rjw | 1f88458 | 2022-01-06 17:20:42 +0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * mm/mprotect.c |
| 4 | * |
| 5 | * (C) Copyright 1994 Linus Torvalds |
| 6 | * (C) Copyright 2002 Christoph Hellwig |
| 7 | * |
| 8 | * Address space accounting code <alan@lxorguk.ukuu.org.uk> |
| 9 | * (C) Copyright 2002 Red Hat Inc, All Rights Reserved |
| 10 | */ |
| 11 | |
| 12 | #include <linux/mm.h> |
| 13 | #include <linux/hugetlb.h> |
| 14 | #include <linux/shm.h> |
| 15 | #include <linux/mman.h> |
| 16 | #include <linux/fs.h> |
| 17 | #include <linux/highmem.h> |
| 18 | #include <linux/security.h> |
| 19 | #include <linux/mempolicy.h> |
| 20 | #include <linux/personality.h> |
| 21 | #include <linux/syscalls.h> |
| 22 | #include <linux/swap.h> |
| 23 | #include <linux/swapops.h> |
| 24 | #include <linux/mmu_notifier.h> |
| 25 | #include <linux/migrate.h> |
| 26 | #include <linux/perf_event.h> |
| 27 | #include <linux/pkeys.h> |
| 28 | #include <linux/ksm.h> |
| 29 | #include <linux/uaccess.h> |
| 30 | #include <asm/pgtable.h> |
| 31 | #include <asm/cacheflush.h> |
| 32 | #include <asm/mmu_context.h> |
| 33 | #include <asm/tlbflush.h> |
| 34 | |
| 35 | #include "internal.h" |
| 36 | |
| 37 | static unsigned long change_pte_range(struct vm_area_struct *vma, pmd_t *pmd, |
| 38 | unsigned long addr, unsigned long end, pgprot_t newprot, |
| 39 | int dirty_accountable, int prot_numa) |
| 40 | { |
| 41 | struct mm_struct *mm = vma->vm_mm; |
| 42 | pte_t *pte, oldpte; |
| 43 | spinlock_t *ptl; |
| 44 | unsigned long pages = 0; |
| 45 | int target_node = NUMA_NO_NODE; |
| 46 | |
| 47 | /* |
| 48 | * Can be called with only the mmap_sem for reading by |
| 49 | * prot_numa so we must check the pmd isn't constantly |
| 50 | * changing from under us from pmd_none to pmd_trans_huge |
| 51 | * and/or the other way around. |
| 52 | */ |
| 53 | if (pmd_trans_unstable(pmd)) |
| 54 | return 0; |
| 55 | |
| 56 | /* |
| 57 | * The pmd points to a regular pte so the pmd can't change |
| 58 | * from under us even if the mmap_sem is only hold for |
| 59 | * reading. |
| 60 | */ |
| 61 | pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); |
| 62 | |
| 63 | /* Get target node for single threaded private VMAs */ |
| 64 | if (prot_numa && !(vma->vm_flags & VM_SHARED) && |
| 65 | atomic_read(&vma->vm_mm->mm_users) == 1) |
| 66 | target_node = numa_node_id(); |
| 67 | |
| 68 | flush_tlb_batched_pending(vma->vm_mm); |
| 69 | arch_enter_lazy_mmu_mode(); |
| 70 | do { |
| 71 | oldpte = *pte; |
| 72 | if (pte_present(oldpte)) { |
| 73 | pte_t ptent; |
| 74 | bool preserve_write = prot_numa && pte_write(oldpte); |
| 75 | |
| 76 | /* |
| 77 | * Avoid trapping faults against the zero or KSM |
| 78 | * pages. See similar comment in change_huge_pmd. |
| 79 | */ |
| 80 | if (prot_numa) { |
| 81 | struct page *page; |
| 82 | |
| 83 | page = vm_normal_page(vma, addr, oldpte); |
| 84 | if (!page || PageKsm(page)) |
| 85 | continue; |
| 86 | |
| 87 | /* Avoid TLB flush if possible */ |
| 88 | if (pte_protnone(oldpte)) |
| 89 | continue; |
| 90 | |
| 91 | /* |
| 92 | * Don't mess with PTEs if page is already on the node |
| 93 | * a single-threaded process is running on. |
| 94 | */ |
| 95 | if (target_node == page_to_nid(page)) |
| 96 | continue; |
| 97 | } |
| 98 | |
| 99 | ptent = ptep_modify_prot_start(mm, addr, pte); |
| 100 | ptent = pte_modify(ptent, newprot); |
| 101 | if (preserve_write) |
| 102 | ptent = pte_mk_savedwrite(ptent); |
| 103 | |
| 104 | /* Avoid taking write faults for known dirty pages */ |
| 105 | if (dirty_accountable && pte_dirty(ptent) && |
| 106 | (pte_soft_dirty(ptent) || |
| 107 | !(vma->vm_flags & VM_SOFTDIRTY))) { |
| 108 | ptent = pte_mkwrite(ptent); |
| 109 | } |
| 110 | ptep_modify_prot_commit(mm, addr, pte, ptent); |
| 111 | pages++; |
| 112 | } else if (IS_ENABLED(CONFIG_MIGRATION)) { |
| 113 | swp_entry_t entry = pte_to_swp_entry(oldpte); |
| 114 | |
| 115 | if (is_write_migration_entry(entry)) { |
| 116 | pte_t newpte; |
| 117 | /* |
| 118 | * A protection check is difficult so |
| 119 | * just be safe and disable write |
| 120 | */ |
| 121 | make_migration_entry_read(&entry); |
| 122 | newpte = swp_entry_to_pte(entry); |
| 123 | if (pte_swp_soft_dirty(oldpte)) |
| 124 | newpte = pte_swp_mksoft_dirty(newpte); |
| 125 | set_pte_at(mm, addr, pte, newpte); |
| 126 | |
| 127 | pages++; |
| 128 | } |
| 129 | |
| 130 | if (is_write_device_private_entry(entry)) { |
| 131 | pte_t newpte; |
| 132 | |
| 133 | /* |
| 134 | * We do not preserve soft-dirtiness. See |
| 135 | * copy_one_pte() for explanation. |
| 136 | */ |
| 137 | make_device_private_entry_read(&entry); |
| 138 | newpte = swp_entry_to_pte(entry); |
| 139 | set_pte_at(mm, addr, pte, newpte); |
| 140 | |
| 141 | pages++; |
| 142 | } |
| 143 | } |
| 144 | } while (pte++, addr += PAGE_SIZE, addr != end); |
| 145 | arch_leave_lazy_mmu_mode(); |
| 146 | pte_unmap_unlock(pte - 1, ptl); |
| 147 | |
| 148 | return pages; |
| 149 | } |
| 150 | |
| 151 | /* |
| 152 | * Used when setting automatic NUMA hinting protection where it is |
| 153 | * critical that a numa hinting PMD is not confused with a bad PMD. |
| 154 | */ |
| 155 | static inline int pmd_none_or_clear_bad_unless_trans_huge(pmd_t *pmd) |
| 156 | { |
| 157 | pmd_t pmdval = pmd_read_atomic(pmd); |
| 158 | |
| 159 | /* See pmd_none_or_trans_huge_or_clear_bad for info on barrier */ |
| 160 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 161 | barrier(); |
| 162 | #endif |
| 163 | |
| 164 | if (pmd_none(pmdval)) |
| 165 | return 1; |
| 166 | if (pmd_trans_huge(pmdval)) |
| 167 | return 0; |
| 168 | if (unlikely(pmd_bad(pmdval))) { |
| 169 | pmd_clear_bad(pmd); |
| 170 | return 1; |
| 171 | } |
| 172 | |
| 173 | return 0; |
| 174 | } |
| 175 | |
| 176 | static inline unsigned long change_pmd_range(struct vm_area_struct *vma, |
| 177 | pud_t *pud, unsigned long addr, unsigned long end, |
| 178 | pgprot_t newprot, int dirty_accountable, int prot_numa) |
| 179 | { |
| 180 | pmd_t *pmd; |
| 181 | struct mm_struct *mm = vma->vm_mm; |
| 182 | unsigned long next; |
| 183 | unsigned long pages = 0; |
| 184 | unsigned long nr_huge_updates = 0; |
| 185 | unsigned long mni_start = 0; |
| 186 | |
| 187 | pmd = pmd_offset(pud, addr); |
| 188 | do { |
| 189 | unsigned long this_pages; |
| 190 | |
| 191 | next = pmd_addr_end(addr, end); |
| 192 | |
| 193 | /* |
| 194 | * Automatic NUMA balancing walks the tables with mmap_sem |
| 195 | * held for read. It's possible a parallel update to occur |
| 196 | * between pmd_trans_huge() and a pmd_none_or_clear_bad() |
| 197 | * check leading to a false positive and clearing. |
| 198 | * Hence, it's necessary to atomically read the PMD value |
| 199 | * for all the checks. |
| 200 | */ |
| 201 | if (!is_swap_pmd(*pmd) && !pmd_devmap(*pmd) && |
| 202 | pmd_none_or_clear_bad_unless_trans_huge(pmd)) |
| 203 | goto next; |
| 204 | |
| 205 | /* invoke the mmu notifier if the pmd is populated */ |
| 206 | if (!mni_start) { |
| 207 | mni_start = addr; |
| 208 | mmu_notifier_invalidate_range_start(mm, mni_start, end); |
| 209 | } |
| 210 | |
| 211 | if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { |
| 212 | if (next - addr != HPAGE_PMD_SIZE) { |
| 213 | __split_huge_pmd(vma, pmd, addr, false, NULL); |
| 214 | } else { |
| 215 | int nr_ptes = change_huge_pmd(vma, pmd, addr, |
| 216 | newprot, prot_numa); |
| 217 | |
| 218 | if (nr_ptes) { |
| 219 | if (nr_ptes == HPAGE_PMD_NR) { |
| 220 | pages += HPAGE_PMD_NR; |
| 221 | nr_huge_updates++; |
| 222 | } |
| 223 | |
| 224 | /* huge pmd was handled */ |
| 225 | goto next; |
| 226 | } |
| 227 | } |
| 228 | /* fall through, the trans huge pmd just split */ |
| 229 | } |
| 230 | this_pages = change_pte_range(vma, pmd, addr, next, newprot, |
| 231 | dirty_accountable, prot_numa); |
| 232 | pages += this_pages; |
| 233 | next: |
| 234 | cond_resched(); |
| 235 | } while (pmd++, addr = next, addr != end); |
| 236 | |
| 237 | if (mni_start) |
| 238 | mmu_notifier_invalidate_range_end(mm, mni_start, end); |
| 239 | |
| 240 | if (nr_huge_updates) |
| 241 | count_vm_numa_events(NUMA_HUGE_PTE_UPDATES, nr_huge_updates); |
| 242 | return pages; |
| 243 | } |
| 244 | |
| 245 | static inline unsigned long change_pud_range(struct vm_area_struct *vma, |
| 246 | p4d_t *p4d, unsigned long addr, unsigned long end, |
| 247 | pgprot_t newprot, int dirty_accountable, int prot_numa) |
| 248 | { |
| 249 | pud_t *pud; |
| 250 | unsigned long next; |
| 251 | unsigned long pages = 0; |
| 252 | |
| 253 | pud = pud_offset(p4d, addr); |
| 254 | do { |
| 255 | next = pud_addr_end(addr, end); |
| 256 | if (pud_none_or_clear_bad(pud)) |
| 257 | continue; |
| 258 | pages += change_pmd_range(vma, pud, addr, next, newprot, |
| 259 | dirty_accountable, prot_numa); |
| 260 | } while (pud++, addr = next, addr != end); |
| 261 | |
| 262 | return pages; |
| 263 | } |
| 264 | |
| 265 | static inline unsigned long change_p4d_range(struct vm_area_struct *vma, |
| 266 | pgd_t *pgd, unsigned long addr, unsigned long end, |
| 267 | pgprot_t newprot, int dirty_accountable, int prot_numa) |
| 268 | { |
| 269 | p4d_t *p4d; |
| 270 | unsigned long next; |
| 271 | unsigned long pages = 0; |
| 272 | |
| 273 | p4d = p4d_offset(pgd, addr); |
| 274 | do { |
| 275 | next = p4d_addr_end(addr, end); |
| 276 | if (p4d_none_or_clear_bad(p4d)) |
| 277 | continue; |
| 278 | pages += change_pud_range(vma, p4d, addr, next, newprot, |
| 279 | dirty_accountable, prot_numa); |
| 280 | } while (p4d++, addr = next, addr != end); |
| 281 | |
| 282 | return pages; |
| 283 | } |
| 284 | |
| 285 | static unsigned long change_protection_range(struct vm_area_struct *vma, |
| 286 | unsigned long addr, unsigned long end, pgprot_t newprot, |
| 287 | int dirty_accountable, int prot_numa) |
| 288 | { |
| 289 | struct mm_struct *mm = vma->vm_mm; |
| 290 | pgd_t *pgd; |
| 291 | unsigned long next; |
| 292 | unsigned long start = addr; |
| 293 | unsigned long pages = 0; |
| 294 | |
| 295 | BUG_ON(addr >= end); |
| 296 | pgd = pgd_offset(mm, addr); |
| 297 | flush_cache_range(vma, addr, end); |
| 298 | inc_tlb_flush_pending(mm); |
| 299 | do { |
| 300 | next = pgd_addr_end(addr, end); |
| 301 | if (pgd_none_or_clear_bad(pgd)) |
| 302 | continue; |
| 303 | pages += change_p4d_range(vma, pgd, addr, next, newprot, |
| 304 | dirty_accountable, prot_numa); |
| 305 | } while (pgd++, addr = next, addr != end); |
| 306 | |
| 307 | /* Only flush the TLB if we actually modified any entries: */ |
| 308 | if (pages) |
| 309 | flush_tlb_range(vma, start, end); |
| 310 | dec_tlb_flush_pending(mm); |
| 311 | |
| 312 | return pages; |
| 313 | } |
| 314 | |
| 315 | unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, |
| 316 | unsigned long end, pgprot_t newprot, |
| 317 | int dirty_accountable, int prot_numa) |
| 318 | { |
| 319 | unsigned long pages; |
| 320 | |
| 321 | if (is_vm_hugetlb_page(vma)) |
| 322 | pages = hugetlb_change_protection(vma, start, end, newprot); |
| 323 | else |
| 324 | pages = change_protection_range(vma, start, end, newprot, dirty_accountable, prot_numa); |
| 325 | |
| 326 | return pages; |
| 327 | } |
| 328 | |
| 329 | static int prot_none_pte_entry(pte_t *pte, unsigned long addr, |
| 330 | unsigned long next, struct mm_walk *walk) |
| 331 | { |
| 332 | return pfn_modify_allowed(pte_pfn(*pte), *(pgprot_t *)(walk->private)) ? |
| 333 | 0 : -EACCES; |
| 334 | } |
| 335 | |
| 336 | static int prot_none_hugetlb_entry(pte_t *pte, unsigned long hmask, |
| 337 | unsigned long addr, unsigned long next, |
| 338 | struct mm_walk *walk) |
| 339 | { |
| 340 | return pfn_modify_allowed(pte_pfn(*pte), *(pgprot_t *)(walk->private)) ? |
| 341 | 0 : -EACCES; |
| 342 | } |
| 343 | |
| 344 | static int prot_none_test(unsigned long addr, unsigned long next, |
| 345 | struct mm_walk *walk) |
| 346 | { |
| 347 | return 0; |
| 348 | } |
| 349 | |
| 350 | static int prot_none_walk(struct vm_area_struct *vma, unsigned long start, |
| 351 | unsigned long end, unsigned long newflags) |
| 352 | { |
| 353 | pgprot_t new_pgprot = vm_get_page_prot(newflags); |
| 354 | struct mm_walk prot_none_walk = { |
| 355 | .pte_entry = prot_none_pte_entry, |
| 356 | .hugetlb_entry = prot_none_hugetlb_entry, |
| 357 | .test_walk = prot_none_test, |
| 358 | .mm = current->mm, |
| 359 | .private = &new_pgprot, |
| 360 | }; |
| 361 | |
| 362 | return walk_page_range(start, end, &prot_none_walk); |
| 363 | } |
| 364 | |
| 365 | int |
| 366 | mprotect_fixup(struct vm_area_struct *vma, struct vm_area_struct **pprev, |
| 367 | unsigned long start, unsigned long end, unsigned long newflags) |
| 368 | { |
| 369 | struct mm_struct *mm = vma->vm_mm; |
| 370 | unsigned long oldflags = vma->vm_flags; |
| 371 | long nrpages = (end - start) >> PAGE_SHIFT; |
| 372 | unsigned long charged = 0; |
| 373 | pgoff_t pgoff; |
| 374 | int error; |
| 375 | int dirty_accountable = 0; |
| 376 | |
| 377 | if (newflags == oldflags) { |
| 378 | *pprev = vma; |
| 379 | return 0; |
| 380 | } |
| 381 | |
| 382 | /* |
| 383 | * Do PROT_NONE PFN permission checks here when we can still |
| 384 | * bail out without undoing a lot of state. This is a rather |
| 385 | * uncommon case, so doesn't need to be very optimized. |
| 386 | */ |
| 387 | if (arch_has_pfn_modify_check() && |
| 388 | (vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && |
| 389 | (newflags & (VM_READ|VM_WRITE|VM_EXEC)) == 0) { |
| 390 | error = prot_none_walk(vma, start, end, newflags); |
| 391 | if (error) |
| 392 | return error; |
| 393 | } |
| 394 | |
| 395 | /* |
| 396 | * If we make a private mapping writable we increase our commit; |
| 397 | * but (without finer accounting) cannot reduce our commit if we |
| 398 | * make it unwritable again. hugetlb mapping were accounted for |
| 399 | * even if read-only so there is no need to account for them here |
| 400 | */ |
| 401 | if (newflags & VM_WRITE) { |
| 402 | /* Check space limits when area turns into data. */ |
| 403 | if (!may_expand_vm(mm, newflags, nrpages) && |
| 404 | may_expand_vm(mm, oldflags, nrpages)) |
| 405 | return -ENOMEM; |
| 406 | if (!(oldflags & (VM_ACCOUNT|VM_WRITE|VM_HUGETLB| |
| 407 | VM_SHARED|VM_NORESERVE))) { |
| 408 | charged = nrpages; |
| 409 | if (security_vm_enough_memory_mm(mm, charged)) |
| 410 | return -ENOMEM; |
| 411 | newflags |= VM_ACCOUNT; |
| 412 | } |
| 413 | } |
| 414 | |
| 415 | /* |
| 416 | * First try to merge with previous and/or next vma. |
| 417 | */ |
| 418 | pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); |
| 419 | *pprev = vma_merge(mm, *pprev, start, end, newflags, |
| 420 | vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), |
| 421 | vma->vm_userfaultfd_ctx, vma_get_anon_name(vma)); |
| 422 | if (*pprev) { |
| 423 | vma = *pprev; |
| 424 | VM_WARN_ON((vma->vm_flags ^ newflags) & ~VM_SOFTDIRTY); |
| 425 | goto success; |
| 426 | } |
| 427 | |
| 428 | *pprev = vma; |
| 429 | |
| 430 | if (start != vma->vm_start) { |
| 431 | error = split_vma(mm, vma, start, 1); |
| 432 | if (error) |
| 433 | goto fail; |
| 434 | } |
| 435 | |
| 436 | if (end != vma->vm_end) { |
| 437 | error = split_vma(mm, vma, end, 0); |
| 438 | if (error) |
| 439 | goto fail; |
| 440 | } |
| 441 | |
| 442 | success: |
| 443 | /* |
| 444 | * vm_flags and vm_page_prot are protected by the mmap_sem |
| 445 | * held in write mode. |
| 446 | */ |
| 447 | vma->vm_flags = newflags; |
| 448 | dirty_accountable = vma_wants_writenotify(vma, vma->vm_page_prot); |
| 449 | vma_set_page_prot(vma); |
| 450 | |
| 451 | change_protection(vma, start, end, vma->vm_page_prot, |
| 452 | dirty_accountable, 0); |
| 453 | |
| 454 | /* |
| 455 | * Private VM_LOCKED VMA becoming writable: trigger COW to avoid major |
| 456 | * fault on access. |
| 457 | */ |
| 458 | if ((oldflags & (VM_WRITE | VM_SHARED | VM_LOCKED)) == VM_LOCKED && |
| 459 | (newflags & VM_WRITE)) { |
| 460 | populate_vma_page_range(vma, start, end, NULL); |
| 461 | } |
| 462 | |
| 463 | vm_stat_account(mm, oldflags, -nrpages); |
| 464 | vm_stat_account(mm, newflags, nrpages); |
| 465 | perf_event_mmap(vma); |
| 466 | return 0; |
| 467 | |
| 468 | fail: |
| 469 | vm_unacct_memory(charged); |
| 470 | return error; |
| 471 | } |
| 472 | |
| 473 | /* |
| 474 | * pkey==-1 when doing a legacy mprotect() |
| 475 | */ |
| 476 | static int do_mprotect_pkey(unsigned long start, size_t len, |
| 477 | unsigned long prot, int pkey) |
| 478 | { |
| 479 | unsigned long nstart, end, tmp, reqprot; |
| 480 | struct vm_area_struct *vma, *prev; |
| 481 | int error = -EINVAL; |
| 482 | const int grows = prot & (PROT_GROWSDOWN|PROT_GROWSUP); |
| 483 | const bool rier = (current->personality & READ_IMPLIES_EXEC) && |
| 484 | (prot & PROT_READ); |
| 485 | |
| 486 | prot &= ~(PROT_GROWSDOWN|PROT_GROWSUP); |
| 487 | if (grows == (PROT_GROWSDOWN|PROT_GROWSUP)) /* can't be both */ |
| 488 | return -EINVAL; |
| 489 | |
| 490 | if (start & ~PAGE_MASK) |
| 491 | return -EINVAL; |
| 492 | if (!len) |
| 493 | return 0; |
| 494 | len = PAGE_ALIGN(len); |
| 495 | end = start + len; |
| 496 | if (end <= start) |
| 497 | return -ENOMEM; |
| 498 | if (!arch_validate_prot(prot)) |
| 499 | return -EINVAL; |
| 500 | |
| 501 | reqprot = prot; |
| 502 | |
| 503 | if (down_write_killable(¤t->mm->mmap_sem)) |
| 504 | return -EINTR; |
| 505 | |
| 506 | /* |
| 507 | * If userspace did not allocate the pkey, do not let |
| 508 | * them use it here. |
| 509 | */ |
| 510 | error = -EINVAL; |
| 511 | if ((pkey != -1) && !mm_pkey_is_allocated(current->mm, pkey)) |
| 512 | goto out; |
| 513 | |
| 514 | vma = find_vma(current->mm, start); |
| 515 | error = -ENOMEM; |
| 516 | if (!vma) |
| 517 | goto out; |
| 518 | prev = vma->vm_prev; |
| 519 | if (unlikely(grows & PROT_GROWSDOWN)) { |
| 520 | if (vma->vm_start >= end) |
| 521 | goto out; |
| 522 | start = vma->vm_start; |
| 523 | error = -EINVAL; |
| 524 | if (!(vma->vm_flags & VM_GROWSDOWN)) |
| 525 | goto out; |
| 526 | } else { |
| 527 | if (vma->vm_start > start) |
| 528 | goto out; |
| 529 | if (unlikely(grows & PROT_GROWSUP)) { |
| 530 | end = vma->vm_end; |
| 531 | error = -EINVAL; |
| 532 | if (!(vma->vm_flags & VM_GROWSUP)) |
| 533 | goto out; |
| 534 | } |
| 535 | } |
| 536 | if (start > vma->vm_start) |
| 537 | prev = vma; |
| 538 | |
| 539 | for (nstart = start ; ; ) { |
| 540 | unsigned long mask_off_old_flags; |
| 541 | unsigned long newflags; |
| 542 | int new_vma_pkey; |
| 543 | |
| 544 | /* Here we know that vma->vm_start <= nstart < vma->vm_end. */ |
| 545 | |
| 546 | /* Does the application expect PROT_READ to imply PROT_EXEC */ |
| 547 | if (rier && (vma->vm_flags & VM_MAYEXEC)) |
| 548 | prot |= PROT_EXEC; |
| 549 | |
| 550 | /* |
| 551 | * Each mprotect() call explicitly passes r/w/x permissions. |
| 552 | * If a permission is not passed to mprotect(), it must be |
| 553 | * cleared from the VMA. |
| 554 | */ |
| 555 | mask_off_old_flags = VM_READ | VM_WRITE | VM_EXEC | |
| 556 | ARCH_VM_PKEY_FLAGS; |
| 557 | |
| 558 | new_vma_pkey = arch_override_mprotect_pkey(vma, prot, pkey); |
| 559 | newflags = calc_vm_prot_bits(prot, new_vma_pkey); |
| 560 | newflags |= (vma->vm_flags & ~mask_off_old_flags); |
| 561 | |
| 562 | /* newflags >> 4 shift VM_MAY% in place of VM_% */ |
| 563 | if ((newflags & ~(newflags >> 4)) & (VM_READ | VM_WRITE | VM_EXEC)) { |
| 564 | error = -EACCES; |
| 565 | goto out; |
| 566 | } |
| 567 | |
| 568 | error = security_file_mprotect(vma, reqprot, prot); |
| 569 | if (error) |
| 570 | goto out; |
| 571 | |
| 572 | tmp = vma->vm_end; |
| 573 | if (tmp > end) |
| 574 | tmp = end; |
| 575 | error = mprotect_fixup(vma, &prev, nstart, tmp, newflags); |
| 576 | if (error) |
| 577 | goto out; |
| 578 | nstart = tmp; |
| 579 | |
| 580 | if (nstart < prev->vm_end) |
| 581 | nstart = prev->vm_end; |
| 582 | if (nstart >= end) |
| 583 | goto out; |
| 584 | |
| 585 | vma = prev->vm_next; |
| 586 | if (!vma || vma->vm_start != nstart) { |
| 587 | error = -ENOMEM; |
| 588 | goto out; |
| 589 | } |
| 590 | prot = reqprot; |
| 591 | } |
| 592 | out: |
| 593 | up_write(¤t->mm->mmap_sem); |
| 594 | return error; |
| 595 | } |
| 596 | |
| 597 | SYSCALL_DEFINE3(mprotect, unsigned long, start, size_t, len, |
| 598 | unsigned long, prot) |
| 599 | { |
| 600 | return do_mprotect_pkey(start, len, prot, -1); |
| 601 | } |
| 602 | |
| 603 | #ifdef CONFIG_ARCH_HAS_PKEYS |
| 604 | |
| 605 | SYSCALL_DEFINE4(pkey_mprotect, unsigned long, start, size_t, len, |
| 606 | unsigned long, prot, int, pkey) |
| 607 | { |
| 608 | return do_mprotect_pkey(start, len, prot, pkey); |
| 609 | } |
| 610 | |
| 611 | SYSCALL_DEFINE2(pkey_alloc, unsigned long, flags, unsigned long, init_val) |
| 612 | { |
| 613 | int pkey; |
| 614 | int ret; |
| 615 | |
| 616 | /* No flags supported yet. */ |
| 617 | if (flags) |
| 618 | return -EINVAL; |
| 619 | /* check for unsupported init values */ |
| 620 | if (init_val & ~PKEY_ACCESS_MASK) |
| 621 | return -EINVAL; |
| 622 | |
| 623 | down_write(¤t->mm->mmap_sem); |
| 624 | pkey = mm_pkey_alloc(current->mm); |
| 625 | |
| 626 | ret = -ENOSPC; |
| 627 | if (pkey == -1) |
| 628 | goto out; |
| 629 | |
| 630 | ret = arch_set_user_pkey_access(current, pkey, init_val); |
| 631 | if (ret) { |
| 632 | mm_pkey_free(current->mm, pkey); |
| 633 | goto out; |
| 634 | } |
| 635 | ret = pkey; |
| 636 | out: |
| 637 | up_write(¤t->mm->mmap_sem); |
| 638 | return ret; |
| 639 | } |
| 640 | |
| 641 | SYSCALL_DEFINE1(pkey_free, int, pkey) |
| 642 | { |
| 643 | int ret; |
| 644 | |
| 645 | down_write(¤t->mm->mmap_sem); |
| 646 | ret = mm_pkey_free(current->mm, pkey); |
| 647 | up_write(¤t->mm->mmap_sem); |
| 648 | |
| 649 | /* |
| 650 | * We could provie warnings or errors if any VMA still |
| 651 | * has the pkey set here. |
| 652 | */ |
| 653 | return ret; |
| 654 | } |
| 655 | |
| 656 | #endif /* CONFIG_ARCH_HAS_PKEYS */ |