blob: c9f6f28e54f3e08904b33cb2717e3fca9bbef685 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
207 *
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 * TCP_SYN_SENT sent a connection request, waiting for ack
216 *
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
219 *
220 * TCP_ESTABLISHED connection established
221 *
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
224 *
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
227 *
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
230 *
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
236 *
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
240 *
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
244 *
245 * TCP_CLOSE socket is finished
246 */
247
248#define pr_fmt(fmt) "TCP: " fmt
249
250#include <crypto/hash.h>
251#include <linux/kernel.h>
252#include <linux/module.h>
253#include <linux/types.h>
254#include <linux/fcntl.h>
255#include <linux/poll.h>
256#include <linux/inet_diag.h>
257#include <linux/init.h>
258#include <linux/fs.h>
259#include <linux/skbuff.h>
260#include <linux/scatterlist.h>
261#include <linux/splice.h>
262#include <linux/net.h>
263#include <linux/socket.h>
264#include <linux/random.h>
265#include <linux/bootmem.h>
266#include <linux/highmem.h>
267#include <linux/swap.h>
268#include <linux/cache.h>
269#include <linux/err.h>
270#include <linux/time.h>
271#include <linux/slab.h>
272#include <linux/errqueue.h>
273
274#include <net/icmp.h>
275#include <net/inet_common.h>
276#include <net/tcp.h>
277#include <net/xfrm.h>
278#include <net/ip.h>
279#include <net/sock.h>
280
281#include <linux/uaccess.h>
282#include <asm/ioctls.h>
283#include <net/busy_poll.h>
284
285int sysctl_tcp_min_tso_segs __read_mostly = 2;
286
287int sysctl_tcp_autocorking __read_mostly = 1;
288
289struct percpu_counter tcp_orphan_count;
290EXPORT_SYMBOL_GPL(tcp_orphan_count);
291
292long sysctl_tcp_mem[3] __read_mostly;
293int sysctl_tcp_wmem[3] __read_mostly;
294int sysctl_tcp_rmem[3] __read_mostly;
295
296EXPORT_SYMBOL(sysctl_tcp_mem);
297EXPORT_SYMBOL(sysctl_tcp_rmem);
298EXPORT_SYMBOL(sysctl_tcp_wmem);
299
300atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
301EXPORT_SYMBOL(tcp_memory_allocated);
302
303/*
304 * Current number of TCP sockets.
305 */
306struct percpu_counter tcp_sockets_allocated;
307EXPORT_SYMBOL(tcp_sockets_allocated);
308
309/*
310 * TCP splice context
311 */
312struct tcp_splice_state {
313 struct pipe_inode_info *pipe;
314 size_t len;
315 unsigned int flags;
316};
317
318/*
319 * Pressure flag: try to collapse.
320 * Technical note: it is used by multiple contexts non atomically.
321 * All the __sk_mem_schedule() is of this nature: accounting
322 * is strict, actions are advisory and have some latency.
323 */
324unsigned long tcp_memory_pressure __read_mostly;
325EXPORT_SYMBOL_GPL(tcp_memory_pressure);
326
327void tcp_enter_memory_pressure(struct sock *sk)
328{
329 unsigned long val;
330
331 if (READ_ONCE(tcp_memory_pressure))
332 return;
333 val = jiffies;
334
335 if (!val)
336 val--;
337 if (!cmpxchg(&tcp_memory_pressure, 0, val))
338 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
339}
340EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
341
342void tcp_leave_memory_pressure(struct sock *sk)
343{
344 unsigned long val;
345
346 if (!READ_ONCE(tcp_memory_pressure))
347 return;
348 val = xchg(&tcp_memory_pressure, 0);
349 if (val)
350 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
351 jiffies_to_msecs(jiffies - val));
352}
353EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
354
355/* Convert seconds to retransmits based on initial and max timeout */
356static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
357{
358 u8 res = 0;
359
360 if (seconds > 0) {
361 int period = timeout;
362
363 res = 1;
364 while (seconds > period && res < 255) {
365 res++;
366 timeout <<= 1;
367 if (timeout > rto_max)
368 timeout = rto_max;
369 period += timeout;
370 }
371 }
372 return res;
373}
374
375/* Convert retransmits to seconds based on initial and max timeout */
376static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
377{
378 int period = 0;
379
380 if (retrans > 0) {
381 period = timeout;
382 while (--retrans) {
383 timeout <<= 1;
384 if (timeout > rto_max)
385 timeout = rto_max;
386 period += timeout;
387 }
388 }
389 return period;
390}
391
392static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
393{
394 u32 rate = READ_ONCE(tp->rate_delivered);
395 u32 intv = READ_ONCE(tp->rate_interval_us);
396 u64 rate64 = 0;
397
398 if (rate && intv) {
399 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
400 do_div(rate64, intv);
401 }
402 return rate64;
403}
404
405/* Address-family independent initialization for a tcp_sock.
406 *
407 * NOTE: A lot of things set to zero explicitly by call to
408 * sk_alloc() so need not be done here.
409 */
410void tcp_init_sock(struct sock *sk)
411{
412 struct inet_connection_sock *icsk = inet_csk(sk);
413 struct tcp_sock *tp = tcp_sk(sk);
414
415 tp->out_of_order_queue = RB_ROOT;
416 tcp_init_xmit_timers(sk);
417 INIT_LIST_HEAD(&tp->tsq_node);
418
419 icsk->icsk_rto = TCP_TIMEOUT_INIT;
420 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
421 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
422
423 /* So many TCP implementations out there (incorrectly) count the
424 * initial SYN frame in their delayed-ACK and congestion control
425 * algorithms that we must have the following bandaid to talk
426 * efficiently to them. -DaveM
427 */
428 tp->snd_cwnd = TCP_INIT_CWND;
429
430 /* There's a bubble in the pipe until at least the first ACK. */
431 tp->app_limited = ~0U;
432
433 /* See draft-stevens-tcpca-spec-01 for discussion of the
434 * initialization of these values.
435 */
436 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
437 tp->snd_cwnd_clamp = ~0;
438 tp->mss_cache = TCP_MSS_DEFAULT;
439
440 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
441 tcp_assign_congestion_control(sk);
442
443 tp->tsoffset = 0;
444
445 sk->sk_state = TCP_CLOSE;
446
447 sk->sk_write_space = sk_stream_write_space;
448 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
449
450 icsk->icsk_sync_mss = tcp_sync_mss;
451
452 sk->sk_sndbuf = sysctl_tcp_wmem[1];
453 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
454
455 sk_sockets_allocated_inc(sk);
456}
457EXPORT_SYMBOL(tcp_init_sock);
458
459static void tcp_tx_timestamp(struct sock *sk, u16 tsflags, struct sk_buff *skb)
460{
461 if (tsflags && skb) {
462 struct skb_shared_info *shinfo = skb_shinfo(skb);
463 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
464
465 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
466 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
467 tcb->txstamp_ack = 1;
468 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
469 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
470 }
471}
472
473/*
474 * Wait for a TCP event.
475 *
476 * Note that we don't need to lock the socket, as the upper poll layers
477 * take care of normal races (between the test and the event) and we don't
478 * go look at any of the socket buffers directly.
479 */
480unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
481{
482 unsigned int mask;
483 struct sock *sk = sock->sk;
484 const struct tcp_sock *tp = tcp_sk(sk);
485 int state;
486
487 sock_rps_record_flow(sk);
488
489 sock_poll_wait(file, sk_sleep(sk), wait);
490
491 state = sk_state_load(sk);
492 if (state == TCP_LISTEN)
493 return inet_csk_listen_poll(sk);
494
495 /* Socket is not locked. We are protected from async events
496 * by poll logic and correct handling of state changes
497 * made by other threads is impossible in any case.
498 */
499
500 mask = 0;
501
502 /*
503 * POLLHUP is certainly not done right. But poll() doesn't
504 * have a notion of HUP in just one direction, and for a
505 * socket the read side is more interesting.
506 *
507 * Some poll() documentation says that POLLHUP is incompatible
508 * with the POLLOUT/POLLWR flags, so somebody should check this
509 * all. But careful, it tends to be safer to return too many
510 * bits than too few, and you can easily break real applications
511 * if you don't tell them that something has hung up!
512 *
513 * Check-me.
514 *
515 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
516 * our fs/select.c). It means that after we received EOF,
517 * poll always returns immediately, making impossible poll() on write()
518 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
519 * if and only if shutdown has been made in both directions.
520 * Actually, it is interesting to look how Solaris and DUX
521 * solve this dilemma. I would prefer, if POLLHUP were maskable,
522 * then we could set it on SND_SHUTDOWN. BTW examples given
523 * in Stevens' books assume exactly this behaviour, it explains
524 * why POLLHUP is incompatible with POLLOUT. --ANK
525 *
526 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
527 * blocking on fresh not-connected or disconnected socket. --ANK
528 */
529 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
530 mask |= POLLHUP;
531 if (sk->sk_shutdown & RCV_SHUTDOWN)
532 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
533
534 /* Connected or passive Fast Open socket? */
535 if (state != TCP_SYN_SENT &&
536 (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
537 int target = sock_rcvlowat(sk, 0, INT_MAX);
538
539 if (tp->urg_seq == tp->copied_seq &&
540 !sock_flag(sk, SOCK_URGINLINE) &&
541 tp->urg_data)
542 target++;
543
544 if (tp->rcv_nxt - tp->copied_seq >= target)
545 mask |= POLLIN | POLLRDNORM;
546
547 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
548 if (sk_stream_is_writeable(sk)) {
549 mask |= POLLOUT | POLLWRNORM;
550 } else { /* send SIGIO later */
551 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
552 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
553
554 /* Race breaker. If space is freed after
555 * wspace test but before the flags are set,
556 * IO signal will be lost. Memory barrier
557 * pairs with the input side.
558 */
559 smp_mb__after_atomic();
560 if (sk_stream_is_writeable(sk))
561 mask |= POLLOUT | POLLWRNORM;
562 }
563 } else
564 mask |= POLLOUT | POLLWRNORM;
565
566 if (tp->urg_data & TCP_URG_VALID)
567 mask |= POLLPRI;
568 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
569 /* Active TCP fastopen socket with defer_connect
570 * Return POLLOUT so application can call write()
571 * in order for kernel to generate SYN+data
572 */
573 mask |= POLLOUT | POLLWRNORM;
574 }
575 /* This barrier is coupled with smp_wmb() in tcp_reset() */
576 smp_rmb();
577 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
578 mask |= POLLERR;
579
580 return mask;
581}
582EXPORT_SYMBOL(tcp_poll);
583
584int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
585{
586 struct tcp_sock *tp = tcp_sk(sk);
587 int answ;
588 bool slow;
589
590 switch (cmd) {
591 case SIOCINQ:
592 if (sk->sk_state == TCP_LISTEN)
593 return -EINVAL;
594
595 slow = lock_sock_fast(sk);
596 answ = tcp_inq(sk);
597 unlock_sock_fast(sk, slow);
598 break;
599 case SIOCATMARK:
600 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
601 break;
602 case SIOCOUTQ:
603 if (sk->sk_state == TCP_LISTEN)
604 return -EINVAL;
605
606 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
607 answ = 0;
608 else
609 answ = tp->write_seq - tp->snd_una;
610 break;
611 case SIOCOUTQNSD:
612 if (sk->sk_state == TCP_LISTEN)
613 return -EINVAL;
614
615 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
616 answ = 0;
617 else
618 answ = tp->write_seq - tp->snd_nxt;
619 break;
620 default:
621 return -ENOIOCTLCMD;
622 }
623
624 return put_user(answ, (int __user *)arg);
625}
626EXPORT_SYMBOL(tcp_ioctl);
627
628static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
629{
630 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
631 tp->pushed_seq = tp->write_seq;
632}
633
634static inline bool forced_push(const struct tcp_sock *tp)
635{
636 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
637}
638
639static void skb_entail(struct sock *sk, struct sk_buff *skb)
640{
641 struct tcp_sock *tp = tcp_sk(sk);
642 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
643
644 skb->csum = 0;
645 tcb->seq = tcb->end_seq = tp->write_seq;
646 tcb->tcp_flags = TCPHDR_ACK;
647 tcb->sacked = 0;
648 __skb_header_release(skb);
649 tcp_add_write_queue_tail(sk, skb);
650 sk->sk_wmem_queued += skb->truesize;
651 sk_mem_charge(sk, skb->truesize);
652 if (tp->nonagle & TCP_NAGLE_PUSH)
653 tp->nonagle &= ~TCP_NAGLE_PUSH;
654
655 tcp_slow_start_after_idle_check(sk);
656}
657
658static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
659{
660 if (flags & MSG_OOB)
661 tp->snd_up = tp->write_seq;
662}
663
664/* If a not yet filled skb is pushed, do not send it if
665 * we have data packets in Qdisc or NIC queues :
666 * Because TX completion will happen shortly, it gives a chance
667 * to coalesce future sendmsg() payload into this skb, without
668 * need for a timer, and with no latency trade off.
669 * As packets containing data payload have a bigger truesize
670 * than pure acks (dataless) packets, the last checks prevent
671 * autocorking if we only have an ACK in Qdisc/NIC queues,
672 * or if TX completion was delayed after we processed ACK packet.
673 */
674static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
675 int size_goal)
676{
677 return skb->len < size_goal &&
678 sysctl_tcp_autocorking &&
679 skb != tcp_write_queue_head(sk) &&
680 refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
681}
682
683static void tcp_push(struct sock *sk, int flags, int mss_now,
684 int nonagle, int size_goal)
685{
686 struct tcp_sock *tp = tcp_sk(sk);
687 struct sk_buff *skb;
688
689 if (!tcp_send_head(sk))
690 return;
691
692 skb = tcp_write_queue_tail(sk);
693 if (!(flags & MSG_MORE) || forced_push(tp))
694 tcp_mark_push(tp, skb);
695
696 tcp_mark_urg(tp, flags);
697
698 if (tcp_should_autocork(sk, skb, size_goal)) {
699
700 /* avoid atomic op if TSQ_THROTTLED bit is already set */
701 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
702 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
703 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
704 }
705 /* It is possible TX completion already happened
706 * before we set TSQ_THROTTLED.
707 */
708 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
709 return;
710 }
711
712 if (flags & MSG_MORE)
713 nonagle = TCP_NAGLE_CORK;
714
715 __tcp_push_pending_frames(sk, mss_now, nonagle);
716}
717
718static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
719 unsigned int offset, size_t len)
720{
721 struct tcp_splice_state *tss = rd_desc->arg.data;
722 int ret;
723
724 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
725 min(rd_desc->count, len), tss->flags);
726 if (ret > 0)
727 rd_desc->count -= ret;
728 return ret;
729}
730
731static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
732{
733 /* Store TCP splice context information in read_descriptor_t. */
734 read_descriptor_t rd_desc = {
735 .arg.data = tss,
736 .count = tss->len,
737 };
738
739 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
740}
741
742/**
743 * tcp_splice_read - splice data from TCP socket to a pipe
744 * @sock: socket to splice from
745 * @ppos: position (not valid)
746 * @pipe: pipe to splice to
747 * @len: number of bytes to splice
748 * @flags: splice modifier flags
749 *
750 * Description:
751 * Will read pages from given socket and fill them into a pipe.
752 *
753 **/
754ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
755 struct pipe_inode_info *pipe, size_t len,
756 unsigned int flags)
757{
758 struct sock *sk = sock->sk;
759 struct tcp_splice_state tss = {
760 .pipe = pipe,
761 .len = len,
762 .flags = flags,
763 };
764 long timeo;
765 ssize_t spliced;
766 int ret;
767
768 sock_rps_record_flow(sk);
769 /*
770 * We can't seek on a socket input
771 */
772 if (unlikely(*ppos))
773 return -ESPIPE;
774
775 ret = spliced = 0;
776
777 lock_sock(sk);
778
779 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
780 while (tss.len) {
781 ret = __tcp_splice_read(sk, &tss);
782 if (ret < 0)
783 break;
784 else if (!ret) {
785 if (spliced)
786 break;
787 if (sock_flag(sk, SOCK_DONE))
788 break;
789 if (sk->sk_err) {
790 ret = sock_error(sk);
791 break;
792 }
793 if (sk->sk_shutdown & RCV_SHUTDOWN)
794 break;
795 if (sk->sk_state == TCP_CLOSE) {
796 /*
797 * This occurs when user tries to read
798 * from never connected socket.
799 */
800 if (!sock_flag(sk, SOCK_DONE))
801 ret = -ENOTCONN;
802 break;
803 }
804 if (!timeo) {
805 ret = -EAGAIN;
806 break;
807 }
808 /* if __tcp_splice_read() got nothing while we have
809 * an skb in receive queue, we do not want to loop.
810 * This might happen with URG data.
811 */
812 if (!skb_queue_empty(&sk->sk_receive_queue))
813 break;
814 sk_wait_data(sk, &timeo, NULL);
815 if (signal_pending(current)) {
816 ret = sock_intr_errno(timeo);
817 break;
818 }
819 continue;
820 }
821 tss.len -= ret;
822 spliced += ret;
823
824 if (!timeo)
825 break;
826 release_sock(sk);
827 lock_sock(sk);
828
829 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
830 (sk->sk_shutdown & RCV_SHUTDOWN) ||
831 signal_pending(current))
832 break;
833 }
834
835 release_sock(sk);
836
837 if (spliced)
838 return spliced;
839
840 return ret;
841}
842EXPORT_SYMBOL(tcp_splice_read);
843
844struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
845 bool force_schedule)
846{
847 struct sk_buff *skb;
848
849 /* The TCP header must be at least 32-bit aligned. */
850 size = ALIGN(size, 4);
851
852 if (unlikely(tcp_under_memory_pressure(sk)))
853 sk_mem_reclaim_partial(sk);
854
855 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
856 if (likely(skb)) {
857 bool mem_scheduled;
858
859 if (force_schedule) {
860 mem_scheduled = true;
861 sk_forced_mem_schedule(sk, skb->truesize);
862 } else {
863 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
864 }
865 if (likely(mem_scheduled)) {
866 skb_reserve(skb, sk->sk_prot->max_header);
867 /*
868 * Make sure that we have exactly size bytes
869 * available to the caller, no more, no less.
870 */
871 skb->reserved_tailroom = skb->end - skb->tail - size;
872 return skb;
873 }
874 __kfree_skb(skb);
875 } else {
876 sk->sk_prot->enter_memory_pressure(sk);
877 sk_stream_moderate_sndbuf(sk);
878 }
879 return NULL;
880}
881
882static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
883 int large_allowed)
884{
885 struct tcp_sock *tp = tcp_sk(sk);
886 u32 new_size_goal, size_goal;
887
888 if (!large_allowed || !sk_can_gso(sk))
889 return mss_now;
890
891 /* Note : tcp_tso_autosize() will eventually split this later */
892 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
893 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
894
895 /* We try hard to avoid divides here */
896 size_goal = tp->gso_segs * mss_now;
897 if (unlikely(new_size_goal < size_goal ||
898 new_size_goal >= size_goal + mss_now)) {
899 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
900 sk->sk_gso_max_segs);
901 size_goal = tp->gso_segs * mss_now;
902 }
903
904 return max(size_goal, mss_now);
905}
906
907static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
908{
909 int mss_now;
910
911 mss_now = tcp_current_mss(sk);
912 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
913
914 return mss_now;
915}
916
917/* In some cases, both sendpage() and sendmsg() could have added
918 * an skb to the write queue, but failed adding payload on it.
919 * We need to remove it to consume less memory, but more
920 * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
921 * users.
922 */
923static void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb)
924{
925 if (skb && !skb->len &&
926 TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
927 tcp_unlink_write_queue(skb, sk);
928 tcp_check_send_head(sk, skb);
929 sk_wmem_free_skb(sk, skb);
930 }
931}
932
933ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
934 size_t size, int flags)
935{
936 struct tcp_sock *tp = tcp_sk(sk);
937 int mss_now, size_goal;
938 int err;
939 ssize_t copied;
940 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
941
942 /* Wait for a connection to finish. One exception is TCP Fast Open
943 * (passive side) where data is allowed to be sent before a connection
944 * is fully established.
945 */
946 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
947 !tcp_passive_fastopen(sk)) {
948 err = sk_stream_wait_connect(sk, &timeo);
949 if (err != 0)
950 goto out_err;
951 }
952
953 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
954
955 mss_now = tcp_send_mss(sk, &size_goal, flags);
956 copied = 0;
957
958 err = -EPIPE;
959 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
960 goto out_err;
961
962 while (size > 0) {
963 struct sk_buff *skb = tcp_write_queue_tail(sk);
964 int copy, i;
965 bool can_coalesce;
966
967 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0 ||
968 !tcp_skb_can_collapse_to(skb)) {
969new_segment:
970 if (!sk_stream_memory_free(sk))
971 goto wait_for_sndbuf;
972
973 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
974 skb_queue_empty(&sk->sk_write_queue));
975 if (!skb)
976 goto wait_for_memory;
977
978 skb_entail(sk, skb);
979 copy = size_goal;
980 }
981
982 if (copy > size)
983 copy = size;
984
985 i = skb_shinfo(skb)->nr_frags;
986 can_coalesce = skb_can_coalesce(skb, i, page, offset);
987 if (!can_coalesce && i >= sysctl_max_skb_frags) {
988 tcp_mark_push(tp, skb);
989 goto new_segment;
990 }
991 if (!sk_wmem_schedule(sk, copy))
992 goto wait_for_memory;
993
994 if (can_coalesce) {
995 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
996 } else {
997 get_page(page);
998 skb_fill_page_desc(skb, i, page, offset, copy);
999 }
1000 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
1001
1002 skb->len += copy;
1003 skb->data_len += copy;
1004 skb->truesize += copy;
1005 sk->sk_wmem_queued += copy;
1006 sk_mem_charge(sk, copy);
1007 skb->ip_summed = CHECKSUM_PARTIAL;
1008 tp->write_seq += copy;
1009 TCP_SKB_CB(skb)->end_seq += copy;
1010 tcp_skb_pcount_set(skb, 0);
1011
1012 if (!copied)
1013 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1014
1015 copied += copy;
1016 offset += copy;
1017 size -= copy;
1018 if (!size)
1019 goto out;
1020
1021 if (skb->len < size_goal || (flags & MSG_OOB))
1022 continue;
1023
1024 if (forced_push(tp)) {
1025 tcp_mark_push(tp, skb);
1026 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1027 } else if (skb == tcp_send_head(sk))
1028 tcp_push_one(sk, mss_now);
1029 continue;
1030
1031wait_for_sndbuf:
1032 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1033wait_for_memory:
1034 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1035 TCP_NAGLE_PUSH, size_goal);
1036
1037 err = sk_stream_wait_memory(sk, &timeo);
1038 if (err != 0)
1039 goto do_error;
1040
1041 mss_now = tcp_send_mss(sk, &size_goal, flags);
1042 }
1043
1044out:
1045 if (copied) {
1046 tcp_tx_timestamp(sk, sk->sk_tsflags, tcp_write_queue_tail(sk));
1047 if (!(flags & MSG_SENDPAGE_NOTLAST))
1048 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1049 }
1050 return copied;
1051
1052do_error:
1053 tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk));
1054 if (copied)
1055 goto out;
1056out_err:
1057 /* make sure we wake any epoll edge trigger waiter */
1058 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1059 err == -EAGAIN)) {
1060 sk->sk_write_space(sk);
1061 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1062 }
1063 return sk_stream_error(sk, flags, err);
1064}
1065EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1066
1067int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1068 size_t size, int flags)
1069{
1070 if (!(sk->sk_route_caps & NETIF_F_SG) ||
1071 !sk_check_csum_caps(sk))
1072 return sock_no_sendpage_locked(sk, page, offset, size, flags);
1073
1074 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1075
1076 return do_tcp_sendpages(sk, page, offset, size, flags);
1077}
1078EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1079
1080int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1081 size_t size, int flags)
1082{
1083 int ret;
1084
1085 lock_sock(sk);
1086 ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1087 release_sock(sk);
1088
1089 return ret;
1090}
1091EXPORT_SYMBOL(tcp_sendpage);
1092
1093/* Do not bother using a page frag for very small frames.
1094 * But use this heuristic only for the first skb in write queue.
1095 *
1096 * Having no payload in skb->head allows better SACK shifting
1097 * in tcp_shift_skb_data(), reducing sack/rack overhead, because
1098 * write queue has less skbs.
1099 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB.
1100 * This also speeds up tso_fragment(), since it wont fallback
1101 * to tcp_fragment().
1102 */
1103static int linear_payload_sz(bool first_skb)
1104{
1105 if (first_skb)
1106 return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1107 return 0;
1108}
1109
1110static int select_size(const struct sock *sk, bool sg, bool first_skb)
1111{
1112 const struct tcp_sock *tp = tcp_sk(sk);
1113 int tmp = tp->mss_cache;
1114
1115 if (sg) {
1116 if (sk_can_gso(sk)) {
1117 tmp = linear_payload_sz(first_skb);
1118 } else {
1119 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1120
1121 if (tmp >= pgbreak &&
1122 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1123 tmp = pgbreak;
1124 }
1125 }
1126
1127 return tmp;
1128}
1129
1130void tcp_free_fastopen_req(struct tcp_sock *tp)
1131{
1132 if (tp->fastopen_req) {
1133 kfree(tp->fastopen_req);
1134 tp->fastopen_req = NULL;
1135 }
1136}
1137
1138static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1139 int *copied, size_t size)
1140{
1141 struct tcp_sock *tp = tcp_sk(sk);
1142 struct inet_sock *inet = inet_sk(sk);
1143 struct sockaddr *uaddr = msg->msg_name;
1144 int err, flags;
1145
1146 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1147 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1148 uaddr->sa_family == AF_UNSPEC))
1149 return -EOPNOTSUPP;
1150 if (tp->fastopen_req)
1151 return -EALREADY; /* Another Fast Open is in progress */
1152
1153 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1154 sk->sk_allocation);
1155 if (unlikely(!tp->fastopen_req))
1156 return -ENOBUFS;
1157 tp->fastopen_req->data = msg;
1158 tp->fastopen_req->size = size;
1159
1160 if (inet->defer_connect) {
1161 err = tcp_connect(sk);
1162 /* Same failure procedure as in tcp_v4/6_connect */
1163 if (err) {
1164 tcp_set_state(sk, TCP_CLOSE);
1165 inet->inet_dport = 0;
1166 sk->sk_route_caps = 0;
1167 }
1168 }
1169 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1170 err = __inet_stream_connect(sk->sk_socket, uaddr,
1171 msg->msg_namelen, flags, 1);
1172 /* fastopen_req could already be freed in __inet_stream_connect
1173 * if the connection times out or gets rst
1174 */
1175 if (tp->fastopen_req) {
1176 *copied = tp->fastopen_req->copied;
1177 tcp_free_fastopen_req(tp);
1178 inet->defer_connect = 0;
1179 }
1180 return err;
1181}
1182
1183int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1184{
1185 struct tcp_sock *tp = tcp_sk(sk);
1186 struct ubuf_info *uarg = NULL;
1187 struct sk_buff *skb;
1188 struct sockcm_cookie sockc;
1189 int flags, err, copied = 0;
1190 int mss_now = 0, size_goal, copied_syn = 0;
1191 bool process_backlog = false;
1192 bool sg;
1193 long timeo;
1194
1195 flags = msg->msg_flags;
1196
1197 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1198 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1199 err = -EINVAL;
1200 goto out_err;
1201 }
1202
1203 skb = tcp_send_head(sk) ? tcp_write_queue_tail(sk) : NULL;
1204 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1205 if (!uarg) {
1206 err = -ENOBUFS;
1207 goto out_err;
1208 }
1209
1210 if (!(sk_check_csum_caps(sk) && sk->sk_route_caps & NETIF_F_SG))
1211 uarg->zerocopy = 0;
1212 }
1213
1214 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1215 !tp->repair) {
1216 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1217 if (err == -EINPROGRESS && copied_syn > 0)
1218 goto out;
1219 else if (err)
1220 goto out_err;
1221 }
1222
1223 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1224
1225 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1226
1227 /* Wait for a connection to finish. One exception is TCP Fast Open
1228 * (passive side) where data is allowed to be sent before a connection
1229 * is fully established.
1230 */
1231 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1232 !tcp_passive_fastopen(sk)) {
1233 err = sk_stream_wait_connect(sk, &timeo);
1234 if (err != 0)
1235 goto do_error;
1236 }
1237
1238 if (unlikely(tp->repair)) {
1239 if (tp->repair_queue == TCP_RECV_QUEUE) {
1240 copied = tcp_send_rcvq(sk, msg, size);
1241 goto out_nopush;
1242 }
1243
1244 err = -EINVAL;
1245 if (tp->repair_queue == TCP_NO_QUEUE)
1246 goto out_err;
1247
1248 /* 'common' sending to sendq */
1249 }
1250
1251 sockc.tsflags = sk->sk_tsflags;
1252 if (msg->msg_controllen) {
1253 err = sock_cmsg_send(sk, msg, &sockc);
1254 if (unlikely(err)) {
1255 err = -EINVAL;
1256 goto out_err;
1257 }
1258 }
1259
1260 /* This should be in poll */
1261 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1262
1263 /* Ok commence sending. */
1264 copied = 0;
1265
1266restart:
1267 mss_now = tcp_send_mss(sk, &size_goal, flags);
1268
1269 err = -EPIPE;
1270 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1271 goto do_error;
1272
1273 sg = !!(sk->sk_route_caps & NETIF_F_SG);
1274
1275 while (msg_data_left(msg)) {
1276 int copy = 0;
1277 int max = size_goal;
1278
1279 skb = tcp_write_queue_tail(sk);
1280 if (tcp_send_head(sk)) {
1281 if (skb->ip_summed == CHECKSUM_NONE)
1282 max = mss_now;
1283 copy = max - skb->len;
1284 }
1285
1286 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1287 bool first_skb;
1288
1289new_segment:
1290 /* Allocate new segment. If the interface is SG,
1291 * allocate skb fitting to single page.
1292 */
1293 if (!sk_stream_memory_free(sk))
1294 goto wait_for_sndbuf;
1295
1296 if (process_backlog && sk_flush_backlog(sk)) {
1297 process_backlog = false;
1298 goto restart;
1299 }
1300 first_skb = skb_queue_empty(&sk->sk_write_queue);
1301 skb = sk_stream_alloc_skb(sk,
1302 select_size(sk, sg, first_skb),
1303 sk->sk_allocation,
1304 first_skb);
1305 if (!skb)
1306 goto wait_for_memory;
1307
1308 process_backlog = true;
1309 /*
1310 * Check whether we can use HW checksum.
1311 */
1312 if (sk_check_csum_caps(sk))
1313 skb->ip_summed = CHECKSUM_PARTIAL;
1314
1315 skb_entail(sk, skb);
1316 copy = size_goal;
1317 max = size_goal;
1318
1319 /* All packets are restored as if they have
1320 * already been sent. skb_mstamp isn't set to
1321 * avoid wrong rtt estimation.
1322 */
1323 if (tp->repair)
1324 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1325 }
1326
1327 /* Try to append data to the end of skb. */
1328 if (copy > msg_data_left(msg))
1329 copy = msg_data_left(msg);
1330
1331 /* Where to copy to? */
1332 if (skb_availroom(skb) > 0) {
1333 /* We have some space in skb head. Superb! */
1334 copy = min_t(int, copy, skb_availroom(skb));
1335 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1336 if (err)
1337 goto do_fault;
1338 } else if (!uarg || !uarg->zerocopy) {
1339 bool merge = true;
1340 int i = skb_shinfo(skb)->nr_frags;
1341 struct page_frag *pfrag = sk_page_frag(sk);
1342
1343 if (!sk_page_frag_refill(sk, pfrag))
1344 goto wait_for_memory;
1345
1346 if (!skb_can_coalesce(skb, i, pfrag->page,
1347 pfrag->offset)) {
1348 if (i >= sysctl_max_skb_frags || !sg) {
1349 tcp_mark_push(tp, skb);
1350 goto new_segment;
1351 }
1352 merge = false;
1353 }
1354
1355 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1356
1357 if (!sk_wmem_schedule(sk, copy))
1358 goto wait_for_memory;
1359
1360 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1361 pfrag->page,
1362 pfrag->offset,
1363 copy);
1364 if (err)
1365 goto do_error;
1366
1367 /* Update the skb. */
1368 if (merge) {
1369 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1370 } else {
1371 skb_fill_page_desc(skb, i, pfrag->page,
1372 pfrag->offset, copy);
1373 page_ref_inc(pfrag->page);
1374 }
1375 pfrag->offset += copy;
1376 } else {
1377 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1378 if (err == -EMSGSIZE || err == -EEXIST)
1379 goto new_segment;
1380 if (err < 0)
1381 goto do_error;
1382 copy = err;
1383 }
1384
1385 if (!copied)
1386 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1387
1388 tp->write_seq += copy;
1389 TCP_SKB_CB(skb)->end_seq += copy;
1390 tcp_skb_pcount_set(skb, 0);
1391
1392 copied += copy;
1393 if (!msg_data_left(msg)) {
1394 if (unlikely(flags & MSG_EOR))
1395 TCP_SKB_CB(skb)->eor = 1;
1396 goto out;
1397 }
1398
1399 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1400 continue;
1401
1402 if (forced_push(tp)) {
1403 tcp_mark_push(tp, skb);
1404 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1405 } else if (skb == tcp_send_head(sk))
1406 tcp_push_one(sk, mss_now);
1407 continue;
1408
1409wait_for_sndbuf:
1410 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1411wait_for_memory:
1412 if (copied)
1413 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1414 TCP_NAGLE_PUSH, size_goal);
1415
1416 err = sk_stream_wait_memory(sk, &timeo);
1417 if (err != 0)
1418 goto do_error;
1419
1420 mss_now = tcp_send_mss(sk, &size_goal, flags);
1421 }
1422
1423out:
1424 if (copied) {
1425 tcp_tx_timestamp(sk, sockc.tsflags, tcp_write_queue_tail(sk));
1426 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1427 }
1428out_nopush:
1429 sock_zerocopy_put(uarg);
1430 return copied + copied_syn;
1431
1432do_error:
1433 skb = tcp_write_queue_tail(sk);
1434do_fault:
1435 tcp_remove_empty_skb(sk, skb);
1436
1437 if (copied + copied_syn)
1438 goto out;
1439out_err:
1440 sock_zerocopy_put_abort(uarg);
1441 err = sk_stream_error(sk, flags, err);
1442 /* make sure we wake any epoll edge trigger waiter */
1443 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1444 err == -EAGAIN)) {
1445 sk->sk_write_space(sk);
1446 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1447 }
1448 return err;
1449}
1450EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1451
1452int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1453{
1454 int ret;
1455
1456 lock_sock(sk);
1457 ret = tcp_sendmsg_locked(sk, msg, size);
1458 release_sock(sk);
1459
1460 return ret;
1461}
1462EXPORT_SYMBOL(tcp_sendmsg);
1463
1464/*
1465 * Handle reading urgent data. BSD has very simple semantics for
1466 * this, no blocking and very strange errors 8)
1467 */
1468
1469static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1470{
1471 struct tcp_sock *tp = tcp_sk(sk);
1472
1473 /* No URG data to read. */
1474 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1475 tp->urg_data == TCP_URG_READ)
1476 return -EINVAL; /* Yes this is right ! */
1477
1478 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1479 return -ENOTCONN;
1480
1481 if (tp->urg_data & TCP_URG_VALID) {
1482 int err = 0;
1483 char c = tp->urg_data;
1484
1485 if (!(flags & MSG_PEEK))
1486 tp->urg_data = TCP_URG_READ;
1487
1488 /* Read urgent data. */
1489 msg->msg_flags |= MSG_OOB;
1490
1491 if (len > 0) {
1492 if (!(flags & MSG_TRUNC))
1493 err = memcpy_to_msg(msg, &c, 1);
1494 len = 1;
1495 } else
1496 msg->msg_flags |= MSG_TRUNC;
1497
1498 return err ? -EFAULT : len;
1499 }
1500
1501 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1502 return 0;
1503
1504 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1505 * the available implementations agree in this case:
1506 * this call should never block, independent of the
1507 * blocking state of the socket.
1508 * Mike <pall@rz.uni-karlsruhe.de>
1509 */
1510 return -EAGAIN;
1511}
1512
1513static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1514{
1515 struct sk_buff *skb;
1516 int copied = 0, err = 0;
1517
1518 /* XXX -- need to support SO_PEEK_OFF */
1519
1520 skb_queue_walk(&sk->sk_write_queue, skb) {
1521 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1522 if (err)
1523 break;
1524
1525 copied += skb->len;
1526 }
1527
1528 return err ?: copied;
1529}
1530
1531/* Clean up the receive buffer for full frames taken by the user,
1532 * then send an ACK if necessary. COPIED is the number of bytes
1533 * tcp_recvmsg has given to the user so far, it speeds up the
1534 * calculation of whether or not we must ACK for the sake of
1535 * a window update.
1536 */
1537static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1538{
1539 struct tcp_sock *tp = tcp_sk(sk);
1540 bool time_to_ack = false;
1541
1542 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1543
1544 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1545 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1546 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1547
1548 if (inet_csk_ack_scheduled(sk)) {
1549 const struct inet_connection_sock *icsk = inet_csk(sk);
1550 /* Delayed ACKs frequently hit locked sockets during bulk
1551 * receive. */
1552 if (icsk->icsk_ack.blocked ||
1553 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1554 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1555 /*
1556 * If this read emptied read buffer, we send ACK, if
1557 * connection is not bidirectional, user drained
1558 * receive buffer and there was a small segment
1559 * in queue.
1560 */
1561 (copied > 0 &&
1562 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1563 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1564 !icsk->icsk_ack.pingpong)) &&
1565 !atomic_read(&sk->sk_rmem_alloc)))
1566 time_to_ack = true;
1567 }
1568
1569 /* We send an ACK if we can now advertise a non-zero window
1570 * which has been raised "significantly".
1571 *
1572 * Even if window raised up to infinity, do not send window open ACK
1573 * in states, where we will not receive more. It is useless.
1574 */
1575 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1576 __u32 rcv_window_now = tcp_receive_window(tp);
1577
1578 /* Optimize, __tcp_select_window() is not cheap. */
1579 if (2*rcv_window_now <= tp->window_clamp) {
1580 __u32 new_window = __tcp_select_window(sk);
1581
1582 /* Send ACK now, if this read freed lots of space
1583 * in our buffer. Certainly, new_window is new window.
1584 * We can advertise it now, if it is not less than current one.
1585 * "Lots" means "at least twice" here.
1586 */
1587 if (new_window && new_window >= 2 * rcv_window_now)
1588 time_to_ack = true;
1589 }
1590 }
1591 if (time_to_ack)
1592 tcp_send_ack(sk);
1593}
1594
1595static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1596{
1597 struct sk_buff *skb;
1598 u32 offset;
1599
1600 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1601 offset = seq - TCP_SKB_CB(skb)->seq;
1602 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1603 pr_err_once("%s: found a SYN, please report !\n", __func__);
1604 offset--;
1605 }
1606 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1607 *off = offset;
1608 return skb;
1609 }
1610 /* This looks weird, but this can happen if TCP collapsing
1611 * splitted a fat GRO packet, while we released socket lock
1612 * in skb_splice_bits()
1613 */
1614 sk_eat_skb(sk, skb);
1615 }
1616 return NULL;
1617}
1618
1619/*
1620 * This routine provides an alternative to tcp_recvmsg() for routines
1621 * that would like to handle copying from skbuffs directly in 'sendfile'
1622 * fashion.
1623 * Note:
1624 * - It is assumed that the socket was locked by the caller.
1625 * - The routine does not block.
1626 * - At present, there is no support for reading OOB data
1627 * or for 'peeking' the socket using this routine
1628 * (although both would be easy to implement).
1629 */
1630int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1631 sk_read_actor_t recv_actor)
1632{
1633 struct sk_buff *skb;
1634 struct tcp_sock *tp = tcp_sk(sk);
1635 u32 seq = tp->copied_seq;
1636 u32 offset;
1637 int copied = 0;
1638
1639 if (sk->sk_state == TCP_LISTEN)
1640 return -ENOTCONN;
1641 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1642 if (offset < skb->len) {
1643 int used;
1644 size_t len;
1645
1646 len = skb->len - offset;
1647 /* Stop reading if we hit a patch of urgent data */
1648 if (tp->urg_data) {
1649 u32 urg_offset = tp->urg_seq - seq;
1650 if (urg_offset < len)
1651 len = urg_offset;
1652 if (!len)
1653 break;
1654 }
1655 used = recv_actor(desc, skb, offset, len);
1656 if (used <= 0) {
1657 if (!copied)
1658 copied = used;
1659 break;
1660 } else if (used <= len) {
1661 seq += used;
1662 copied += used;
1663 offset += used;
1664 }
1665 /* If recv_actor drops the lock (e.g. TCP splice
1666 * receive) the skb pointer might be invalid when
1667 * getting here: tcp_collapse might have deleted it
1668 * while aggregating skbs from the socket queue.
1669 */
1670 skb = tcp_recv_skb(sk, seq - 1, &offset);
1671 if (!skb)
1672 break;
1673 /* TCP coalescing might have appended data to the skb.
1674 * Try to splice more frags
1675 */
1676 if (offset + 1 != skb->len)
1677 continue;
1678 }
1679 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1680 sk_eat_skb(sk, skb);
1681 ++seq;
1682 break;
1683 }
1684 sk_eat_skb(sk, skb);
1685 if (!desc->count)
1686 break;
1687 tp->copied_seq = seq;
1688 }
1689 tp->copied_seq = seq;
1690
1691 tcp_rcv_space_adjust(sk);
1692
1693 /* Clean up data we have read: This will do ACK frames. */
1694 if (copied > 0) {
1695 tcp_recv_skb(sk, seq, &offset);
1696 tcp_cleanup_rbuf(sk, copied);
1697 }
1698 return copied;
1699}
1700EXPORT_SYMBOL(tcp_read_sock);
1701
1702int tcp_peek_len(struct socket *sock)
1703{
1704 return tcp_inq(sock->sk);
1705}
1706EXPORT_SYMBOL(tcp_peek_len);
1707
1708static void tcp_update_recv_tstamps(struct sk_buff *skb,
1709 struct scm_timestamping *tss)
1710{
1711 if (skb->tstamp)
1712 tss->ts[0] = ktime_to_timespec(skb->tstamp);
1713 else
1714 tss->ts[0] = (struct timespec) {0};
1715
1716 if (skb_hwtstamps(skb)->hwtstamp)
1717 tss->ts[2] = ktime_to_timespec(skb_hwtstamps(skb)->hwtstamp);
1718 else
1719 tss->ts[2] = (struct timespec) {0};
1720}
1721
1722/* Similar to __sock_recv_timestamp, but does not require an skb */
1723void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
1724 struct scm_timestamping *tss)
1725{
1726 struct timeval tv;
1727 bool has_timestamping = false;
1728
1729 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
1730 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1731 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
1732 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
1733 sizeof(tss->ts[0]), &tss->ts[0]);
1734 } else {
1735 tv.tv_sec = tss->ts[0].tv_sec;
1736 tv.tv_usec = tss->ts[0].tv_nsec / 1000;
1737
1738 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
1739 sizeof(tv), &tv);
1740 }
1741 }
1742
1743 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
1744 has_timestamping = true;
1745 else
1746 tss->ts[0] = (struct timespec) {0};
1747 }
1748
1749 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
1750 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
1751 has_timestamping = true;
1752 else
1753 tss->ts[2] = (struct timespec) {0};
1754 }
1755
1756 if (has_timestamping) {
1757 tss->ts[1] = (struct timespec) {0};
1758 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING,
1759 sizeof(*tss), tss);
1760 }
1761}
1762
1763/*
1764 * This routine copies from a sock struct into the user buffer.
1765 *
1766 * Technical note: in 2.3 we work on _locked_ socket, so that
1767 * tricks with *seq access order and skb->users are not required.
1768 * Probably, code can be easily improved even more.
1769 */
1770
1771int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1772 int flags, int *addr_len)
1773{
1774 struct tcp_sock *tp = tcp_sk(sk);
1775 int copied = 0;
1776 u32 peek_seq;
1777 u32 *seq;
1778 unsigned long used;
1779 int err;
1780 int target; /* Read at least this many bytes */
1781 long timeo;
1782 struct sk_buff *skb, *last;
1783 u32 urg_hole = 0;
1784 struct scm_timestamping tss;
1785 bool has_tss = false;
1786
1787 if (unlikely(flags & MSG_ERRQUEUE))
1788 return inet_recv_error(sk, msg, len, addr_len);
1789
1790 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue) &&
1791 (sk->sk_state == TCP_ESTABLISHED))
1792 sk_busy_loop(sk, nonblock);
1793
1794 lock_sock(sk);
1795
1796 err = -ENOTCONN;
1797 if (sk->sk_state == TCP_LISTEN)
1798 goto out;
1799
1800 timeo = sock_rcvtimeo(sk, nonblock);
1801
1802 /* Urgent data needs to be handled specially. */
1803 if (flags & MSG_OOB)
1804 goto recv_urg;
1805
1806 if (unlikely(tp->repair)) {
1807 err = -EPERM;
1808 if (!(flags & MSG_PEEK))
1809 goto out;
1810
1811 if (tp->repair_queue == TCP_SEND_QUEUE)
1812 goto recv_sndq;
1813
1814 err = -EINVAL;
1815 if (tp->repair_queue == TCP_NO_QUEUE)
1816 goto out;
1817
1818 /* 'common' recv queue MSG_PEEK-ing */
1819 }
1820
1821 seq = &tp->copied_seq;
1822 if (flags & MSG_PEEK) {
1823 peek_seq = tp->copied_seq;
1824 seq = &peek_seq;
1825 }
1826
1827 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1828
1829 do {
1830 u32 offset;
1831
1832 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1833 if (tp->urg_data && tp->urg_seq == *seq) {
1834 if (copied)
1835 break;
1836 if (signal_pending(current)) {
1837 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1838 break;
1839 }
1840 }
1841
1842 /* Next get a buffer. */
1843
1844 last = skb_peek_tail(&sk->sk_receive_queue);
1845 skb_queue_walk(&sk->sk_receive_queue, skb) {
1846 last = skb;
1847 /* Now that we have two receive queues this
1848 * shouldn't happen.
1849 */
1850 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1851 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
1852 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1853 flags))
1854 break;
1855
1856 offset = *seq - TCP_SKB_CB(skb)->seq;
1857 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1858 pr_err_once("%s: found a SYN, please report !\n", __func__);
1859 offset--;
1860 }
1861 if (offset < skb->len)
1862 goto found_ok_skb;
1863 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1864 goto found_fin_ok;
1865 WARN(!(flags & MSG_PEEK),
1866 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
1867 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1868 }
1869
1870 /* Well, if we have backlog, try to process it now yet. */
1871
1872 if (copied >= target && !sk->sk_backlog.tail)
1873 break;
1874
1875 if (copied) {
1876 if (sk->sk_err ||
1877 sk->sk_state == TCP_CLOSE ||
1878 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1879 !timeo ||
1880 signal_pending(current))
1881 break;
1882 } else {
1883 if (sock_flag(sk, SOCK_DONE))
1884 break;
1885
1886 if (sk->sk_err) {
1887 copied = sock_error(sk);
1888 break;
1889 }
1890
1891 if (sk->sk_shutdown & RCV_SHUTDOWN)
1892 break;
1893
1894 if (sk->sk_state == TCP_CLOSE) {
1895 if (!sock_flag(sk, SOCK_DONE)) {
1896 /* This occurs when user tries to read
1897 * from never connected socket.
1898 */
1899 copied = -ENOTCONN;
1900 break;
1901 }
1902 break;
1903 }
1904
1905 if (!timeo) {
1906 copied = -EAGAIN;
1907 break;
1908 }
1909
1910 if (signal_pending(current)) {
1911 copied = sock_intr_errno(timeo);
1912 break;
1913 }
1914 }
1915
1916 tcp_cleanup_rbuf(sk, copied);
1917
1918 if (copied >= target) {
1919 /* Do not sleep, just process backlog. */
1920 release_sock(sk);
1921 lock_sock(sk);
1922 } else {
1923 sk_wait_data(sk, &timeo, last);
1924 }
1925
1926 if ((flags & MSG_PEEK) &&
1927 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1928 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1929 current->comm,
1930 task_pid_nr(current));
1931 peek_seq = tp->copied_seq;
1932 }
1933 continue;
1934
1935 found_ok_skb:
1936 /* Ok so how much can we use? */
1937 used = skb->len - offset;
1938 if (len < used)
1939 used = len;
1940
1941 /* Do we have urgent data here? */
1942 if (tp->urg_data) {
1943 u32 urg_offset = tp->urg_seq - *seq;
1944 if (urg_offset < used) {
1945 if (!urg_offset) {
1946 if (!sock_flag(sk, SOCK_URGINLINE)) {
1947 ++*seq;
1948 urg_hole++;
1949 offset++;
1950 used--;
1951 if (!used)
1952 goto skip_copy;
1953 }
1954 } else
1955 used = urg_offset;
1956 }
1957 }
1958
1959 if (!(flags & MSG_TRUNC)) {
1960 err = skb_copy_datagram_msg(skb, offset, msg, used);
1961 if (err) {
1962 /* Exception. Bailout! */
1963 if (!copied)
1964 copied = -EFAULT;
1965 break;
1966 }
1967 }
1968
1969 *seq += used;
1970 copied += used;
1971 len -= used;
1972
1973 tcp_rcv_space_adjust(sk);
1974
1975skip_copy:
1976 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1977 tp->urg_data = 0;
1978 tcp_fast_path_check(sk);
1979 }
1980
1981 if (TCP_SKB_CB(skb)->has_rxtstamp) {
1982 tcp_update_recv_tstamps(skb, &tss);
1983 has_tss = true;
1984 }
1985
1986 if (used + offset < skb->len)
1987 continue;
1988
1989 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1990 goto found_fin_ok;
1991 if (!(flags & MSG_PEEK))
1992 sk_eat_skb(sk, skb);
1993 continue;
1994
1995 found_fin_ok:
1996 /* Process the FIN. */
1997 ++*seq;
1998 if (!(flags & MSG_PEEK))
1999 sk_eat_skb(sk, skb);
2000 break;
2001 } while (len > 0);
2002
2003 /* According to UNIX98, msg_name/msg_namelen are ignored
2004 * on connected socket. I was just happy when found this 8) --ANK
2005 */
2006
2007 if (has_tss)
2008 tcp_recv_timestamp(msg, sk, &tss);
2009
2010 /* Clean up data we have read: This will do ACK frames. */
2011 tcp_cleanup_rbuf(sk, copied);
2012
2013 release_sock(sk);
2014 return copied;
2015
2016out:
2017 release_sock(sk);
2018 return err;
2019
2020recv_urg:
2021 err = tcp_recv_urg(sk, msg, len, flags);
2022 goto out;
2023
2024recv_sndq:
2025 err = tcp_peek_sndq(sk, msg, len);
2026 goto out;
2027}
2028EXPORT_SYMBOL(tcp_recvmsg);
2029
2030void tcp_set_state(struct sock *sk, int state)
2031{
2032 int oldstate = sk->sk_state;
2033
2034 switch (state) {
2035 case TCP_ESTABLISHED:
2036 if (oldstate != TCP_ESTABLISHED)
2037 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2038 break;
2039
2040 case TCP_CLOSE:
2041 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2042 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2043
2044 sk->sk_prot->unhash(sk);
2045 if (inet_csk(sk)->icsk_bind_hash &&
2046 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2047 inet_put_port(sk);
2048 /* fall through */
2049 default:
2050 if (oldstate == TCP_ESTABLISHED)
2051 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2052 }
2053
2054 /* Change state AFTER socket is unhashed to avoid closed
2055 * socket sitting in hash tables.
2056 */
2057 sk_state_store(sk, state);
2058
2059#ifdef STATE_TRACE
2060 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
2061#endif
2062}
2063EXPORT_SYMBOL_GPL(tcp_set_state);
2064
2065/*
2066 * State processing on a close. This implements the state shift for
2067 * sending our FIN frame. Note that we only send a FIN for some
2068 * states. A shutdown() may have already sent the FIN, or we may be
2069 * closed.
2070 */
2071
2072static const unsigned char new_state[16] = {
2073 /* current state: new state: action: */
2074 [0 /* (Invalid) */] = TCP_CLOSE,
2075 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2076 [TCP_SYN_SENT] = TCP_CLOSE,
2077 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2078 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2079 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2080 [TCP_TIME_WAIT] = TCP_CLOSE,
2081 [TCP_CLOSE] = TCP_CLOSE,
2082 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2083 [TCP_LAST_ACK] = TCP_LAST_ACK,
2084 [TCP_LISTEN] = TCP_CLOSE,
2085 [TCP_CLOSING] = TCP_CLOSING,
2086 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2087};
2088
2089static int tcp_close_state(struct sock *sk)
2090{
2091 int next = (int)new_state[sk->sk_state];
2092 int ns = next & TCP_STATE_MASK;
2093
2094 tcp_set_state(sk, ns);
2095
2096 return next & TCP_ACTION_FIN;
2097}
2098
2099/*
2100 * Shutdown the sending side of a connection. Much like close except
2101 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2102 */
2103
2104void tcp_shutdown(struct sock *sk, int how)
2105{
2106 /* We need to grab some memory, and put together a FIN,
2107 * and then put it into the queue to be sent.
2108 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2109 */
2110 if (!(how & SEND_SHUTDOWN))
2111 return;
2112
2113 /* If we've already sent a FIN, or it's a closed state, skip this. */
2114 if ((1 << sk->sk_state) &
2115 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2116 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2117 /* Clear out any half completed packets. FIN if needed. */
2118 if (tcp_close_state(sk))
2119 tcp_send_fin(sk);
2120 }
2121}
2122EXPORT_SYMBOL(tcp_shutdown);
2123
2124bool tcp_check_oom(struct sock *sk, int shift)
2125{
2126 bool too_many_orphans, out_of_socket_memory;
2127
2128 too_many_orphans = tcp_too_many_orphans(sk, shift);
2129 out_of_socket_memory = tcp_out_of_memory(sk);
2130
2131 if (too_many_orphans)
2132 net_info_ratelimited("too many orphaned sockets\n");
2133 if (out_of_socket_memory)
2134 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2135 return too_many_orphans || out_of_socket_memory;
2136}
2137
2138void tcp_close(struct sock *sk, long timeout)
2139{
2140 struct sk_buff *skb;
2141 int data_was_unread = 0;
2142 int state;
2143
2144 lock_sock(sk);
2145 sk->sk_shutdown = SHUTDOWN_MASK;
2146
2147 if (sk->sk_state == TCP_LISTEN) {
2148 tcp_set_state(sk, TCP_CLOSE);
2149
2150 /* Special case. */
2151 inet_csk_listen_stop(sk);
2152
2153 goto adjudge_to_death;
2154 }
2155
2156 /* We need to flush the recv. buffs. We do this only on the
2157 * descriptor close, not protocol-sourced closes, because the
2158 * reader process may not have drained the data yet!
2159 */
2160 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2161 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2162
2163 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2164 len--;
2165 data_was_unread += len;
2166 __kfree_skb(skb);
2167 }
2168
2169 sk_mem_reclaim(sk);
2170
2171 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2172 if (sk->sk_state == TCP_CLOSE)
2173 goto adjudge_to_death;
2174
2175 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2176 * data was lost. To witness the awful effects of the old behavior of
2177 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2178 * GET in an FTP client, suspend the process, wait for the client to
2179 * advertise a zero window, then kill -9 the FTP client, wheee...
2180 * Note: timeout is always zero in such a case.
2181 */
2182 if (unlikely(tcp_sk(sk)->repair)) {
2183 sk->sk_prot->disconnect(sk, 0);
2184 } else if (data_was_unread) {
2185 /* Unread data was tossed, zap the connection. */
2186 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2187 tcp_set_state(sk, TCP_CLOSE);
2188 tcp_send_active_reset(sk, sk->sk_allocation);
2189 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2190 /* Check zero linger _after_ checking for unread data. */
2191 sk->sk_prot->disconnect(sk, 0);
2192 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2193 } else if (tcp_close_state(sk)) {
2194 /* We FIN if the application ate all the data before
2195 * zapping the connection.
2196 */
2197
2198 /* RED-PEN. Formally speaking, we have broken TCP state
2199 * machine. State transitions:
2200 *
2201 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2202 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2203 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2204 *
2205 * are legal only when FIN has been sent (i.e. in window),
2206 * rather than queued out of window. Purists blame.
2207 *
2208 * F.e. "RFC state" is ESTABLISHED,
2209 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2210 *
2211 * The visible declinations are that sometimes
2212 * we enter time-wait state, when it is not required really
2213 * (harmless), do not send active resets, when they are
2214 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2215 * they look as CLOSING or LAST_ACK for Linux)
2216 * Probably, I missed some more holelets.
2217 * --ANK
2218 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2219 * in a single packet! (May consider it later but will
2220 * probably need API support or TCP_CORK SYN-ACK until
2221 * data is written and socket is closed.)
2222 */
2223 tcp_send_fin(sk);
2224 }
2225
2226 sk_stream_wait_close(sk, timeout);
2227
2228adjudge_to_death:
2229 state = sk->sk_state;
2230 sock_hold(sk);
2231 sock_orphan(sk);
2232
2233 local_bh_disable();
2234 bh_lock_sock(sk);
2235 /* remove backlog if any, without releasing ownership. */
2236 __release_sock(sk);
2237
2238 percpu_counter_inc(sk->sk_prot->orphan_count);
2239
2240 /* Have we already been destroyed by a softirq or backlog? */
2241 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2242 goto out;
2243
2244 /* This is a (useful) BSD violating of the RFC. There is a
2245 * problem with TCP as specified in that the other end could
2246 * keep a socket open forever with no application left this end.
2247 * We use a 1 minute timeout (about the same as BSD) then kill
2248 * our end. If they send after that then tough - BUT: long enough
2249 * that we won't make the old 4*rto = almost no time - whoops
2250 * reset mistake.
2251 *
2252 * Nope, it was not mistake. It is really desired behaviour
2253 * f.e. on http servers, when such sockets are useless, but
2254 * consume significant resources. Let's do it with special
2255 * linger2 option. --ANK
2256 */
2257
2258 if (sk->sk_state == TCP_FIN_WAIT2) {
2259 struct tcp_sock *tp = tcp_sk(sk);
2260 if (tp->linger2 < 0) {
2261 tcp_set_state(sk, TCP_CLOSE);
2262 tcp_send_active_reset(sk, GFP_ATOMIC);
2263 __NET_INC_STATS(sock_net(sk),
2264 LINUX_MIB_TCPABORTONLINGER);
2265 } else {
2266 const int tmo = tcp_fin_time(sk);
2267
2268 if (tmo > TCP_TIMEWAIT_LEN) {
2269 inet_csk_reset_keepalive_timer(sk,
2270 tmo - TCP_TIMEWAIT_LEN);
2271 } else {
2272 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2273 goto out;
2274 }
2275 }
2276 }
2277 if (sk->sk_state != TCP_CLOSE) {
2278 sk_mem_reclaim(sk);
2279 if (tcp_check_oom(sk, 0)) {
2280 tcp_set_state(sk, TCP_CLOSE);
2281 tcp_send_active_reset(sk, GFP_ATOMIC);
2282 __NET_INC_STATS(sock_net(sk),
2283 LINUX_MIB_TCPABORTONMEMORY);
2284 } else if (!check_net(sock_net(sk))) {
2285 /* Not possible to send reset; just close */
2286 tcp_set_state(sk, TCP_CLOSE);
2287 }
2288 }
2289
2290 if (sk->sk_state == TCP_CLOSE) {
2291 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2292 /* We could get here with a non-NULL req if the socket is
2293 * aborted (e.g., closed with unread data) before 3WHS
2294 * finishes.
2295 */
2296 if (req)
2297 reqsk_fastopen_remove(sk, req, false);
2298 inet_csk_destroy_sock(sk);
2299 }
2300 /* Otherwise, socket is reprieved until protocol close. */
2301
2302out:
2303 bh_unlock_sock(sk);
2304 local_bh_enable();
2305 release_sock(sk);
2306 sock_put(sk);
2307}
2308EXPORT_SYMBOL(tcp_close);
2309
2310/* These states need RST on ABORT according to RFC793 */
2311
2312static inline bool tcp_need_reset(int state)
2313{
2314 return (1 << state) &
2315 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2316 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2317}
2318
2319int tcp_disconnect(struct sock *sk, int flags)
2320{
2321 struct inet_sock *inet = inet_sk(sk);
2322 struct inet_connection_sock *icsk = inet_csk(sk);
2323 struct tcp_sock *tp = tcp_sk(sk);
2324 int err = 0;
2325 int old_state = sk->sk_state;
2326
2327 if (old_state != TCP_CLOSE)
2328 tcp_set_state(sk, TCP_CLOSE);
2329
2330 /* ABORT function of RFC793 */
2331 if (old_state == TCP_LISTEN) {
2332 inet_csk_listen_stop(sk);
2333 } else if (unlikely(tp->repair)) {
2334 sk->sk_err = ECONNABORTED;
2335 } else if (tcp_need_reset(old_state) ||
2336 (tp->snd_nxt != tp->write_seq &&
2337 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2338 /* The last check adjusts for discrepancy of Linux wrt. RFC
2339 * states
2340 */
2341 tcp_send_active_reset(sk, gfp_any());
2342 sk->sk_err = ECONNRESET;
2343 } else if (old_state == TCP_SYN_SENT)
2344 sk->sk_err = ECONNRESET;
2345
2346 tcp_clear_xmit_timers(sk);
2347 __skb_queue_purge(&sk->sk_receive_queue);
2348 tcp_write_queue_purge(sk);
2349 tcp_fastopen_active_disable_ofo_check(sk);
2350 skb_rbtree_purge(&tp->out_of_order_queue);
2351
2352 inet->inet_dport = 0;
2353
2354 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2355 inet_reset_saddr(sk);
2356
2357 sk->sk_shutdown = 0;
2358 sock_reset_flag(sk, SOCK_DONE);
2359 tp->srtt_us = 0;
2360 tp->write_seq += tp->max_window + 2;
2361 if (tp->write_seq == 0)
2362 tp->write_seq = 1;
2363 tp->snd_cwnd = 2;
2364 icsk->icsk_probes_out = 0;
2365 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2366 tp->snd_cwnd_cnt = 0;
2367 tp->window_clamp = 0;
2368 tp->delivered = 0;
2369 if (icsk->icsk_ca_ops->release)
2370 icsk->icsk_ca_ops->release(sk);
2371 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
2372 tcp_set_ca_state(sk, TCP_CA_Open);
2373 tp->is_sack_reneg = 0;
2374 tcp_clear_retrans(tp);
2375 tp->total_retrans = 0;
2376 inet_csk_delack_init(sk);
2377 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2378 * issue in __tcp_select_window()
2379 */
2380 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2381 tcp_init_send_head(sk);
2382 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2383 __sk_dst_reset(sk);
2384 dst_release(sk->sk_rx_dst);
2385 sk->sk_rx_dst = NULL;
2386 tcp_saved_syn_free(tp);
2387 tp->segs_in = 0;
2388 tp->segs_out = 0;
2389 tp->bytes_acked = 0;
2390 tp->bytes_received = 0;
2391 tp->data_segs_in = 0;
2392 tp->data_segs_out = 0;
2393
2394 /* Clean up fastopen related fields */
2395 tcp_free_fastopen_req(tp);
2396 inet->defer_connect = 0;
2397
2398 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2399
2400 if (sk->sk_frag.page) {
2401 put_page(sk->sk_frag.page);
2402 sk->sk_frag.page = NULL;
2403 sk->sk_frag.offset = 0;
2404 }
2405
2406 sk->sk_error_report(sk);
2407 return err;
2408}
2409EXPORT_SYMBOL(tcp_disconnect);
2410
2411static inline bool tcp_can_repair_sock(const struct sock *sk)
2412{
2413 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2414 (sk->sk_state != TCP_LISTEN);
2415}
2416
2417static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2418{
2419 struct tcp_repair_window opt;
2420
2421 if (!tp->repair)
2422 return -EPERM;
2423
2424 if (len != sizeof(opt))
2425 return -EINVAL;
2426
2427 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2428 return -EFAULT;
2429
2430 if (opt.max_window < opt.snd_wnd)
2431 return -EINVAL;
2432
2433 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2434 return -EINVAL;
2435
2436 if (after(opt.rcv_wup, tp->rcv_nxt))
2437 return -EINVAL;
2438
2439 tp->snd_wl1 = opt.snd_wl1;
2440 tp->snd_wnd = opt.snd_wnd;
2441 tp->max_window = opt.max_window;
2442
2443 tp->rcv_wnd = opt.rcv_wnd;
2444 tp->rcv_wup = opt.rcv_wup;
2445
2446 return 0;
2447}
2448
2449static int tcp_repair_options_est(struct sock *sk,
2450 struct tcp_repair_opt __user *optbuf, unsigned int len)
2451{
2452 struct tcp_sock *tp = tcp_sk(sk);
2453 struct tcp_repair_opt opt;
2454
2455 while (len >= sizeof(opt)) {
2456 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2457 return -EFAULT;
2458
2459 optbuf++;
2460 len -= sizeof(opt);
2461
2462 switch (opt.opt_code) {
2463 case TCPOPT_MSS:
2464 tp->rx_opt.mss_clamp = opt.opt_val;
2465 tcp_mtup_init(sk);
2466 break;
2467 case TCPOPT_WINDOW:
2468 {
2469 u16 snd_wscale = opt.opt_val & 0xFFFF;
2470 u16 rcv_wscale = opt.opt_val >> 16;
2471
2472 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2473 return -EFBIG;
2474
2475 tp->rx_opt.snd_wscale = snd_wscale;
2476 tp->rx_opt.rcv_wscale = rcv_wscale;
2477 tp->rx_opt.wscale_ok = 1;
2478 }
2479 break;
2480 case TCPOPT_SACK_PERM:
2481 if (opt.opt_val != 0)
2482 return -EINVAL;
2483
2484 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2485 if (sysctl_tcp_fack)
2486 tcp_enable_fack(tp);
2487 break;
2488 case TCPOPT_TIMESTAMP:
2489 if (opt.opt_val != 0)
2490 return -EINVAL;
2491
2492 tp->rx_opt.tstamp_ok = 1;
2493 break;
2494 }
2495 }
2496
2497 return 0;
2498}
2499
2500/*
2501 * Socket option code for TCP.
2502 */
2503static int do_tcp_setsockopt(struct sock *sk, int level,
2504 int optname, char __user *optval, unsigned int optlen)
2505{
2506 struct tcp_sock *tp = tcp_sk(sk);
2507 struct inet_connection_sock *icsk = inet_csk(sk);
2508 struct net *net = sock_net(sk);
2509 int val;
2510 int err = 0;
2511
2512 /* These are data/string values, all the others are ints */
2513 switch (optname) {
2514 case TCP_CONGESTION: {
2515 char name[TCP_CA_NAME_MAX];
2516
2517 if (optlen < 1)
2518 return -EINVAL;
2519
2520 val = strncpy_from_user(name, optval,
2521 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2522 if (val < 0)
2523 return -EFAULT;
2524 name[val] = 0;
2525
2526 lock_sock(sk);
2527 err = tcp_set_congestion_control(sk, name, true, true,
2528 ns_capable(sock_net(sk)->user_ns,
2529 CAP_NET_ADMIN));
2530 release_sock(sk);
2531 return err;
2532 }
2533 case TCP_ULP: {
2534 char name[TCP_ULP_NAME_MAX];
2535
2536 if (optlen < 1)
2537 return -EINVAL;
2538
2539 val = strncpy_from_user(name, optval,
2540 min_t(long, TCP_ULP_NAME_MAX - 1,
2541 optlen));
2542 if (val < 0)
2543 return -EFAULT;
2544 name[val] = 0;
2545
2546 lock_sock(sk);
2547 err = tcp_set_ulp(sk, name);
2548 release_sock(sk);
2549 return err;
2550 }
2551 default:
2552 /* fallthru */
2553 break;
2554 }
2555
2556 if (optlen < sizeof(int))
2557 return -EINVAL;
2558
2559 if (get_user(val, (int __user *)optval))
2560 return -EFAULT;
2561
2562 lock_sock(sk);
2563
2564 switch (optname) {
2565 case TCP_MAXSEG:
2566 /* Values greater than interface MTU won't take effect. However
2567 * at the point when this call is done we typically don't yet
2568 * know which interface is going to be used
2569 */
2570 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
2571 err = -EINVAL;
2572 break;
2573 }
2574 tp->rx_opt.user_mss = val;
2575 break;
2576
2577 case TCP_NODELAY:
2578 if (val) {
2579 /* TCP_NODELAY is weaker than TCP_CORK, so that
2580 * this option on corked socket is remembered, but
2581 * it is not activated until cork is cleared.
2582 *
2583 * However, when TCP_NODELAY is set we make
2584 * an explicit push, which overrides even TCP_CORK
2585 * for currently queued segments.
2586 */
2587 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2588 tcp_push_pending_frames(sk);
2589 } else {
2590 tp->nonagle &= ~TCP_NAGLE_OFF;
2591 }
2592 break;
2593
2594 case TCP_THIN_LINEAR_TIMEOUTS:
2595 if (val < 0 || val > 1)
2596 err = -EINVAL;
2597 else
2598 tp->thin_lto = val;
2599 break;
2600
2601 case TCP_THIN_DUPACK:
2602 if (val < 0 || val > 1)
2603 err = -EINVAL;
2604 break;
2605
2606 case TCP_REPAIR:
2607 if (!tcp_can_repair_sock(sk))
2608 err = -EPERM;
2609 else if (val == 1) {
2610 tp->repair = 1;
2611 sk->sk_reuse = SK_FORCE_REUSE;
2612 tp->repair_queue = TCP_NO_QUEUE;
2613 } else if (val == 0) {
2614 tp->repair = 0;
2615 sk->sk_reuse = SK_NO_REUSE;
2616 tcp_send_window_probe(sk);
2617 } else
2618 err = -EINVAL;
2619
2620 break;
2621
2622 case TCP_REPAIR_QUEUE:
2623 if (!tp->repair)
2624 err = -EPERM;
2625 else if ((unsigned int)val < TCP_QUEUES_NR)
2626 tp->repair_queue = val;
2627 else
2628 err = -EINVAL;
2629 break;
2630
2631 case TCP_QUEUE_SEQ:
2632 if (sk->sk_state != TCP_CLOSE)
2633 err = -EPERM;
2634 else if (tp->repair_queue == TCP_SEND_QUEUE)
2635 tp->write_seq = val;
2636 else if (tp->repair_queue == TCP_RECV_QUEUE)
2637 tp->rcv_nxt = val;
2638 else
2639 err = -EINVAL;
2640 break;
2641
2642 case TCP_REPAIR_OPTIONS:
2643 if (!tp->repair)
2644 err = -EINVAL;
2645 else if (sk->sk_state == TCP_ESTABLISHED)
2646 err = tcp_repair_options_est(sk,
2647 (struct tcp_repair_opt __user *)optval,
2648 optlen);
2649 else
2650 err = -EPERM;
2651 break;
2652
2653 case TCP_CORK:
2654 /* When set indicates to always queue non-full frames.
2655 * Later the user clears this option and we transmit
2656 * any pending partial frames in the queue. This is
2657 * meant to be used alongside sendfile() to get properly
2658 * filled frames when the user (for example) must write
2659 * out headers with a write() call first and then use
2660 * sendfile to send out the data parts.
2661 *
2662 * TCP_CORK can be set together with TCP_NODELAY and it is
2663 * stronger than TCP_NODELAY.
2664 */
2665 if (val) {
2666 tp->nonagle |= TCP_NAGLE_CORK;
2667 } else {
2668 tp->nonagle &= ~TCP_NAGLE_CORK;
2669 if (tp->nonagle&TCP_NAGLE_OFF)
2670 tp->nonagle |= TCP_NAGLE_PUSH;
2671 tcp_push_pending_frames(sk);
2672 }
2673 break;
2674
2675 case TCP_KEEPIDLE:
2676 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2677 err = -EINVAL;
2678 else {
2679 tp->keepalive_time = val * HZ;
2680 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2681 !((1 << sk->sk_state) &
2682 (TCPF_CLOSE | TCPF_LISTEN))) {
2683 u32 elapsed = keepalive_time_elapsed(tp);
2684 if (tp->keepalive_time > elapsed)
2685 elapsed = tp->keepalive_time - elapsed;
2686 else
2687 elapsed = 0;
2688 inet_csk_reset_keepalive_timer(sk, elapsed);
2689 }
2690 }
2691 break;
2692 case TCP_KEEPINTVL:
2693 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2694 err = -EINVAL;
2695 else
2696 tp->keepalive_intvl = val * HZ;
2697 break;
2698 case TCP_KEEPCNT:
2699 if (val < 1 || val > MAX_TCP_KEEPCNT)
2700 err = -EINVAL;
2701 else
2702 tp->keepalive_probes = val;
2703 break;
2704 case TCP_SYNCNT:
2705 if (val < 1 || val > MAX_TCP_SYNCNT)
2706 err = -EINVAL;
2707 else
2708 icsk->icsk_syn_retries = val;
2709 break;
2710
2711 case TCP_SAVE_SYN:
2712 if (val < 0 || val > 1)
2713 err = -EINVAL;
2714 else
2715 tp->save_syn = val;
2716 break;
2717
2718 case TCP_LINGER2:
2719 if (val < 0)
2720 tp->linger2 = -1;
2721 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2722 tp->linger2 = 0;
2723 else
2724 tp->linger2 = val * HZ;
2725 break;
2726
2727 case TCP_DEFER_ACCEPT:
2728 /* Translate value in seconds to number of retransmits */
2729 icsk->icsk_accept_queue.rskq_defer_accept =
2730 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2731 TCP_RTO_MAX / HZ);
2732 break;
2733
2734 case TCP_WINDOW_CLAMP:
2735 if (!val) {
2736 if (sk->sk_state != TCP_CLOSE) {
2737 err = -EINVAL;
2738 break;
2739 }
2740 tp->window_clamp = 0;
2741 } else
2742 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2743 SOCK_MIN_RCVBUF / 2 : val;
2744 break;
2745
2746 case TCP_QUICKACK:
2747 if (!val) {
2748 icsk->icsk_ack.pingpong = 1;
2749 } else {
2750 icsk->icsk_ack.pingpong = 0;
2751 if ((1 << sk->sk_state) &
2752 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2753 inet_csk_ack_scheduled(sk)) {
2754 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2755 tcp_cleanup_rbuf(sk, 1);
2756 if (!(val & 1))
2757 icsk->icsk_ack.pingpong = 1;
2758 }
2759 }
2760 break;
2761
2762#ifdef CONFIG_TCP_MD5SIG
2763 case TCP_MD5SIG:
2764 case TCP_MD5SIG_EXT:
2765 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
2766 break;
2767#endif
2768 case TCP_USER_TIMEOUT:
2769 /* Cap the max time in ms TCP will retry or probe the window
2770 * before giving up and aborting (ETIMEDOUT) a connection.
2771 */
2772 if (val < 0)
2773 err = -EINVAL;
2774 else
2775 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2776 break;
2777
2778 case TCP_FASTOPEN:
2779 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2780 TCPF_LISTEN))) {
2781 tcp_fastopen_init_key_once(true);
2782
2783 fastopen_queue_tune(sk, val);
2784 } else {
2785 err = -EINVAL;
2786 }
2787 break;
2788 case TCP_FASTOPEN_CONNECT:
2789 if (val > 1 || val < 0) {
2790 err = -EINVAL;
2791 } else if (sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
2792 if (sk->sk_state == TCP_CLOSE)
2793 tp->fastopen_connect = val;
2794 else
2795 err = -EINVAL;
2796 } else {
2797 err = -EOPNOTSUPP;
2798 }
2799 break;
2800 case TCP_TIMESTAMP:
2801 if (!tp->repair)
2802 err = -EPERM;
2803 else
2804 tp->tsoffset = val - tcp_time_stamp_raw();
2805 break;
2806 case TCP_REPAIR_WINDOW:
2807 err = tcp_repair_set_window(tp, optval, optlen);
2808 break;
2809 case TCP_NOTSENT_LOWAT:
2810 tp->notsent_lowat = val;
2811 sk->sk_write_space(sk);
2812 break;
2813 default:
2814 err = -ENOPROTOOPT;
2815 break;
2816 }
2817
2818 release_sock(sk);
2819 return err;
2820}
2821
2822int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2823 unsigned int optlen)
2824{
2825 const struct inet_connection_sock *icsk = inet_csk(sk);
2826
2827 if (level != SOL_TCP)
2828 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2829 optval, optlen);
2830 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2831}
2832EXPORT_SYMBOL(tcp_setsockopt);
2833
2834#ifdef CONFIG_COMPAT
2835int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2836 char __user *optval, unsigned int optlen)
2837{
2838 if (level != SOL_TCP)
2839 return inet_csk_compat_setsockopt(sk, level, optname,
2840 optval, optlen);
2841 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2842}
2843EXPORT_SYMBOL(compat_tcp_setsockopt);
2844#endif
2845
2846static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
2847 struct tcp_info *info)
2848{
2849 u64 stats[__TCP_CHRONO_MAX], total = 0;
2850 enum tcp_chrono i;
2851
2852 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
2853 stats[i] = tp->chrono_stat[i - 1];
2854 if (i == tp->chrono_type)
2855 stats[i] += tcp_jiffies32 - tp->chrono_start;
2856 stats[i] *= USEC_PER_SEC / HZ;
2857 total += stats[i];
2858 }
2859
2860 info->tcpi_busy_time = total;
2861 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
2862 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
2863}
2864
2865/* Return information about state of tcp endpoint in API format. */
2866void tcp_get_info(struct sock *sk, struct tcp_info *info)
2867{
2868 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2869 const struct inet_connection_sock *icsk = inet_csk(sk);
2870 u32 now;
2871 u64 rate64;
2872 bool slow;
2873 u32 rate;
2874
2875 memset(info, 0, sizeof(*info));
2876 if (sk->sk_type != SOCK_STREAM)
2877 return;
2878
2879 info->tcpi_state = sk_state_load(sk);
2880
2881 /* Report meaningful fields for all TCP states, including listeners */
2882 rate = READ_ONCE(sk->sk_pacing_rate);
2883 rate64 = rate != ~0U ? rate : ~0ULL;
2884 info->tcpi_pacing_rate = rate64;
2885
2886 rate = READ_ONCE(sk->sk_max_pacing_rate);
2887 rate64 = rate != ~0U ? rate : ~0ULL;
2888 info->tcpi_max_pacing_rate = rate64;
2889
2890 info->tcpi_reordering = tp->reordering;
2891 info->tcpi_snd_cwnd = tp->snd_cwnd;
2892
2893 if (info->tcpi_state == TCP_LISTEN) {
2894 /* listeners aliased fields :
2895 * tcpi_unacked -> Number of children ready for accept()
2896 * tcpi_sacked -> max backlog
2897 */
2898 info->tcpi_unacked = sk->sk_ack_backlog;
2899 info->tcpi_sacked = sk->sk_max_ack_backlog;
2900 return;
2901 }
2902
2903 slow = lock_sock_fast(sk);
2904
2905 info->tcpi_ca_state = icsk->icsk_ca_state;
2906 info->tcpi_retransmits = icsk->icsk_retransmits;
2907 info->tcpi_probes = icsk->icsk_probes_out;
2908 info->tcpi_backoff = icsk->icsk_backoff;
2909
2910 if (tp->rx_opt.tstamp_ok)
2911 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2912 if (tcp_is_sack(tp))
2913 info->tcpi_options |= TCPI_OPT_SACK;
2914 if (tp->rx_opt.wscale_ok) {
2915 info->tcpi_options |= TCPI_OPT_WSCALE;
2916 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2917 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2918 }
2919
2920 if (tp->ecn_flags & TCP_ECN_OK)
2921 info->tcpi_options |= TCPI_OPT_ECN;
2922 if (tp->ecn_flags & TCP_ECN_SEEN)
2923 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2924 if (tp->syn_data_acked)
2925 info->tcpi_options |= TCPI_OPT_SYN_DATA;
2926
2927 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2928 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2929 info->tcpi_snd_mss = tp->mss_cache;
2930 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2931
2932 info->tcpi_unacked = tp->packets_out;
2933 info->tcpi_sacked = tp->sacked_out;
2934
2935 info->tcpi_lost = tp->lost_out;
2936 info->tcpi_retrans = tp->retrans_out;
2937 info->tcpi_fackets = tp->fackets_out;
2938
2939 now = tcp_jiffies32;
2940 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2941 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2942 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2943
2944 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2945 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2946 info->tcpi_rtt = tp->srtt_us >> 3;
2947 info->tcpi_rttvar = tp->mdev_us >> 2;
2948 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2949 info->tcpi_advmss = tp->advmss;
2950
2951 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
2952 info->tcpi_rcv_space = tp->rcvq_space.space;
2953
2954 info->tcpi_total_retrans = tp->total_retrans;
2955
2956 info->tcpi_bytes_acked = tp->bytes_acked;
2957 info->tcpi_bytes_received = tp->bytes_received;
2958 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
2959 tcp_get_info_chrono_stats(tp, info);
2960
2961 info->tcpi_segs_out = tp->segs_out;
2962 info->tcpi_segs_in = tp->segs_in;
2963
2964 info->tcpi_min_rtt = tcp_min_rtt(tp);
2965 info->tcpi_data_segs_in = tp->data_segs_in;
2966 info->tcpi_data_segs_out = tp->data_segs_out;
2967
2968 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
2969 rate64 = tcp_compute_delivery_rate(tp);
2970 if (rate64)
2971 info->tcpi_delivery_rate = rate64;
2972 unlock_sock_fast(sk, slow);
2973}
2974EXPORT_SYMBOL_GPL(tcp_get_info);
2975
2976struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk)
2977{
2978 const struct tcp_sock *tp = tcp_sk(sk);
2979 struct sk_buff *stats;
2980 struct tcp_info info;
2981 u64 rate64;
2982 u32 rate;
2983
2984 stats = alloc_skb(7 * nla_total_size_64bit(sizeof(u64)) +
2985 3 * nla_total_size(sizeof(u32)) +
2986 2 * nla_total_size(sizeof(u8)), GFP_ATOMIC);
2987 if (!stats)
2988 return NULL;
2989
2990 tcp_get_info_chrono_stats(tp, &info);
2991 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
2992 info.tcpi_busy_time, TCP_NLA_PAD);
2993 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
2994 info.tcpi_rwnd_limited, TCP_NLA_PAD);
2995 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
2996 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
2997 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
2998 tp->data_segs_out, TCP_NLA_PAD);
2999 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3000 tp->total_retrans, TCP_NLA_PAD);
3001
3002 rate = READ_ONCE(sk->sk_pacing_rate);
3003 rate64 = rate != ~0U ? rate : ~0ULL;
3004 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3005
3006 rate64 = tcp_compute_delivery_rate(tp);
3007 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3008
3009 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3010 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3011 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3012
3013 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3014 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3015 return stats;
3016}
3017
3018static int do_tcp_getsockopt(struct sock *sk, int level,
3019 int optname, char __user *optval, int __user *optlen)
3020{
3021 struct inet_connection_sock *icsk = inet_csk(sk);
3022 struct tcp_sock *tp = tcp_sk(sk);
3023 struct net *net = sock_net(sk);
3024 int val, len;
3025
3026 if (get_user(len, optlen))
3027 return -EFAULT;
3028
3029 len = min_t(unsigned int, len, sizeof(int));
3030
3031 if (len < 0)
3032 return -EINVAL;
3033
3034 switch (optname) {
3035 case TCP_MAXSEG:
3036 val = tp->mss_cache;
3037 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3038 val = tp->rx_opt.user_mss;
3039 if (tp->repair)
3040 val = tp->rx_opt.mss_clamp;
3041 break;
3042 case TCP_NODELAY:
3043 val = !!(tp->nonagle&TCP_NAGLE_OFF);
3044 break;
3045 case TCP_CORK:
3046 val = !!(tp->nonagle&TCP_NAGLE_CORK);
3047 break;
3048 case TCP_KEEPIDLE:
3049 val = keepalive_time_when(tp) / HZ;
3050 break;
3051 case TCP_KEEPINTVL:
3052 val = keepalive_intvl_when(tp) / HZ;
3053 break;
3054 case TCP_KEEPCNT:
3055 val = keepalive_probes(tp);
3056 break;
3057 case TCP_SYNCNT:
3058 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3059 break;
3060 case TCP_LINGER2:
3061 val = tp->linger2;
3062 if (val >= 0)
3063 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3064 break;
3065 case TCP_DEFER_ACCEPT:
3066 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3067 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3068 break;
3069 case TCP_WINDOW_CLAMP:
3070 val = tp->window_clamp;
3071 break;
3072 case TCP_INFO: {
3073 struct tcp_info info;
3074
3075 if (get_user(len, optlen))
3076 return -EFAULT;
3077
3078 tcp_get_info(sk, &info);
3079
3080 len = min_t(unsigned int, len, sizeof(info));
3081 if (put_user(len, optlen))
3082 return -EFAULT;
3083 if (copy_to_user(optval, &info, len))
3084 return -EFAULT;
3085 return 0;
3086 }
3087 case TCP_CC_INFO: {
3088 const struct tcp_congestion_ops *ca_ops;
3089 union tcp_cc_info info;
3090 size_t sz = 0;
3091 int attr;
3092
3093 if (get_user(len, optlen))
3094 return -EFAULT;
3095
3096 ca_ops = icsk->icsk_ca_ops;
3097 if (ca_ops && ca_ops->get_info)
3098 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3099
3100 len = min_t(unsigned int, len, sz);
3101 if (put_user(len, optlen))
3102 return -EFAULT;
3103 if (copy_to_user(optval, &info, len))
3104 return -EFAULT;
3105 return 0;
3106 }
3107 case TCP_QUICKACK:
3108 val = !icsk->icsk_ack.pingpong;
3109 break;
3110
3111 case TCP_CONGESTION:
3112 if (get_user(len, optlen))
3113 return -EFAULT;
3114 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3115 if (put_user(len, optlen))
3116 return -EFAULT;
3117 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3118 return -EFAULT;
3119 return 0;
3120
3121 case TCP_ULP:
3122 if (get_user(len, optlen))
3123 return -EFAULT;
3124 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3125 if (!icsk->icsk_ulp_ops) {
3126 if (put_user(0, optlen))
3127 return -EFAULT;
3128 return 0;
3129 }
3130 if (put_user(len, optlen))
3131 return -EFAULT;
3132 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3133 return -EFAULT;
3134 return 0;
3135
3136 case TCP_THIN_LINEAR_TIMEOUTS:
3137 val = tp->thin_lto;
3138 break;
3139
3140 case TCP_THIN_DUPACK:
3141 val = 0;
3142 break;
3143
3144 case TCP_REPAIR:
3145 val = tp->repair;
3146 break;
3147
3148 case TCP_REPAIR_QUEUE:
3149 if (tp->repair)
3150 val = tp->repair_queue;
3151 else
3152 return -EINVAL;
3153 break;
3154
3155 case TCP_REPAIR_WINDOW: {
3156 struct tcp_repair_window opt;
3157
3158 if (get_user(len, optlen))
3159 return -EFAULT;
3160
3161 if (len != sizeof(opt))
3162 return -EINVAL;
3163
3164 if (!tp->repair)
3165 return -EPERM;
3166
3167 opt.snd_wl1 = tp->snd_wl1;
3168 opt.snd_wnd = tp->snd_wnd;
3169 opt.max_window = tp->max_window;
3170 opt.rcv_wnd = tp->rcv_wnd;
3171 opt.rcv_wup = tp->rcv_wup;
3172
3173 if (copy_to_user(optval, &opt, len))
3174 return -EFAULT;
3175 return 0;
3176 }
3177 case TCP_QUEUE_SEQ:
3178 if (tp->repair_queue == TCP_SEND_QUEUE)
3179 val = tp->write_seq;
3180 else if (tp->repair_queue == TCP_RECV_QUEUE)
3181 val = tp->rcv_nxt;
3182 else
3183 return -EINVAL;
3184 break;
3185
3186 case TCP_USER_TIMEOUT:
3187 val = jiffies_to_msecs(icsk->icsk_user_timeout);
3188 break;
3189
3190 case TCP_FASTOPEN:
3191 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3192 break;
3193
3194 case TCP_FASTOPEN_CONNECT:
3195 val = tp->fastopen_connect;
3196 break;
3197
3198 case TCP_TIMESTAMP:
3199 val = tcp_time_stamp_raw() + tp->tsoffset;
3200 break;
3201 case TCP_NOTSENT_LOWAT:
3202 val = tp->notsent_lowat;
3203 break;
3204 case TCP_SAVE_SYN:
3205 val = tp->save_syn;
3206 break;
3207 case TCP_SAVED_SYN: {
3208 if (get_user(len, optlen))
3209 return -EFAULT;
3210
3211 lock_sock(sk);
3212 if (tp->saved_syn) {
3213 if (len < tp->saved_syn[0]) {
3214 if (put_user(tp->saved_syn[0], optlen)) {
3215 release_sock(sk);
3216 return -EFAULT;
3217 }
3218 release_sock(sk);
3219 return -EINVAL;
3220 }
3221 len = tp->saved_syn[0];
3222 if (put_user(len, optlen)) {
3223 release_sock(sk);
3224 return -EFAULT;
3225 }
3226 if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3227 release_sock(sk);
3228 return -EFAULT;
3229 }
3230 tcp_saved_syn_free(tp);
3231 release_sock(sk);
3232 } else {
3233 release_sock(sk);
3234 len = 0;
3235 if (put_user(len, optlen))
3236 return -EFAULT;
3237 }
3238 return 0;
3239 }
3240 default:
3241 return -ENOPROTOOPT;
3242 }
3243
3244 if (put_user(len, optlen))
3245 return -EFAULT;
3246 if (copy_to_user(optval, &val, len))
3247 return -EFAULT;
3248 return 0;
3249}
3250
3251int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3252 int __user *optlen)
3253{
3254 struct inet_connection_sock *icsk = inet_csk(sk);
3255
3256 if (level != SOL_TCP)
3257 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3258 optval, optlen);
3259 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3260}
3261EXPORT_SYMBOL(tcp_getsockopt);
3262
3263#ifdef CONFIG_COMPAT
3264int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3265 char __user *optval, int __user *optlen)
3266{
3267 if (level != SOL_TCP)
3268 return inet_csk_compat_getsockopt(sk, level, optname,
3269 optval, optlen);
3270 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3271}
3272EXPORT_SYMBOL(compat_tcp_getsockopt);
3273#endif
3274
3275#ifdef CONFIG_TCP_MD5SIG
3276static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3277static DEFINE_MUTEX(tcp_md5sig_mutex);
3278static bool tcp_md5sig_pool_populated = false;
3279
3280static void __tcp_alloc_md5sig_pool(void)
3281{
3282 struct crypto_ahash *hash;
3283 int cpu;
3284
3285 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3286 if (IS_ERR(hash))
3287 return;
3288
3289 for_each_possible_cpu(cpu) {
3290 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3291 struct ahash_request *req;
3292
3293 if (!scratch) {
3294 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3295 sizeof(struct tcphdr),
3296 GFP_KERNEL,
3297 cpu_to_node(cpu));
3298 if (!scratch)
3299 return;
3300 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3301 }
3302 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3303 continue;
3304
3305 req = ahash_request_alloc(hash, GFP_KERNEL);
3306 if (!req)
3307 return;
3308
3309 ahash_request_set_callback(req, 0, NULL, NULL);
3310
3311 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3312 }
3313 /* before setting tcp_md5sig_pool_populated, we must commit all writes
3314 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3315 */
3316 smp_wmb();
3317 tcp_md5sig_pool_populated = true;
3318}
3319
3320bool tcp_alloc_md5sig_pool(void)
3321{
3322 if (unlikely(!tcp_md5sig_pool_populated)) {
3323 mutex_lock(&tcp_md5sig_mutex);
3324
3325 if (!tcp_md5sig_pool_populated)
3326 __tcp_alloc_md5sig_pool();
3327
3328 mutex_unlock(&tcp_md5sig_mutex);
3329 }
3330 return tcp_md5sig_pool_populated;
3331}
3332EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3333
3334
3335/**
3336 * tcp_get_md5sig_pool - get md5sig_pool for this user
3337 *
3338 * We use percpu structure, so if we succeed, we exit with preemption
3339 * and BH disabled, to make sure another thread or softirq handling
3340 * wont try to get same context.
3341 */
3342struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3343{
3344 local_bh_disable();
3345
3346 if (tcp_md5sig_pool_populated) {
3347 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3348 smp_rmb();
3349 return this_cpu_ptr(&tcp_md5sig_pool);
3350 }
3351 local_bh_enable();
3352 return NULL;
3353}
3354EXPORT_SYMBOL(tcp_get_md5sig_pool);
3355
3356int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3357 const struct sk_buff *skb, unsigned int header_len)
3358{
3359 struct scatterlist sg;
3360 const struct tcphdr *tp = tcp_hdr(skb);
3361 struct ahash_request *req = hp->md5_req;
3362 unsigned int i;
3363 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3364 skb_headlen(skb) - header_len : 0;
3365 const struct skb_shared_info *shi = skb_shinfo(skb);
3366 struct sk_buff *frag_iter;
3367
3368 sg_init_table(&sg, 1);
3369
3370 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3371 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3372 if (crypto_ahash_update(req))
3373 return 1;
3374
3375 for (i = 0; i < shi->nr_frags; ++i) {
3376 const struct skb_frag_struct *f = &shi->frags[i];
3377 unsigned int offset = f->page_offset;
3378 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3379
3380 sg_set_page(&sg, page, skb_frag_size(f),
3381 offset_in_page(offset));
3382 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3383 if (crypto_ahash_update(req))
3384 return 1;
3385 }
3386
3387 skb_walk_frags(skb, frag_iter)
3388 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3389 return 1;
3390
3391 return 0;
3392}
3393EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3394
3395int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3396{
3397 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
3398 struct scatterlist sg;
3399
3400 sg_init_one(&sg, key->key, keylen);
3401 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
3402
3403 /* tcp_md5_do_add() might change key->key under us */
3404 return crypto_ahash_update(hp->md5_req);
3405}
3406EXPORT_SYMBOL(tcp_md5_hash_key);
3407
3408#endif
3409
3410void tcp_done(struct sock *sk)
3411{
3412 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3413
3414 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3415 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3416
3417 tcp_set_state(sk, TCP_CLOSE);
3418 tcp_clear_xmit_timers(sk);
3419 if (req)
3420 reqsk_fastopen_remove(sk, req, false);
3421
3422 sk->sk_shutdown = SHUTDOWN_MASK;
3423
3424 if (!sock_flag(sk, SOCK_DEAD))
3425 sk->sk_state_change(sk);
3426 else
3427 inet_csk_destroy_sock(sk);
3428}
3429EXPORT_SYMBOL_GPL(tcp_done);
3430
3431int tcp_abort(struct sock *sk, int err)
3432{
3433 if (!sk_fullsock(sk)) {
3434 if (sk->sk_state == TCP_NEW_SYN_RECV) {
3435 struct request_sock *req = inet_reqsk(sk);
3436
3437 local_bh_disable();
3438 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
3439 local_bh_enable();
3440 return 0;
3441 }
3442 return -EOPNOTSUPP;
3443 }
3444
3445 /* Don't race with userspace socket closes such as tcp_close. */
3446 lock_sock(sk);
3447
3448 if (sk->sk_state == TCP_LISTEN) {
3449 tcp_set_state(sk, TCP_CLOSE);
3450 inet_csk_listen_stop(sk);
3451 }
3452
3453 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
3454 local_bh_disable();
3455 bh_lock_sock(sk);
3456
3457 if (!sock_flag(sk, SOCK_DEAD)) {
3458 sk->sk_err = err;
3459 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3460 smp_wmb();
3461 sk->sk_error_report(sk);
3462 if (tcp_need_reset(sk->sk_state))
3463 tcp_send_active_reset(sk, GFP_ATOMIC);
3464 tcp_done(sk);
3465 }
3466
3467 bh_unlock_sock(sk);
3468 local_bh_enable();
3469 tcp_write_queue_purge(sk);
3470 release_sock(sk);
3471 return 0;
3472}
3473EXPORT_SYMBOL_GPL(tcp_abort);
3474
3475extern struct tcp_congestion_ops tcp_reno;
3476
3477static __initdata unsigned long thash_entries;
3478static int __init set_thash_entries(char *str)
3479{
3480 ssize_t ret;
3481
3482 if (!str)
3483 return 0;
3484
3485 ret = kstrtoul(str, 0, &thash_entries);
3486 if (ret)
3487 return 0;
3488
3489 return 1;
3490}
3491__setup("thash_entries=", set_thash_entries);
3492
3493static void __init tcp_init_mem(void)
3494{
3495 unsigned long limit = nr_free_buffer_pages() / 16;
3496
3497 limit = max(limit, 128UL);
3498 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
3499 sysctl_tcp_mem[1] = limit; /* 6.25 % */
3500 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
3501}
3502
3503void __init tcp_init(void)
3504{
3505 int max_rshare, max_wshare, cnt;
3506 unsigned long limit;
3507 unsigned int i;
3508
3509 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
3510 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3511 FIELD_SIZEOF(struct sk_buff, cb));
3512
3513 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3514 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3515 inet_hashinfo_init(&tcp_hashinfo);
3516 tcp_hashinfo.bind_bucket_cachep =
3517 kmem_cache_create("tcp_bind_bucket",
3518 sizeof(struct inet_bind_bucket), 0,
3519 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3520
3521 /* Size and allocate the main established and bind bucket
3522 * hash tables.
3523 *
3524 * The methodology is similar to that of the buffer cache.
3525 */
3526 tcp_hashinfo.ehash =
3527 alloc_large_system_hash("TCP established",
3528 sizeof(struct inet_ehash_bucket),
3529 thash_entries,
3530 17, /* one slot per 128 KB of memory */
3531 0,
3532 NULL,
3533 &tcp_hashinfo.ehash_mask,
3534 0,
3535 thash_entries ? 0 : 512 * 1024);
3536 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3537 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3538
3539 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3540 panic("TCP: failed to alloc ehash_locks");
3541 tcp_hashinfo.bhash =
3542 alloc_large_system_hash("TCP bind",
3543 sizeof(struct inet_bind_hashbucket),
3544 tcp_hashinfo.ehash_mask + 1,
3545 17, /* one slot per 128 KB of memory */
3546 0,
3547 &tcp_hashinfo.bhash_size,
3548 NULL,
3549 0,
3550 64 * 1024);
3551 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3552 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3553 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3554 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3555 }
3556
3557
3558 cnt = tcp_hashinfo.ehash_mask + 1;
3559 sysctl_tcp_max_orphans = cnt / 2;
3560
3561 tcp_init_mem();
3562 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3563 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3564 max_wshare = min(4UL*1024*1024, limit);
3565 max_rshare = min(6UL*1024*1024, limit);
3566
3567 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3568 sysctl_tcp_wmem[1] = 16*1024;
3569 sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3570
3571 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3572 sysctl_tcp_rmem[1] = 87380;
3573 sysctl_tcp_rmem[2] = max(87380, max_rshare);
3574
3575 pr_info("Hash tables configured (established %u bind %u)\n",
3576 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3577
3578 tcp_v4_init();
3579 tcp_metrics_init();
3580 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3581 tcp_tasklet_init();
3582}