rjw | 1f88458 | 2022-01-06 17:20:42 +0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Slab allocator functions that are independent of the allocator strategy |
| 4 | * |
| 5 | * (C) 2012 Christoph Lameter <cl@linux.com> |
| 6 | */ |
| 7 | #include <linux/slab.h> |
| 8 | |
| 9 | #include <linux/mm.h> |
| 10 | #include <linux/poison.h> |
| 11 | #include <linux/interrupt.h> |
| 12 | #include <linux/memory.h> |
| 13 | #include <linux/compiler.h> |
| 14 | #include <linux/module.h> |
| 15 | #include <linux/cpu.h> |
| 16 | #include <linux/uaccess.h> |
| 17 | #include <linux/seq_file.h> |
| 18 | #include <linux/proc_fs.h> |
| 19 | #include <asm/cacheflush.h> |
| 20 | #include <asm/tlbflush.h> |
| 21 | #include <asm/page.h> |
| 22 | #include <linux/memcontrol.h> |
| 23 | |
| 24 | #define CREATE_TRACE_POINTS |
| 25 | #include <trace/events/kmem.h> |
| 26 | |
| 27 | #include "slab.h" |
| 28 | |
| 29 | enum slab_state slab_state; |
| 30 | LIST_HEAD(slab_caches); |
| 31 | DEFINE_MUTEX(slab_mutex); |
| 32 | struct kmem_cache *kmem_cache; |
| 33 | |
| 34 | static LIST_HEAD(slab_caches_to_rcu_destroy); |
| 35 | static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work); |
| 36 | static DECLARE_WORK(slab_caches_to_rcu_destroy_work, |
| 37 | slab_caches_to_rcu_destroy_workfn); |
| 38 | |
| 39 | /* |
| 40 | * Set of flags that will prevent slab merging |
| 41 | */ |
| 42 | #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ |
| 43 | SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \ |
| 44 | SLAB_FAILSLAB | SLAB_KASAN) |
| 45 | |
| 46 | #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \ |
| 47 | SLAB_ACCOUNT) |
| 48 | |
| 49 | /* |
| 50 | * Merge control. If this is set then no merging of slab caches will occur. |
| 51 | */ |
| 52 | static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT); |
| 53 | |
| 54 | static int __init setup_slab_nomerge(char *str) |
| 55 | { |
| 56 | slab_nomerge = true; |
| 57 | return 1; |
| 58 | } |
| 59 | |
| 60 | #ifdef CONFIG_SLUB |
| 61 | __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0); |
| 62 | #endif |
| 63 | |
| 64 | __setup("slab_nomerge", setup_slab_nomerge); |
| 65 | |
| 66 | /* |
| 67 | * Determine the size of a slab object |
| 68 | */ |
| 69 | unsigned int kmem_cache_size(struct kmem_cache *s) |
| 70 | { |
| 71 | return s->object_size; |
| 72 | } |
| 73 | EXPORT_SYMBOL(kmem_cache_size); |
| 74 | |
| 75 | #ifdef CONFIG_DEBUG_VM |
| 76 | static int kmem_cache_sanity_check(const char *name, size_t size) |
| 77 | { |
| 78 | struct kmem_cache *s = NULL; |
| 79 | |
| 80 | if (!name || in_interrupt() || size < sizeof(void *) || |
| 81 | size > KMALLOC_MAX_SIZE) { |
| 82 | pr_err("kmem_cache_create(%s) integrity check failed\n", name); |
| 83 | return -EINVAL; |
| 84 | } |
| 85 | |
| 86 | list_for_each_entry(s, &slab_caches, list) { |
| 87 | char tmp; |
| 88 | int res; |
| 89 | |
| 90 | /* |
| 91 | * This happens when the module gets unloaded and doesn't |
| 92 | * destroy its slab cache and no-one else reuses the vmalloc |
| 93 | * area of the module. Print a warning. |
| 94 | */ |
| 95 | res = probe_kernel_address(s->name, tmp); |
| 96 | if (res) { |
| 97 | pr_err("Slab cache with size %d has lost its name\n", |
| 98 | s->object_size); |
| 99 | continue; |
| 100 | } |
| 101 | } |
| 102 | |
| 103 | WARN_ON(strchr(name, ' ')); /* It confuses parsers */ |
| 104 | return 0; |
| 105 | } |
| 106 | #else |
| 107 | static inline int kmem_cache_sanity_check(const char *name, size_t size) |
| 108 | { |
| 109 | return 0; |
| 110 | } |
| 111 | #endif |
| 112 | |
| 113 | void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p) |
| 114 | { |
| 115 | size_t i; |
| 116 | |
| 117 | for (i = 0; i < nr; i++) { |
| 118 | if (s) |
| 119 | kmem_cache_free(s, p[i]); |
| 120 | else |
| 121 | kfree(p[i]); |
| 122 | } |
| 123 | } |
| 124 | |
| 125 | int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr, |
| 126 | void **p) |
| 127 | { |
| 128 | size_t i; |
| 129 | |
| 130 | for (i = 0; i < nr; i++) { |
| 131 | void *x = p[i] = kmem_cache_alloc(s, flags); |
| 132 | if (!x) { |
| 133 | __kmem_cache_free_bulk(s, i, p); |
| 134 | return 0; |
| 135 | } |
| 136 | } |
| 137 | return i; |
| 138 | } |
| 139 | |
| 140 | #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB) |
| 141 | |
| 142 | LIST_HEAD(slab_root_caches); |
| 143 | |
| 144 | void slab_init_memcg_params(struct kmem_cache *s) |
| 145 | { |
| 146 | s->memcg_params.root_cache = NULL; |
| 147 | RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL); |
| 148 | INIT_LIST_HEAD(&s->memcg_params.children); |
| 149 | } |
| 150 | |
| 151 | static int init_memcg_params(struct kmem_cache *s, |
| 152 | struct mem_cgroup *memcg, struct kmem_cache *root_cache) |
| 153 | { |
| 154 | struct memcg_cache_array *arr; |
| 155 | |
| 156 | if (root_cache) { |
| 157 | s->memcg_params.root_cache = root_cache; |
| 158 | s->memcg_params.memcg = memcg; |
| 159 | INIT_LIST_HEAD(&s->memcg_params.children_node); |
| 160 | INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node); |
| 161 | return 0; |
| 162 | } |
| 163 | |
| 164 | slab_init_memcg_params(s); |
| 165 | |
| 166 | if (!memcg_nr_cache_ids) |
| 167 | return 0; |
| 168 | |
| 169 | arr = kvzalloc(sizeof(struct memcg_cache_array) + |
| 170 | memcg_nr_cache_ids * sizeof(void *), |
| 171 | GFP_KERNEL); |
| 172 | if (!arr) |
| 173 | return -ENOMEM; |
| 174 | |
| 175 | RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr); |
| 176 | return 0; |
| 177 | } |
| 178 | |
| 179 | static void destroy_memcg_params(struct kmem_cache *s) |
| 180 | { |
| 181 | if (is_root_cache(s)) |
| 182 | kvfree(rcu_access_pointer(s->memcg_params.memcg_caches)); |
| 183 | } |
| 184 | |
| 185 | static void free_memcg_params(struct rcu_head *rcu) |
| 186 | { |
| 187 | struct memcg_cache_array *old; |
| 188 | |
| 189 | old = container_of(rcu, struct memcg_cache_array, rcu); |
| 190 | kvfree(old); |
| 191 | } |
| 192 | |
| 193 | static int update_memcg_params(struct kmem_cache *s, int new_array_size) |
| 194 | { |
| 195 | struct memcg_cache_array *old, *new; |
| 196 | |
| 197 | new = kvzalloc(sizeof(struct memcg_cache_array) + |
| 198 | new_array_size * sizeof(void *), GFP_KERNEL); |
| 199 | if (!new) |
| 200 | return -ENOMEM; |
| 201 | |
| 202 | old = rcu_dereference_protected(s->memcg_params.memcg_caches, |
| 203 | lockdep_is_held(&slab_mutex)); |
| 204 | if (old) |
| 205 | memcpy(new->entries, old->entries, |
| 206 | memcg_nr_cache_ids * sizeof(void *)); |
| 207 | |
| 208 | rcu_assign_pointer(s->memcg_params.memcg_caches, new); |
| 209 | if (old) |
| 210 | call_rcu(&old->rcu, free_memcg_params); |
| 211 | return 0; |
| 212 | } |
| 213 | |
| 214 | int memcg_update_all_caches(int num_memcgs) |
| 215 | { |
| 216 | struct kmem_cache *s; |
| 217 | int ret = 0; |
| 218 | |
| 219 | mutex_lock(&slab_mutex); |
| 220 | list_for_each_entry(s, &slab_root_caches, root_caches_node) { |
| 221 | ret = update_memcg_params(s, num_memcgs); |
| 222 | /* |
| 223 | * Instead of freeing the memory, we'll just leave the caches |
| 224 | * up to this point in an updated state. |
| 225 | */ |
| 226 | if (ret) |
| 227 | break; |
| 228 | } |
| 229 | mutex_unlock(&slab_mutex); |
| 230 | return ret; |
| 231 | } |
| 232 | |
| 233 | void memcg_link_cache(struct kmem_cache *s) |
| 234 | { |
| 235 | if (is_root_cache(s)) { |
| 236 | list_add(&s->root_caches_node, &slab_root_caches); |
| 237 | } else { |
| 238 | list_add(&s->memcg_params.children_node, |
| 239 | &s->memcg_params.root_cache->memcg_params.children); |
| 240 | list_add(&s->memcg_params.kmem_caches_node, |
| 241 | &s->memcg_params.memcg->kmem_caches); |
| 242 | } |
| 243 | } |
| 244 | |
| 245 | static void memcg_unlink_cache(struct kmem_cache *s) |
| 246 | { |
| 247 | if (is_root_cache(s)) { |
| 248 | list_del(&s->root_caches_node); |
| 249 | } else { |
| 250 | list_del(&s->memcg_params.children_node); |
| 251 | list_del(&s->memcg_params.kmem_caches_node); |
| 252 | } |
| 253 | } |
| 254 | #else |
| 255 | static inline int init_memcg_params(struct kmem_cache *s, |
| 256 | struct mem_cgroup *memcg, struct kmem_cache *root_cache) |
| 257 | { |
| 258 | return 0; |
| 259 | } |
| 260 | |
| 261 | static inline void destroy_memcg_params(struct kmem_cache *s) |
| 262 | { |
| 263 | } |
| 264 | |
| 265 | static inline void memcg_unlink_cache(struct kmem_cache *s) |
| 266 | { |
| 267 | } |
| 268 | #endif /* CONFIG_MEMCG && !CONFIG_SLOB */ |
| 269 | |
| 270 | /* |
| 271 | * Find a mergeable slab cache |
| 272 | */ |
| 273 | int slab_unmergeable(struct kmem_cache *s) |
| 274 | { |
| 275 | if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE)) |
| 276 | return 1; |
| 277 | |
| 278 | if (!is_root_cache(s)) |
| 279 | return 1; |
| 280 | |
| 281 | if (s->ctor) |
| 282 | return 1; |
| 283 | |
| 284 | /* |
| 285 | * We may have set a slab to be unmergeable during bootstrap. |
| 286 | */ |
| 287 | if (s->refcount < 0) |
| 288 | return 1; |
| 289 | |
| 290 | return 0; |
| 291 | } |
| 292 | |
| 293 | struct kmem_cache *find_mergeable(size_t size, size_t align, |
| 294 | unsigned long flags, const char *name, void (*ctor)(void *)) |
| 295 | { |
| 296 | struct kmem_cache *s; |
| 297 | |
| 298 | if (slab_nomerge) |
| 299 | return NULL; |
| 300 | |
| 301 | if (ctor) |
| 302 | return NULL; |
| 303 | |
| 304 | size = ALIGN(size, sizeof(void *)); |
| 305 | align = calculate_alignment(flags, align, size); |
| 306 | size = ALIGN(size, align); |
| 307 | flags = kmem_cache_flags(size, flags, name, NULL); |
| 308 | |
| 309 | if (flags & SLAB_NEVER_MERGE) |
| 310 | return NULL; |
| 311 | |
| 312 | list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) { |
| 313 | if (slab_unmergeable(s)) |
| 314 | continue; |
| 315 | |
| 316 | if (size > s->size) |
| 317 | continue; |
| 318 | |
| 319 | if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME)) |
| 320 | continue; |
| 321 | /* |
| 322 | * Check if alignment is compatible. |
| 323 | * Courtesy of Adrian Drzewiecki |
| 324 | */ |
| 325 | if ((s->size & ~(align - 1)) != s->size) |
| 326 | continue; |
| 327 | |
| 328 | if (s->size - size >= sizeof(void *)) |
| 329 | continue; |
| 330 | |
| 331 | if (IS_ENABLED(CONFIG_SLAB) && align && |
| 332 | (align > s->align || s->align % align)) |
| 333 | continue; |
| 334 | |
| 335 | return s; |
| 336 | } |
| 337 | return NULL; |
| 338 | } |
| 339 | |
| 340 | /* |
| 341 | * Figure out what the alignment of the objects will be given a set of |
| 342 | * flags, a user specified alignment and the size of the objects. |
| 343 | */ |
| 344 | unsigned long calculate_alignment(unsigned long flags, |
| 345 | unsigned long align, unsigned long size) |
| 346 | { |
| 347 | /* |
| 348 | * If the user wants hardware cache aligned objects then follow that |
| 349 | * suggestion if the object is sufficiently large. |
| 350 | * |
| 351 | * The hardware cache alignment cannot override the specified |
| 352 | * alignment though. If that is greater then use it. |
| 353 | */ |
| 354 | if (flags & SLAB_HWCACHE_ALIGN) { |
| 355 | unsigned long ralign = cache_line_size(); |
| 356 | while (size <= ralign / 2) |
| 357 | ralign /= 2; |
| 358 | align = max(align, ralign); |
| 359 | } |
| 360 | |
| 361 | if (align < ARCH_SLAB_MINALIGN) |
| 362 | align = ARCH_SLAB_MINALIGN; |
| 363 | |
| 364 | return ALIGN(align, sizeof(void *)); |
| 365 | } |
| 366 | |
| 367 | static struct kmem_cache *create_cache(const char *name, |
| 368 | size_t object_size, size_t size, size_t align, |
| 369 | unsigned long flags, void (*ctor)(void *), |
| 370 | struct mem_cgroup *memcg, struct kmem_cache *root_cache) |
| 371 | { |
| 372 | struct kmem_cache *s; |
| 373 | int err; |
| 374 | |
| 375 | err = -ENOMEM; |
| 376 | s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL); |
| 377 | if (!s) |
| 378 | goto out; |
| 379 | |
| 380 | s->name = name; |
| 381 | s->object_size = object_size; |
| 382 | s->size = size; |
| 383 | s->align = align; |
| 384 | s->ctor = ctor; |
| 385 | |
| 386 | err = init_memcg_params(s, memcg, root_cache); |
| 387 | if (err) |
| 388 | goto out_free_cache; |
| 389 | |
| 390 | err = __kmem_cache_create(s, flags); |
| 391 | if (err) |
| 392 | goto out_free_cache; |
| 393 | |
| 394 | s->refcount = 1; |
| 395 | list_add(&s->list, &slab_caches); |
| 396 | memcg_link_cache(s); |
| 397 | out: |
| 398 | if (err) |
| 399 | return ERR_PTR(err); |
| 400 | return s; |
| 401 | |
| 402 | out_free_cache: |
| 403 | destroy_memcg_params(s); |
| 404 | kmem_cache_free(kmem_cache, s); |
| 405 | goto out; |
| 406 | } |
| 407 | |
| 408 | /* |
| 409 | * kmem_cache_create - Create a cache. |
| 410 | * @name: A string which is used in /proc/slabinfo to identify this cache. |
| 411 | * @size: The size of objects to be created in this cache. |
| 412 | * @align: The required alignment for the objects. |
| 413 | * @flags: SLAB flags |
| 414 | * @ctor: A constructor for the objects. |
| 415 | * |
| 416 | * Returns a ptr to the cache on success, NULL on failure. |
| 417 | * Cannot be called within a interrupt, but can be interrupted. |
| 418 | * The @ctor is run when new pages are allocated by the cache. |
| 419 | * |
| 420 | * The flags are |
| 421 | * |
| 422 | * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) |
| 423 | * to catch references to uninitialised memory. |
| 424 | * |
| 425 | * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check |
| 426 | * for buffer overruns. |
| 427 | * |
| 428 | * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware |
| 429 | * cacheline. This can be beneficial if you're counting cycles as closely |
| 430 | * as davem. |
| 431 | */ |
| 432 | struct kmem_cache * |
| 433 | kmem_cache_create(const char *name, size_t size, size_t align, |
| 434 | unsigned long flags, void (*ctor)(void *)) |
| 435 | { |
| 436 | struct kmem_cache *s = NULL; |
| 437 | const char *cache_name; |
| 438 | int err; |
| 439 | |
| 440 | get_online_cpus(); |
| 441 | get_online_mems(); |
| 442 | memcg_get_cache_ids(); |
| 443 | |
| 444 | mutex_lock(&slab_mutex); |
| 445 | |
| 446 | err = kmem_cache_sanity_check(name, size); |
| 447 | if (err) { |
| 448 | goto out_unlock; |
| 449 | } |
| 450 | |
| 451 | /* Refuse requests with allocator specific flags */ |
| 452 | if (flags & ~SLAB_FLAGS_PERMITTED) { |
| 453 | err = -EINVAL; |
| 454 | goto out_unlock; |
| 455 | } |
| 456 | |
| 457 | /* |
| 458 | * Some allocators will constraint the set of valid flags to a subset |
| 459 | * of all flags. We expect them to define CACHE_CREATE_MASK in this |
| 460 | * case, and we'll just provide them with a sanitized version of the |
| 461 | * passed flags. |
| 462 | */ |
| 463 | flags &= CACHE_CREATE_MASK; |
| 464 | |
| 465 | s = __kmem_cache_alias(name, size, align, flags, ctor); |
| 466 | if (s) |
| 467 | goto out_unlock; |
| 468 | |
| 469 | cache_name = kstrdup_const(name, GFP_KERNEL); |
| 470 | if (!cache_name) { |
| 471 | err = -ENOMEM; |
| 472 | goto out_unlock; |
| 473 | } |
| 474 | |
| 475 | s = create_cache(cache_name, size, size, |
| 476 | calculate_alignment(flags, align, size), |
| 477 | flags, ctor, NULL, NULL); |
| 478 | if (IS_ERR(s)) { |
| 479 | err = PTR_ERR(s); |
| 480 | kfree_const(cache_name); |
| 481 | } |
| 482 | |
| 483 | out_unlock: |
| 484 | mutex_unlock(&slab_mutex); |
| 485 | |
| 486 | memcg_put_cache_ids(); |
| 487 | put_online_mems(); |
| 488 | put_online_cpus(); |
| 489 | |
| 490 | if (err) { |
| 491 | if (flags & SLAB_PANIC) |
| 492 | panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n", |
| 493 | name, err); |
| 494 | else { |
| 495 | pr_warn("kmem_cache_create(%s) failed with error %d\n", |
| 496 | name, err); |
| 497 | dump_stack(); |
| 498 | } |
| 499 | return NULL; |
| 500 | } |
| 501 | return s; |
| 502 | } |
| 503 | EXPORT_SYMBOL(kmem_cache_create); |
| 504 | |
| 505 | static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work) |
| 506 | { |
| 507 | LIST_HEAD(to_destroy); |
| 508 | struct kmem_cache *s, *s2; |
| 509 | |
| 510 | /* |
| 511 | * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the |
| 512 | * @slab_caches_to_rcu_destroy list. The slab pages are freed |
| 513 | * through RCU and and the associated kmem_cache are dereferenced |
| 514 | * while freeing the pages, so the kmem_caches should be freed only |
| 515 | * after the pending RCU operations are finished. As rcu_barrier() |
| 516 | * is a pretty slow operation, we batch all pending destructions |
| 517 | * asynchronously. |
| 518 | */ |
| 519 | mutex_lock(&slab_mutex); |
| 520 | list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy); |
| 521 | mutex_unlock(&slab_mutex); |
| 522 | |
| 523 | if (list_empty(&to_destroy)) |
| 524 | return; |
| 525 | |
| 526 | rcu_barrier(); |
| 527 | |
| 528 | list_for_each_entry_safe(s, s2, &to_destroy, list) { |
| 529 | #ifdef SLAB_SUPPORTS_SYSFS |
| 530 | sysfs_slab_release(s); |
| 531 | #else |
| 532 | slab_kmem_cache_release(s); |
| 533 | #endif |
| 534 | } |
| 535 | } |
| 536 | |
| 537 | static int shutdown_cache(struct kmem_cache *s) |
| 538 | { |
| 539 | /* free asan quarantined objects */ |
| 540 | kasan_cache_shutdown(s); |
| 541 | |
| 542 | if (__kmem_cache_shutdown(s) != 0) |
| 543 | return -EBUSY; |
| 544 | |
| 545 | memcg_unlink_cache(s); |
| 546 | list_del(&s->list); |
| 547 | |
| 548 | if (s->flags & SLAB_TYPESAFE_BY_RCU) { |
| 549 | #ifdef SLAB_SUPPORTS_SYSFS |
| 550 | sysfs_slab_unlink(s); |
| 551 | #endif |
| 552 | list_add_tail(&s->list, &slab_caches_to_rcu_destroy); |
| 553 | schedule_work(&slab_caches_to_rcu_destroy_work); |
| 554 | } else { |
| 555 | #ifdef SLAB_SUPPORTS_SYSFS |
| 556 | sysfs_slab_unlink(s); |
| 557 | sysfs_slab_release(s); |
| 558 | #else |
| 559 | slab_kmem_cache_release(s); |
| 560 | #endif |
| 561 | } |
| 562 | |
| 563 | return 0; |
| 564 | } |
| 565 | |
| 566 | #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB) |
| 567 | /* |
| 568 | * memcg_create_kmem_cache - Create a cache for a memory cgroup. |
| 569 | * @memcg: The memory cgroup the new cache is for. |
| 570 | * @root_cache: The parent of the new cache. |
| 571 | * |
| 572 | * This function attempts to create a kmem cache that will serve allocation |
| 573 | * requests going from @memcg to @root_cache. The new cache inherits properties |
| 574 | * from its parent. |
| 575 | */ |
| 576 | void memcg_create_kmem_cache(struct mem_cgroup *memcg, |
| 577 | struct kmem_cache *root_cache) |
| 578 | { |
| 579 | static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */ |
| 580 | struct cgroup_subsys_state *css = &memcg->css; |
| 581 | struct memcg_cache_array *arr; |
| 582 | struct kmem_cache *s = NULL; |
| 583 | char *cache_name; |
| 584 | int idx; |
| 585 | |
| 586 | get_online_cpus(); |
| 587 | get_online_mems(); |
| 588 | |
| 589 | mutex_lock(&slab_mutex); |
| 590 | |
| 591 | /* |
| 592 | * The memory cgroup could have been offlined while the cache |
| 593 | * creation work was pending. |
| 594 | */ |
| 595 | if (memcg->kmem_state != KMEM_ONLINE) |
| 596 | goto out_unlock; |
| 597 | |
| 598 | idx = memcg_cache_id(memcg); |
| 599 | arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches, |
| 600 | lockdep_is_held(&slab_mutex)); |
| 601 | |
| 602 | /* |
| 603 | * Since per-memcg caches are created asynchronously on first |
| 604 | * allocation (see memcg_kmem_get_cache()), several threads can try to |
| 605 | * create the same cache, but only one of them may succeed. |
| 606 | */ |
| 607 | if (arr->entries[idx]) |
| 608 | goto out_unlock; |
| 609 | |
| 610 | cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf)); |
| 611 | cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name, |
| 612 | css->serial_nr, memcg_name_buf); |
| 613 | if (!cache_name) |
| 614 | goto out_unlock; |
| 615 | |
| 616 | s = create_cache(cache_name, root_cache->object_size, |
| 617 | root_cache->size, root_cache->align, |
| 618 | root_cache->flags & CACHE_CREATE_MASK, |
| 619 | root_cache->ctor, memcg, root_cache); |
| 620 | /* |
| 621 | * If we could not create a memcg cache, do not complain, because |
| 622 | * that's not critical at all as we can always proceed with the root |
| 623 | * cache. |
| 624 | */ |
| 625 | if (IS_ERR(s)) { |
| 626 | kfree(cache_name); |
| 627 | goto out_unlock; |
| 628 | } |
| 629 | |
| 630 | /* |
| 631 | * Since readers won't lock (see cache_from_memcg_idx()), we need a |
| 632 | * barrier here to ensure nobody will see the kmem_cache partially |
| 633 | * initialized. |
| 634 | */ |
| 635 | smp_wmb(); |
| 636 | arr->entries[idx] = s; |
| 637 | |
| 638 | out_unlock: |
| 639 | mutex_unlock(&slab_mutex); |
| 640 | |
| 641 | put_online_mems(); |
| 642 | put_online_cpus(); |
| 643 | } |
| 644 | |
| 645 | static void kmemcg_deactivate_workfn(struct work_struct *work) |
| 646 | { |
| 647 | struct kmem_cache *s = container_of(work, struct kmem_cache, |
| 648 | memcg_params.deact_work); |
| 649 | |
| 650 | get_online_cpus(); |
| 651 | get_online_mems(); |
| 652 | |
| 653 | mutex_lock(&slab_mutex); |
| 654 | |
| 655 | s->memcg_params.deact_fn(s); |
| 656 | |
| 657 | mutex_unlock(&slab_mutex); |
| 658 | |
| 659 | put_online_mems(); |
| 660 | put_online_cpus(); |
| 661 | |
| 662 | /* done, put the ref from slab_deactivate_memcg_cache_rcu_sched() */ |
| 663 | css_put(&s->memcg_params.memcg->css); |
| 664 | } |
| 665 | |
| 666 | static void kmemcg_deactivate_rcufn(struct rcu_head *head) |
| 667 | { |
| 668 | struct kmem_cache *s = container_of(head, struct kmem_cache, |
| 669 | memcg_params.deact_rcu_head); |
| 670 | |
| 671 | /* |
| 672 | * We need to grab blocking locks. Bounce to ->deact_work. The |
| 673 | * work item shares the space with the RCU head and can't be |
| 674 | * initialized eariler. |
| 675 | */ |
| 676 | INIT_WORK(&s->memcg_params.deact_work, kmemcg_deactivate_workfn); |
| 677 | queue_work(memcg_kmem_cache_wq, &s->memcg_params.deact_work); |
| 678 | } |
| 679 | |
| 680 | /** |
| 681 | * slab_deactivate_memcg_cache_rcu_sched - schedule deactivation after a |
| 682 | * sched RCU grace period |
| 683 | * @s: target kmem_cache |
| 684 | * @deact_fn: deactivation function to call |
| 685 | * |
| 686 | * Schedule @deact_fn to be invoked with online cpus, mems and slab_mutex |
| 687 | * held after a sched RCU grace period. The slab is guaranteed to stay |
| 688 | * alive until @deact_fn is finished. This is to be used from |
| 689 | * __kmemcg_cache_deactivate(). |
| 690 | */ |
| 691 | void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s, |
| 692 | void (*deact_fn)(struct kmem_cache *)) |
| 693 | { |
| 694 | if (WARN_ON_ONCE(is_root_cache(s)) || |
| 695 | WARN_ON_ONCE(s->memcg_params.deact_fn)) |
| 696 | return; |
| 697 | |
| 698 | /* pin memcg so that @s doesn't get destroyed in the middle */ |
| 699 | css_get(&s->memcg_params.memcg->css); |
| 700 | |
| 701 | s->memcg_params.deact_fn = deact_fn; |
| 702 | call_rcu_sched(&s->memcg_params.deact_rcu_head, kmemcg_deactivate_rcufn); |
| 703 | } |
| 704 | |
| 705 | void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg) |
| 706 | { |
| 707 | int idx; |
| 708 | struct memcg_cache_array *arr; |
| 709 | struct kmem_cache *s, *c; |
| 710 | |
| 711 | idx = memcg_cache_id(memcg); |
| 712 | |
| 713 | get_online_cpus(); |
| 714 | get_online_mems(); |
| 715 | |
| 716 | mutex_lock(&slab_mutex); |
| 717 | list_for_each_entry(s, &slab_root_caches, root_caches_node) { |
| 718 | arr = rcu_dereference_protected(s->memcg_params.memcg_caches, |
| 719 | lockdep_is_held(&slab_mutex)); |
| 720 | c = arr->entries[idx]; |
| 721 | if (!c) |
| 722 | continue; |
| 723 | |
| 724 | __kmemcg_cache_deactivate(c); |
| 725 | arr->entries[idx] = NULL; |
| 726 | } |
| 727 | mutex_unlock(&slab_mutex); |
| 728 | |
| 729 | put_online_mems(); |
| 730 | put_online_cpus(); |
| 731 | } |
| 732 | |
| 733 | void memcg_destroy_kmem_caches(struct mem_cgroup *memcg) |
| 734 | { |
| 735 | struct kmem_cache *s, *s2; |
| 736 | |
| 737 | get_online_cpus(); |
| 738 | get_online_mems(); |
| 739 | |
| 740 | mutex_lock(&slab_mutex); |
| 741 | list_for_each_entry_safe(s, s2, &memcg->kmem_caches, |
| 742 | memcg_params.kmem_caches_node) { |
| 743 | /* |
| 744 | * The cgroup is about to be freed and therefore has no charges |
| 745 | * left. Hence, all its caches must be empty by now. |
| 746 | */ |
| 747 | BUG_ON(shutdown_cache(s)); |
| 748 | } |
| 749 | mutex_unlock(&slab_mutex); |
| 750 | |
| 751 | put_online_mems(); |
| 752 | put_online_cpus(); |
| 753 | } |
| 754 | |
| 755 | static int shutdown_memcg_caches(struct kmem_cache *s) |
| 756 | { |
| 757 | struct memcg_cache_array *arr; |
| 758 | struct kmem_cache *c, *c2; |
| 759 | LIST_HEAD(busy); |
| 760 | int i; |
| 761 | |
| 762 | BUG_ON(!is_root_cache(s)); |
| 763 | |
| 764 | /* |
| 765 | * First, shutdown active caches, i.e. caches that belong to online |
| 766 | * memory cgroups. |
| 767 | */ |
| 768 | arr = rcu_dereference_protected(s->memcg_params.memcg_caches, |
| 769 | lockdep_is_held(&slab_mutex)); |
| 770 | for_each_memcg_cache_index(i) { |
| 771 | c = arr->entries[i]; |
| 772 | if (!c) |
| 773 | continue; |
| 774 | if (shutdown_cache(c)) |
| 775 | /* |
| 776 | * The cache still has objects. Move it to a temporary |
| 777 | * list so as not to try to destroy it for a second |
| 778 | * time while iterating over inactive caches below. |
| 779 | */ |
| 780 | list_move(&c->memcg_params.children_node, &busy); |
| 781 | else |
| 782 | /* |
| 783 | * The cache is empty and will be destroyed soon. Clear |
| 784 | * the pointer to it in the memcg_caches array so that |
| 785 | * it will never be accessed even if the root cache |
| 786 | * stays alive. |
| 787 | */ |
| 788 | arr->entries[i] = NULL; |
| 789 | } |
| 790 | |
| 791 | /* |
| 792 | * Second, shutdown all caches left from memory cgroups that are now |
| 793 | * offline. |
| 794 | */ |
| 795 | list_for_each_entry_safe(c, c2, &s->memcg_params.children, |
| 796 | memcg_params.children_node) |
| 797 | shutdown_cache(c); |
| 798 | |
| 799 | list_splice(&busy, &s->memcg_params.children); |
| 800 | |
| 801 | /* |
| 802 | * A cache being destroyed must be empty. In particular, this means |
| 803 | * that all per memcg caches attached to it must be empty too. |
| 804 | */ |
| 805 | if (!list_empty(&s->memcg_params.children)) |
| 806 | return -EBUSY; |
| 807 | return 0; |
| 808 | } |
| 809 | #else |
| 810 | static inline int shutdown_memcg_caches(struct kmem_cache *s) |
| 811 | { |
| 812 | return 0; |
| 813 | } |
| 814 | #endif /* CONFIG_MEMCG && !CONFIG_SLOB */ |
| 815 | |
| 816 | void slab_kmem_cache_release(struct kmem_cache *s) |
| 817 | { |
| 818 | __kmem_cache_release(s); |
| 819 | destroy_memcg_params(s); |
| 820 | kfree_const(s->name); |
| 821 | kmem_cache_free(kmem_cache, s); |
| 822 | } |
| 823 | |
| 824 | void kmem_cache_destroy(struct kmem_cache *s) |
| 825 | { |
| 826 | int err; |
| 827 | |
| 828 | if (unlikely(!s)) |
| 829 | return; |
| 830 | |
| 831 | get_online_cpus(); |
| 832 | get_online_mems(); |
| 833 | |
| 834 | mutex_lock(&slab_mutex); |
| 835 | |
| 836 | s->refcount--; |
| 837 | if (s->refcount) |
| 838 | goto out_unlock; |
| 839 | |
| 840 | err = shutdown_memcg_caches(s); |
| 841 | if (!err) |
| 842 | err = shutdown_cache(s); |
| 843 | |
| 844 | if (err) { |
| 845 | pr_err("kmem_cache_destroy %s: Slab cache still has objects\n", |
| 846 | s->name); |
| 847 | dump_stack(); |
| 848 | } |
| 849 | out_unlock: |
| 850 | mutex_unlock(&slab_mutex); |
| 851 | |
| 852 | put_online_mems(); |
| 853 | put_online_cpus(); |
| 854 | } |
| 855 | EXPORT_SYMBOL(kmem_cache_destroy); |
| 856 | |
| 857 | /** |
| 858 | * kmem_cache_shrink - Shrink a cache. |
| 859 | * @cachep: The cache to shrink. |
| 860 | * |
| 861 | * Releases as many slabs as possible for a cache. |
| 862 | * To help debugging, a zero exit status indicates all slabs were released. |
| 863 | */ |
| 864 | int kmem_cache_shrink(struct kmem_cache *cachep) |
| 865 | { |
| 866 | int ret; |
| 867 | |
| 868 | get_online_cpus(); |
| 869 | get_online_mems(); |
| 870 | kasan_cache_shrink(cachep); |
| 871 | ret = __kmem_cache_shrink(cachep); |
| 872 | put_online_mems(); |
| 873 | put_online_cpus(); |
| 874 | return ret; |
| 875 | } |
| 876 | EXPORT_SYMBOL(kmem_cache_shrink); |
| 877 | |
| 878 | bool slab_is_available(void) |
| 879 | { |
| 880 | return slab_state >= UP; |
| 881 | } |
| 882 | |
| 883 | #ifndef CONFIG_SLOB |
| 884 | /* Create a cache during boot when no slab services are available yet */ |
| 885 | void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size, |
| 886 | unsigned long flags) |
| 887 | { |
| 888 | int err; |
| 889 | |
| 890 | s->name = name; |
| 891 | s->size = s->object_size = size; |
| 892 | s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size); |
| 893 | |
| 894 | slab_init_memcg_params(s); |
| 895 | |
| 896 | err = __kmem_cache_create(s, flags); |
| 897 | |
| 898 | if (err) |
| 899 | panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n", |
| 900 | name, size, err); |
| 901 | |
| 902 | s->refcount = -1; /* Exempt from merging for now */ |
| 903 | } |
| 904 | |
| 905 | struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size, |
| 906 | unsigned long flags) |
| 907 | { |
| 908 | struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); |
| 909 | |
| 910 | if (!s) |
| 911 | panic("Out of memory when creating slab %s\n", name); |
| 912 | |
| 913 | create_boot_cache(s, name, size, flags); |
| 914 | list_add(&s->list, &slab_caches); |
| 915 | memcg_link_cache(s); |
| 916 | s->refcount = 1; |
| 917 | return s; |
| 918 | } |
| 919 | |
| 920 | struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1]; |
| 921 | EXPORT_SYMBOL(kmalloc_caches); |
| 922 | |
| 923 | #ifdef CONFIG_ZONE_DMA |
| 924 | struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1]; |
| 925 | EXPORT_SYMBOL(kmalloc_dma_caches); |
| 926 | #endif |
| 927 | |
| 928 | /* |
| 929 | * Conversion table for small slabs sizes / 8 to the index in the |
| 930 | * kmalloc array. This is necessary for slabs < 192 since we have non power |
| 931 | * of two cache sizes there. The size of larger slabs can be determined using |
| 932 | * fls. |
| 933 | */ |
| 934 | static s8 size_index[24] = { |
| 935 | 3, /* 8 */ |
| 936 | 4, /* 16 */ |
| 937 | 5, /* 24 */ |
| 938 | 5, /* 32 */ |
| 939 | 6, /* 40 */ |
| 940 | 6, /* 48 */ |
| 941 | 6, /* 56 */ |
| 942 | 6, /* 64 */ |
| 943 | 1, /* 72 */ |
| 944 | 1, /* 80 */ |
| 945 | 1, /* 88 */ |
| 946 | 1, /* 96 */ |
| 947 | 7, /* 104 */ |
| 948 | 7, /* 112 */ |
| 949 | 7, /* 120 */ |
| 950 | 7, /* 128 */ |
| 951 | 2, /* 136 */ |
| 952 | 2, /* 144 */ |
| 953 | 2, /* 152 */ |
| 954 | 2, /* 160 */ |
| 955 | 2, /* 168 */ |
| 956 | 2, /* 176 */ |
| 957 | 2, /* 184 */ |
| 958 | 2 /* 192 */ |
| 959 | }; |
| 960 | |
| 961 | static inline int size_index_elem(size_t bytes) |
| 962 | { |
| 963 | return (bytes - 1) / 8; |
| 964 | } |
| 965 | |
| 966 | /* |
| 967 | * Find the kmem_cache structure that serves a given size of |
| 968 | * allocation |
| 969 | */ |
| 970 | struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags) |
| 971 | { |
| 972 | int index; |
| 973 | |
| 974 | if (size <= 192) { |
| 975 | if (!size) |
| 976 | return ZERO_SIZE_PTR; |
| 977 | |
| 978 | index = size_index[size_index_elem(size)]; |
| 979 | } else { |
| 980 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { |
| 981 | WARN_ON(1); |
| 982 | return NULL; |
| 983 | } |
| 984 | index = fls(size - 1); |
| 985 | } |
| 986 | |
| 987 | #ifdef CONFIG_ZONE_DMA |
| 988 | if (unlikely((flags & GFP_DMA))) |
| 989 | return kmalloc_dma_caches[index]; |
| 990 | |
| 991 | #endif |
| 992 | return kmalloc_caches[index]; |
| 993 | } |
| 994 | |
| 995 | /* |
| 996 | * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time. |
| 997 | * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is |
| 998 | * kmalloc-67108864. |
| 999 | */ |
| 1000 | const struct kmalloc_info_struct kmalloc_info[] __initconst = { |
| 1001 | {NULL, 0}, {"kmalloc-96", 96}, |
| 1002 | {"kmalloc-192", 192}, {"kmalloc-8", 8}, |
| 1003 | {"kmalloc-16", 16}, {"kmalloc-32", 32}, |
| 1004 | {"kmalloc-64", 64}, {"kmalloc-128", 128}, |
| 1005 | {"kmalloc-256", 256}, {"kmalloc-512", 512}, |
| 1006 | {"kmalloc-1024", 1024}, {"kmalloc-2048", 2048}, |
| 1007 | {"kmalloc-4096", 4096}, {"kmalloc-8192", 8192}, |
| 1008 | {"kmalloc-16384", 16384}, {"kmalloc-32768", 32768}, |
| 1009 | {"kmalloc-65536", 65536}, {"kmalloc-131072", 131072}, |
| 1010 | {"kmalloc-262144", 262144}, {"kmalloc-524288", 524288}, |
| 1011 | {"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152}, |
| 1012 | {"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608}, |
| 1013 | {"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432}, |
| 1014 | {"kmalloc-67108864", 67108864} |
| 1015 | }; |
| 1016 | |
| 1017 | /* |
| 1018 | * Patch up the size_index table if we have strange large alignment |
| 1019 | * requirements for the kmalloc array. This is only the case for |
| 1020 | * MIPS it seems. The standard arches will not generate any code here. |
| 1021 | * |
| 1022 | * Largest permitted alignment is 256 bytes due to the way we |
| 1023 | * handle the index determination for the smaller caches. |
| 1024 | * |
| 1025 | * Make sure that nothing crazy happens if someone starts tinkering |
| 1026 | * around with ARCH_KMALLOC_MINALIGN |
| 1027 | */ |
| 1028 | void __init setup_kmalloc_cache_index_table(void) |
| 1029 | { |
| 1030 | int i; |
| 1031 | |
| 1032 | BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || |
| 1033 | (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); |
| 1034 | |
| 1035 | for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { |
| 1036 | int elem = size_index_elem(i); |
| 1037 | |
| 1038 | if (elem >= ARRAY_SIZE(size_index)) |
| 1039 | break; |
| 1040 | size_index[elem] = KMALLOC_SHIFT_LOW; |
| 1041 | } |
| 1042 | |
| 1043 | if (KMALLOC_MIN_SIZE >= 64) { |
| 1044 | /* |
| 1045 | * The 96 byte size cache is not used if the alignment |
| 1046 | * is 64 byte. |
| 1047 | */ |
| 1048 | for (i = 64 + 8; i <= 96; i += 8) |
| 1049 | size_index[size_index_elem(i)] = 7; |
| 1050 | |
| 1051 | } |
| 1052 | |
| 1053 | if (KMALLOC_MIN_SIZE >= 128) { |
| 1054 | /* |
| 1055 | * The 192 byte sized cache is not used if the alignment |
| 1056 | * is 128 byte. Redirect kmalloc to use the 256 byte cache |
| 1057 | * instead. |
| 1058 | */ |
| 1059 | for (i = 128 + 8; i <= 192; i += 8) |
| 1060 | size_index[size_index_elem(i)] = 8; |
| 1061 | } |
| 1062 | } |
| 1063 | |
| 1064 | static void __init new_kmalloc_cache(int idx, unsigned long flags) |
| 1065 | { |
| 1066 | kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name, |
| 1067 | kmalloc_info[idx].size, flags); |
| 1068 | } |
| 1069 | |
| 1070 | /* |
| 1071 | * Create the kmalloc array. Some of the regular kmalloc arrays |
| 1072 | * may already have been created because they were needed to |
| 1073 | * enable allocations for slab creation. |
| 1074 | */ |
| 1075 | void __init create_kmalloc_caches(unsigned long flags) |
| 1076 | { |
| 1077 | int i; |
| 1078 | |
| 1079 | for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) { |
| 1080 | if (!kmalloc_caches[i]) |
| 1081 | new_kmalloc_cache(i, flags); |
| 1082 | |
| 1083 | /* |
| 1084 | * Caches that are not of the two-to-the-power-of size. |
| 1085 | * These have to be created immediately after the |
| 1086 | * earlier power of two caches |
| 1087 | */ |
| 1088 | if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6) |
| 1089 | new_kmalloc_cache(1, flags); |
| 1090 | if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7) |
| 1091 | new_kmalloc_cache(2, flags); |
| 1092 | } |
| 1093 | |
| 1094 | /* Kmalloc array is now usable */ |
| 1095 | slab_state = UP; |
| 1096 | |
| 1097 | #ifdef CONFIG_ZONE_DMA |
| 1098 | for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) { |
| 1099 | struct kmem_cache *s = kmalloc_caches[i]; |
| 1100 | |
| 1101 | if (s) { |
| 1102 | int size = kmalloc_size(i); |
| 1103 | char *n = kasprintf(GFP_NOWAIT, |
| 1104 | "dma-kmalloc-%d", size); |
| 1105 | |
| 1106 | BUG_ON(!n); |
| 1107 | kmalloc_dma_caches[i] = create_kmalloc_cache(n, |
| 1108 | size, SLAB_CACHE_DMA | flags); |
| 1109 | } |
| 1110 | } |
| 1111 | #endif |
| 1112 | } |
| 1113 | #endif /* !CONFIG_SLOB */ |
| 1114 | |
| 1115 | /* |
| 1116 | * To avoid unnecessary overhead, we pass through large allocation requests |
| 1117 | * directly to the page allocator. We use __GFP_COMP, because we will need to |
| 1118 | * know the allocation order to free the pages properly in kfree. |
| 1119 | */ |
| 1120 | void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) |
| 1121 | { |
| 1122 | void *ret; |
| 1123 | struct page *page; |
| 1124 | |
| 1125 | flags |= __GFP_COMP; |
| 1126 | page = alloc_pages(flags, order); |
| 1127 | ret = page ? page_address(page) : NULL; |
| 1128 | kmemleak_alloc(ret, size, 1, flags); |
| 1129 | kasan_kmalloc_large(ret, size, flags); |
| 1130 | return ret; |
| 1131 | } |
| 1132 | EXPORT_SYMBOL(kmalloc_order); |
| 1133 | |
| 1134 | #ifdef CONFIG_TRACING |
| 1135 | void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) |
| 1136 | { |
| 1137 | void *ret = kmalloc_order(size, flags, order); |
| 1138 | trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags); |
| 1139 | return ret; |
| 1140 | } |
| 1141 | EXPORT_SYMBOL(kmalloc_order_trace); |
| 1142 | #endif |
| 1143 | |
| 1144 | #ifdef CONFIG_SLAB_FREELIST_RANDOM |
| 1145 | /* Randomize a generic freelist */ |
| 1146 | static void freelist_randomize(struct rnd_state *state, unsigned int *list, |
| 1147 | size_t count) |
| 1148 | { |
| 1149 | size_t i; |
| 1150 | unsigned int rand; |
| 1151 | |
| 1152 | for (i = 0; i < count; i++) |
| 1153 | list[i] = i; |
| 1154 | |
| 1155 | /* Fisher-Yates shuffle */ |
| 1156 | for (i = count - 1; i > 0; i--) { |
| 1157 | rand = prandom_u32_state(state); |
| 1158 | rand %= (i + 1); |
| 1159 | swap(list[i], list[rand]); |
| 1160 | } |
| 1161 | } |
| 1162 | |
| 1163 | /* Create a random sequence per cache */ |
| 1164 | int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count, |
| 1165 | gfp_t gfp) |
| 1166 | { |
| 1167 | struct rnd_state state; |
| 1168 | |
| 1169 | if (count < 2 || cachep->random_seq) |
| 1170 | return 0; |
| 1171 | |
| 1172 | cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp); |
| 1173 | if (!cachep->random_seq) |
| 1174 | return -ENOMEM; |
| 1175 | |
| 1176 | /* Get best entropy at this stage of boot */ |
| 1177 | prandom_seed_state(&state, get_random_long()); |
| 1178 | |
| 1179 | freelist_randomize(&state, cachep->random_seq, count); |
| 1180 | return 0; |
| 1181 | } |
| 1182 | |
| 1183 | /* Destroy the per-cache random freelist sequence */ |
| 1184 | void cache_random_seq_destroy(struct kmem_cache *cachep) |
| 1185 | { |
| 1186 | kfree(cachep->random_seq); |
| 1187 | cachep->random_seq = NULL; |
| 1188 | } |
| 1189 | #endif /* CONFIG_SLAB_FREELIST_RANDOM */ |
| 1190 | |
| 1191 | #ifdef CONFIG_SLABINFO |
| 1192 | |
| 1193 | #ifdef CONFIG_SLAB |
| 1194 | #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR) |
| 1195 | #else |
| 1196 | #define SLABINFO_RIGHTS S_IRUSR |
| 1197 | #endif |
| 1198 | |
| 1199 | static void print_slabinfo_header(struct seq_file *m) |
| 1200 | { |
| 1201 | /* |
| 1202 | * Output format version, so at least we can change it |
| 1203 | * without _too_ many complaints. |
| 1204 | */ |
| 1205 | #ifdef CONFIG_DEBUG_SLAB |
| 1206 | seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); |
| 1207 | #else |
| 1208 | seq_puts(m, "slabinfo - version: 2.1\n"); |
| 1209 | #endif |
| 1210 | seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>"); |
| 1211 | seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); |
| 1212 | seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); |
| 1213 | #ifdef CONFIG_DEBUG_SLAB |
| 1214 | seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); |
| 1215 | seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); |
| 1216 | #endif |
| 1217 | seq_putc(m, '\n'); |
| 1218 | } |
| 1219 | |
| 1220 | void *slab_start(struct seq_file *m, loff_t *pos) |
| 1221 | { |
| 1222 | mutex_lock(&slab_mutex); |
| 1223 | return seq_list_start(&slab_root_caches, *pos); |
| 1224 | } |
| 1225 | |
| 1226 | void *slab_next(struct seq_file *m, void *p, loff_t *pos) |
| 1227 | { |
| 1228 | return seq_list_next(p, &slab_root_caches, pos); |
| 1229 | } |
| 1230 | |
| 1231 | void slab_stop(struct seq_file *m, void *p) |
| 1232 | { |
| 1233 | mutex_unlock(&slab_mutex); |
| 1234 | } |
| 1235 | |
| 1236 | static void |
| 1237 | memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info) |
| 1238 | { |
| 1239 | struct kmem_cache *c; |
| 1240 | struct slabinfo sinfo; |
| 1241 | |
| 1242 | if (!is_root_cache(s)) |
| 1243 | return; |
| 1244 | |
| 1245 | for_each_memcg_cache(c, s) { |
| 1246 | memset(&sinfo, 0, sizeof(sinfo)); |
| 1247 | get_slabinfo(c, &sinfo); |
| 1248 | |
| 1249 | info->active_slabs += sinfo.active_slabs; |
| 1250 | info->num_slabs += sinfo.num_slabs; |
| 1251 | info->shared_avail += sinfo.shared_avail; |
| 1252 | info->active_objs += sinfo.active_objs; |
| 1253 | info->num_objs += sinfo.num_objs; |
| 1254 | } |
| 1255 | } |
| 1256 | |
| 1257 | static void cache_show(struct kmem_cache *s, struct seq_file *m) |
| 1258 | { |
| 1259 | struct slabinfo sinfo; |
| 1260 | |
| 1261 | memset(&sinfo, 0, sizeof(sinfo)); |
| 1262 | get_slabinfo(s, &sinfo); |
| 1263 | |
| 1264 | memcg_accumulate_slabinfo(s, &sinfo); |
| 1265 | |
| 1266 | seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", |
| 1267 | cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size, |
| 1268 | sinfo.objects_per_slab, (1 << sinfo.cache_order)); |
| 1269 | |
| 1270 | seq_printf(m, " : tunables %4u %4u %4u", |
| 1271 | sinfo.limit, sinfo.batchcount, sinfo.shared); |
| 1272 | seq_printf(m, " : slabdata %6lu %6lu %6lu", |
| 1273 | sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail); |
| 1274 | slabinfo_show_stats(m, s); |
| 1275 | seq_putc(m, '\n'); |
| 1276 | } |
| 1277 | |
| 1278 | static int slab_show(struct seq_file *m, void *p) |
| 1279 | { |
| 1280 | struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node); |
| 1281 | |
| 1282 | if (p == slab_root_caches.next) |
| 1283 | print_slabinfo_header(m); |
| 1284 | cache_show(s, m); |
| 1285 | return 0; |
| 1286 | } |
| 1287 | |
| 1288 | #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB) |
| 1289 | void *memcg_slab_start(struct seq_file *m, loff_t *pos) |
| 1290 | { |
| 1291 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); |
| 1292 | |
| 1293 | mutex_lock(&slab_mutex); |
| 1294 | return seq_list_start(&memcg->kmem_caches, *pos); |
| 1295 | } |
| 1296 | |
| 1297 | void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos) |
| 1298 | { |
| 1299 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); |
| 1300 | |
| 1301 | return seq_list_next(p, &memcg->kmem_caches, pos); |
| 1302 | } |
| 1303 | |
| 1304 | void memcg_slab_stop(struct seq_file *m, void *p) |
| 1305 | { |
| 1306 | mutex_unlock(&slab_mutex); |
| 1307 | } |
| 1308 | |
| 1309 | int memcg_slab_show(struct seq_file *m, void *p) |
| 1310 | { |
| 1311 | struct kmem_cache *s = list_entry(p, struct kmem_cache, |
| 1312 | memcg_params.kmem_caches_node); |
| 1313 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); |
| 1314 | |
| 1315 | if (p == memcg->kmem_caches.next) |
| 1316 | print_slabinfo_header(m); |
| 1317 | cache_show(s, m); |
| 1318 | return 0; |
| 1319 | } |
| 1320 | #endif |
| 1321 | |
| 1322 | /* |
| 1323 | * slabinfo_op - iterator that generates /proc/slabinfo |
| 1324 | * |
| 1325 | * Output layout: |
| 1326 | * cache-name |
| 1327 | * num-active-objs |
| 1328 | * total-objs |
| 1329 | * object size |
| 1330 | * num-active-slabs |
| 1331 | * total-slabs |
| 1332 | * num-pages-per-slab |
| 1333 | * + further values on SMP and with statistics enabled |
| 1334 | */ |
| 1335 | static const struct seq_operations slabinfo_op = { |
| 1336 | .start = slab_start, |
| 1337 | .next = slab_next, |
| 1338 | .stop = slab_stop, |
| 1339 | .show = slab_show, |
| 1340 | }; |
| 1341 | |
| 1342 | static int slabinfo_open(struct inode *inode, struct file *file) |
| 1343 | { |
| 1344 | return seq_open(file, &slabinfo_op); |
| 1345 | } |
| 1346 | |
| 1347 | static const struct file_operations proc_slabinfo_operations = { |
| 1348 | .open = slabinfo_open, |
| 1349 | .read = seq_read, |
| 1350 | .write = slabinfo_write, |
| 1351 | .llseek = seq_lseek, |
| 1352 | .release = seq_release, |
| 1353 | }; |
| 1354 | |
| 1355 | static int __init slab_proc_init(void) |
| 1356 | { |
| 1357 | proc_create("slabinfo", SLABINFO_RIGHTS, NULL, |
| 1358 | &proc_slabinfo_operations); |
| 1359 | return 0; |
| 1360 | } |
| 1361 | module_init(slab_proc_init); |
| 1362 | #endif /* CONFIG_SLABINFO */ |
| 1363 | |
| 1364 | static __always_inline void *__do_krealloc(const void *p, size_t new_size, |
| 1365 | gfp_t flags) |
| 1366 | { |
| 1367 | void *ret; |
| 1368 | size_t ks = 0; |
| 1369 | |
| 1370 | if (p) |
| 1371 | ks = ksize(p); |
| 1372 | |
| 1373 | if (ks >= new_size) { |
| 1374 | kasan_krealloc((void *)p, new_size, flags); |
| 1375 | return (void *)p; |
| 1376 | } |
| 1377 | |
| 1378 | ret = kmalloc_track_caller(new_size, flags); |
| 1379 | if (ret && p) |
| 1380 | memcpy(ret, p, ks); |
| 1381 | |
| 1382 | return ret; |
| 1383 | } |
| 1384 | |
| 1385 | /** |
| 1386 | * __krealloc - like krealloc() but don't free @p. |
| 1387 | * @p: object to reallocate memory for. |
| 1388 | * @new_size: how many bytes of memory are required. |
| 1389 | * @flags: the type of memory to allocate. |
| 1390 | * |
| 1391 | * This function is like krealloc() except it never frees the originally |
| 1392 | * allocated buffer. Use this if you don't want to free the buffer immediately |
| 1393 | * like, for example, with RCU. |
| 1394 | */ |
| 1395 | void *__krealloc(const void *p, size_t new_size, gfp_t flags) |
| 1396 | { |
| 1397 | if (unlikely(!new_size)) |
| 1398 | return ZERO_SIZE_PTR; |
| 1399 | |
| 1400 | return __do_krealloc(p, new_size, flags); |
| 1401 | |
| 1402 | } |
| 1403 | EXPORT_SYMBOL(__krealloc); |
| 1404 | |
| 1405 | /** |
| 1406 | * krealloc - reallocate memory. The contents will remain unchanged. |
| 1407 | * @p: object to reallocate memory for. |
| 1408 | * @new_size: how many bytes of memory are required. |
| 1409 | * @flags: the type of memory to allocate. |
| 1410 | * |
| 1411 | * The contents of the object pointed to are preserved up to the |
| 1412 | * lesser of the new and old sizes. If @p is %NULL, krealloc() |
| 1413 | * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a |
| 1414 | * %NULL pointer, the object pointed to is freed. |
| 1415 | */ |
| 1416 | void *krealloc(const void *p, size_t new_size, gfp_t flags) |
| 1417 | { |
| 1418 | void *ret; |
| 1419 | |
| 1420 | if (unlikely(!new_size)) { |
| 1421 | kfree(p); |
| 1422 | return ZERO_SIZE_PTR; |
| 1423 | } |
| 1424 | |
| 1425 | ret = __do_krealloc(p, new_size, flags); |
| 1426 | if (ret && p != ret) |
| 1427 | kfree(p); |
| 1428 | |
| 1429 | return ret; |
| 1430 | } |
| 1431 | EXPORT_SYMBOL(krealloc); |
| 1432 | |
| 1433 | /** |
| 1434 | * kzfree - like kfree but zero memory |
| 1435 | * @p: object to free memory of |
| 1436 | * |
| 1437 | * The memory of the object @p points to is zeroed before freed. |
| 1438 | * If @p is %NULL, kzfree() does nothing. |
| 1439 | * |
| 1440 | * Note: this function zeroes the whole allocated buffer which can be a good |
| 1441 | * deal bigger than the requested buffer size passed to kmalloc(). So be |
| 1442 | * careful when using this function in performance sensitive code. |
| 1443 | */ |
| 1444 | void kzfree(const void *p) |
| 1445 | { |
| 1446 | size_t ks; |
| 1447 | void *mem = (void *)p; |
| 1448 | |
| 1449 | if (unlikely(ZERO_OR_NULL_PTR(mem))) |
| 1450 | return; |
| 1451 | ks = ksize(mem); |
| 1452 | memzero_explicit(mem, ks); |
| 1453 | kfree(mem); |
| 1454 | } |
| 1455 | EXPORT_SYMBOL(kzfree); |
| 1456 | |
| 1457 | /* Tracepoints definitions. */ |
| 1458 | EXPORT_TRACEPOINT_SYMBOL(kmalloc); |
| 1459 | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc); |
| 1460 | EXPORT_TRACEPOINT_SYMBOL(kmalloc_node); |
| 1461 | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node); |
| 1462 | EXPORT_TRACEPOINT_SYMBOL(kfree); |
| 1463 | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free); |