TASK_SIZE & PAGE_MASK))
2274 return -ENOMEM;
2275 address += PAGE_SIZE;
2276
2277 /* Enforce stack_guard_gap */
2278 gap_addr = address + stack_guard_gap;
2279
2280 /* Guard against overflow */
2281 if (gap_addr < address || gap_addr > TASK_SIZE)
2282 gap_addr = TASK_SIZE;
2283
2284 next = vma->vm_next;
2285 if (next && next->vm_start < gap_addr &&
2286 (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2287 if (!(next->vm_flags & VM_GROWSUP))
2288 return -ENOMEM;
2289 /* Check that both stack segments have the same anon_vma? */
2290 }
2291
2292 /* We must make sure the anon_vma is allocated. */
2293 if (unlikely(anon_vma_prepare(vma)))
2294 return -ENOMEM;
2295
2296 /*
2297 * vma->vm_start/vm_end cannot change under us because the caller
2298 * is required to hold the mmap_sem in read mode. We need the
2299 * anon_vma lock to serialize against concurrent expand_stacks.
2300 */
2301 anon_vma_lock_write(vma->anon_vma);
2302
2303 /* Somebody else might have raced and expanded it already */
2304 if (address > vma->vm_end) {
2305 unsigned long size, grow;
2306
2307 size = address - vma->vm_start;
2308 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2309
2310 error = -ENOMEM;
2311 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2312 error = acct_stack_growth(vma, size, grow);
2313 if (!error) {
2314 /*
2315 * vma_gap_update() doesn't support concurrent
2316 * updates, but we only hold a shared mmap_sem
2317 * lock here, so we need to protect against
2318 * concurrent vma expansions.
2319 * anon_vma_lock_write() doesn't help here, as
2320 * we don't guarantee that all growable vmas
2321 * in a mm share the same root anon vma.
2322 * So, we reuse mm->page_table_lock to guard
2323 * against concurrent vma expansions.
2324 */
2325 spin_lock(&mm->page_table_lock);
2326 if (vma->vm_flags & VM_LOCKED)
2327 mm->locked_vm += grow;
2328 vm_stat_account(mm, vma->vm_flags, grow);
2329 anon_vma_interval_tree_pre_update_vma(vma);
2330 vma->vm_end = address;
2331 anon_vma_interval_tree_post_update_vma(vma);
2332 if (vma->vm_next)
2333 vma_gap_update(vma->vm_next);
2334 else
2335 mm->highest_vm_end = vm_end_gap(vma);
2336 spin_unlock(&mm->page_table_lock);
2337
2338 perf_event_mmap(vma);
2339 }
2340 }
2341 }
2342 anon_vma_unlock_write(vma->anon_vma);
2343 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2344 validate_mm(mm);
2345 return error;
2346}
2347#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2348
2349/*
2350 * vma is the first one with address < vma->vm_start. Have to extend vma.
2351 */
2352int expand_downwards(struct vm_area_struct *vma,
2353 unsigned long address)
2354{
2355 struct mm_struct *mm = vma->vm_mm;
2356 struct vm_area_struct *prev;
2357 int error = 0;
2358
2359 address &= PAGE_MASK;
2360 if (address < mmap_min_addr)
2361 return -EPERM;
2362
2363 /* Enforce stack_guard_gap */
2364 prev = vma->vm_prev;
2365 /* Check that both stack segments have the same anon_vma? */
2366 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2367 (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2368 if (address - prev->vm_end < stack_guard_gap)
2369 return -ENOMEM;
2370 }
2371
2372 /* We must make sure the anon_vma is allocated. */
2373 if (unlikely(anon_vma_prepare(vma)))
2374 return -ENOMEM;
2375
2376 /*
2377 * vma->vm_start/vm_end cannot change under us because the caller
2378 * is required to hold the mmap_sem in read mode. We need the
2379 * anon_vma lock to serialize against concurrent expand_stacks.
2380 */
2381 anon_vma_lock_write(vma->anon_vma);
2382
2383 /* Somebody else might have raced and expanded it already */
2384 if (address < vma->vm_start) {
2385 unsigned long size, grow;
2386
2387 size = vma->vm_end - address;
2388 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2389
2390 error = -ENOMEM;
2391 if (grow <= vma->vm_pgoff) {
2392 error = acct_stack_growth(vma, size, grow);
2393 if (!error) {
2394 /*
2395 * vma_gap_update() doesn't support concurrent
2396 * updates, but we only hold a shared mmap_sem
2397 * lock here, so we need to protect against
2398 * concurrent vma expansions.
2399 * anon_vma_lock_write() doesn't help here, as
2400 * we don't guarantee that all growable vmas
2401 * in a mm share the same root anon vma.
2402 * So, we reuse mm->page_table_lock to guard
2403 * against concurrent vma expansions.
2404 */
2405 spin_lock(&mm->page_table_lock);
2406 if (vma->vm_flags & VM_LOCKED)
2407 mm->locked_vm += grow;
2408 vm_stat_account(mm, vma->vm_flags, grow);
2409 anon_vma_interval_tree_pre_update_vma(vma);
2410 vma->vm_start = address;
2411 vma->vm_pgoff -= grow;
2412 anon_vma_interval_tree_post_update_vma(vma);
2413 vma_gap_update(vma);
2414 spin_unlock(&mm->page_table_lock);
2415
2416 perf_event_mmap(vma);
2417 }
2418 }
2419 }
2420 anon_vma_unlock_write(vma->anon_vma);
2421 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2422 validate_mm(mm);
2423 return error;
2424}
2425
2426/* enforced gap between the expanding stack and other mappings. */
2427unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2428
2429static int __init cmdline_parse_stack_guard_gap(char *p)
2430{
2431 unsigned long val;
2432 char *endptr;
2433
2434 val = simple_strtoul(p, &endptr, 10);
2435 if (!*endptr)
2436 stack_guard_gap = val << PAGE_SHIFT;
2437
2438 return 0;
2439}
2440__setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2441
2442#ifdef CONFIG_STACK_GROWSUP
2443int expand_stack(struct vm_area_struct *vma, unsigned long address)
2444{
2445 return expand_upwards(vma, address);
2446}
2447
2448struct vm_area_struct *
2449find_extend_vma(struct mm_struct *mm, unsigned long addr)
2450{
2451 struct vm_area_struct *vma, *prev;
2452
2453 addr &= PAGE_MASK;
2454 vma = find_vma_prev(mm, addr, &prev);
2455 if (vma && (vma->vm_start <= addr))
2456 return vma;
2457 /* don't alter vm_end if the coredump is running */
2458 if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
2459 return NULL;
2460 if (prev->vm_flags & VM_LOCKED)
2461 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2462 return prev;
2463}
2464#else
2465int expand_stack(struct vm_area_struct *vma, unsigned long address)
2466{
2467 return expand_downwards(vma, address);
2468}
2469
2470struct vm_area_struct *
2471find_extend_vma(struct mm_struct *mm, unsigned long addr)
2472{
2473 struct vm_area_struct *vma;
2474 unsigned long start;
2475
2476 addr &= PAGE_MASK;
2477 vma = find_vma(mm, addr);
2478 if (!vma)
2479 return NULL;
2480 if (vma->vm_start <= addr)
2481 return vma;
2482 if (!(vma->vm_flags & VM_GROWSDOWN))
2483 return NULL;
2484 /* don't alter vm_start if the coredump is running */
2485 if (!mmget_still_valid(mm))
2486 return NULL;
2487 start = vma->vm_start;
2488 if (expand_stack(vma, addr))
2489 return NULL;
2490 if (vma->vm_flags & VM_LOCKED)
2491 populate_vma_page_range(vma, addr, start, NULL);
2492 return vma;
2493}
2494#endif
2495
2496EXPORT_SYMBOL_GPL(find_extend_vma);
2497
2498/*
2499 * Ok - we have the memory areas we should free on the vma list,
2500 * so release them, and do the vma updates.
2501 *
2502 * Called with the mm semaphore held.
2503 */
2504static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2505{
2506 unsigned long nr_accounted = 0;
2507
2508 /* Update high watermark before we lower total_vm */
2509 update_hiwater_vm(mm);
2510 do {
2511 long nrpages = vma_pages(vma);
2512
2513 if (vma->vm_flags & VM_ACCOUNT)
2514 nr_accounted += nrpages;
2515 vm_stat_account(mm, vma->vm_flags, -nrpages);
2516 vma = remove_vma(vma);
2517 } while (vma);
2518 vm_unacct_memory(nr_accounted);
2519 validate_mm(mm);
2520}
2521
2522/*
2523 * Get rid of page table information in the indicated region.
2524 *
2525 * Called with the mm semaphore held.
2526 */
2527static void unmap_region(struct mm_struct *mm,
2528 struct vm_area_struct *vma, struct vm_area_struct *prev,
2529 unsigned long start, unsigned long end)
2530{
2531 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2532 struct mmu_gather tlb;
2533
2534 lru_add_drain();
2535 tlb_gather_mmu(&tlb, mm, start, end);
2536 update_hiwater_rss(mm);
2537 unmap_vmas(&tlb, vma, start, end);
2538 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2539 next ? next->vm_start : USER_PGTABLES_CEILING);
2540 tlb_finish_mmu(&tlb, start, end);
2541}
2542
2543/*
2544 * Create a list of vma's touched by the unmap, removing them from the mm's
2545 * vma list as we go..
2546 */
2547static void
2548detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2549 struct vm_area_struct *prev, unsigned long end)
2550{
2551 struct vm_area_struct **insertion_point;
2552 struct vm_area_struct *tail_vma = NULL;
2553
2554 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2555 vma->vm_prev = NULL;
2556 do {
2557 vma_rb_erase(vma, &mm->mm_rb);
2558 mm->map_count--;
2559 tail_vma = vma;
2560 vma = vma->vm_next;
2561 } while (vma && vma->vm_start < end);
2562 *insertion_point = vma;
2563 if (vma) {
2564 vma->vm_prev = prev;
2565 vma_gap_update(vma);
2566 } else
2567 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2568 tail_vma->vm_next = NULL;
2569
2570 /* Kill the cache */
2571 vmacache_invalidate(mm);
2572}
2573
2574/*
2575 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2576 * has already been checked or doesn't make sense to fail.
2577 */
2578int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2579 unsigned long addr, int new_below)
2580{
2581 struct vm_area_struct *new;
2582 int err;
2583
2584 if (vma->vm_ops && vma->vm_ops->split) {
2585 err = vma->vm_ops->split(vma, addr);
2586 if (err)
2587 return err;
2588 }
2589
2590 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2591 if (!new)
2592 return -ENOMEM;
2593
2594 /* most fields are the same, copy all, and then fixup */
2595 *new = *vma;
2596
2597 INIT_LIST_HEAD(&new->anon_vma_chain);
2598
2599 if (new_below)
2600 new->vm_end = addr;
2601 else {
2602 new->vm_start = addr;
2603 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2604 }
2605
2606 err = vma_dup_policy(vma, new);
2607 if (err)
2608 goto out_free_vma;
2609
2610 err = anon_vma_clone(new, vma);
2611 if (err)
2612 goto out_free_mpol;
2613
2614 if (new->vm_file)
2615 get_file(new->vm_file);
2616
2617 if (new->vm_ops && new->vm_ops->open)
2618 new->vm_ops->open(new);
2619
2620 if (new_below)
2621 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2622 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2623 else
2624 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2625
2626 /* Success. */
2627 if (!err)
2628 return 0;
2629
2630 /* Clean everything up if vma_adjust failed. */
2631 if (new->vm_ops && new->vm_ops->close)
2632 new->vm_ops->close(new);
2633 if (new->vm_file)
2634 fput(new->vm_file);
2635 unlink_anon_vmas(new);
2636 out_free_mpol:
2637 mpol_put(vma_policy(new));
2638 out_free_vma:
2639 kmem_cache_free(vm_area_cachep, new);
2640 return err;
2641}
2642
2643/*
2644 * Split a vma into two pieces at address 'addr', a new vma is allocated
2645 * either for the first part or the tail.
2646 */
2647int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2648 unsigned long addr, int new_below)
2649{
2650 if (mm->map_count >= sysctl_max_map_count)
2651 return -ENOMEM;
2652
2653 return __split_vma(mm, vma, addr, new_below);
2654}
2655
2656/* Munmap is split into 2 main parts -- this part which finds
2657 * what needs doing, and the areas themselves, which do the
2658 * work. This now handles partial unmappings.
2659 * Jeremy Fitzhardinge <jeremy@goop.org>
2660 */
2661int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2662 struct list_head *uf)
2663{
2664 unsigned long end;
2665 struct vm_area_struct *vma, *prev, *last;
2666
2667 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2668 return -EINVAL;
2669
2670 len = PAGE_ALIGN(len);
2671 if (len == 0)
2672 return -EINVAL;
2673
2674 /* Find the first overlapping VMA */
2675 vma = find_vma(mm, start);
2676 if (!vma)
2677 return 0;
2678 prev = vma->vm_prev;
2679 /* we have start < vma->vm_end */
2680
2681 /* if it doesn't overlap, we have nothing.. */
2682 end = start + len;
2683 if (vma->vm_start >= end)
2684 return 0;
2685
2686 /*
2687 * If we need to split any vma, do it now to save pain later.
2688 *
2689 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2690 * unmapped vm_area_struct will remain in use: so lower split_vma
2691 * places tmp vma above, and higher split_vma places tmp vma below.
2692 */
2693 if (start > vma->vm_start) {
2694 int error;
2695
2696 /*
2697 * Make sure that map_count on return from munmap() will
2698 * not exceed its limit; but let map_count go just above
2699 * its limit temporarily, to help free resources as expected.
2700 */
2701 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2702 return -ENOMEM;
2703
2704 error = __split_vma(mm, vma, start, 0);
2705 if (error)
2706 return error;
2707 prev = vma;
2708 }
2709
2710 /* Does it split the last one? */
2711 last = find_vma(mm, end);
2712 if (last && end > last->vm_start) {
2713 int error = __split_vma(mm, last, end, 1);
2714 if (error)
2715 return error;
2716 }
2717 vma = prev ? prev->vm_next : mm->mmap;
2718
2719 if (unlikely(uf)) {
2720 /*
2721 * If userfaultfd_unmap_prep returns an error the vmas
2722 * will remain splitted, but userland will get a
2723 * highly unexpected error anyway. This is no
2724 * different than the case where the first of the two
2725 * __split_vma fails, but we don't undo the first
2726 * split, despite we could. This is unlikely enough
2727 * failure that it's not worth optimizing it for.
2728 */
2729 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2730 if (error)
2731 return error;
2732 }
2733
2734 /*
2735 * unlock any mlock()ed ranges before detaching vmas
2736 */
2737 if (mm->locked_vm) {
2738 struct vm_area_struct *tmp = vma;
2739 while (tmp && tmp->vm_start < end) {
2740 if (tmp->vm_flags & VM_LOCKED) {
2741 mm->locked_vm -= vma_pages(tmp);
2742 munlock_vma_pages_all(tmp);
2743 }
2744 tmp = tmp->vm_next;
2745 }
2746 }
2747
2748 /*
2749 * Remove the vma's, and unmap the actual pages
2750 */
2751 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2752 unmap_region(mm, vma, prev, start, end);
2753
2754 arch_unmap(mm, vma, start, end);
2755
2756 /* Fix up all other VM information */
2757 remove_vma_list(mm, vma);
2758
2759 return 0;
2760}
2761EXPORT_SYMBOL(do_munmap);
2762
2763int vm_munmap(unsigned long start, size_t len)
2764{
2765 int ret;
2766 struct mm_struct *mm = current->mm;
2767 LIST_HEAD(uf);
2768
2769 if (down_write_killable(&mm->mmap_sem))
2770 return -EINTR;
2771
2772 ret = do_munmap(mm, start, len, &uf);
2773 up_write(&mm->mmap_sem);
2774 userfaultfd_unmap_complete(mm, &uf);
2775 return ret;
2776}
2777EXPORT_SYMBOL(vm_munmap);
2778
2779SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2780{
2781 profile_munmap(addr);
2782 return vm_munmap(addr, len);
2783}
2784
2785
2786/*
2787 * Emulation of deprecated remap_file_pages() syscall.
2788 */
2789SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2790 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2791{
2792
2793 struct mm_struct *mm = current->mm;
2794 struct vm_area_struct *vma;
2795 unsigned long populate = 0;
2796 unsigned long ret = -EINVAL;
2797 struct file *file;
2798
2799 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2800 current->comm, current->pid);
2801
2802 if (prot)
2803 return ret;
2804 start = start & PAGE_MASK;
2805 size = size & PAGE_MASK;
2806
2807 if (start + size <= start)
2808 return ret;
2809
2810 /* Does pgoff wrap? */
2811 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2812 return ret;
2813
2814 if (down_write_killable(&mm->mmap_sem))
2815 return -EINTR;
2816
2817 vma = find_vma(mm, start);
2818
2819 if (!vma || !(vma->vm_flags & VM_SHARED))
2820 goto out;
2821
2822 if (start < vma->vm_start)
2823 goto out;
2824
2825 if (start + size > vma->vm_end) {
2826 struct vm_area_struct *next;
2827
2828 for (next = vma->vm_next; next; next = next->vm_next) {
2829 /* hole between vmas ? */
2830 if (next->vm_start != next->vm_prev->vm_end)
2831 goto out;
2832
2833 if (next->vm_file != vma->vm_file)
2834 goto out;
2835
2836 if (next->vm_flags != vma->vm_flags)
2837 goto out;
2838
2839 if (start + size <= next->vm_end)
2840 break;
2841 }
2842
2843 if (!next)
2844 goto out;
2845 }
2846
2847 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2848 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2849 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2850
2851 flags &= MAP_NONBLOCK;
2852 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2853 if (vma->vm_flags & VM_LOCKED) {
2854 struct vm_area_struct *tmp;
2855 flags |= MAP_LOCKED;
2856
2857 /* drop PG_Mlocked flag for over-mapped range */
2858 for (tmp = vma; tmp->vm_start >= start + size;
2859 tmp = tmp->vm_next) {
2860 /*
2861 * Split pmd and munlock page on the border
2862 * of the range.
2863 */
2864 vma_adjust_trans_huge(tmp, start, start + size, 0);
2865
2866 munlock_vma_pages_range(tmp,
2867 max(tmp->vm_start, start),
2868 min(tmp->vm_end, start + size));
2869 }
2870 }
2871
2872 file = get_file(vma->vm_file);
2873 ret = do_mmap_pgoff(vma->vm_file, start, size,
2874 prot, flags, pgoff, &populate, NULL);
2875 fput(file);
2876out:
2877 up_write(&mm->mmap_sem);
2878 if (populate)
2879 mm_populate(ret, populate);
2880 if (!IS_ERR_VALUE(ret))
2881 ret = 0;
2882 return ret;
2883}
2884
2885static inline void verify_mm_writelocked(struct mm_struct *mm)
2886{
2887#ifdef CONFIG_DEBUG_VM
2888 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2889 WARN_ON(1);
2890 up_read(&mm->mmap_sem);
2891 }
2892#endif
2893}
2894
2895/*
2896 * this is really a simplified "do_mmap". it only handles
2897 * anonymous maps. eventually we may be able to do some
2898 * brk-specific accounting here.
2899 */
2900static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
2901{
2902 struct mm_struct *mm = current->mm;
2903 struct vm_area_struct *vma, *prev;
2904 struct rb_node **rb_link, *rb_parent;
2905 pgoff_t pgoff = addr >> PAGE_SHIFT;
2906 int error;
2907
2908 /* Until we need other flags, refuse anything except VM_EXEC. */
2909 if ((flags & (~VM_EXEC)) != 0)
2910 return -EINVAL;
2911 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2912
2913 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2914 if (offset_in_page(error))
2915 return error;
2916
2917 error = mlock_future_check(mm, mm->def_flags, len);
2918 if (error)
2919 return error;
2920
2921 /*
2922 * mm->mmap_sem is required to protect against another thread
2923 * changing the mappings in case we sleep.
2924 */
2925 verify_mm_writelocked(mm);
2926
2927 /*
2928 * Clear old maps. this also does some error checking for us
2929 */
2930 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2931 &rb_parent)) {
2932 if (do_munmap(mm, addr, len, uf))
2933 return -ENOMEM;
2934 }
2935
2936 /* Check against address space limits *after* clearing old maps... */
2937 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2938 return -ENOMEM;
2939
2940 if (mm->map_count > sysctl_max_map_count)
2941 return -ENOMEM;
2942
2943 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2944 return -ENOMEM;
2945
2946 /* Can we just expand an old private anonymous mapping? */
2947 vma = vma_merge(mm, prev, addr, addr + len, flags,
2948 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
2949 if (vma)
2950 goto out;
2951
2952 /*
2953 * create a vma struct for an anonymous mapping
2954 */
2955 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2956 if (!vma) {
2957 vm_unacct_memory(len >> PAGE_SHIFT);
2958 return -ENOMEM;
2959 }
2960
2961 INIT_LIST_HEAD(&vma->anon_vma_chain);
2962 vma->vm_mm = mm;
2963 vma->vm_start = addr;
2964 vma->vm_end = addr + len;
2965 vma->vm_pgoff = pgoff;
2966 vma->vm_flags = flags;
2967 vma->vm_page_prot = vm_get_page_prot(flags);
2968 vma_link(mm, vma, prev, rb_link, rb_parent);
2969out:
2970 perf_event_mmap(vma);
2971 mm->total_vm += len >> PAGE_SHIFT;
2972 mm->data_vm += len >> PAGE_SHIFT;
2973 if (flags & VM_LOCKED)
2974 mm->locked_vm += (len >> PAGE_SHIFT);
2975 vma->vm_flags |= VM_SOFTDIRTY;
2976 return 0;
2977}
2978
2979int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
2980{
2981 struct mm_struct *mm = current->mm;
2982 unsigned long len;
2983 int ret;
2984 bool populate;
2985 LIST_HEAD(uf);
2986
2987 len = PAGE_ALIGN(request);
2988 if (len < request)
2989 return -ENOMEM;
2990 if (!len)
2991 return 0;
2992
2993 if (down_write_killable(&mm->mmap_sem))
2994 return -EINTR;
2995
2996 ret = do_brk_flags(addr, len, flags, &uf);
2997 populate = ((mm->def_flags & VM_LOCKED) != 0);
2998 up_write(&mm->mmap_sem);
2999 userfaultfd_unmap_complete(mm, &uf);
3000 if (populate && !ret)
3001 mm_populate(addr, len);
3002 return ret;
3003}
3004EXPORT_SYMBOL(vm_brk_flags);
3005
3006int vm_brk(unsigned long addr, unsigned long len)
3007{
3008 return vm_brk_flags(addr, len, 0);
3009}
3010EXPORT_SYMBOL(vm_brk);
3011
3012/* Release all mmaps. */
3013void exit_mmap(struct mm_struct *mm)
3014{
3015 struct mmu_gather tlb;
3016 struct vm_area_struct *vma;
3017 unsigned long nr_accounted = 0;
3018
3019 /* mm's last user has gone, and its about to be pulled down */
3020 mmu_notifier_release(mm);
3021
3022 if (unlikely(mm_is_oom_victim(mm))) {
3023 /*
3024 * Manually reap the mm to free as much memory as possible.
3025 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3026 * this mm from further consideration. Taking mm->mmap_sem for
3027 * write after setting MMF_OOM_SKIP will guarantee that the oom
3028 * reaper will not run on this mm again after mmap_sem is
3029 * dropped.
3030 *
3031 * Nothing can be holding mm->mmap_sem here and the above call
3032 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3033 * __oom_reap_task_mm() will not block.
3034 *
3035 * This needs to be done before calling munlock_vma_pages_all(),
3036 * which clears VM_LOCKED, otherwise the oom reaper cannot
3037 * reliably test it.
3038 */
3039 mutex_lock(&oom_lock);
3040 __oom_reap_task_mm(mm);
3041 mutex_unlock(&oom_lock);
3042
3043 set_bit(MMF_OOM_SKIP, &mm->flags);
3044 down_write(&mm->mmap_sem);
3045 up_write(&mm->mmap_sem);
3046 }
3047
3048 if (mm->locked_vm) {
3049 vma = mm->mmap;
3050 while (vma) {
3051 if (vma->vm_flags & VM_LOCKED)
3052 munlock_vma_pages_all(vma);
3053 vma = vma->vm_next;
3054 }
3055 }
3056
3057 arch_exit_mmap(mm);
3058
3059 vma = mm->mmap;
3060 if (!vma) /* Can happen if dup_mmap() received an OOM */
3061 return;
3062
3063 lru_add_drain();
3064 flush_cache_mm(mm);
3065 tlb_gather_mmu(&tlb, mm, 0, -1);
3066 /* update_hiwater_rss(mm) here? but nobody should be looking */
3067 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3068 unmap_vmas(&tlb, vma, 0, -1);
3069 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3070 tlb_finish_mmu(&tlb, 0, -1);
3071
3072 /*
3073 * Walk the list again, actually closing and freeing it,
3074 * with preemption enabled, without holding any MM locks.
3075 */
3076 while (vma) {
3077 if (vma->vm_flags & VM_ACCOUNT)
3078 nr_accounted += vma_pages(vma);
3079 vma = remove_vma(vma);
3080 cond_resched();
3081 }
3082 vm_unacct_memory(nr_accounted);
3083}
3084
3085/* Insert vm structure into process list sorted by address
3086 * and into the inode's i_mmap tree. If vm_file is non-NULL
3087 * then i_mmap_rwsem is taken here.
3088 */
3089int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3090{
3091 struct vm_area_struct *prev;
3092 struct rb_node **rb_link, *rb_parent;
3093
3094 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3095 &prev, &rb_link, &rb_parent))
3096 return -ENOMEM;
3097 if ((vma->vm_flags & VM_ACCOUNT) &&
3098 security_vm_enough_memory_mm(mm, vma_pages(vma)))
3099 return -ENOMEM;
3100
3101 /*
3102 * The vm_pgoff of a purely anonymous vma should be irrelevant
3103 * until its first write fault, when page's anon_vma and index
3104 * are set. But now set the vm_pgoff it will almost certainly
3105 * end up with (unless mremap moves it elsewhere before that
3106 * first wfault), so /proc/pid/maps tells a consistent story.
3107 *
3108 * By setting it to reflect the virtual start address of the
3109 * vma, merges and splits can happen in a seamless way, just
3110 * using the existing file pgoff checks and manipulations.
3111 * Similarly in do_mmap_pgoff and in do_brk.
3112 */
3113 if (vma_is_anonymous(vma)) {
3114 BUG_ON(vma->anon_vma);
3115 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3116 }
3117
3118 vma_link(mm, vma, prev, rb_link, rb_parent);
3119 return 0;
3120}
3121
3122/*
3123 * Copy the vma structure to a new location in the same mm,
3124 * prior to moving page table entries, to effect an mremap move.
3125 */
3126struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3127 unsigned long addr, unsigned long len, pgoff_t pgoff,
3128 bool *need_rmap_locks)
3129{
3130 struct vm_area_struct *vma = *vmap;
3131 unsigned long vma_start = vma->vm_start;
3132 struct mm_struct *mm = vma->vm_mm;
3133 struct vm_area_struct *new_vma, *prev;
3134 struct rb_node **rb_link, *rb_parent;
3135 bool faulted_in_anon_vma = true;
3136
3137 /*
3138 * If anonymous vma has not yet been faulted, update new pgoff
3139 * to match new location, to increase its chance of merging.
3140 */
3141 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3142 pgoff = addr >> PAGE_SHIFT;
3143 faulted_in_anon_vma = false;
3144 }
3145
3146 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3147 return NULL; /* should never get here */
3148 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3149 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3150 vma->vm_userfaultfd_ctx, vma_get_anon_name(vma));
3151 if (new_vma) {
3152 /*
3153 * Source vma may have been merged into new_vma
3154 */
3155 if (unlikely(vma_start >= new_vma->vm_start &&
3156 vma_start < new_vma->vm_end)) {
3157 /*
3158 * The only way we can get a vma_merge with
3159 * self during an mremap is if the vma hasn't
3160 * been faulted in yet and we were allowed to
3161 * reset the dst vma->vm_pgoff to the
3162 * destination address of the mremap to allow
3163 * the merge to happen. mremap must change the
3164 * vm_pgoff linearity between src and dst vmas
3165 * (in turn preventing a vma_merge) to be
3166 * safe. It is only safe to keep the vm_pgoff
3167 * linear if there are no pages mapped yet.
3168 */
3169 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3170 *vmap = vma = new_vma;
3171 }
3172 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3173 } else {
3174 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
3175 if (!new_vma)
3176 goto out;
3177 *new_vma = *vma;
3178 new_vma->vm_start = addr;
3179 new_vma->vm_end = addr + len;
3180 new_vma->vm_pgoff = pgoff;
3181 if (vma_dup_policy(vma, new_vma))
3182 goto out_free_vma;
3183 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
3184 if (anon_vma_clone(new_vma, vma))
3185 goto out_free_mempol;
3186 if (new_vma->vm_file)
3187 get_file(new_vma->vm_file);
3188 if (new_vma->vm_ops && new_vma->vm_ops->open)
3189 new_vma->vm_ops->open(new_vma);
3190 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3191 *need_rmap_locks = false;
3192 }
3193 return new_vma;
3194
3195out_free_mempol:
3196 mpol_put(vma_policy(new_vma));
3197out_free_vma:
3198 kmem_cache_free(vm_area_cachep, new_vma);
3199out:
3200 return NULL;
3201}
3202
3203/*
3204 * Return true if the calling process may expand its vm space by the passed
3205 * number of pages
3206 */
3207bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3208{
3209 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3210 return false;
3211
3212 if (is_data_mapping(flags) &&
3213 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3214 /* Workaround for Valgrind */
3215 if (rlimit(RLIMIT_DATA) == 0 &&
3216 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3217 return true;
3218 if (!ignore_rlimit_data) {
3219 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n",
3220 current->comm, current->pid,
3221 (mm->data_vm + npages) << PAGE_SHIFT,
3222 rlimit(RLIMIT_DATA));
3223 return false;
3224 }
3225 }
3226
3227 return true;
3228}
3229
3230void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3231{
3232 mm->total_vm += npages;
3233
3234 if (is_exec_mapping(flags))
3235 mm->exec_vm += npages;
3236 else if (is_stack_mapping(flags))
3237 mm->stack_vm += npages;
3238 else if (is_data_mapping(flags))
3239 mm->data_vm += npages;
3240}
3241
3242static int special_mapping_fault(struct vm_fault *vmf);
3243
3244/*
3245 * Having a close hook prevents vma merging regardless of flags.
3246 */
3247static void special_mapping_close(struct vm_area_struct *vma)
3248{
3249}
3250
3251static const char *special_mapping_name(struct vm_area_struct *vma)
3252{
3253 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3254}
3255
3256static int special_mapping_mremap(struct vm_area_struct *new_vma)
3257{
3258 struct vm_special_mapping *sm = new_vma->vm_private_data;
3259
3260 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3261 return -EFAULT;
3262
3263 if (sm->mremap)
3264 return sm->mremap(sm, new_vma);
3265
3266 return 0;
3267}
3268
3269static const struct vm_operations_struct special_mapping_vmops = {
3270 .close = special_mapping_close,
3271 .fault = special_mapping_fault,
3272 .mremap = special_mapping_mremap,
3273 .name = special_mapping_name,
3274};
3275
3276static const struct vm_operations_struct legacy_special_mapping_vmops = {
3277 .close = special_mapping_close,
3278 .fault = special_mapping_fault,
3279};
3280
3281static int special_mapping_fault(struct vm_fault *vmf)
3282{
3283 struct vm_area_struct *vma = vmf->vma;
3284 pgoff_t pgoff;
3285 struct page **pages;
3286
3287 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3288 pages = vma->vm_private_data;
3289 } else {
3290 struct vm_special_mapping *sm = vma->vm_private_data;
3291
3292 if (sm->fault)
3293 return sm->fault(sm, vmf->vma, vmf);
3294
3295 pages = sm->pages;
3296 }
3297
3298 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3299 pgoff--;
3300
3301 if (*pages) {
3302 struct page *page = *pages;
3303 get_page(page);
3304 vmf->page = page;
3305 return 0;
3306 }
3307
3308 return VM_FAULT_SIGBUS;
3309}
3310
3311static struct vm_area_struct *__install_special_mapping(
3312 struct mm_struct *mm,
3313 unsigned long addr, unsigned long len,
3314 unsigned long vm_flags, void *priv,
3315 const struct vm_operations_struct *ops)
3316{
3317 int ret;
3318 struct vm_area_struct *vma;
3319
3320 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3321 if (unlikely(vma == NULL))
3322 return ERR_PTR(-ENOMEM);
3323
3324 INIT_LIST_HEAD(&vma->anon_vma_chain);
3325 vma->vm_mm = mm;
3326 vma->vm_start = addr;
3327 vma->vm_end = addr + len;
3328
3329 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3330 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3331
3332 vma->vm_ops = ops;
3333 vma->vm_private_data = priv;
3334
3335 ret = insert_vm_struct(mm, vma);
3336 if (ret)
3337 goto out;
3338
3339 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3340
3341 perf_event_mmap(vma);
3342
3343 return vma;
3344
3345out:
3346 kmem_cache_free(vm_area_cachep, vma);
3347 return ERR_PTR(ret);
3348}
3349
3350bool vma_is_special_mapping(const struct vm_area_struct *vma,
3351 const struct vm_special_mapping *sm)
3352{
3353 return vma->vm_private_data == sm &&
3354 (vma->vm_ops == &special_mapping_vmops ||
3355 vma->vm_ops == &legacy_special_mapping_vmops);
3356}
3357
3358/*
3359 * Called with mm->mmap_sem held for writing.
3360 * Insert a new vma covering the given region, with the given flags.
3361 * Its pages are supplied by the given array of struct page *.
3362 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3363 * The region past the last page supplied will always produce SIGBUS.
3364 * The array pointer and the pages it points to are assumed to stay alive
3365 * for as long as this mapping might exist.
3366 */
3367struct vm_area_struct *_install_special_mapping(
3368 struct mm_struct *mm,
3369 unsigned long addr, unsigned long len,
3370 unsigned long vm_flags, const struct vm_special_mapping *spec)
3371{
3372 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3373 &special_mapping_vmops);
3374}
3375
3376int install_special_mapping(struct mm_struct *mm,
3377 unsigned long addr, unsigned long len,
3378 unsigned long vm_flags, struct page **pages)
3379{
3380 struct vm_area_struct *vma = __install_special_mapping(
3381 mm, addr, len, vm_flags, (void *)pages,
3382 &legacy_special_mapping_vmops);
3383
3384 return PTR_ERR_OR_ZERO(vma);
3385}
3386
3387static DEFINE_MUTEX(mm_all_locks_mutex);
3388
3389static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3390{
3391 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3392 /*
3393 * The LSB of head.next can't change from under us
3394 * because we hold the mm_all_locks_mutex.
3395 */
3396 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3397 /*
3398 * We can safely modify head.next after taking the
3399 * anon_vma->root->rwsem. If some other vma in this mm shares
3400 * the same anon_vma we won't take it again.
3401 *
3402 * No need of atomic instructions here, head.next
3403 * can't change from under us thanks to the
3404 * anon_vma->root->rwsem.
3405 */
3406 if (__test_and_set_bit(0, (unsigned long *)
3407 &anon_vma->root->rb_root.rb_root.rb_node))
3408 BUG();
3409 }
3410}
3411
3412static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3413{
3414 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3415 /*
3416 * AS_MM_ALL_LOCKS can't change from under us because
3417 * we hold the mm_all_locks_mutex.
3418 *
3419 * Operations on ->flags have to be atomic because
3420 * even if AS_MM_ALL_LOCKS is stable thanks to the
3421 * mm_all_locks_mutex, there may be other cpus
3422 * changing other bitflags in parallel to us.
3423 */
3424 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3425 BUG();
3426 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3427 }
3428}
3429
3430/*
3431 * This operation locks against the VM for all pte/vma/mm related
3432 * operations that could ever happen on a certain mm. This includes
3433 * vmtruncate, try_to_unmap, and all page faults.
3434 *
3435 * The caller must take the mmap_sem in write mode before calling
3436 * mm_take_all_locks(). The caller isn't allowed to release the
3437 * mmap_sem until mm_drop_all_locks() returns.
3438 *
3439 * mmap_sem in write mode is required in order to block all operations
3440 * that could modify pagetables and free pages without need of
3441 * altering the vma layout. It's also needed in write mode to avoid new
3442 * anon_vmas to be associated with existing vmas.
3443 *
3444 * A single task can't take more than one mm_take_all_locks() in a row
3445 * or it would deadlock.
3446 *
3447 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3448 * mapping->flags avoid to take the same lock twice, if more than one
3449 * vma in this mm is backed by the same anon_vma or address_space.
3450 *
3451 * We take locks in following order, accordingly to comment at beginning
3452 * of mm/rmap.c:
3453 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3454 * hugetlb mapping);
3455 * - all i_mmap_rwsem locks;
3456 * - all anon_vma->rwseml
3457 *
3458 * We can take all locks within these types randomly because the VM code
3459 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3460 * mm_all_locks_mutex.
3461 *
3462 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3463 * that may have to take thousand of locks.
3464 *
3465 * mm_take_all_locks() can fail if it's interrupted by signals.
3466 */
3467int mm_take_all_locks(struct mm_struct *mm)
3468{
3469 struct vm_area_struct *vma;
3470 struct anon_vma_chain *avc;
3471
3472 BUG_ON(down_read_trylock(&mm->mmap_sem));
3473
3474 mutex_lock(&mm_all_locks_mutex);
3475
3476 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3477 if (signal_pending(current))
3478 goto out_unlock;
3479 if (vma->vm_file && vma->vm_file->f_mapping &&
3480 is_vm_hugetlb_page(vma))
3481 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3482 }
3483
3484 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3485 if (signal_pending(current))
3486 goto out_unlock;
3487 if (vma->vm_file && vma->vm_file->f_mapping &&
3488 !is_vm_hugetlb_page(vma))
3489 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3490 }
3491
3492 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3493 if (signal_pending(current))
3494 goto out_unlock;
3495 if (vma->anon_vma)
3496 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3497 vm_lock_anon_vma(mm, avc->anon_vma);
3498 }
3499
3500 return 0;
3501
3502out_unlock:
3503 mm_drop_all_locks(mm);
3504 return -EINTR;
3505}
3506
3507static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3508{
3509 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3510 /*
3511 * The LSB of head.next can't change to 0 from under
3512 * us because we hold the mm_all_locks_mutex.
3513 *
3514 * We must however clear the bitflag before unlocking
3515 * the vma so the users using the anon_vma->rb_root will
3516 * never see our bitflag.
3517 *
3518 * No need of atomic instructions here, head.next
3519 * can't change from under us until we release the
3520 * anon_vma->root->rwsem.
3521 */
3522 if (!__test_and_clear_bit(0, (unsigned long *)
3523 &anon_vma->root->rb_root.rb_root.rb_node))
3524 BUG();
3525 anon_vma_unlock_write(anon_vma);
3526 }
3527}
3528
3529static void vm_unlock_mapping(struct address_space *mapping)
3530{
3531 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3532 /*
3533 * AS_MM_ALL_LOCKS can't change to 0 from under us
3534 * because we hold the mm_all_locks_mutex.
3535 */
3536 i_mmap_unlock_write(mapping);
3537 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3538 &mapping->flags))
3539 BUG();
3540 }
3541}
3542
3543/*
3544 * The mmap_sem cannot be released by the caller until
3545 * mm_drop_all_locks() returns.
3546 */
3547void mm_drop_all_locks(struct mm_struct *mm)
3548{
3549 struct vm_area_struct *vma;
3550 struct anon_vma_chain *avc;
3551
3552 BUG_ON(down_read_trylock(&mm->mmap_sem));
3553 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3554
3555 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3556 if (vma->anon_vma)
3557 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3558 vm_unlock_anon_vma(avc->anon_vma);
3559 if (vma->vm_file && vma->vm_file->f_mapping)
3560 vm_unlock_mapping(vma->vm_file->f_mapping);
3561 }
3562
3563 mutex_unlock(&mm_all_locks_mutex);
3564}
3565
3566/*
3567 * initialise the percpu counter for VM
3568 */
3569void __init mmap_init(void)
3570{
3571 int ret;
3572
3573 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3574 VM_BUG_ON(ret);
3575}
3576
3577/*
3578 * Initialise sysctl_user_reserve_kbytes.
3579 *
3580 * This is intended to prevent a user from starting a single memory hogging
3581 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3582 * mode.
3583 *
3584 * The default value is min(3% of free memory, 128MB)
3585 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3586 */
3587static int init_user_reserve(void)
3588{
3589 unsigned long free_kbytes;
3590
3591 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3592
3593 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3594 return 0;
3595}
3596subsys_initcall(init_user_reserve);
3597
3598/*
3599 * Initialise sysctl_admin_reserve_kbytes.
3600 *
3601 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3602 * to log in and kill a memory hogging process.
3603 *
3604 * Systems with more than 256MB will reserve 8MB, enough to recover
3605 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3606 * only reserve 3% of free pages by default.
3607 */
3608static int init_admin_reserve(void)
3609{
3610 unsigned long free_kbytes;
3611
3612 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3613
3614 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3615 return 0;
3616}
3617subsys_initcall(init_admin_reserve);
3618
3619/*
3620 * Reinititalise user and admin reserves if memory is added or removed.
3621 *
3622 * The default user reserve max is 128MB, and the default max for the
3623 * admin reserve is 8MB. These are usually, but not always, enough to
3624 * enable recovery from a memory hogging process using login/sshd, a shell,
3625 * and tools like top. It may make sense to increase or even disable the
3626 * reserve depending on the existence of swap or variations in the recovery
3627 * tools. So, the admin may have changed them.
3628 *
3629 * If memory is added and the reserves have been eliminated or increased above
3630 * the default max, then we'll trust the admin.
3631 *
3632 * If memory is removed and there isn't enough free memory, then we
3633 * need to reset the reserves.
3634 *
3635 * Otherwise keep the reserve set by the admin.
3636 */
3637static int reserve_mem_notifier(struct notifier_block *nb,
3638 unsigned long action, void *data)
3639{
3640 unsigned long tmp, free_kbytes;
3641
3642 switch (action) {
3643 case MEM_ONLINE:
3644 /* Default max is 128MB. Leave alone if modified by operator. */
3645 tmp = sysctl_user_reserve_kbytes;
3646 if (0 < tmp && tmp < (1UL << 17))
3647 init_user_reserve();
3648
3649 /* Default max is 8MB. Leave alone if modified by operator. */
3650 tmp = sysctl_admin_reserve_kbytes;
3651 if (0 < tmp && tmp < (1UL << 13))
3652 init_admin_reserve();
3653
3654 break;
3655 case MEM_OFFLINE:
3656 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3657
3658 if (sysctl_user_reserve_kbytes > free_kbytes) {
3659 init_user_reserve();
3660 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3661 sysctl_user_reserve_kbytes);
3662 }
3663
3664 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3665 init_admin_reserve();
3666 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3667 sysctl_admin_reserve_kbytes);
3668 }
3669 break;
3670 default:
3671 break;
3672 }
3673 return NOTIFY_OK;
3674}
3675
3676static struct notifier_block reserve_mem_nb = {
3677 .notifier_call = reserve_mem_notifier,
3678};
3679
3680static int __meminit init_reserve_notifier(void)
3681{
3682 if (register_hotmemory_notifier(&reserve_mem_nb))
3683 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3684
3685 return 0;
3686}
3687subsys_initcall(init_reserve_notifier);