blob: e8c64dddfecd24892a990de8880a390df3622851 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
9 */
10
11#include <linux/vmalloc.h>
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
15#include <linux/sched/signal.h>
16#include <linux/slab.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
19#include <linux/proc_fs.h>
20#include <linux/seq_file.h>
21#include <linux/debugobjects.h>
22#include <linux/kallsyms.h>
23#include <linux/list.h>
24#include <linux/notifier.h>
25#include <linux/rbtree.h>
26#include <linux/radix-tree.h>
27#include <linux/rcupdate.h>
28#include <linux/pfn.h>
29#include <linux/kmemleak.h>
30#include <linux/atomic.h>
31#include <linux/compiler.h>
32#include <linux/llist.h>
33#include <linux/bitops.h>
34#include <linux/overflow.h>
35
36#include <linux/uaccess.h>
37#include <asm/tlbflush.h>
38#include <asm/shmparam.h>
39
40#include "internal.h"
41
42struct vfree_deferred {
43 struct llist_head list;
44 struct work_struct wq;
45};
46static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
47
48static void __vunmap(const void *, int);
49
50static void free_work(struct work_struct *w)
51{
52 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
53 struct llist_node *t, *llnode;
54
55 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
56 __vunmap((void *)llnode, 1);
57}
58
59/*** Page table manipulation functions ***/
60
61static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
62{
63 pte_t *pte;
64
65 pte = pte_offset_kernel(pmd, addr);
66 do {
67 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
68 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
69 } while (pte++, addr += PAGE_SIZE, addr != end);
70}
71
72static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
73{
74 pmd_t *pmd;
75 unsigned long next;
76
77 pmd = pmd_offset(pud, addr);
78 do {
79 next = pmd_addr_end(addr, end);
80 if (pmd_clear_huge(pmd))
81 continue;
82 if (pmd_none_or_clear_bad(pmd))
83 continue;
84 vunmap_pte_range(pmd, addr, next);
85 } while (pmd++, addr = next, addr != end);
86}
87
88static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
89{
90 pud_t *pud;
91 unsigned long next;
92
93 pud = pud_offset(p4d, addr);
94 do {
95 next = pud_addr_end(addr, end);
96 if (pud_clear_huge(pud))
97 continue;
98 if (pud_none_or_clear_bad(pud))
99 continue;
100 vunmap_pmd_range(pud, addr, next);
101 } while (pud++, addr = next, addr != end);
102}
103
104static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
105{
106 p4d_t *p4d;
107 unsigned long next;
108
109 p4d = p4d_offset(pgd, addr);
110 do {
111 next = p4d_addr_end(addr, end);
112 if (p4d_clear_huge(p4d))
113 continue;
114 if (p4d_none_or_clear_bad(p4d))
115 continue;
116 vunmap_pud_range(p4d, addr, next);
117 } while (p4d++, addr = next, addr != end);
118}
119
120static void vunmap_page_range(unsigned long addr, unsigned long end)
121{
122 pgd_t *pgd;
123 unsigned long next;
124
125 BUG_ON(addr >= end);
126 pgd = pgd_offset_k(addr);
127 do {
128 next = pgd_addr_end(addr, end);
129 if (pgd_none_or_clear_bad(pgd))
130 continue;
131 vunmap_p4d_range(pgd, addr, next);
132 } while (pgd++, addr = next, addr != end);
133}
134
135static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
136 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
137{
138 pte_t *pte;
139
140 /*
141 * nr is a running index into the array which helps higher level
142 * callers keep track of where we're up to.
143 */
144
145 pte = pte_alloc_kernel(pmd, addr);
146 if (!pte)
147 return -ENOMEM;
148 do {
149 struct page *page = pages[*nr];
150
151 if (WARN_ON(!pte_none(*pte)))
152 return -EBUSY;
153 if (WARN_ON(!page))
154 return -ENOMEM;
155 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
156 (*nr)++;
157 } while (pte++, addr += PAGE_SIZE, addr != end);
158 return 0;
159}
160
161static int vmap_pmd_range(pud_t *pud, unsigned long addr,
162 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
163{
164 pmd_t *pmd;
165 unsigned long next;
166
167 pmd = pmd_alloc(&init_mm, pud, addr);
168 if (!pmd)
169 return -ENOMEM;
170 do {
171 next = pmd_addr_end(addr, end);
172 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
173 return -ENOMEM;
174 } while (pmd++, addr = next, addr != end);
175 return 0;
176}
177
178static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
179 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
180{
181 pud_t *pud;
182 unsigned long next;
183
184 pud = pud_alloc(&init_mm, p4d, addr);
185 if (!pud)
186 return -ENOMEM;
187 do {
188 next = pud_addr_end(addr, end);
189 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
190 return -ENOMEM;
191 } while (pud++, addr = next, addr != end);
192 return 0;
193}
194
195static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
196 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
197{
198 p4d_t *p4d;
199 unsigned long next;
200
201 p4d = p4d_alloc(&init_mm, pgd, addr);
202 if (!p4d)
203 return -ENOMEM;
204 do {
205 next = p4d_addr_end(addr, end);
206 if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
207 return -ENOMEM;
208 } while (p4d++, addr = next, addr != end);
209 return 0;
210}
211
212/*
213 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
214 * will have pfns corresponding to the "pages" array.
215 *
216 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
217 */
218static int vmap_page_range_noflush(unsigned long start, unsigned long end,
219 pgprot_t prot, struct page **pages)
220{
221 pgd_t *pgd;
222 unsigned long next;
223 unsigned long addr = start;
224 int err = 0;
225 int nr = 0;
226
227 BUG_ON(addr >= end);
228 pgd = pgd_offset_k(addr);
229 do {
230 next = pgd_addr_end(addr, end);
231 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
232 if (err)
233 return err;
234 } while (pgd++, addr = next, addr != end);
235
236 return nr;
237}
238
239static int vmap_page_range(unsigned long start, unsigned long end,
240 pgprot_t prot, struct page **pages)
241{
242 int ret;
243
244 ret = vmap_page_range_noflush(start, end, prot, pages);
245 flush_cache_vmap(start, end);
246 return ret;
247}
248
249int is_vmalloc_or_module_addr(const void *x)
250{
251 /*
252 * ARM, x86-64 and sparc64 put modules in a special place,
253 * and fall back on vmalloc() if that fails. Others
254 * just put it in the vmalloc space.
255 */
256#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
257 unsigned long addr = (unsigned long)x;
258 if (addr >= MODULES_VADDR && addr < MODULES_END)
259 return 1;
260#endif
261 return is_vmalloc_addr(x);
262}
263
264/*
265 * Walk a vmap address to the struct page it maps.
266 */
267struct page *vmalloc_to_page(const void *vmalloc_addr)
268{
269 unsigned long addr = (unsigned long) vmalloc_addr;
270 struct page *page = NULL;
271 pgd_t *pgd = pgd_offset_k(addr);
272 p4d_t *p4d;
273 pud_t *pud;
274 pmd_t *pmd;
275 pte_t *ptep, pte;
276
277 /*
278 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
279 * architectures that do not vmalloc module space
280 */
281 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
282
283 if (pgd_none(*pgd))
284 return NULL;
285 p4d = p4d_offset(pgd, addr);
286 if (p4d_none(*p4d))
287 return NULL;
288 pud = pud_offset(p4d, addr);
289
290 /*
291 * Don't dereference bad PUD or PMD (below) entries. This will also
292 * identify huge mappings, which we may encounter on architectures
293 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
294 * identified as vmalloc addresses by is_vmalloc_addr(), but are
295 * not [unambiguously] associated with a struct page, so there is
296 * no correct value to return for them.
297 */
298 WARN_ON_ONCE(pud_bad(*pud));
299 if (pud_none(*pud) || pud_bad(*pud))
300 return NULL;
301 pmd = pmd_offset(pud, addr);
302 WARN_ON_ONCE(pmd_bad(*pmd));
303 if (pmd_none(*pmd) || pmd_bad(*pmd))
304 return NULL;
305
306 ptep = pte_offset_map(pmd, addr);
307 pte = *ptep;
308 if (pte_present(pte))
309 page = pte_page(pte);
310 pte_unmap(ptep);
311 return page;
312}
313EXPORT_SYMBOL(vmalloc_to_page);
314
315/*
316 * Map a vmalloc()-space virtual address to the physical page frame number.
317 */
318unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
319{
320 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
321}
322EXPORT_SYMBOL(vmalloc_to_pfn);
323
324
325/*** Global kva allocator ***/
326
327#define VM_LAZY_FREE 0x02
328#define VM_VM_AREA 0x04
329
330static DEFINE_SPINLOCK(vmap_area_lock);
331/* Export for kexec only */
332LIST_HEAD(vmap_area_list);
333static LLIST_HEAD(vmap_purge_list);
334static struct rb_root vmap_area_root = RB_ROOT;
335
336/* The vmap cache globals are protected by vmap_area_lock */
337static struct rb_node *free_vmap_cache;
338static unsigned long cached_hole_size;
339static unsigned long cached_vstart;
340static unsigned long cached_align;
341
342static unsigned long vmap_area_pcpu_hole;
343
344static struct vmap_area *__find_vmap_area(unsigned long addr)
345{
346 struct rb_node *n = vmap_area_root.rb_node;
347
348 while (n) {
349 struct vmap_area *va;
350
351 va = rb_entry(n, struct vmap_area, rb_node);
352 if (addr < va->va_start)
353 n = n->rb_left;
354 else if (addr >= va->va_end)
355 n = n->rb_right;
356 else
357 return va;
358 }
359
360 return NULL;
361}
362
363static void __insert_vmap_area(struct vmap_area *va)
364{
365 struct rb_node **p = &vmap_area_root.rb_node;
366 struct rb_node *parent = NULL;
367 struct rb_node *tmp;
368
369 while (*p) {
370 struct vmap_area *tmp_va;
371
372 parent = *p;
373 tmp_va = rb_entry(parent, struct vmap_area, rb_node);
374 if (va->va_start < tmp_va->va_end)
375 p = &(*p)->rb_left;
376 else if (va->va_end > tmp_va->va_start)
377 p = &(*p)->rb_right;
378 else
379 BUG();
380 }
381
382 rb_link_node(&va->rb_node, parent, p);
383 rb_insert_color(&va->rb_node, &vmap_area_root);
384
385 /* address-sort this list */
386 tmp = rb_prev(&va->rb_node);
387 if (tmp) {
388 struct vmap_area *prev;
389 prev = rb_entry(tmp, struct vmap_area, rb_node);
390 list_add_rcu(&va->list, &prev->list);
391 } else
392 list_add_rcu(&va->list, &vmap_area_list);
393}
394
395static void purge_vmap_area_lazy(void);
396
397static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
398
399/*
400 * Allocate a region of KVA of the specified size and alignment, within the
401 * vstart and vend.
402 */
403static struct vmap_area *alloc_vmap_area(unsigned long size,
404 unsigned long align,
405 unsigned long vstart, unsigned long vend,
406 int node, gfp_t gfp_mask)
407{
408 struct vmap_area *va;
409 struct rb_node *n;
410 unsigned long addr;
411 int purged = 0;
412 struct vmap_area *first;
413
414 BUG_ON(!size);
415 BUG_ON(offset_in_page(size));
416 BUG_ON(!is_power_of_2(align));
417
418 might_sleep();
419
420 va = kmalloc_node(sizeof(struct vmap_area),
421 gfp_mask & GFP_RECLAIM_MASK, node);
422 if (unlikely(!va))
423 return ERR_PTR(-ENOMEM);
424
425 /*
426 * Only scan the relevant parts containing pointers to other objects
427 * to avoid false negatives.
428 */
429 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
430
431retry:
432 spin_lock(&vmap_area_lock);
433 /*
434 * Invalidate cache if we have more permissive parameters.
435 * cached_hole_size notes the largest hole noticed _below_
436 * the vmap_area cached in free_vmap_cache: if size fits
437 * into that hole, we want to scan from vstart to reuse
438 * the hole instead of allocating above free_vmap_cache.
439 * Note that __free_vmap_area may update free_vmap_cache
440 * without updating cached_hole_size or cached_align.
441 */
442 if (!free_vmap_cache ||
443 size < cached_hole_size ||
444 vstart < cached_vstart ||
445 align < cached_align) {
446nocache:
447 cached_hole_size = 0;
448 free_vmap_cache = NULL;
449 }
450 /* record if we encounter less permissive parameters */
451 cached_vstart = vstart;
452 cached_align = align;
453
454 /* find starting point for our search */
455 if (free_vmap_cache) {
456 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
457 addr = ALIGN(first->va_end, align);
458 if (addr < vstart)
459 goto nocache;
460 if (addr + size < addr)
461 goto overflow;
462
463 } else {
464 addr = ALIGN(vstart, align);
465 if (addr + size < addr)
466 goto overflow;
467
468 n = vmap_area_root.rb_node;
469 first = NULL;
470
471 while (n) {
472 struct vmap_area *tmp;
473 tmp = rb_entry(n, struct vmap_area, rb_node);
474 if (tmp->va_end >= addr) {
475 first = tmp;
476 if (tmp->va_start <= addr)
477 break;
478 n = n->rb_left;
479 } else
480 n = n->rb_right;
481 }
482
483 if (!first)
484 goto found;
485 }
486
487 /* from the starting point, walk areas until a suitable hole is found */
488 while (addr + size > first->va_start && addr + size <= vend) {
489 if (addr + cached_hole_size < first->va_start)
490 cached_hole_size = first->va_start - addr;
491 addr = ALIGN(first->va_end, align);
492 if (addr + size < addr)
493 goto overflow;
494
495 if (list_is_last(&first->list, &vmap_area_list))
496 goto found;
497
498 first = list_next_entry(first, list);
499 }
500
501found:
502 /*
503 * Check also calculated address against the vstart,
504 * because it can be 0 because of big align request.
505 */
506 if (addr + size > vend || addr < vstart)
507 goto overflow;
508
509 va->va_start = addr;
510 va->va_end = addr + size;
511 va->flags = 0;
512 __insert_vmap_area(va);
513 free_vmap_cache = &va->rb_node;
514 spin_unlock(&vmap_area_lock);
515
516 BUG_ON(!IS_ALIGNED(va->va_start, align));
517 BUG_ON(va->va_start < vstart);
518 BUG_ON(va->va_end > vend);
519
520 return va;
521
522overflow:
523 spin_unlock(&vmap_area_lock);
524 if (!purged) {
525 purge_vmap_area_lazy();
526 purged = 1;
527 goto retry;
528 }
529
530 if (gfpflags_allow_blocking(gfp_mask)) {
531 unsigned long freed = 0;
532 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
533 if (freed > 0) {
534 purged = 0;
535 goto retry;
536 }
537 }
538
539 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
540 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
541 size);
542 kfree(va);
543 return ERR_PTR(-EBUSY);
544}
545
546int register_vmap_purge_notifier(struct notifier_block *nb)
547{
548 return blocking_notifier_chain_register(&vmap_notify_list, nb);
549}
550EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
551
552int unregister_vmap_purge_notifier(struct notifier_block *nb)
553{
554 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
555}
556EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
557
558static void __free_vmap_area(struct vmap_area *va)
559{
560 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
561
562 if (free_vmap_cache) {
563 if (va->va_end < cached_vstart) {
564 free_vmap_cache = NULL;
565 } else {
566 struct vmap_area *cache;
567 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
568 if (va->va_start <= cache->va_start) {
569 free_vmap_cache = rb_prev(&va->rb_node);
570 /*
571 * We don't try to update cached_hole_size or
572 * cached_align, but it won't go very wrong.
573 */
574 }
575 }
576 }
577 rb_erase(&va->rb_node, &vmap_area_root);
578 RB_CLEAR_NODE(&va->rb_node);
579 list_del_rcu(&va->list);
580
581 /*
582 * Track the highest possible candidate for pcpu area
583 * allocation. Areas outside of vmalloc area can be returned
584 * here too, consider only end addresses which fall inside
585 * vmalloc area proper.
586 */
587 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
588 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
589
590 kfree_rcu(va, rcu_head);
591}
592
593/*
594 * Free a region of KVA allocated by alloc_vmap_area
595 */
596static void free_vmap_area(struct vmap_area *va)
597{
598 spin_lock(&vmap_area_lock);
599 __free_vmap_area(va);
600 spin_unlock(&vmap_area_lock);
601}
602
603/*
604 * Clear the pagetable entries of a given vmap_area
605 */
606static void unmap_vmap_area(struct vmap_area *va)
607{
608 vunmap_page_range(va->va_start, va->va_end);
609}
610
611static void vmap_debug_free_range(unsigned long start, unsigned long end)
612{
613 /*
614 * Unmap page tables and force a TLB flush immediately if pagealloc
615 * debugging is enabled. This catches use after free bugs similarly to
616 * those in linear kernel virtual address space after a page has been
617 * freed.
618 *
619 * All the lazy freeing logic is still retained, in order to minimise
620 * intrusiveness of this debugging feature.
621 *
622 * This is going to be *slow* (linear kernel virtual address debugging
623 * doesn't do a broadcast TLB flush so it is a lot faster).
624 */
625 if (debug_pagealloc_enabled()) {
626 vunmap_page_range(start, end);
627 flush_tlb_kernel_range(start, end);
628 }
629}
630
631/*
632 * lazy_max_pages is the maximum amount of virtual address space we gather up
633 * before attempting to purge with a TLB flush.
634 *
635 * There is a tradeoff here: a larger number will cover more kernel page tables
636 * and take slightly longer to purge, but it will linearly reduce the number of
637 * global TLB flushes that must be performed. It would seem natural to scale
638 * this number up linearly with the number of CPUs (because vmapping activity
639 * could also scale linearly with the number of CPUs), however it is likely
640 * that in practice, workloads might be constrained in other ways that mean
641 * vmap activity will not scale linearly with CPUs. Also, I want to be
642 * conservative and not introduce a big latency on huge systems, so go with
643 * a less aggressive log scale. It will still be an improvement over the old
644 * code, and it will be simple to change the scale factor if we find that it
645 * becomes a problem on bigger systems.
646 */
647static unsigned long lazy_max_pages(void)
648{
649 unsigned int log;
650
651 log = fls(num_online_cpus());
652
653 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
654}
655
656static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
657
658/*
659 * Serialize vmap purging. There is no actual criticial section protected
660 * by this look, but we want to avoid concurrent calls for performance
661 * reasons and to make the pcpu_get_vm_areas more deterministic.
662 */
663static DEFINE_MUTEX(vmap_purge_lock);
664
665/* for per-CPU blocks */
666static void purge_fragmented_blocks_allcpus(void);
667
668/*
669 * called before a call to iounmap() if the caller wants vm_area_struct's
670 * immediately freed.
671 */
672void set_iounmap_nonlazy(void)
673{
674 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
675}
676
677/*
678 * Purges all lazily-freed vmap areas.
679 */
680static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
681{
682 struct llist_node *valist;
683 struct vmap_area *va;
684 struct vmap_area *n_va;
685 bool do_free = false;
686
687 lockdep_assert_held(&vmap_purge_lock);
688
689 valist = llist_del_all(&vmap_purge_list);
690 llist_for_each_entry(va, valist, purge_list) {
691 if (va->va_start < start)
692 start = va->va_start;
693 if (va->va_end > end)
694 end = va->va_end;
695 do_free = true;
696 }
697
698 if (!do_free)
699 return false;
700
701 flush_tlb_kernel_range(start, end);
702
703 spin_lock(&vmap_area_lock);
704 llist_for_each_entry_safe(va, n_va, valist, purge_list) {
705 int nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
706
707 __free_vmap_area(va);
708 atomic_sub(nr, &vmap_lazy_nr);
709 cond_resched_lock(&vmap_area_lock);
710 }
711 spin_unlock(&vmap_area_lock);
712 return true;
713}
714
715/*
716 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
717 * is already purging.
718 */
719static void try_purge_vmap_area_lazy(void)
720{
721 if (mutex_trylock(&vmap_purge_lock)) {
722 __purge_vmap_area_lazy(ULONG_MAX, 0);
723 mutex_unlock(&vmap_purge_lock);
724 }
725}
726
727/*
728 * Kick off a purge of the outstanding lazy areas.
729 */
730static void purge_vmap_area_lazy(void)
731{
732 mutex_lock(&vmap_purge_lock);
733 purge_fragmented_blocks_allcpus();
734 __purge_vmap_area_lazy(ULONG_MAX, 0);
735 mutex_unlock(&vmap_purge_lock);
736}
737
738/*
739 * Free a vmap area, caller ensuring that the area has been unmapped
740 * and flush_cache_vunmap had been called for the correct range
741 * previously.
742 */
743static void free_vmap_area_noflush(struct vmap_area *va)
744{
745 int nr_lazy;
746
747 nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
748 &vmap_lazy_nr);
749
750 /* After this point, we may free va at any time */
751 llist_add(&va->purge_list, &vmap_purge_list);
752
753 if (unlikely(nr_lazy > lazy_max_pages()))
754 try_purge_vmap_area_lazy();
755}
756
757/*
758 * Free and unmap a vmap area
759 */
760static void free_unmap_vmap_area(struct vmap_area *va)
761{
762 flush_cache_vunmap(va->va_start, va->va_end);
763 unmap_vmap_area(va);
764 free_vmap_area_noflush(va);
765}
766
767static struct vmap_area *find_vmap_area(unsigned long addr)
768{
769 struct vmap_area *va;
770
771 spin_lock(&vmap_area_lock);
772 va = __find_vmap_area(addr);
773 spin_unlock(&vmap_area_lock);
774
775 return va;
776}
777
778/*** Per cpu kva allocator ***/
779
780/*
781 * vmap space is limited especially on 32 bit architectures. Ensure there is
782 * room for at least 16 percpu vmap blocks per CPU.
783 */
784/*
785 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
786 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
787 * instead (we just need a rough idea)
788 */
789#if BITS_PER_LONG == 32
790#define VMALLOC_SPACE (128UL*1024*1024)
791#else
792#define VMALLOC_SPACE (128UL*1024*1024*1024)
793#endif
794
795#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
796#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
797#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
798#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
799#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
800#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
801#define VMAP_BBMAP_BITS \
802 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
803 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
804 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
805
806#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
807
808static bool vmap_initialized __read_mostly = false;
809
810struct vmap_block_queue {
811 spinlock_t lock;
812 struct list_head free;
813};
814
815struct vmap_block {
816 spinlock_t lock;
817 struct vmap_area *va;
818 unsigned long free, dirty;
819 unsigned long dirty_min, dirty_max; /*< dirty range */
820 struct list_head free_list;
821 struct rcu_head rcu_head;
822 struct list_head purge;
823};
824
825/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
826static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
827
828/*
829 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
830 * in the free path. Could get rid of this if we change the API to return a
831 * "cookie" from alloc, to be passed to free. But no big deal yet.
832 */
833static DEFINE_SPINLOCK(vmap_block_tree_lock);
834static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
835
836/*
837 * We should probably have a fallback mechanism to allocate virtual memory
838 * out of partially filled vmap blocks. However vmap block sizing should be
839 * fairly reasonable according to the vmalloc size, so it shouldn't be a
840 * big problem.
841 */
842
843static unsigned long addr_to_vb_idx(unsigned long addr)
844{
845 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
846 addr /= VMAP_BLOCK_SIZE;
847 return addr;
848}
849
850static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
851{
852 unsigned long addr;
853
854 addr = va_start + (pages_off << PAGE_SHIFT);
855 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
856 return (void *)addr;
857}
858
859/**
860 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
861 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
862 * @order: how many 2^order pages should be occupied in newly allocated block
863 * @gfp_mask: flags for the page level allocator
864 *
865 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
866 */
867static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
868{
869 struct vmap_block_queue *vbq;
870 struct vmap_block *vb;
871 struct vmap_area *va;
872 unsigned long vb_idx;
873 int node, err;
874 void *vaddr;
875
876 node = numa_node_id();
877
878 vb = kmalloc_node(sizeof(struct vmap_block),
879 gfp_mask & GFP_RECLAIM_MASK, node);
880 if (unlikely(!vb))
881 return ERR_PTR(-ENOMEM);
882
883 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
884 VMALLOC_START, VMALLOC_END,
885 node, gfp_mask);
886 if (IS_ERR(va)) {
887 kfree(vb);
888 return ERR_CAST(va);
889 }
890
891 err = radix_tree_preload(gfp_mask);
892 if (unlikely(err)) {
893 kfree(vb);
894 free_vmap_area(va);
895 return ERR_PTR(err);
896 }
897
898 vaddr = vmap_block_vaddr(va->va_start, 0);
899 spin_lock_init(&vb->lock);
900 vb->va = va;
901 /* At least something should be left free */
902 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
903 vb->free = VMAP_BBMAP_BITS - (1UL << order);
904 vb->dirty = 0;
905 vb->dirty_min = VMAP_BBMAP_BITS;
906 vb->dirty_max = 0;
907 INIT_LIST_HEAD(&vb->free_list);
908
909 vb_idx = addr_to_vb_idx(va->va_start);
910 spin_lock(&vmap_block_tree_lock);
911 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
912 spin_unlock(&vmap_block_tree_lock);
913 BUG_ON(err);
914 radix_tree_preload_end();
915
916 vbq = &get_cpu_var(vmap_block_queue);
917 spin_lock(&vbq->lock);
918 list_add_tail_rcu(&vb->free_list, &vbq->free);
919 spin_unlock(&vbq->lock);
920 put_cpu_var(vmap_block_queue);
921
922 return vaddr;
923}
924
925static void free_vmap_block(struct vmap_block *vb)
926{
927 struct vmap_block *tmp;
928 unsigned long vb_idx;
929
930 vb_idx = addr_to_vb_idx(vb->va->va_start);
931 spin_lock(&vmap_block_tree_lock);
932 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
933 spin_unlock(&vmap_block_tree_lock);
934 BUG_ON(tmp != vb);
935
936 free_vmap_area_noflush(vb->va);
937 kfree_rcu(vb, rcu_head);
938}
939
940static void purge_fragmented_blocks(int cpu)
941{
942 LIST_HEAD(purge);
943 struct vmap_block *vb;
944 struct vmap_block *n_vb;
945 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
946
947 rcu_read_lock();
948 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
949
950 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
951 continue;
952
953 spin_lock(&vb->lock);
954 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
955 vb->free = 0; /* prevent further allocs after releasing lock */
956 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
957 vb->dirty_min = 0;
958 vb->dirty_max = VMAP_BBMAP_BITS;
959 spin_lock(&vbq->lock);
960 list_del_rcu(&vb->free_list);
961 spin_unlock(&vbq->lock);
962 spin_unlock(&vb->lock);
963 list_add_tail(&vb->purge, &purge);
964 } else
965 spin_unlock(&vb->lock);
966 }
967 rcu_read_unlock();
968
969 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
970 list_del(&vb->purge);
971 free_vmap_block(vb);
972 }
973}
974
975static void purge_fragmented_blocks_allcpus(void)
976{
977 int cpu;
978
979 for_each_possible_cpu(cpu)
980 purge_fragmented_blocks(cpu);
981}
982
983static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
984{
985 struct vmap_block_queue *vbq;
986 struct vmap_block *vb;
987 void *vaddr = NULL;
988 unsigned int order;
989
990 BUG_ON(offset_in_page(size));
991 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
992 if (WARN_ON(size == 0)) {
993 /*
994 * Allocating 0 bytes isn't what caller wants since
995 * get_order(0) returns funny result. Just warn and terminate
996 * early.
997 */
998 return NULL;
999 }
1000 order = get_order(size);
1001
1002 rcu_read_lock();
1003 vbq = &get_cpu_var(vmap_block_queue);
1004 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1005 unsigned long pages_off;
1006
1007 spin_lock(&vb->lock);
1008 if (vb->free < (1UL << order)) {
1009 spin_unlock(&vb->lock);
1010 continue;
1011 }
1012
1013 pages_off = VMAP_BBMAP_BITS - vb->free;
1014 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1015 vb->free -= 1UL << order;
1016 if (vb->free == 0) {
1017 spin_lock(&vbq->lock);
1018 list_del_rcu(&vb->free_list);
1019 spin_unlock(&vbq->lock);
1020 }
1021
1022 spin_unlock(&vb->lock);
1023 break;
1024 }
1025
1026 put_cpu_var(vmap_block_queue);
1027 rcu_read_unlock();
1028
1029 /* Allocate new block if nothing was found */
1030 if (!vaddr)
1031 vaddr = new_vmap_block(order, gfp_mask);
1032
1033 return vaddr;
1034}
1035
1036static void vb_free(const void *addr, unsigned long size)
1037{
1038 unsigned long offset;
1039 unsigned long vb_idx;
1040 unsigned int order;
1041 struct vmap_block *vb;
1042
1043 BUG_ON(offset_in_page(size));
1044 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1045
1046 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1047
1048 order = get_order(size);
1049
1050 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1051 offset >>= PAGE_SHIFT;
1052
1053 vb_idx = addr_to_vb_idx((unsigned long)addr);
1054 rcu_read_lock();
1055 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1056 rcu_read_unlock();
1057 BUG_ON(!vb);
1058
1059 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1060
1061 spin_lock(&vb->lock);
1062
1063 /* Expand dirty range */
1064 vb->dirty_min = min(vb->dirty_min, offset);
1065 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1066
1067 vb->dirty += 1UL << order;
1068 if (vb->dirty == VMAP_BBMAP_BITS) {
1069 BUG_ON(vb->free);
1070 spin_unlock(&vb->lock);
1071 free_vmap_block(vb);
1072 } else
1073 spin_unlock(&vb->lock);
1074}
1075
1076/**
1077 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1078 *
1079 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1080 * to amortize TLB flushing overheads. What this means is that any page you
1081 * have now, may, in a former life, have been mapped into kernel virtual
1082 * address by the vmap layer and so there might be some CPUs with TLB entries
1083 * still referencing that page (additional to the regular 1:1 kernel mapping).
1084 *
1085 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1086 * be sure that none of the pages we have control over will have any aliases
1087 * from the vmap layer.
1088 */
1089void vm_unmap_aliases(void)
1090{
1091 unsigned long start = ULONG_MAX, end = 0;
1092 int cpu;
1093 int flush = 0;
1094
1095 if (unlikely(!vmap_initialized))
1096 return;
1097
1098 might_sleep();
1099
1100 for_each_possible_cpu(cpu) {
1101 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1102 struct vmap_block *vb;
1103
1104 rcu_read_lock();
1105 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1106 spin_lock(&vb->lock);
1107 if (vb->dirty) {
1108 unsigned long va_start = vb->va->va_start;
1109 unsigned long s, e;
1110
1111 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1112 e = va_start + (vb->dirty_max << PAGE_SHIFT);
1113
1114 start = min(s, start);
1115 end = max(e, end);
1116
1117 flush = 1;
1118 }
1119 spin_unlock(&vb->lock);
1120 }
1121 rcu_read_unlock();
1122 }
1123
1124 mutex_lock(&vmap_purge_lock);
1125 purge_fragmented_blocks_allcpus();
1126 if (!__purge_vmap_area_lazy(start, end) && flush)
1127 flush_tlb_kernel_range(start, end);
1128 mutex_unlock(&vmap_purge_lock);
1129}
1130EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1131
1132/**
1133 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1134 * @mem: the pointer returned by vm_map_ram
1135 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1136 */
1137void vm_unmap_ram(const void *mem, unsigned int count)
1138{
1139 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1140 unsigned long addr = (unsigned long)mem;
1141 struct vmap_area *va;
1142
1143 might_sleep();
1144 BUG_ON(!addr);
1145 BUG_ON(addr < VMALLOC_START);
1146 BUG_ON(addr > VMALLOC_END);
1147 BUG_ON(!PAGE_ALIGNED(addr));
1148
1149 debug_check_no_locks_freed(mem, size);
1150 vmap_debug_free_range(addr, addr+size);
1151
1152 if (likely(count <= VMAP_MAX_ALLOC)) {
1153 vb_free(mem, size);
1154 return;
1155 }
1156
1157 va = find_vmap_area(addr);
1158 BUG_ON(!va);
1159 free_unmap_vmap_area(va);
1160}
1161EXPORT_SYMBOL(vm_unmap_ram);
1162
1163/**
1164 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1165 * @pages: an array of pointers to the pages to be mapped
1166 * @count: number of pages
1167 * @node: prefer to allocate data structures on this node
1168 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1169 *
1170 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1171 * faster than vmap so it's good. But if you mix long-life and short-life
1172 * objects with vm_map_ram(), it could consume lots of address space through
1173 * fragmentation (especially on a 32bit machine). You could see failures in
1174 * the end. Please use this function for short-lived objects.
1175 *
1176 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1177 */
1178void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1179{
1180 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1181 unsigned long addr;
1182 void *mem;
1183
1184 if (likely(count <= VMAP_MAX_ALLOC)) {
1185 mem = vb_alloc(size, GFP_KERNEL);
1186 if (IS_ERR(mem))
1187 return NULL;
1188 addr = (unsigned long)mem;
1189 } else {
1190 struct vmap_area *va;
1191 va = alloc_vmap_area(size, PAGE_SIZE,
1192 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1193 if (IS_ERR(va))
1194 return NULL;
1195
1196 addr = va->va_start;
1197 mem = (void *)addr;
1198 }
1199 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1200 vm_unmap_ram(mem, count);
1201 return NULL;
1202 }
1203 return mem;
1204}
1205EXPORT_SYMBOL(vm_map_ram);
1206
1207static struct vm_struct *vmlist __initdata;
1208/**
1209 * vm_area_add_early - add vmap area early during boot
1210 * @vm: vm_struct to add
1211 *
1212 * This function is used to add fixed kernel vm area to vmlist before
1213 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1214 * should contain proper values and the other fields should be zero.
1215 *
1216 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1217 */
1218void __init vm_area_add_early(struct vm_struct *vm)
1219{
1220 struct vm_struct *tmp, **p;
1221
1222 BUG_ON(vmap_initialized);
1223 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1224 if (tmp->addr >= vm->addr) {
1225 BUG_ON(tmp->addr < vm->addr + vm->size);
1226 break;
1227 } else
1228 BUG_ON(tmp->addr + tmp->size > vm->addr);
1229 }
1230 vm->next = *p;
1231 *p = vm;
1232}
1233
1234/**
1235 * vm_area_register_early - register vmap area early during boot
1236 * @vm: vm_struct to register
1237 * @align: requested alignment
1238 *
1239 * This function is used to register kernel vm area before
1240 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1241 * proper values on entry and other fields should be zero. On return,
1242 * vm->addr contains the allocated address.
1243 *
1244 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1245 */
1246void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1247{
1248 static size_t vm_init_off __initdata;
1249 unsigned long addr;
1250
1251 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1252 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1253
1254 vm->addr = (void *)addr;
1255
1256 vm_area_add_early(vm);
1257}
1258
1259void __init vmalloc_init(void)
1260{
1261 struct vmap_area *va;
1262 struct vm_struct *tmp;
1263 int i;
1264
1265 for_each_possible_cpu(i) {
1266 struct vmap_block_queue *vbq;
1267 struct vfree_deferred *p;
1268
1269 vbq = &per_cpu(vmap_block_queue, i);
1270 spin_lock_init(&vbq->lock);
1271 INIT_LIST_HEAD(&vbq->free);
1272 p = &per_cpu(vfree_deferred, i);
1273 init_llist_head(&p->list);
1274 INIT_WORK(&p->wq, free_work);
1275 }
1276
1277 /* Import existing vmlist entries. */
1278 for (tmp = vmlist; tmp; tmp = tmp->next) {
1279 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1280 va->flags = VM_VM_AREA;
1281 va->va_start = (unsigned long)tmp->addr;
1282 va->va_end = va->va_start + tmp->size;
1283 va->vm = tmp;
1284 __insert_vmap_area(va);
1285 }
1286
1287 vmap_area_pcpu_hole = VMALLOC_END;
1288
1289 vmap_initialized = true;
1290}
1291
1292/**
1293 * map_kernel_range_noflush - map kernel VM area with the specified pages
1294 * @addr: start of the VM area to map
1295 * @size: size of the VM area to map
1296 * @prot: page protection flags to use
1297 * @pages: pages to map
1298 *
1299 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1300 * specify should have been allocated using get_vm_area() and its
1301 * friends.
1302 *
1303 * NOTE:
1304 * This function does NOT do any cache flushing. The caller is
1305 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1306 * before calling this function.
1307 *
1308 * RETURNS:
1309 * The number of pages mapped on success, -errno on failure.
1310 */
1311int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1312 pgprot_t prot, struct page **pages)
1313{
1314 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1315}
1316
1317/**
1318 * unmap_kernel_range_noflush - unmap kernel VM area
1319 * @addr: start of the VM area to unmap
1320 * @size: size of the VM area to unmap
1321 *
1322 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1323 * specify should have been allocated using get_vm_area() and its
1324 * friends.
1325 *
1326 * NOTE:
1327 * This function does NOT do any cache flushing. The caller is
1328 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1329 * before calling this function and flush_tlb_kernel_range() after.
1330 */
1331void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1332{
1333 vunmap_page_range(addr, addr + size);
1334}
1335EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1336
1337/**
1338 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1339 * @addr: start of the VM area to unmap
1340 * @size: size of the VM area to unmap
1341 *
1342 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1343 * the unmapping and tlb after.
1344 */
1345void unmap_kernel_range(unsigned long addr, unsigned long size)
1346{
1347 unsigned long end = addr + size;
1348
1349 flush_cache_vunmap(addr, end);
1350 vunmap_page_range(addr, end);
1351 flush_tlb_kernel_range(addr, end);
1352}
1353EXPORT_SYMBOL_GPL(unmap_kernel_range);
1354
1355int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1356{
1357 unsigned long addr = (unsigned long)area->addr;
1358 unsigned long end = addr + get_vm_area_size(area);
1359 int err;
1360
1361 err = vmap_page_range(addr, end, prot, pages);
1362
1363 return err > 0 ? 0 : err;
1364}
1365EXPORT_SYMBOL_GPL(map_vm_area);
1366
1367static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1368 unsigned long flags, const void *caller)
1369{
1370 spin_lock(&vmap_area_lock);
1371 vm->flags = flags;
1372 vm->addr = (void *)va->va_start;
1373 vm->size = va->va_end - va->va_start;
1374 vm->caller = caller;
1375 va->vm = vm;
1376 va->flags |= VM_VM_AREA;
1377 spin_unlock(&vmap_area_lock);
1378}
1379
1380static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1381{
1382 /*
1383 * Before removing VM_UNINITIALIZED,
1384 * we should make sure that vm has proper values.
1385 * Pair with smp_rmb() in show_numa_info().
1386 */
1387 smp_wmb();
1388 vm->flags &= ~VM_UNINITIALIZED;
1389}
1390
1391static struct vm_struct *__get_vm_area_node(unsigned long size,
1392 unsigned long align, unsigned long flags, unsigned long start,
1393 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1394{
1395 struct vmap_area *va;
1396 struct vm_struct *area;
1397
1398 BUG_ON(in_interrupt());
1399 size = PAGE_ALIGN(size);
1400 if (unlikely(!size))
1401 return NULL;
1402
1403 if (flags & VM_IOREMAP)
1404 align = 1ul << clamp_t(int, get_count_order_long(size),
1405 PAGE_SHIFT, IOREMAP_MAX_ORDER);
1406
1407 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1408 if (unlikely(!area))
1409 return NULL;
1410
1411 if (!(flags & VM_NO_GUARD))
1412 size += PAGE_SIZE;
1413
1414 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1415 if (IS_ERR(va)) {
1416 kfree(area);
1417 return NULL;
1418 }
1419
1420 setup_vmalloc_vm(area, va, flags, caller);
1421
1422 return area;
1423}
1424
1425struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1426 unsigned long start, unsigned long end)
1427{
1428 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1429 GFP_KERNEL, __builtin_return_address(0));
1430}
1431EXPORT_SYMBOL_GPL(__get_vm_area);
1432
1433struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1434 unsigned long start, unsigned long end,
1435 const void *caller)
1436{
1437 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1438 GFP_KERNEL, caller);
1439}
1440
1441/**
1442 * get_vm_area - reserve a contiguous kernel virtual area
1443 * @size: size of the area
1444 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1445 *
1446 * Search an area of @size in the kernel virtual mapping area,
1447 * and reserved it for out purposes. Returns the area descriptor
1448 * on success or %NULL on failure.
1449 */
1450struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1451{
1452 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1453 NUMA_NO_NODE, GFP_KERNEL,
1454 __builtin_return_address(0));
1455}
1456
1457struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1458 const void *caller)
1459{
1460 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1461 NUMA_NO_NODE, GFP_KERNEL, caller);
1462}
1463
1464/**
1465 * find_vm_area - find a continuous kernel virtual area
1466 * @addr: base address
1467 *
1468 * Search for the kernel VM area starting at @addr, and return it.
1469 * It is up to the caller to do all required locking to keep the returned
1470 * pointer valid.
1471 */
1472struct vm_struct *find_vm_area(const void *addr)
1473{
1474 struct vmap_area *va;
1475
1476 va = find_vmap_area((unsigned long)addr);
1477 if (va && va->flags & VM_VM_AREA)
1478 return va->vm;
1479
1480 return NULL;
1481}
1482
1483/**
1484 * remove_vm_area - find and remove a continuous kernel virtual area
1485 * @addr: base address
1486 *
1487 * Search for the kernel VM area starting at @addr, and remove it.
1488 * This function returns the found VM area, but using it is NOT safe
1489 * on SMP machines, except for its size or flags.
1490 */
1491struct vm_struct *remove_vm_area(const void *addr)
1492{
1493 struct vmap_area *va;
1494
1495 might_sleep();
1496
1497 va = find_vmap_area((unsigned long)addr);
1498 if (va && va->flags & VM_VM_AREA) {
1499 struct vm_struct *vm = va->vm;
1500
1501 spin_lock(&vmap_area_lock);
1502 va->vm = NULL;
1503 va->flags &= ~VM_VM_AREA;
1504 va->flags |= VM_LAZY_FREE;
1505 spin_unlock(&vmap_area_lock);
1506
1507 vmap_debug_free_range(va->va_start, va->va_end);
1508 kasan_free_shadow(vm);
1509 free_unmap_vmap_area(va);
1510
1511 return vm;
1512 }
1513 return NULL;
1514}
1515
1516static void __vunmap(const void *addr, int deallocate_pages)
1517{
1518 struct vm_struct *area;
1519
1520 if (!addr)
1521 return;
1522
1523 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1524 addr))
1525 return;
1526
1527 area = find_vm_area(addr);
1528 if (unlikely(!area)) {
1529 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1530 addr);
1531 return;
1532 }
1533
1534 debug_check_no_locks_freed(addr, get_vm_area_size(area));
1535 debug_check_no_obj_freed(addr, get_vm_area_size(area));
1536
1537 remove_vm_area(addr);
1538 if (deallocate_pages) {
1539 int i;
1540
1541 for (i = 0; i < area->nr_pages; i++) {
1542 struct page *page = area->pages[i];
1543
1544 BUG_ON(!page);
1545 __free_pages(page, 0);
1546 }
1547
1548 kvfree(area->pages);
1549 }
1550
1551 kfree(area);
1552 return;
1553}
1554
1555static inline void __vfree_deferred(const void *addr)
1556{
1557 /*
1558 * Use raw_cpu_ptr() because this can be called from preemptible
1559 * context. Preemption is absolutely fine here, because the llist_add()
1560 * implementation is lockless, so it works even if we are adding to
1561 * nother cpu's list. schedule_work() should be fine with this too.
1562 */
1563 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
1564
1565 if (llist_add((struct llist_node *)addr, &p->list))
1566 schedule_work(&p->wq);
1567}
1568
1569/**
1570 * vfree_atomic - release memory allocated by vmalloc()
1571 * @addr: memory base address
1572 *
1573 * This one is just like vfree() but can be called in any atomic context
1574 * except NMIs.
1575 */
1576void vfree_atomic(const void *addr)
1577{
1578 BUG_ON(in_nmi());
1579
1580 kmemleak_free(addr);
1581
1582 if (!addr)
1583 return;
1584 __vfree_deferred(addr);
1585}
1586
1587/**
1588 * vfree - release memory allocated by vmalloc()
1589 * @addr: memory base address
1590 *
1591 * Free the virtually continuous memory area starting at @addr, as
1592 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1593 * NULL, no operation is performed.
1594 *
1595 * Must not be called in NMI context (strictly speaking, only if we don't
1596 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1597 * conventions for vfree() arch-depenedent would be a really bad idea)
1598 *
1599 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
1600 */
1601void vfree(const void *addr)
1602{
1603 BUG_ON(in_nmi());
1604
1605 kmemleak_free(addr);
1606
1607 if (!addr)
1608 return;
1609 if (unlikely(in_interrupt()))
1610 __vfree_deferred(addr);
1611 else
1612 __vunmap(addr, 1);
1613}
1614EXPORT_SYMBOL(vfree);
1615
1616/**
1617 * vunmap - release virtual mapping obtained by vmap()
1618 * @addr: memory base address
1619 *
1620 * Free the virtually contiguous memory area starting at @addr,
1621 * which was created from the page array passed to vmap().
1622 *
1623 * Must not be called in interrupt context.
1624 */
1625void vunmap(const void *addr)
1626{
1627 BUG_ON(in_interrupt());
1628 might_sleep();
1629 if (addr)
1630 __vunmap(addr, 0);
1631}
1632EXPORT_SYMBOL(vunmap);
1633
1634/**
1635 * vmap - map an array of pages into virtually contiguous space
1636 * @pages: array of page pointers
1637 * @count: number of pages to map
1638 * @flags: vm_area->flags
1639 * @prot: page protection for the mapping
1640 *
1641 * Maps @count pages from @pages into contiguous kernel virtual
1642 * space.
1643 */
1644void *vmap(struct page **pages, unsigned int count,
1645 unsigned long flags, pgprot_t prot)
1646{
1647 struct vm_struct *area;
1648 unsigned long size; /* In bytes */
1649
1650 might_sleep();
1651
1652 if (count > totalram_pages)
1653 return NULL;
1654
1655 size = (unsigned long)count << PAGE_SHIFT;
1656 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1657 if (!area)
1658 return NULL;
1659
1660 if (map_vm_area(area, prot, pages)) {
1661 vunmap(area->addr);
1662 return NULL;
1663 }
1664
1665 return area->addr;
1666}
1667EXPORT_SYMBOL(vmap);
1668
1669static void *__vmalloc_node(unsigned long size, unsigned long align,
1670 gfp_t gfp_mask, pgprot_t prot,
1671 int node, const void *caller);
1672static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1673 pgprot_t prot, int node)
1674{
1675 struct page **pages;
1676 unsigned int nr_pages, array_size, i;
1677 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1678 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1679 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
1680 0 :
1681 __GFP_HIGHMEM;
1682
1683 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1684 array_size = (nr_pages * sizeof(struct page *));
1685
1686 /* Please note that the recursion is strictly bounded. */
1687 if (array_size > PAGE_SIZE) {
1688 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
1689 PAGE_KERNEL, node, area->caller);
1690 } else {
1691 pages = kmalloc_node(array_size, nested_gfp, node);
1692 }
1693
1694 if (!pages) {
1695 remove_vm_area(area->addr);
1696 kfree(area);
1697 return NULL;
1698 }
1699
1700 area->pages = pages;
1701 area->nr_pages = nr_pages;
1702
1703 for (i = 0; i < area->nr_pages; i++) {
1704 struct page *page;
1705
1706 if (node == NUMA_NO_NODE)
1707 page = alloc_page(alloc_mask|highmem_mask);
1708 else
1709 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
1710
1711 if (unlikely(!page)) {
1712 /* Successfully allocated i pages, free them in __vunmap() */
1713 area->nr_pages = i;
1714 goto fail;
1715 }
1716 area->pages[i] = page;
1717 if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
1718 cond_resched();
1719 }
1720
1721 if (map_vm_area(area, prot, pages))
1722 goto fail;
1723 return area->addr;
1724
1725fail:
1726 warn_alloc(gfp_mask, NULL,
1727 "vmalloc: allocation failure, allocated %ld of %ld bytes",
1728 (area->nr_pages*PAGE_SIZE), area->size);
1729 vfree(area->addr);
1730 return NULL;
1731}
1732
1733/**
1734 * __vmalloc_node_range - allocate virtually contiguous memory
1735 * @size: allocation size
1736 * @align: desired alignment
1737 * @start: vm area range start
1738 * @end: vm area range end
1739 * @gfp_mask: flags for the page level allocator
1740 * @prot: protection mask for the allocated pages
1741 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
1742 * @node: node to use for allocation or NUMA_NO_NODE
1743 * @caller: caller's return address
1744 *
1745 * Allocate enough pages to cover @size from the page level
1746 * allocator with @gfp_mask flags. Map them into contiguous
1747 * kernel virtual space, using a pagetable protection of @prot.
1748 */
1749void *__vmalloc_node_range(unsigned long size, unsigned long align,
1750 unsigned long start, unsigned long end, gfp_t gfp_mask,
1751 pgprot_t prot, unsigned long vm_flags, int node,
1752 const void *caller)
1753{
1754 struct vm_struct *area;
1755 void *addr;
1756 unsigned long real_size = size;
1757
1758 size = PAGE_ALIGN(size);
1759 if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1760 goto fail;
1761
1762 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1763 vm_flags, start, end, node, gfp_mask, caller);
1764 if (!area)
1765 goto fail;
1766
1767 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1768 if (!addr)
1769 return NULL;
1770
1771 /*
1772 * First make sure the mappings are removed from all page-tables
1773 * before they are freed.
1774 */
1775 vmalloc_sync_unmappings();
1776
1777 /*
1778 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1779 * flag. It means that vm_struct is not fully initialized.
1780 * Now, it is fully initialized, so remove this flag here.
1781 */
1782 clear_vm_uninitialized_flag(area);
1783
1784 kmemleak_vmalloc(area, size, gfp_mask);
1785
1786 return addr;
1787
1788fail:
1789 warn_alloc(gfp_mask, NULL,
1790 "vmalloc: allocation failure: %lu bytes", real_size);
1791 return NULL;
1792}
1793
1794/**
1795 * __vmalloc_node - allocate virtually contiguous memory
1796 * @size: allocation size
1797 * @align: desired alignment
1798 * @gfp_mask: flags for the page level allocator
1799 * @prot: protection mask for the allocated pages
1800 * @node: node to use for allocation or NUMA_NO_NODE
1801 * @caller: caller's return address
1802 *
1803 * Allocate enough pages to cover @size from the page level
1804 * allocator with @gfp_mask flags. Map them into contiguous
1805 * kernel virtual space, using a pagetable protection of @prot.
1806 *
1807 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
1808 * and __GFP_NOFAIL are not supported
1809 *
1810 * Any use of gfp flags outside of GFP_KERNEL should be consulted
1811 * with mm people.
1812 *
1813 */
1814static void *__vmalloc_node(unsigned long size, unsigned long align,
1815 gfp_t gfp_mask, pgprot_t prot,
1816 int node, const void *caller)
1817{
1818 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1819 gfp_mask, prot, 0, node, caller);
1820}
1821
1822void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1823{
1824 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1825 __builtin_return_address(0));
1826}
1827EXPORT_SYMBOL(__vmalloc);
1828
1829static inline void *__vmalloc_node_flags(unsigned long size,
1830 int node, gfp_t flags)
1831{
1832 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1833 node, __builtin_return_address(0));
1834}
1835
1836
1837void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
1838 void *caller)
1839{
1840 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
1841}
1842
1843/**
1844 * vmalloc - allocate virtually contiguous memory
1845 * @size: allocation size
1846 * Allocate enough pages to cover @size from the page level
1847 * allocator and map them into contiguous kernel virtual space.
1848 *
1849 * For tight control over page level allocator and protection flags
1850 * use __vmalloc() instead.
1851 */
1852void *vmalloc(unsigned long size)
1853{
1854 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1855 GFP_KERNEL);
1856}
1857EXPORT_SYMBOL(vmalloc);
1858
1859/**
1860 * vzalloc - allocate virtually contiguous memory with zero fill
1861 * @size: allocation size
1862 * Allocate enough pages to cover @size from the page level
1863 * allocator and map them into contiguous kernel virtual space.
1864 * The memory allocated is set to zero.
1865 *
1866 * For tight control over page level allocator and protection flags
1867 * use __vmalloc() instead.
1868 */
1869void *vzalloc(unsigned long size)
1870{
1871 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1872 GFP_KERNEL | __GFP_ZERO);
1873}
1874EXPORT_SYMBOL(vzalloc);
1875
1876/**
1877 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1878 * @size: allocation size
1879 *
1880 * The resulting memory area is zeroed so it can be mapped to userspace
1881 * without leaking data.
1882 */
1883void *vmalloc_user(unsigned long size)
1884{
1885 struct vm_struct *area;
1886 void *ret;
1887
1888 ret = __vmalloc_node(size, SHMLBA,
1889 GFP_KERNEL | __GFP_ZERO,
1890 PAGE_KERNEL, NUMA_NO_NODE,
1891 __builtin_return_address(0));
1892 if (ret) {
1893 area = find_vm_area(ret);
1894 area->flags |= VM_USERMAP;
1895 }
1896 return ret;
1897}
1898EXPORT_SYMBOL(vmalloc_user);
1899
1900/**
1901 * vmalloc_node - allocate memory on a specific node
1902 * @size: allocation size
1903 * @node: numa node
1904 *
1905 * Allocate enough pages to cover @size from the page level
1906 * allocator and map them into contiguous kernel virtual space.
1907 *
1908 * For tight control over page level allocator and protection flags
1909 * use __vmalloc() instead.
1910 */
1911void *vmalloc_node(unsigned long size, int node)
1912{
1913 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
1914 node, __builtin_return_address(0));
1915}
1916EXPORT_SYMBOL(vmalloc_node);
1917
1918/**
1919 * vzalloc_node - allocate memory on a specific node with zero fill
1920 * @size: allocation size
1921 * @node: numa node
1922 *
1923 * Allocate enough pages to cover @size from the page level
1924 * allocator and map them into contiguous kernel virtual space.
1925 * The memory allocated is set to zero.
1926 *
1927 * For tight control over page level allocator and protection flags
1928 * use __vmalloc_node() instead.
1929 */
1930void *vzalloc_node(unsigned long size, int node)
1931{
1932 return __vmalloc_node_flags(size, node,
1933 GFP_KERNEL | __GFP_ZERO);
1934}
1935EXPORT_SYMBOL(vzalloc_node);
1936
1937#ifndef PAGE_KERNEL_EXEC
1938# define PAGE_KERNEL_EXEC PAGE_KERNEL
1939#endif
1940
1941/**
1942 * vmalloc_exec - allocate virtually contiguous, executable memory
1943 * @size: allocation size
1944 *
1945 * Kernel-internal function to allocate enough pages to cover @size
1946 * the page level allocator and map them into contiguous and
1947 * executable kernel virtual space.
1948 *
1949 * For tight control over page level allocator and protection flags
1950 * use __vmalloc() instead.
1951 */
1952
1953void *vmalloc_exec(unsigned long size)
1954{
1955 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL_EXEC,
1956 NUMA_NO_NODE, __builtin_return_address(0));
1957}
1958
1959#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1960#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
1961#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1962#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
1963#else
1964/*
1965 * 64b systems should always have either DMA or DMA32 zones. For others
1966 * GFP_DMA32 should do the right thing and use the normal zone.
1967 */
1968#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1969#endif
1970
1971/**
1972 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1973 * @size: allocation size
1974 *
1975 * Allocate enough 32bit PA addressable pages to cover @size from the
1976 * page level allocator and map them into contiguous kernel virtual space.
1977 */
1978void *vmalloc_32(unsigned long size)
1979{
1980 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1981 NUMA_NO_NODE, __builtin_return_address(0));
1982}
1983EXPORT_SYMBOL(vmalloc_32);
1984
1985/**
1986 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1987 * @size: allocation size
1988 *
1989 * The resulting memory area is 32bit addressable and zeroed so it can be
1990 * mapped to userspace without leaking data.
1991 */
1992void *vmalloc_32_user(unsigned long size)
1993{
1994 struct vm_struct *area;
1995 void *ret;
1996
1997 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1998 NUMA_NO_NODE, __builtin_return_address(0));
1999 if (ret) {
2000 area = find_vm_area(ret);
2001 area->flags |= VM_USERMAP;
2002 }
2003 return ret;
2004}
2005EXPORT_SYMBOL(vmalloc_32_user);
2006
2007/*
2008 * small helper routine , copy contents to buf from addr.
2009 * If the page is not present, fill zero.
2010 */
2011
2012static int aligned_vread(char *buf, char *addr, unsigned long count)
2013{
2014 struct page *p;
2015 int copied = 0;
2016
2017 while (count) {
2018 unsigned long offset, length;
2019
2020 offset = offset_in_page(addr);
2021 length = PAGE_SIZE - offset;
2022 if (length > count)
2023 length = count;
2024 p = vmalloc_to_page(addr);
2025 /*
2026 * To do safe access to this _mapped_ area, we need
2027 * lock. But adding lock here means that we need to add
2028 * overhead of vmalloc()/vfree() calles for this _debug_
2029 * interface, rarely used. Instead of that, we'll use
2030 * kmap() and get small overhead in this access function.
2031 */
2032 if (p) {
2033 /*
2034 * we can expect USER0 is not used (see vread/vwrite's
2035 * function description)
2036 */
2037 void *map = kmap_atomic(p);
2038 memcpy(buf, map + offset, length);
2039 kunmap_atomic(map);
2040 } else
2041 memset(buf, 0, length);
2042
2043 addr += length;
2044 buf += length;
2045 copied += length;
2046 count -= length;
2047 }
2048 return copied;
2049}
2050
2051static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2052{
2053 struct page *p;
2054 int copied = 0;
2055
2056 while (count) {
2057 unsigned long offset, length;
2058
2059 offset = offset_in_page(addr);
2060 length = PAGE_SIZE - offset;
2061 if (length > count)
2062 length = count;
2063 p = vmalloc_to_page(addr);
2064 /*
2065 * To do safe access to this _mapped_ area, we need
2066 * lock. But adding lock here means that we need to add
2067 * overhead of vmalloc()/vfree() calles for this _debug_
2068 * interface, rarely used. Instead of that, we'll use
2069 * kmap() and get small overhead in this access function.
2070 */
2071 if (p) {
2072 /*
2073 * we can expect USER0 is not used (see vread/vwrite's
2074 * function description)
2075 */
2076 void *map = kmap_atomic(p);
2077 memcpy(map + offset, buf, length);
2078 kunmap_atomic(map);
2079 }
2080 addr += length;
2081 buf += length;
2082 copied += length;
2083 count -= length;
2084 }
2085 return copied;
2086}
2087
2088/**
2089 * vread() - read vmalloc area in a safe way.
2090 * @buf: buffer for reading data
2091 * @addr: vm address.
2092 * @count: number of bytes to be read.
2093 *
2094 * Returns # of bytes which addr and buf should be increased.
2095 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
2096 * includes any intersect with alive vmalloc area.
2097 *
2098 * This function checks that addr is a valid vmalloc'ed area, and
2099 * copy data from that area to a given buffer. If the given memory range
2100 * of [addr...addr+count) includes some valid address, data is copied to
2101 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2102 * IOREMAP area is treated as memory hole and no copy is done.
2103 *
2104 * If [addr...addr+count) doesn't includes any intersects with alive
2105 * vm_struct area, returns 0. @buf should be kernel's buffer.
2106 *
2107 * Note: In usual ops, vread() is never necessary because the caller
2108 * should know vmalloc() area is valid and can use memcpy().
2109 * This is for routines which have to access vmalloc area without
2110 * any informaion, as /dev/kmem.
2111 *
2112 */
2113
2114long vread(char *buf, char *addr, unsigned long count)
2115{
2116 struct vmap_area *va;
2117 struct vm_struct *vm;
2118 char *vaddr, *buf_start = buf;
2119 unsigned long buflen = count;
2120 unsigned long n;
2121
2122 /* Don't allow overflow */
2123 if ((unsigned long) addr + count < count)
2124 count = -(unsigned long) addr;
2125
2126 spin_lock(&vmap_area_lock);
2127 list_for_each_entry(va, &vmap_area_list, list) {
2128 if (!count)
2129 break;
2130
2131 if (!(va->flags & VM_VM_AREA))
2132 continue;
2133
2134 vm = va->vm;
2135 vaddr = (char *) vm->addr;
2136 if (addr >= vaddr + get_vm_area_size(vm))
2137 continue;
2138 while (addr < vaddr) {
2139 if (count == 0)
2140 goto finished;
2141 *buf = '\0';
2142 buf++;
2143 addr++;
2144 count--;
2145 }
2146 n = vaddr + get_vm_area_size(vm) - addr;
2147 if (n > count)
2148 n = count;
2149 if (!(vm->flags & VM_IOREMAP))
2150 aligned_vread(buf, addr, n);
2151 else /* IOREMAP area is treated as memory hole */
2152 memset(buf, 0, n);
2153 buf += n;
2154 addr += n;
2155 count -= n;
2156 }
2157finished:
2158 spin_unlock(&vmap_area_lock);
2159
2160 if (buf == buf_start)
2161 return 0;
2162 /* zero-fill memory holes */
2163 if (buf != buf_start + buflen)
2164 memset(buf, 0, buflen - (buf - buf_start));
2165
2166 return buflen;
2167}
2168
2169/**
2170 * vwrite() - write vmalloc area in a safe way.
2171 * @buf: buffer for source data
2172 * @addr: vm address.
2173 * @count: number of bytes to be read.
2174 *
2175 * Returns # of bytes which addr and buf should be incresed.
2176 * (same number to @count).
2177 * If [addr...addr+count) doesn't includes any intersect with valid
2178 * vmalloc area, returns 0.
2179 *
2180 * This function checks that addr is a valid vmalloc'ed area, and
2181 * copy data from a buffer to the given addr. If specified range of
2182 * [addr...addr+count) includes some valid address, data is copied from
2183 * proper area of @buf. If there are memory holes, no copy to hole.
2184 * IOREMAP area is treated as memory hole and no copy is done.
2185 *
2186 * If [addr...addr+count) doesn't includes any intersects with alive
2187 * vm_struct area, returns 0. @buf should be kernel's buffer.
2188 *
2189 * Note: In usual ops, vwrite() is never necessary because the caller
2190 * should know vmalloc() area is valid and can use memcpy().
2191 * This is for routines which have to access vmalloc area without
2192 * any informaion, as /dev/kmem.
2193 */
2194
2195long vwrite(char *buf, char *addr, unsigned long count)
2196{
2197 struct vmap_area *va;
2198 struct vm_struct *vm;
2199 char *vaddr;
2200 unsigned long n, buflen;
2201 int copied = 0;
2202
2203 /* Don't allow overflow */
2204 if ((unsigned long) addr + count < count)
2205 count = -(unsigned long) addr;
2206 buflen = count;
2207
2208 spin_lock(&vmap_area_lock);
2209 list_for_each_entry(va, &vmap_area_list, list) {
2210 if (!count)
2211 break;
2212
2213 if (!(va->flags & VM_VM_AREA))
2214 continue;
2215
2216 vm = va->vm;
2217 vaddr = (char *) vm->addr;
2218 if (addr >= vaddr + get_vm_area_size(vm))
2219 continue;
2220 while (addr < vaddr) {
2221 if (count == 0)
2222 goto finished;
2223 buf++;
2224 addr++;
2225 count--;
2226 }
2227 n = vaddr + get_vm_area_size(vm) - addr;
2228 if (n > count)
2229 n = count;
2230 if (!(vm->flags & VM_IOREMAP)) {
2231 aligned_vwrite(buf, addr, n);
2232 copied++;
2233 }
2234 buf += n;
2235 addr += n;
2236 count -= n;
2237 }
2238finished:
2239 spin_unlock(&vmap_area_lock);
2240 if (!copied)
2241 return 0;
2242 return buflen;
2243}
2244
2245/**
2246 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2247 * @vma: vma to cover
2248 * @uaddr: target user address to start at
2249 * @kaddr: virtual address of vmalloc kernel memory
2250 * @pgoff: offset from @kaddr to start at
2251 * @size: size of map area
2252 *
2253 * Returns: 0 for success, -Exxx on failure
2254 *
2255 * This function checks that @kaddr is a valid vmalloc'ed area,
2256 * and that it is big enough to cover the range starting at
2257 * @uaddr in @vma. Will return failure if that criteria isn't
2258 * met.
2259 *
2260 * Similar to remap_pfn_range() (see mm/memory.c)
2261 */
2262int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2263 void *kaddr, unsigned long pgoff,
2264 unsigned long size)
2265{
2266 struct vm_struct *area;
2267 unsigned long off;
2268 unsigned long end_index;
2269
2270 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
2271 return -EINVAL;
2272
2273 size = PAGE_ALIGN(size);
2274
2275 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2276 return -EINVAL;
2277
2278 area = find_vm_area(kaddr);
2279 if (!area)
2280 return -EINVAL;
2281
2282 if (!(area->flags & VM_USERMAP))
2283 return -EINVAL;
2284
2285 if (check_add_overflow(size, off, &end_index) ||
2286 end_index > get_vm_area_size(area))
2287 return -EINVAL;
2288 kaddr += off;
2289
2290 do {
2291 struct page *page = vmalloc_to_page(kaddr);
2292 int ret;
2293
2294 ret = vm_insert_page(vma, uaddr, page);
2295 if (ret)
2296 return ret;
2297
2298 uaddr += PAGE_SIZE;
2299 kaddr += PAGE_SIZE;
2300 size -= PAGE_SIZE;
2301 } while (size > 0);
2302
2303 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2304
2305 return 0;
2306}
2307EXPORT_SYMBOL(remap_vmalloc_range_partial);
2308
2309/**
2310 * remap_vmalloc_range - map vmalloc pages to userspace
2311 * @vma: vma to cover (map full range of vma)
2312 * @addr: vmalloc memory
2313 * @pgoff: number of pages into addr before first page to map
2314 *
2315 * Returns: 0 for success, -Exxx on failure
2316 *
2317 * This function checks that addr is a valid vmalloc'ed area, and
2318 * that it is big enough to cover the vma. Will return failure if
2319 * that criteria isn't met.
2320 *
2321 * Similar to remap_pfn_range() (see mm/memory.c)
2322 */
2323int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2324 unsigned long pgoff)
2325{
2326 return remap_vmalloc_range_partial(vma, vma->vm_start,
2327 addr, pgoff,
2328 vma->vm_end - vma->vm_start);
2329}
2330EXPORT_SYMBOL(remap_vmalloc_range);
2331
2332/*
2333 * Implement stubs for vmalloc_sync_[un]mappings () if the architecture chose
2334 * not to have one.
2335 *
2336 * The purpose of this function is to make sure the vmalloc area
2337 * mappings are identical in all page-tables in the system.
2338 */
2339void __weak vmalloc_sync_mappings(void)
2340{
2341}
2342
2343void __weak vmalloc_sync_unmappings(void)
2344{
2345}
2346
2347static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2348{
2349 pte_t ***p = data;
2350
2351 if (p) {
2352 *(*p) = pte;
2353 (*p)++;
2354 }
2355 return 0;
2356}
2357
2358/**
2359 * alloc_vm_area - allocate a range of kernel address space
2360 * @size: size of the area
2361 * @ptes: returns the PTEs for the address space
2362 *
2363 * Returns: NULL on failure, vm_struct on success
2364 *
2365 * This function reserves a range of kernel address space, and
2366 * allocates pagetables to map that range. No actual mappings
2367 * are created.
2368 *
2369 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2370 * allocated for the VM area are returned.
2371 */
2372struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2373{
2374 struct vm_struct *area;
2375
2376 area = get_vm_area_caller(size, VM_IOREMAP,
2377 __builtin_return_address(0));
2378 if (area == NULL)
2379 return NULL;
2380
2381 /*
2382 * This ensures that page tables are constructed for this region
2383 * of kernel virtual address space and mapped into init_mm.
2384 */
2385 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2386 size, f, ptes ? &ptes : NULL)) {
2387 free_vm_area(area);
2388 return NULL;
2389 }
2390
2391 return area;
2392}
2393EXPORT_SYMBOL_GPL(alloc_vm_area);
2394
2395void free_vm_area(struct vm_struct *area)
2396{
2397 struct vm_struct *ret;
2398 ret = remove_vm_area(area->addr);
2399 BUG_ON(ret != area);
2400 kfree(area);
2401}
2402EXPORT_SYMBOL_GPL(free_vm_area);
2403
2404#ifdef CONFIG_SMP
2405static struct vmap_area *node_to_va(struct rb_node *n)
2406{
2407 return rb_entry_safe(n, struct vmap_area, rb_node);
2408}
2409
2410/**
2411 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2412 * @end: target address
2413 * @pnext: out arg for the next vmap_area
2414 * @pprev: out arg for the previous vmap_area
2415 *
2416 * Returns: %true if either or both of next and prev are found,
2417 * %false if no vmap_area exists
2418 *
2419 * Find vmap_areas end addresses of which enclose @end. ie. if not
2420 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2421 */
2422static bool pvm_find_next_prev(unsigned long end,
2423 struct vmap_area **pnext,
2424 struct vmap_area **pprev)
2425{
2426 struct rb_node *n = vmap_area_root.rb_node;
2427 struct vmap_area *va = NULL;
2428
2429 while (n) {
2430 va = rb_entry(n, struct vmap_area, rb_node);
2431 if (end < va->va_end)
2432 n = n->rb_left;
2433 else if (end > va->va_end)
2434 n = n->rb_right;
2435 else
2436 break;
2437 }
2438
2439 if (!va)
2440 return false;
2441
2442 if (va->va_end > end) {
2443 *pnext = va;
2444 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2445 } else {
2446 *pprev = va;
2447 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2448 }
2449 return true;
2450}
2451
2452/**
2453 * pvm_determine_end - find the highest aligned address between two vmap_areas
2454 * @pnext: in/out arg for the next vmap_area
2455 * @pprev: in/out arg for the previous vmap_area
2456 * @align: alignment
2457 *
2458 * Returns: determined end address
2459 *
2460 * Find the highest aligned address between *@pnext and *@pprev below
2461 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2462 * down address is between the end addresses of the two vmap_areas.
2463 *
2464 * Please note that the address returned by this function may fall
2465 * inside *@pnext vmap_area. The caller is responsible for checking
2466 * that.
2467 */
2468static unsigned long pvm_determine_end(struct vmap_area **pnext,
2469 struct vmap_area **pprev,
2470 unsigned long align)
2471{
2472 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2473 unsigned long addr;
2474
2475 if (*pnext)
2476 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2477 else
2478 addr = vmalloc_end;
2479
2480 while (*pprev && (*pprev)->va_end > addr) {
2481 *pnext = *pprev;
2482 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2483 }
2484
2485 return addr;
2486}
2487
2488/**
2489 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2490 * @offsets: array containing offset of each area
2491 * @sizes: array containing size of each area
2492 * @nr_vms: the number of areas to allocate
2493 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2494 *
2495 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2496 * vm_structs on success, %NULL on failure
2497 *
2498 * Percpu allocator wants to use congruent vm areas so that it can
2499 * maintain the offsets among percpu areas. This function allocates
2500 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2501 * be scattered pretty far, distance between two areas easily going up
2502 * to gigabytes. To avoid interacting with regular vmallocs, these
2503 * areas are allocated from top.
2504 *
2505 * Despite its complicated look, this allocator is rather simple. It
2506 * does everything top-down and scans areas from the end looking for
2507 * matching slot. While scanning, if any of the areas overlaps with
2508 * existing vmap_area, the base address is pulled down to fit the
2509 * area. Scanning is repeated till all the areas fit and then all
2510 * necessary data structures are inserted and the result is returned.
2511 */
2512struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2513 const size_t *sizes, int nr_vms,
2514 size_t align)
2515{
2516 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2517 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2518 struct vmap_area **vas, *prev, *next;
2519 struct vm_struct **vms;
2520 int area, area2, last_area, term_area;
2521 unsigned long base, start, end, last_end;
2522 bool purged = false;
2523
2524 /* verify parameters and allocate data structures */
2525 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
2526 for (last_area = 0, area = 0; area < nr_vms; area++) {
2527 start = offsets[area];
2528 end = start + sizes[area];
2529
2530 /* is everything aligned properly? */
2531 BUG_ON(!IS_ALIGNED(offsets[area], align));
2532 BUG_ON(!IS_ALIGNED(sizes[area], align));
2533
2534 /* detect the area with the highest address */
2535 if (start > offsets[last_area])
2536 last_area = area;
2537
2538 for (area2 = area + 1; area2 < nr_vms; area2++) {
2539 unsigned long start2 = offsets[area2];
2540 unsigned long end2 = start2 + sizes[area2];
2541
2542 BUG_ON(start2 < end && start < end2);
2543 }
2544 }
2545 last_end = offsets[last_area] + sizes[last_area];
2546
2547 if (vmalloc_end - vmalloc_start < last_end) {
2548 WARN_ON(true);
2549 return NULL;
2550 }
2551
2552 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2553 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2554 if (!vas || !vms)
2555 goto err_free2;
2556
2557 for (area = 0; area < nr_vms; area++) {
2558 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2559 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2560 if (!vas[area] || !vms[area])
2561 goto err_free;
2562 }
2563retry:
2564 spin_lock(&vmap_area_lock);
2565
2566 /* start scanning - we scan from the top, begin with the last area */
2567 area = term_area = last_area;
2568 start = offsets[area];
2569 end = start + sizes[area];
2570
2571 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2572 base = vmalloc_end - last_end;
2573 goto found;
2574 }
2575 base = pvm_determine_end(&next, &prev, align) - end;
2576
2577 while (true) {
2578 BUG_ON(next && next->va_end <= base + end);
2579 BUG_ON(prev && prev->va_end > base + end);
2580
2581 /*
2582 * base might have underflowed, add last_end before
2583 * comparing.
2584 */
2585 if (base + last_end < vmalloc_start + last_end) {
2586 spin_unlock(&vmap_area_lock);
2587 if (!purged) {
2588 purge_vmap_area_lazy();
2589 purged = true;
2590 goto retry;
2591 }
2592 goto err_free;
2593 }
2594
2595 /*
2596 * If next overlaps, move base downwards so that it's
2597 * right below next and then recheck.
2598 */
2599 if (next && next->va_start < base + end) {
2600 base = pvm_determine_end(&next, &prev, align) - end;
2601 term_area = area;
2602 continue;
2603 }
2604
2605 /*
2606 * If prev overlaps, shift down next and prev and move
2607 * base so that it's right below new next and then
2608 * recheck.
2609 */
2610 if (prev && prev->va_end > base + start) {
2611 next = prev;
2612 prev = node_to_va(rb_prev(&next->rb_node));
2613 base = pvm_determine_end(&next, &prev, align) - end;
2614 term_area = area;
2615 continue;
2616 }
2617
2618 /*
2619 * This area fits, move on to the previous one. If
2620 * the previous one is the terminal one, we're done.
2621 */
2622 area = (area + nr_vms - 1) % nr_vms;
2623 if (area == term_area)
2624 break;
2625 start = offsets[area];
2626 end = start + sizes[area];
2627 pvm_find_next_prev(base + end, &next, &prev);
2628 }
2629found:
2630 /* we've found a fitting base, insert all va's */
2631 for (area = 0; area < nr_vms; area++) {
2632 struct vmap_area *va = vas[area];
2633
2634 va->va_start = base + offsets[area];
2635 va->va_end = va->va_start + sizes[area];
2636 __insert_vmap_area(va);
2637 }
2638
2639 vmap_area_pcpu_hole = base + offsets[last_area];
2640
2641 spin_unlock(&vmap_area_lock);
2642
2643 /* insert all vm's */
2644 for (area = 0; area < nr_vms; area++)
2645 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2646 pcpu_get_vm_areas);
2647
2648 kfree(vas);
2649 return vms;
2650
2651err_free:
2652 for (area = 0; area < nr_vms; area++) {
2653 kfree(vas[area]);
2654 kfree(vms[area]);
2655 }
2656err_free2:
2657 kfree(vas);
2658 kfree(vms);
2659 return NULL;
2660}
2661
2662/**
2663 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2664 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2665 * @nr_vms: the number of allocated areas
2666 *
2667 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2668 */
2669void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2670{
2671 int i;
2672
2673 for (i = 0; i < nr_vms; i++)
2674 free_vm_area(vms[i]);
2675 kfree(vms);
2676}
2677#endif /* CONFIG_SMP */
2678
2679#ifdef CONFIG_PROC_FS
2680static void *s_start(struct seq_file *m, loff_t *pos)
2681 __acquires(&vmap_area_lock)
2682{
2683 spin_lock(&vmap_area_lock);
2684 return seq_list_start(&vmap_area_list, *pos);
2685}
2686
2687static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2688{
2689 return seq_list_next(p, &vmap_area_list, pos);
2690}
2691
2692static void s_stop(struct seq_file *m, void *p)
2693 __releases(&vmap_area_lock)
2694{
2695 spin_unlock(&vmap_area_lock);
2696}
2697
2698static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2699{
2700 if (IS_ENABLED(CONFIG_NUMA)) {
2701 unsigned int nr, *counters = m->private;
2702
2703 if (!counters)
2704 return;
2705
2706 if (v->flags & VM_UNINITIALIZED)
2707 return;
2708 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2709 smp_rmb();
2710
2711 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2712
2713 for (nr = 0; nr < v->nr_pages; nr++)
2714 counters[page_to_nid(v->pages[nr])]++;
2715
2716 for_each_node_state(nr, N_HIGH_MEMORY)
2717 if (counters[nr])
2718 seq_printf(m, " N%u=%u", nr, counters[nr]);
2719 }
2720}
2721
2722static int s_show(struct seq_file *m, void *p)
2723{
2724 struct vmap_area *va;
2725 struct vm_struct *v;
2726
2727 va = list_entry(p, struct vmap_area, list);
2728
2729 /*
2730 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2731 * behalf of vmap area is being tear down or vm_map_ram allocation.
2732 */
2733 if (!(va->flags & VM_VM_AREA)) {
2734 seq_printf(m, "0x%pK-0x%pK %7ld %s\n",
2735 (void *)va->va_start, (void *)va->va_end,
2736 va->va_end - va->va_start,
2737 va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram");
2738
2739 return 0;
2740 }
2741
2742 v = va->vm;
2743
2744 seq_printf(m, "0x%pK-0x%pK %7ld",
2745 v->addr, v->addr + v->size, v->size);
2746
2747 if (v->caller)
2748 seq_printf(m, " %pS", v->caller);
2749
2750 if (v->nr_pages)
2751 seq_printf(m, " pages=%d", v->nr_pages);
2752
2753 if (v->phys_addr)
2754 seq_printf(m, " phys=%pa", &v->phys_addr);
2755
2756 if (v->flags & VM_IOREMAP)
2757 seq_puts(m, " ioremap");
2758
2759 if (v->flags & VM_ALLOC)
2760 seq_puts(m, " vmalloc");
2761
2762 if (v->flags & VM_MAP)
2763 seq_puts(m, " vmap");
2764
2765 if (v->flags & VM_USERMAP)
2766 seq_puts(m, " user");
2767
2768 if (is_vmalloc_addr(v->pages))
2769 seq_puts(m, " vpages");
2770
2771 show_numa_info(m, v);
2772 seq_putc(m, '\n');
2773 return 0;
2774}
2775
2776static const struct seq_operations vmalloc_op = {
2777 .start = s_start,
2778 .next = s_next,
2779 .stop = s_stop,
2780 .show = s_show,
2781};
2782
2783static int vmalloc_open(struct inode *inode, struct file *file)
2784{
2785 if (IS_ENABLED(CONFIG_NUMA))
2786 return seq_open_private(file, &vmalloc_op,
2787 nr_node_ids * sizeof(unsigned int));
2788 else
2789 return seq_open(file, &vmalloc_op);
2790}
2791
2792static const struct file_operations proc_vmalloc_operations = {
2793 .open = vmalloc_open,
2794 .read = seq_read,
2795 .llseek = seq_lseek,
2796 .release = seq_release_private,
2797};
2798
2799static int __init proc_vmalloc_init(void)
2800{
2801 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2802 return 0;
2803}
2804module_init(proc_vmalloc_init);
2805
2806#endif
2807