blob: f0d773c719a1b748526268cf51e7f0c8bb51246e [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001#include <linux/mm.h>
2#include <linux/slab.h>
3#include <linux/string.h>
4#include <linux/compiler.h>
5#include <linux/export.h>
6#include <linux/err.h>
7#include <linux/sched.h>
8#include <linux/sched/mm.h>
9#include <linux/sched/task_stack.h>
10#include <linux/security.h>
11#include <linux/swap.h>
12#include <linux/swapops.h>
13#include <linux/mman.h>
14#include <linux/hugetlb.h>
15#include <linux/vmalloc.h>
16#include <linux/userfaultfd_k.h>
17
18#include <asm/sections.h>
19#include <linux/uaccess.h>
20
21#include "internal.h"
22
23static inline int is_kernel_rodata(unsigned long addr)
24{
25 return addr >= (unsigned long)__start_rodata &&
26 addr < (unsigned long)__end_rodata;
27}
28
29/**
30 * kfree_const - conditionally free memory
31 * @x: pointer to the memory
32 *
33 * Function calls kfree only if @x is not in .rodata section.
34 */
35void kfree_const(const void *x)
36{
37 if (!is_kernel_rodata((unsigned long)x))
38 kfree(x);
39}
40EXPORT_SYMBOL(kfree_const);
41
42/**
43 * kstrdup - allocate space for and copy an existing string
44 * @s: the string to duplicate
45 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
46 */
47char *kstrdup(const char *s, gfp_t gfp)
48{
49 size_t len;
50 char *buf;
51
52 if (!s)
53 return NULL;
54
55 len = strlen(s) + 1;
56 buf = kmalloc_track_caller(len, gfp);
57 if (buf)
58 memcpy(buf, s, len);
59 return buf;
60}
61EXPORT_SYMBOL(kstrdup);
62
63/**
64 * kstrdup_const - conditionally duplicate an existing const string
65 * @s: the string to duplicate
66 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
67 *
68 * Function returns source string if it is in .rodata section otherwise it
69 * fallbacks to kstrdup.
70 * Strings allocated by kstrdup_const should be freed by kfree_const.
71 */
72const char *kstrdup_const(const char *s, gfp_t gfp)
73{
74 if (is_kernel_rodata((unsigned long)s))
75 return s;
76
77 return kstrdup(s, gfp);
78}
79EXPORT_SYMBOL(kstrdup_const);
80
81/**
82 * kstrndup - allocate space for and copy an existing string
83 * @s: the string to duplicate
84 * @max: read at most @max chars from @s
85 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
86 *
87 * Note: Use kmemdup_nul() instead if the size is known exactly.
88 */
89char *kstrndup(const char *s, size_t max, gfp_t gfp)
90{
91 size_t len;
92 char *buf;
93
94 if (!s)
95 return NULL;
96
97 len = strnlen(s, max);
98 buf = kmalloc_track_caller(len+1, gfp);
99 if (buf) {
100 memcpy(buf, s, len);
101 buf[len] = '\0';
102 }
103 return buf;
104}
105EXPORT_SYMBOL(kstrndup);
106
107/**
108 * kmemdup - duplicate region of memory
109 *
110 * @src: memory region to duplicate
111 * @len: memory region length
112 * @gfp: GFP mask to use
113 */
114void *kmemdup(const void *src, size_t len, gfp_t gfp)
115{
116 void *p;
117
118 p = kmalloc_track_caller(len, gfp);
119 if (p)
120 memcpy(p, src, len);
121 return p;
122}
123EXPORT_SYMBOL(kmemdup);
124
125/**
126 * kmemdup_nul - Create a NUL-terminated string from unterminated data
127 * @s: The data to stringify
128 * @len: The size of the data
129 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
130 */
131char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
132{
133 char *buf;
134
135 if (!s)
136 return NULL;
137
138 buf = kmalloc_track_caller(len + 1, gfp);
139 if (buf) {
140 memcpy(buf, s, len);
141 buf[len] = '\0';
142 }
143 return buf;
144}
145EXPORT_SYMBOL(kmemdup_nul);
146
147/**
148 * memdup_user - duplicate memory region from user space
149 *
150 * @src: source address in user space
151 * @len: number of bytes to copy
152 *
153 * Returns an ERR_PTR() on failure.
154 */
155void *memdup_user(const void __user *src, size_t len)
156{
157 void *p;
158
159 /*
160 * Always use GFP_KERNEL, since copy_from_user() can sleep and
161 * cause pagefault, which makes it pointless to use GFP_NOFS
162 * or GFP_ATOMIC.
163 */
164 p = kmalloc_track_caller(len, GFP_KERNEL);
165 if (!p)
166 return ERR_PTR(-ENOMEM);
167
168 if (copy_from_user(p, src, len)) {
169 kfree(p);
170 return ERR_PTR(-EFAULT);
171 }
172
173 return p;
174}
175EXPORT_SYMBOL(memdup_user);
176
177/*
178 * strndup_user - duplicate an existing string from user space
179 * @s: The string to duplicate
180 * @n: Maximum number of bytes to copy, including the trailing NUL.
181 */
182char *strndup_user(const char __user *s, long n)
183{
184 char *p;
185 long length;
186
187 length = strnlen_user(s, n);
188
189 if (!length)
190 return ERR_PTR(-EFAULT);
191
192 if (length > n)
193 return ERR_PTR(-EINVAL);
194
195 p = memdup_user(s, length);
196
197 if (IS_ERR(p))
198 return p;
199
200 p[length - 1] = '\0';
201
202 return p;
203}
204EXPORT_SYMBOL(strndup_user);
205
206/**
207 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
208 *
209 * @src: source address in user space
210 * @len: number of bytes to copy
211 *
212 * Returns an ERR_PTR() on failure.
213 */
214void *memdup_user_nul(const void __user *src, size_t len)
215{
216 char *p;
217
218 /*
219 * Always use GFP_KERNEL, since copy_from_user() can sleep and
220 * cause pagefault, which makes it pointless to use GFP_NOFS
221 * or GFP_ATOMIC.
222 */
223 p = kmalloc_track_caller(len + 1, GFP_KERNEL);
224 if (!p)
225 return ERR_PTR(-ENOMEM);
226
227 if (copy_from_user(p, src, len)) {
228 kfree(p);
229 return ERR_PTR(-EFAULT);
230 }
231 p[len] = '\0';
232
233 return p;
234}
235EXPORT_SYMBOL(memdup_user_nul);
236
237void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
238 struct vm_area_struct *prev, struct rb_node *rb_parent)
239{
240 struct vm_area_struct *next;
241
242 vma->vm_prev = prev;
243 if (prev) {
244 next = prev->vm_next;
245 prev->vm_next = vma;
246 } else {
247 mm->mmap = vma;
248 if (rb_parent)
249 next = rb_entry(rb_parent,
250 struct vm_area_struct, vm_rb);
251 else
252 next = NULL;
253 }
254 vma->vm_next = next;
255 if (next)
256 next->vm_prev = vma;
257}
258
259/* Check if the vma is being used as a stack by this task */
260int vma_is_stack_for_current(struct vm_area_struct *vma)
261{
262 struct task_struct * __maybe_unused t = current;
263
264 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
265}
266
267#if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
268void arch_pick_mmap_layout(struct mm_struct *mm)
269{
270 mm->mmap_base = TASK_UNMAPPED_BASE;
271 mm->get_unmapped_area = arch_get_unmapped_area;
272}
273#endif
274
275/*
276 * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
277 * back to the regular GUP.
278 * If the architecture not support this function, simply return with no
279 * page pinned
280 */
281int __weak __get_user_pages_fast(unsigned long start,
282 int nr_pages, int write, struct page **pages)
283{
284 return 0;
285}
286EXPORT_SYMBOL_GPL(__get_user_pages_fast);
287
288/**
289 * get_user_pages_fast() - pin user pages in memory
290 * @start: starting user address
291 * @nr_pages: number of pages from start to pin
292 * @write: whether pages will be written to
293 * @pages: array that receives pointers to the pages pinned.
294 * Should be at least nr_pages long.
295 *
296 * Returns number of pages pinned. This may be fewer than the number
297 * requested. If nr_pages is 0 or negative, returns 0. If no pages
298 * were pinned, returns -errno.
299 *
300 * get_user_pages_fast provides equivalent functionality to get_user_pages,
301 * operating on current and current->mm, with force=0 and vma=NULL. However
302 * unlike get_user_pages, it must be called without mmap_sem held.
303 *
304 * get_user_pages_fast may take mmap_sem and page table locks, so no
305 * assumptions can be made about lack of locking. get_user_pages_fast is to be
306 * implemented in a way that is advantageous (vs get_user_pages()) when the
307 * user memory area is already faulted in and present in ptes. However if the
308 * pages have to be faulted in, it may turn out to be slightly slower so
309 * callers need to carefully consider what to use. On many architectures,
310 * get_user_pages_fast simply falls back to get_user_pages.
311 */
312int __weak get_user_pages_fast(unsigned long start,
313 int nr_pages, int write, struct page **pages)
314{
315 return get_user_pages_unlocked(start, nr_pages, pages,
316 write ? FOLL_WRITE : 0);
317}
318EXPORT_SYMBOL_GPL(get_user_pages_fast);
319
320unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
321 unsigned long len, unsigned long prot,
322 unsigned long flag, unsigned long pgoff)
323{
324 unsigned long ret;
325 struct mm_struct *mm = current->mm;
326 unsigned long populate;
327 LIST_HEAD(uf);
328
329 ret = security_mmap_file(file, prot, flag);
330 if (!ret) {
331 if (down_write_killable(&mm->mmap_sem))
332 return -EINTR;
333 ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
334 &populate, &uf);
335 up_write(&mm->mmap_sem);
336 userfaultfd_unmap_complete(mm, &uf);
337 if (populate)
338 mm_populate(ret, populate);
339 }
340 return ret;
341}
342
343unsigned long vm_mmap(struct file *file, unsigned long addr,
344 unsigned long len, unsigned long prot,
345 unsigned long flag, unsigned long offset)
346{
347 if (unlikely(offset + PAGE_ALIGN(len) < offset))
348 return -EINVAL;
349 if (unlikely(offset_in_page(offset)))
350 return -EINVAL;
351
352 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
353}
354EXPORT_SYMBOL(vm_mmap);
355
356/**
357 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
358 * failure, fall back to non-contiguous (vmalloc) allocation.
359 * @size: size of the request.
360 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
361 * @node: numa node to allocate from
362 *
363 * Uses kmalloc to get the memory but if the allocation fails then falls back
364 * to the vmalloc allocator. Use kvfree for freeing the memory.
365 *
366 * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
367 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
368 * preferable to the vmalloc fallback, due to visible performance drawbacks.
369 *
370 * Any use of gfp flags outside of GFP_KERNEL should be consulted with mm people.
371 */
372void *kvmalloc_node(size_t size, gfp_t flags, int node)
373{
374 gfp_t kmalloc_flags = flags;
375 void *ret;
376
377 /*
378 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
379 * so the given set of flags has to be compatible.
380 */
381 WARN_ON_ONCE((flags & GFP_KERNEL) != GFP_KERNEL);
382
383 /*
384 * We want to attempt a large physically contiguous block first because
385 * it is less likely to fragment multiple larger blocks and therefore
386 * contribute to a long term fragmentation less than vmalloc fallback.
387 * However make sure that larger requests are not too disruptive - no
388 * OOM killer and no allocation failure warnings as we have a fallback.
389 */
390 if (size > PAGE_SIZE) {
391 kmalloc_flags |= __GFP_NOWARN;
392
393 if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
394 kmalloc_flags |= __GFP_NORETRY;
395 }
396
397 ret = kmalloc_node(size, kmalloc_flags, node);
398
399 /*
400 * It doesn't really make sense to fallback to vmalloc for sub page
401 * requests
402 */
403 if (ret || size <= PAGE_SIZE)
404 return ret;
405
406 return __vmalloc_node_flags_caller(size, node, flags,
407 __builtin_return_address(0));
408}
409EXPORT_SYMBOL(kvmalloc_node);
410
411void kvfree(const void *addr)
412{
413 if (is_vmalloc_addr(addr))
414 vfree(addr);
415 else
416 kfree(addr);
417}
418EXPORT_SYMBOL(kvfree);
419
420/**
421 * kvfree_sensitive - Free a data object containing sensitive information.
422 * @addr: address of the data object to be freed.
423 * @len: length of the data object.
424 *
425 * Use the special memzero_explicit() function to clear the content of a
426 * kvmalloc'ed object containing sensitive data to make sure that the
427 * compiler won't optimize out the data clearing.
428 */
429void kvfree_sensitive(const void *addr, size_t len)
430{
431 if (likely(!ZERO_OR_NULL_PTR(addr))) {
432 memzero_explicit((void *)addr, len);
433 kvfree(addr);
434 }
435}
436EXPORT_SYMBOL(kvfree_sensitive);
437
438static inline void *__page_rmapping(struct page *page)
439{
440 unsigned long mapping;
441
442 mapping = (unsigned long)page->mapping;
443 mapping &= ~PAGE_MAPPING_FLAGS;
444
445 return (void *)mapping;
446}
447
448/* Neutral page->mapping pointer to address_space or anon_vma or other */
449void *page_rmapping(struct page *page)
450{
451 page = compound_head(page);
452 return __page_rmapping(page);
453}
454
455/*
456 * Return true if this page is mapped into pagetables.
457 * For compound page it returns true if any subpage of compound page is mapped.
458 */
459bool page_mapped(struct page *page)
460{
461 int i;
462
463 if (likely(!PageCompound(page)))
464 return atomic_read(&page->_mapcount) >= 0;
465 page = compound_head(page);
466 if (atomic_read(compound_mapcount_ptr(page)) >= 0)
467 return true;
468 if (PageHuge(page))
469 return false;
470 for (i = 0; i < (1 << compound_order(page)); i++) {
471 if (atomic_read(&page[i]._mapcount) >= 0)
472 return true;
473 }
474 return false;
475}
476EXPORT_SYMBOL(page_mapped);
477
478struct anon_vma *page_anon_vma(struct page *page)
479{
480 unsigned long mapping;
481
482 page = compound_head(page);
483 mapping = (unsigned long)page->mapping;
484 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
485 return NULL;
486 return __page_rmapping(page);
487}
488
489struct address_space *page_mapping(struct page *page)
490{
491 struct address_space *mapping;
492
493 page = compound_head(page);
494
495 /* This happens if someone calls flush_dcache_page on slab page */
496 if (unlikely(PageSlab(page)))
497 return NULL;
498
499 if (unlikely(PageSwapCache(page))) {
500 swp_entry_t entry;
501
502 entry.val = page_private(page);
503 return swap_address_space(entry);
504 }
505
506 mapping = page->mapping;
507 if ((unsigned long)mapping & PAGE_MAPPING_ANON)
508 return NULL;
509
510 return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
511}
512EXPORT_SYMBOL(page_mapping);
513
514/* Slow path of page_mapcount() for compound pages */
515int __page_mapcount(struct page *page)
516{
517 int ret;
518
519 ret = atomic_read(&page->_mapcount) + 1;
520 /*
521 * For file THP page->_mapcount contains total number of mapping
522 * of the page: no need to look into compound_mapcount.
523 */
524 if (!PageAnon(page) && !PageHuge(page))
525 return ret;
526 page = compound_head(page);
527 ret += atomic_read(compound_mapcount_ptr(page)) + 1;
528 if (PageDoubleMap(page))
529 ret--;
530 return ret;
531}
532EXPORT_SYMBOL_GPL(__page_mapcount);
533
534int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
535int sysctl_overcommit_ratio __read_mostly = 50;
536unsigned long sysctl_overcommit_kbytes __read_mostly;
537int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
538unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
539unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
540
541int overcommit_ratio_handler(struct ctl_table *table, int write,
542 void __user *buffer, size_t *lenp,
543 loff_t *ppos)
544{
545 int ret;
546
547 ret = proc_dointvec(table, write, buffer, lenp, ppos);
548 if (ret == 0 && write)
549 sysctl_overcommit_kbytes = 0;
550 return ret;
551}
552
553int overcommit_kbytes_handler(struct ctl_table *table, int write,
554 void __user *buffer, size_t *lenp,
555 loff_t *ppos)
556{
557 int ret;
558
559 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
560 if (ret == 0 && write)
561 sysctl_overcommit_ratio = 0;
562 return ret;
563}
564
565/*
566 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
567 */
568unsigned long vm_commit_limit(void)
569{
570 unsigned long allowed;
571
572 if (sysctl_overcommit_kbytes)
573 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
574 else
575 allowed = ((totalram_pages - hugetlb_total_pages())
576 * sysctl_overcommit_ratio / 100);
577 allowed += total_swap_pages;
578
579 return allowed;
580}
581
582/*
583 * Make sure vm_committed_as in one cacheline and not cacheline shared with
584 * other variables. It can be updated by several CPUs frequently.
585 */
586struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
587
588/*
589 * The global memory commitment made in the system can be a metric
590 * that can be used to drive ballooning decisions when Linux is hosted
591 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
592 * balancing memory across competing virtual machines that are hosted.
593 * Several metrics drive this policy engine including the guest reported
594 * memory commitment.
595 */
596unsigned long vm_memory_committed(void)
597{
598 return percpu_counter_read_positive(&vm_committed_as);
599}
600EXPORT_SYMBOL_GPL(vm_memory_committed);
601
602/*
603 * Check that a process has enough memory to allocate a new virtual
604 * mapping. 0 means there is enough memory for the allocation to
605 * succeed and -ENOMEM implies there is not.
606 *
607 * We currently support three overcommit policies, which are set via the
608 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
609 *
610 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
611 * Additional code 2002 Jul 20 by Robert Love.
612 *
613 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
614 *
615 * Note this is a helper function intended to be used by LSMs which
616 * wish to use this logic.
617 */
618int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
619{
620 long free, allowed, reserve;
621
622 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
623 -(s64)vm_committed_as_batch * num_online_cpus(),
624 "memory commitment underflow");
625
626 vm_acct_memory(pages);
627
628 /*
629 * Sometimes we want to use more memory than we have
630 */
631 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
632 return 0;
633
634 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
635 free = global_zone_page_state(NR_FREE_PAGES);
636 free += global_node_page_state(NR_FILE_PAGES);
637
638 /*
639 * shmem pages shouldn't be counted as free in this
640 * case, they can't be purged, only swapped out, and
641 * that won't affect the overall amount of available
642 * memory in the system.
643 */
644 free -= global_node_page_state(NR_SHMEM);
645
646 free += get_nr_swap_pages();
647
648 /*
649 * Any slabs which are created with the
650 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
651 * which are reclaimable, under pressure. The dentry
652 * cache and most inode caches should fall into this
653 */
654 free += global_node_page_state(NR_SLAB_RECLAIMABLE);
655
656 /*
657 * Part of the kernel memory, which can be released
658 * under memory pressure.
659 */
660 free += global_node_page_state(
661 NR_INDIRECTLY_RECLAIMABLE_BYTES) >> PAGE_SHIFT;
662
663 /*
664 * Leave reserved pages. The pages are not for anonymous pages.
665 */
666 if (free <= totalreserve_pages)
667 goto error;
668 else
669 free -= totalreserve_pages;
670
671 /*
672 * Reserve some for root
673 */
674 if (!cap_sys_admin)
675 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
676
677 if (free > pages)
678 return 0;
679
680 goto error;
681 }
682
683 allowed = vm_commit_limit();
684 /*
685 * Reserve some for root
686 */
687 if (!cap_sys_admin)
688 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
689
690 /*
691 * Don't let a single process grow so big a user can't recover
692 */
693 if (mm) {
694 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
695 allowed -= min_t(long, mm->total_vm / 32, reserve);
696 }
697
698 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
699 return 0;
700error:
701 vm_unacct_memory(pages);
702
703 return -ENOMEM;
704}
705
706/**
707 * get_cmdline() - copy the cmdline value to a buffer.
708 * @task: the task whose cmdline value to copy.
709 * @buffer: the buffer to copy to.
710 * @buflen: the length of the buffer. Larger cmdline values are truncated
711 * to this length.
712 * Returns the size of the cmdline field copied. Note that the copy does
713 * not guarantee an ending NULL byte.
714 */
715int get_cmdline(struct task_struct *task, char *buffer, int buflen)
716{
717 int res = 0;
718 unsigned int len;
719 struct mm_struct *mm = get_task_mm(task);
720 unsigned long arg_start, arg_end, env_start, env_end;
721 if (!mm)
722 goto out;
723 if (!mm->arg_end)
724 goto out_mm; /* Shh! No looking before we're done */
725
726 down_read(&mm->mmap_sem);
727 arg_start = mm->arg_start;
728 arg_end = mm->arg_end;
729 env_start = mm->env_start;
730 env_end = mm->env_end;
731 up_read(&mm->mmap_sem);
732
733 len = arg_end - arg_start;
734
735 if (len > buflen)
736 len = buflen;
737
738 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
739
740 /*
741 * If the nul at the end of args has been overwritten, then
742 * assume application is using setproctitle(3).
743 */
744 if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
745 len = strnlen(buffer, res);
746 if (len < res) {
747 res = len;
748 } else {
749 len = env_end - env_start;
750 if (len > buflen - res)
751 len = buflen - res;
752 res += access_process_vm(task, env_start,
753 buffer+res, len,
754 FOLL_FORCE);
755 res = strnlen(buffer, res);
756 }
757 }
758out_mm:
759 mmput(mm);
760out:
761 return res;
762}