blob: 06eab04e949107642a180e550dfaadad64cf7797 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
26 *
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
34 *
35 */
36
37#define pr_fmt(fmt) "TCP: " fmt
38
39#include <net/tcp.h>
40
41#include <linux/compiler.h>
42#include <linux/gfp.h>
43#include <linux/module.h>
44
45/* People can turn this off for buggy TCP's found in printers etc. */
46int sysctl_tcp_retrans_collapse __read_mostly = 1;
47
48/* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
50 */
51int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52
53/* Default TSQ limit of four TSO segments */
54int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
55
56/* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
59 */
60int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61
62/* By default, RFC2861 behavior. */
63int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
64
65static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
66 int push_one, gfp_t gfp);
67
68/* Account for new data that has been sent to the network. */
69static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
70{
71 struct inet_connection_sock *icsk = inet_csk(sk);
72 struct tcp_sock *tp = tcp_sk(sk);
73 unsigned int prior_packets = tp->packets_out;
74
75 tcp_advance_send_head(sk, skb);
76 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
77
78 tp->packets_out += tcp_skb_pcount(skb);
79 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
80 tcp_rearm_rto(sk);
81
82 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
83 tcp_skb_pcount(skb));
84}
85
86/* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
87 * window scaling factor due to loss of precision.
88 * If window has been shrunk, what should we make? It is not clear at all.
89 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
90 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
91 * invalid. OK, let's make this for now:
92 */
93static inline __u32 tcp_acceptable_seq(const struct sock *sk)
94{
95 const struct tcp_sock *tp = tcp_sk(sk);
96
97 if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
98 (tp->rx_opt.wscale_ok &&
99 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
100 return tp->snd_nxt;
101 else
102 return tcp_wnd_end(tp);
103}
104
105/* Calculate mss to advertise in SYN segment.
106 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
107 *
108 * 1. It is independent of path mtu.
109 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
110 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
111 * attached devices, because some buggy hosts are confused by
112 * large MSS.
113 * 4. We do not make 3, we advertise MSS, calculated from first
114 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
115 * This may be overridden via information stored in routing table.
116 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
117 * probably even Jumbo".
118 */
119static __u16 tcp_advertise_mss(struct sock *sk)
120{
121 struct tcp_sock *tp = tcp_sk(sk);
122 const struct dst_entry *dst = __sk_dst_get(sk);
123 int mss = tp->advmss;
124
125 if (dst) {
126 unsigned int metric = dst_metric_advmss(dst);
127
128 if (metric < mss) {
129 mss = metric;
130 tp->advmss = mss;
131 }
132 }
133
134 return (__u16)mss;
135}
136
137/* RFC2861. Reset CWND after idle period longer RTO to "restart window".
138 * This is the first part of cwnd validation mechanism.
139 */
140void tcp_cwnd_restart(struct sock *sk, s32 delta)
141{
142 struct tcp_sock *tp = tcp_sk(sk);
143 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
144 u32 cwnd = tp->snd_cwnd;
145
146 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
147
148 tp->snd_ssthresh = tcp_current_ssthresh(sk);
149 restart_cwnd = min(restart_cwnd, cwnd);
150
151 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
152 cwnd >>= 1;
153 tp->snd_cwnd = max(cwnd, restart_cwnd);
154 tp->snd_cwnd_stamp = tcp_jiffies32;
155 tp->snd_cwnd_used = 0;
156}
157
158/* Congestion state accounting after a packet has been sent. */
159static void tcp_event_data_sent(struct tcp_sock *tp,
160 struct sock *sk)
161{
162 struct inet_connection_sock *icsk = inet_csk(sk);
163 const u32 now = tcp_jiffies32;
164
165 if (tcp_packets_in_flight(tp) == 0)
166 tcp_ca_event(sk, CA_EVENT_TX_START);
167
168 tp->lsndtime = now;
169
170 /* If it is a reply for ato after last received
171 * packet, enter pingpong mode.
172 */
173 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
174 icsk->icsk_ack.pingpong = 1;
175}
176
177/* Account for an ACK we sent. */
178static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
179 u32 rcv_nxt)
180{
181 struct tcp_sock *tp = tcp_sk(sk);
182
183 if (unlikely(rcv_nxt != tp->rcv_nxt))
184 return; /* Special ACK sent by DCTCP to reflect ECN */
185 tcp_dec_quickack_mode(sk, pkts);
186 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
187}
188
189
190u32 tcp_default_init_rwnd(u32 mss)
191{
192 /* Initial receive window should be twice of TCP_INIT_CWND to
193 * enable proper sending of new unsent data during fast recovery
194 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
195 * limit when mss is larger than 1460.
196 */
197 u32 init_rwnd = sysctl_tcp_default_init_rwnd;
198
199 if (mss > 1460)
200 init_rwnd = max((1460 * init_rwnd) / mss, 2U);
201 return init_rwnd;
202}
203
204/* Determine a window scaling and initial window to offer.
205 * Based on the assumption that the given amount of space
206 * will be offered. Store the results in the tp structure.
207 * NOTE: for smooth operation initial space offering should
208 * be a multiple of mss if possible. We assume here that mss >= 1.
209 * This MUST be enforced by all callers.
210 */
211void tcp_select_initial_window(int __space, __u32 mss,
212 __u32 *rcv_wnd, __u32 *window_clamp,
213 int wscale_ok, __u8 *rcv_wscale,
214 __u32 init_rcv_wnd)
215{
216 unsigned int space = (__space < 0 ? 0 : __space);
217
218 /* If no clamp set the clamp to the max possible scaled window */
219 if (*window_clamp == 0)
220 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
221 space = min(*window_clamp, space);
222
223 /* Quantize space offering to a multiple of mss if possible. */
224 if (space > mss)
225 space = rounddown(space, mss);
226
227 /* NOTE: offering an initial window larger than 32767
228 * will break some buggy TCP stacks. If the admin tells us
229 * it is likely we could be speaking with such a buggy stack
230 * we will truncate our initial window offering to 32K-1
231 * unless the remote has sent us a window scaling option,
232 * which we interpret as a sign the remote TCP is not
233 * misinterpreting the window field as a signed quantity.
234 */
235 if (sysctl_tcp_workaround_signed_windows)
236 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
237 else
238 (*rcv_wnd) = space;
239
240 (*rcv_wscale) = 0;
241 if (wscale_ok) {
242 /* Set window scaling on max possible window */
243 space = max_t(u32, space, sysctl_tcp_rmem[2]);
244 space = max_t(u32, space, sysctl_rmem_max);
245 space = min_t(u32, space, *window_clamp);
246 while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) {
247 space >>= 1;
248 (*rcv_wscale)++;
249 }
250 }
251
252 if (mss > (1 << *rcv_wscale)) {
253 if (!init_rcv_wnd) /* Use default unless specified otherwise */
254 init_rcv_wnd = tcp_default_init_rwnd(mss);
255 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
256 }
257
258 /* Set the clamp no higher than max representable value */
259 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
260}
261EXPORT_SYMBOL(tcp_select_initial_window);
262
263/* Chose a new window to advertise, update state in tcp_sock for the
264 * socket, and return result with RFC1323 scaling applied. The return
265 * value can be stuffed directly into th->window for an outgoing
266 * frame.
267 */
268static u16 tcp_select_window(struct sock *sk)
269{
270 struct tcp_sock *tp = tcp_sk(sk);
271 u32 old_win = tp->rcv_wnd;
272 u32 cur_win = tcp_receive_window(tp);
273 u32 new_win = __tcp_select_window(sk);
274
275 /* Never shrink the offered window */
276 if (new_win < cur_win) {
277 /* Danger Will Robinson!
278 * Don't update rcv_wup/rcv_wnd here or else
279 * we will not be able to advertise a zero
280 * window in time. --DaveM
281 *
282 * Relax Will Robinson.
283 */
284 if (new_win == 0)
285 NET_INC_STATS(sock_net(sk),
286 LINUX_MIB_TCPWANTZEROWINDOWADV);
287 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
288 }
289 tp->rcv_wnd = new_win;
290 tp->rcv_wup = tp->rcv_nxt;
291
292 /* Make sure we do not exceed the maximum possible
293 * scaled window.
294 */
295 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
296 new_win = min(new_win, MAX_TCP_WINDOW);
297 else
298 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
299
300 /* RFC1323 scaling applied */
301 new_win >>= tp->rx_opt.rcv_wscale;
302
303 /* If we advertise zero window, disable fast path. */
304 if (new_win == 0) {
305 tp->pred_flags = 0;
306 if (old_win)
307 NET_INC_STATS(sock_net(sk),
308 LINUX_MIB_TCPTOZEROWINDOWADV);
309 } else if (old_win == 0) {
310 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
311 }
312
313 return new_win;
314}
315
316/* Packet ECN state for a SYN-ACK */
317static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
318{
319 const struct tcp_sock *tp = tcp_sk(sk);
320
321 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
322 if (!(tp->ecn_flags & TCP_ECN_OK))
323 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
324 else if (tcp_ca_needs_ecn(sk) ||
325 tcp_bpf_ca_needs_ecn(sk))
326 INET_ECN_xmit(sk);
327}
328
329/* Packet ECN state for a SYN. */
330static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
331{
332 struct tcp_sock *tp = tcp_sk(sk);
333 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
334 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
335 tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
336
337 if (!use_ecn) {
338 const struct dst_entry *dst = __sk_dst_get(sk);
339
340 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
341 use_ecn = true;
342 }
343
344 tp->ecn_flags = 0;
345
346 if (use_ecn) {
347 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
348 tp->ecn_flags = TCP_ECN_OK;
349 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
350 INET_ECN_xmit(sk);
351 }
352}
353
354static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
355{
356 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
357 /* tp->ecn_flags are cleared at a later point in time when
358 * SYN ACK is ultimatively being received.
359 */
360 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
361}
362
363static void
364tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
365{
366 if (inet_rsk(req)->ecn_ok)
367 th->ece = 1;
368}
369
370/* Set up ECN state for a packet on a ESTABLISHED socket that is about to
371 * be sent.
372 */
373static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
374 struct tcphdr *th, int tcp_header_len)
375{
376 struct tcp_sock *tp = tcp_sk(sk);
377
378 if (tp->ecn_flags & TCP_ECN_OK) {
379 /* Not-retransmitted data segment: set ECT and inject CWR. */
380 if (skb->len != tcp_header_len &&
381 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
382 INET_ECN_xmit(sk);
383 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
384 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
385 th->cwr = 1;
386 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
387 }
388 } else if (!tcp_ca_needs_ecn(sk)) {
389 /* ACK or retransmitted segment: clear ECT|CE */
390 INET_ECN_dontxmit(sk);
391 }
392 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
393 th->ece = 1;
394 }
395}
396
397/* Constructs common control bits of non-data skb. If SYN/FIN is present,
398 * auto increment end seqno.
399 */
400static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
401{
402 skb->ip_summed = CHECKSUM_PARTIAL;
403 skb->csum = 0;
404
405 TCP_SKB_CB(skb)->tcp_flags = flags;
406 TCP_SKB_CB(skb)->sacked = 0;
407
408 tcp_skb_pcount_set(skb, 1);
409
410 TCP_SKB_CB(skb)->seq = seq;
411 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
412 seq++;
413 TCP_SKB_CB(skb)->end_seq = seq;
414}
415
416static inline bool tcp_urg_mode(const struct tcp_sock *tp)
417{
418 return tp->snd_una != tp->snd_up;
419}
420
421#define OPTION_SACK_ADVERTISE (1 << 0)
422#define OPTION_TS (1 << 1)
423#define OPTION_MD5 (1 << 2)
424#define OPTION_WSCALE (1 << 3)
425#define OPTION_FAST_OPEN_COOKIE (1 << 8)
426
427struct tcp_out_options {
428 u16 options; /* bit field of OPTION_* */
429 u16 mss; /* 0 to disable */
430 u8 ws; /* window scale, 0 to disable */
431 u8 num_sack_blocks; /* number of SACK blocks to include */
432 u8 hash_size; /* bytes in hash_location */
433 __u8 *hash_location; /* temporary pointer, overloaded */
434 __u32 tsval, tsecr; /* need to include OPTION_TS */
435 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
436};
437
438/* Write previously computed TCP options to the packet.
439 *
440 * Beware: Something in the Internet is very sensitive to the ordering of
441 * TCP options, we learned this through the hard way, so be careful here.
442 * Luckily we can at least blame others for their non-compliance but from
443 * inter-operability perspective it seems that we're somewhat stuck with
444 * the ordering which we have been using if we want to keep working with
445 * those broken things (not that it currently hurts anybody as there isn't
446 * particular reason why the ordering would need to be changed).
447 *
448 * At least SACK_PERM as the first option is known to lead to a disaster
449 * (but it may well be that other scenarios fail similarly).
450 */
451static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
452 struct tcp_out_options *opts)
453{
454 u16 options = opts->options; /* mungable copy */
455
456 if (unlikely(OPTION_MD5 & options)) {
457 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
458 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
459 /* overload cookie hash location */
460 opts->hash_location = (__u8 *)ptr;
461 ptr += 4;
462 }
463
464 if (unlikely(opts->mss)) {
465 *ptr++ = htonl((TCPOPT_MSS << 24) |
466 (TCPOLEN_MSS << 16) |
467 opts->mss);
468 }
469
470 if (likely(OPTION_TS & options)) {
471 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
472 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
473 (TCPOLEN_SACK_PERM << 16) |
474 (TCPOPT_TIMESTAMP << 8) |
475 TCPOLEN_TIMESTAMP);
476 options &= ~OPTION_SACK_ADVERTISE;
477 } else {
478 *ptr++ = htonl((TCPOPT_NOP << 24) |
479 (TCPOPT_NOP << 16) |
480 (TCPOPT_TIMESTAMP << 8) |
481 TCPOLEN_TIMESTAMP);
482 }
483 *ptr++ = htonl(opts->tsval);
484 *ptr++ = htonl(opts->tsecr);
485 }
486
487 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
488 *ptr++ = htonl((TCPOPT_NOP << 24) |
489 (TCPOPT_NOP << 16) |
490 (TCPOPT_SACK_PERM << 8) |
491 TCPOLEN_SACK_PERM);
492 }
493
494 if (unlikely(OPTION_WSCALE & options)) {
495 *ptr++ = htonl((TCPOPT_NOP << 24) |
496 (TCPOPT_WINDOW << 16) |
497 (TCPOLEN_WINDOW << 8) |
498 opts->ws);
499 }
500
501 if (unlikely(opts->num_sack_blocks)) {
502 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
503 tp->duplicate_sack : tp->selective_acks;
504 int this_sack;
505
506 *ptr++ = htonl((TCPOPT_NOP << 24) |
507 (TCPOPT_NOP << 16) |
508 (TCPOPT_SACK << 8) |
509 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
510 TCPOLEN_SACK_PERBLOCK)));
511
512 for (this_sack = 0; this_sack < opts->num_sack_blocks;
513 ++this_sack) {
514 *ptr++ = htonl(sp[this_sack].start_seq);
515 *ptr++ = htonl(sp[this_sack].end_seq);
516 }
517
518 tp->rx_opt.dsack = 0;
519 }
520
521 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
522 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
523 u8 *p = (u8 *)ptr;
524 u32 len; /* Fast Open option length */
525
526 if (foc->exp) {
527 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
528 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
529 TCPOPT_FASTOPEN_MAGIC);
530 p += TCPOLEN_EXP_FASTOPEN_BASE;
531 } else {
532 len = TCPOLEN_FASTOPEN_BASE + foc->len;
533 *p++ = TCPOPT_FASTOPEN;
534 *p++ = len;
535 }
536
537 memcpy(p, foc->val, foc->len);
538 if ((len & 3) == 2) {
539 p[foc->len] = TCPOPT_NOP;
540 p[foc->len + 1] = TCPOPT_NOP;
541 }
542 ptr += (len + 3) >> 2;
543 }
544}
545
546/* Compute TCP options for SYN packets. This is not the final
547 * network wire format yet.
548 */
549static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
550 struct tcp_out_options *opts,
551 struct tcp_md5sig_key **md5)
552{
553 struct tcp_sock *tp = tcp_sk(sk);
554 unsigned int remaining = MAX_TCP_OPTION_SPACE;
555 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
556
557#ifdef CONFIG_TCP_MD5SIG
558 *md5 = tp->af_specific->md5_lookup(sk, sk);
559 if (*md5) {
560 opts->options |= OPTION_MD5;
561 remaining -= TCPOLEN_MD5SIG_ALIGNED;
562 }
563#else
564 *md5 = NULL;
565#endif
566
567 /* We always get an MSS option. The option bytes which will be seen in
568 * normal data packets should timestamps be used, must be in the MSS
569 * advertised. But we subtract them from tp->mss_cache so that
570 * calculations in tcp_sendmsg are simpler etc. So account for this
571 * fact here if necessary. If we don't do this correctly, as a
572 * receiver we won't recognize data packets as being full sized when we
573 * should, and thus we won't abide by the delayed ACK rules correctly.
574 * SACKs don't matter, we never delay an ACK when we have any of those
575 * going out. */
576 opts->mss = tcp_advertise_mss(sk);
577 remaining -= TCPOLEN_MSS_ALIGNED;
578
579 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
580 opts->options |= OPTION_TS;
581 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
582 opts->tsecr = tp->rx_opt.ts_recent;
583 remaining -= TCPOLEN_TSTAMP_ALIGNED;
584 }
585 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
586 opts->ws = tp->rx_opt.rcv_wscale;
587 opts->options |= OPTION_WSCALE;
588 remaining -= TCPOLEN_WSCALE_ALIGNED;
589 }
590 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
591 opts->options |= OPTION_SACK_ADVERTISE;
592 if (unlikely(!(OPTION_TS & opts->options)))
593 remaining -= TCPOLEN_SACKPERM_ALIGNED;
594 }
595
596 if (fastopen && fastopen->cookie.len >= 0) {
597 u32 need = fastopen->cookie.len;
598
599 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
600 TCPOLEN_FASTOPEN_BASE;
601 need = (need + 3) & ~3U; /* Align to 32 bits */
602 if (remaining >= need) {
603 opts->options |= OPTION_FAST_OPEN_COOKIE;
604 opts->fastopen_cookie = &fastopen->cookie;
605 remaining -= need;
606 tp->syn_fastopen = 1;
607 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
608 }
609 }
610
611 return MAX_TCP_OPTION_SPACE - remaining;
612}
613
614/* Set up TCP options for SYN-ACKs. */
615static unsigned int tcp_synack_options(struct request_sock *req,
616 unsigned int mss, struct sk_buff *skb,
617 struct tcp_out_options *opts,
618 const struct tcp_md5sig_key *md5,
619 struct tcp_fastopen_cookie *foc,
620 enum tcp_synack_type synack_type)
621{
622 struct inet_request_sock *ireq = inet_rsk(req);
623 unsigned int remaining = MAX_TCP_OPTION_SPACE;
624
625#ifdef CONFIG_TCP_MD5SIG
626 if (md5) {
627 opts->options |= OPTION_MD5;
628 remaining -= TCPOLEN_MD5SIG_ALIGNED;
629
630 /* We can't fit any SACK blocks in a packet with MD5 + TS
631 * options. There was discussion about disabling SACK
632 * rather than TS in order to fit in better with old,
633 * buggy kernels, but that was deemed to be unnecessary.
634 */
635 if (synack_type != TCP_SYNACK_COOKIE)
636 ireq->tstamp_ok &= !ireq->sack_ok;
637 }
638#endif
639
640 /* We always send an MSS option. */
641 opts->mss = mss;
642 remaining -= TCPOLEN_MSS_ALIGNED;
643
644 if (likely(ireq->wscale_ok)) {
645 opts->ws = ireq->rcv_wscale;
646 opts->options |= OPTION_WSCALE;
647 remaining -= TCPOLEN_WSCALE_ALIGNED;
648 }
649 if (likely(ireq->tstamp_ok)) {
650 opts->options |= OPTION_TS;
651 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
652 opts->tsecr = req->ts_recent;
653 remaining -= TCPOLEN_TSTAMP_ALIGNED;
654 }
655 if (likely(ireq->sack_ok)) {
656 opts->options |= OPTION_SACK_ADVERTISE;
657 if (unlikely(!ireq->tstamp_ok))
658 remaining -= TCPOLEN_SACKPERM_ALIGNED;
659 }
660 if (foc != NULL && foc->len >= 0) {
661 u32 need = foc->len;
662
663 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
664 TCPOLEN_FASTOPEN_BASE;
665 need = (need + 3) & ~3U; /* Align to 32 bits */
666 if (remaining >= need) {
667 opts->options |= OPTION_FAST_OPEN_COOKIE;
668 opts->fastopen_cookie = foc;
669 remaining -= need;
670 }
671 }
672
673 return MAX_TCP_OPTION_SPACE - remaining;
674}
675
676/* Compute TCP options for ESTABLISHED sockets. This is not the
677 * final wire format yet.
678 */
679static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
680 struct tcp_out_options *opts,
681 struct tcp_md5sig_key **md5)
682{
683 struct tcp_sock *tp = tcp_sk(sk);
684 unsigned int size = 0;
685 unsigned int eff_sacks;
686
687 opts->options = 0;
688
689#ifdef CONFIG_TCP_MD5SIG
690 *md5 = tp->af_specific->md5_lookup(sk, sk);
691 if (unlikely(*md5)) {
692 opts->options |= OPTION_MD5;
693 size += TCPOLEN_MD5SIG_ALIGNED;
694 }
695#else
696 *md5 = NULL;
697#endif
698
699 if (likely(tp->rx_opt.tstamp_ok)) {
700 opts->options |= OPTION_TS;
701 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
702 opts->tsecr = tp->rx_opt.ts_recent;
703 size += TCPOLEN_TSTAMP_ALIGNED;
704 }
705
706 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
707 if (unlikely(eff_sacks)) {
708 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
709 opts->num_sack_blocks =
710 min_t(unsigned int, eff_sacks,
711 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
712 TCPOLEN_SACK_PERBLOCK);
713 if (likely(opts->num_sack_blocks))
714 size += TCPOLEN_SACK_BASE_ALIGNED +
715 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
716 }
717
718 return size;
719}
720
721
722/* TCP SMALL QUEUES (TSQ)
723 *
724 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
725 * to reduce RTT and bufferbloat.
726 * We do this using a special skb destructor (tcp_wfree).
727 *
728 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
729 * needs to be reallocated in a driver.
730 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
731 *
732 * Since transmit from skb destructor is forbidden, we use a tasklet
733 * to process all sockets that eventually need to send more skbs.
734 * We use one tasklet per cpu, with its own queue of sockets.
735 */
736struct tsq_tasklet {
737 struct tasklet_struct tasklet;
738 struct list_head head; /* queue of tcp sockets */
739};
740static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
741
742static void tcp_tsq_handler(struct sock *sk)
743{
744 if ((1 << sk->sk_state) &
745 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
746 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
747 struct tcp_sock *tp = tcp_sk(sk);
748
749 if (tp->lost_out > tp->retrans_out &&
750 tp->snd_cwnd > tcp_packets_in_flight(tp)) {
751 tcp_mstamp_refresh(tp);
752 tcp_xmit_retransmit_queue(sk);
753 }
754
755 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
756 0, GFP_ATOMIC);
757 }
758}
759/*
760 * One tasklet per cpu tries to send more skbs.
761 * We run in tasklet context but need to disable irqs when
762 * transferring tsq->head because tcp_wfree() might
763 * interrupt us (non NAPI drivers)
764 */
765static void tcp_tasklet_func(unsigned long data)
766{
767 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
768 LIST_HEAD(list);
769 unsigned long flags;
770 struct list_head *q, *n;
771 struct tcp_sock *tp;
772 struct sock *sk;
773
774 local_irq_save(flags);
775 list_splice_init(&tsq->head, &list);
776 local_irq_restore(flags);
777
778 list_for_each_safe(q, n, &list) {
779 tp = list_entry(q, struct tcp_sock, tsq_node);
780 list_del(&tp->tsq_node);
781
782 sk = (struct sock *)tp;
783 smp_mb__before_atomic();
784 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
785
786 if (!sk->sk_lock.owned &&
787 test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) {
788 bh_lock_sock(sk);
789 if (!sock_owned_by_user(sk)) {
790 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
791 tcp_tsq_handler(sk);
792 }
793 bh_unlock_sock(sk);
794 }
795
796 sk_free(sk);
797 }
798}
799
800#define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
801 TCPF_WRITE_TIMER_DEFERRED | \
802 TCPF_DELACK_TIMER_DEFERRED | \
803 TCPF_MTU_REDUCED_DEFERRED)
804/**
805 * tcp_release_cb - tcp release_sock() callback
806 * @sk: socket
807 *
808 * called from release_sock() to perform protocol dependent
809 * actions before socket release.
810 */
811void tcp_release_cb(struct sock *sk)
812{
813 unsigned long flags, nflags;
814
815 /* perform an atomic operation only if at least one flag is set */
816 do {
817 flags = sk->sk_tsq_flags;
818 if (!(flags & TCP_DEFERRED_ALL))
819 return;
820 nflags = flags & ~TCP_DEFERRED_ALL;
821 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
822
823 if (flags & TCPF_TSQ_DEFERRED)
824 tcp_tsq_handler(sk);
825
826 /* Here begins the tricky part :
827 * We are called from release_sock() with :
828 * 1) BH disabled
829 * 2) sk_lock.slock spinlock held
830 * 3) socket owned by us (sk->sk_lock.owned == 1)
831 *
832 * But following code is meant to be called from BH handlers,
833 * so we should keep BH disabled, but early release socket ownership
834 */
835 sock_release_ownership(sk);
836
837 if (flags & TCPF_WRITE_TIMER_DEFERRED) {
838 tcp_write_timer_handler(sk);
839 __sock_put(sk);
840 }
841 if (flags & TCPF_DELACK_TIMER_DEFERRED) {
842 tcp_delack_timer_handler(sk);
843 __sock_put(sk);
844 }
845 if (flags & TCPF_MTU_REDUCED_DEFERRED) {
846 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
847 __sock_put(sk);
848 }
849}
850EXPORT_SYMBOL(tcp_release_cb);
851
852void __init tcp_tasklet_init(void)
853{
854 int i;
855
856 for_each_possible_cpu(i) {
857 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
858
859 INIT_LIST_HEAD(&tsq->head);
860 tasklet_init(&tsq->tasklet,
861 tcp_tasklet_func,
862 (unsigned long)tsq);
863 }
864}
865
866/*
867 * Write buffer destructor automatically called from kfree_skb.
868 * We can't xmit new skbs from this context, as we might already
869 * hold qdisc lock.
870 */
871void tcp_wfree(struct sk_buff *skb)
872{
873 struct sock *sk = skb->sk;
874 struct tcp_sock *tp = tcp_sk(sk);
875 unsigned long flags, nval, oval;
876
877 /* Keep one reference on sk_wmem_alloc.
878 * Will be released by sk_free() from here or tcp_tasklet_func()
879 */
880 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
881
882 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
883 * Wait until our queues (qdisc + devices) are drained.
884 * This gives :
885 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
886 * - chance for incoming ACK (processed by another cpu maybe)
887 * to migrate this flow (skb->ooo_okay will be eventually set)
888 */
889 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
890 goto out;
891
892 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
893 struct tsq_tasklet *tsq;
894 bool empty;
895
896 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
897 goto out;
898
899 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
900 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
901 if (nval != oval)
902 continue;
903
904 /* queue this socket to tasklet queue */
905 local_irq_save(flags);
906 tsq = this_cpu_ptr(&tsq_tasklet);
907 empty = list_empty(&tsq->head);
908 list_add(&tp->tsq_node, &tsq->head);
909 if (empty)
910 tasklet_schedule(&tsq->tasklet);
911 local_irq_restore(flags);
912 return;
913 }
914out:
915 sk_free(sk);
916}
917
918/* Note: Called under hard irq.
919 * We can not call TCP stack right away.
920 */
921enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
922{
923 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
924 struct sock *sk = (struct sock *)tp;
925 unsigned long nval, oval;
926
927 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
928 struct tsq_tasklet *tsq;
929 bool empty;
930
931 if (oval & TSQF_QUEUED)
932 break;
933
934 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
935 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
936 if (nval != oval)
937 continue;
938
939 if (!refcount_inc_not_zero(&sk->sk_wmem_alloc))
940 break;
941 /* queue this socket to tasklet queue */
942 tsq = this_cpu_ptr(&tsq_tasklet);
943 empty = list_empty(&tsq->head);
944 list_add(&tp->tsq_node, &tsq->head);
945 if (empty)
946 tasklet_schedule(&tsq->tasklet);
947 break;
948 }
949 return HRTIMER_NORESTART;
950}
951
952/* BBR congestion control needs pacing.
953 * Same remark for SO_MAX_PACING_RATE.
954 * sch_fq packet scheduler is efficiently handling pacing,
955 * but is not always installed/used.
956 * Return true if TCP stack should pace packets itself.
957 */
958static bool tcp_needs_internal_pacing(const struct sock *sk)
959{
960 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
961}
962
963static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb)
964{
965 u64 len_ns;
966 u32 rate;
967
968 if (!tcp_needs_internal_pacing(sk))
969 return;
970 rate = sk->sk_pacing_rate;
971 if (!rate || rate == ~0U)
972 return;
973
974 /* Should account for header sizes as sch_fq does,
975 * but lets make things simple.
976 */
977 len_ns = (u64)skb->len * NSEC_PER_SEC;
978 do_div(len_ns, rate);
979 hrtimer_start(&tcp_sk(sk)->pacing_timer,
980 ktime_add_ns(ktime_get(), len_ns),
981 HRTIMER_MODE_ABS_PINNED);
982}
983
984/* This routine actually transmits TCP packets queued in by
985 * tcp_do_sendmsg(). This is used by both the initial
986 * transmission and possible later retransmissions.
987 * All SKB's seen here are completely headerless. It is our
988 * job to build the TCP header, and pass the packet down to
989 * IP so it can do the same plus pass the packet off to the
990 * device.
991 *
992 * We are working here with either a clone of the original
993 * SKB, or a fresh unique copy made by the retransmit engine.
994 */
995static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
996 int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
997{
998 const struct inet_connection_sock *icsk = inet_csk(sk);
999 struct inet_sock *inet;
1000 struct tcp_sock *tp;
1001 struct tcp_skb_cb *tcb;
1002 struct tcp_out_options opts;
1003 unsigned int tcp_options_size, tcp_header_size;
1004 struct sk_buff *oskb = NULL;
1005 struct tcp_md5sig_key *md5;
1006 struct tcphdr *th;
1007 int err;
1008
1009 BUG_ON(!skb || !tcp_skb_pcount(skb));
1010 tp = tcp_sk(sk);
1011
1012 if (clone_it) {
1013 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1014 - tp->snd_una;
1015 oskb = skb;
1016 if (unlikely(skb_cloned(skb)))
1017 skb = pskb_copy(skb, gfp_mask);
1018 else
1019 skb = skb_clone(skb, gfp_mask);
1020 if (unlikely(!skb))
1021 return -ENOBUFS;
1022 }
1023 skb->skb_mstamp = tp->tcp_mstamp;
1024
1025 inet = inet_sk(sk);
1026 tcb = TCP_SKB_CB(skb);
1027 memset(&opts, 0, sizeof(opts));
1028
1029 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
1030 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1031 else
1032 tcp_options_size = tcp_established_options(sk, skb, &opts,
1033 &md5);
1034 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1035
1036 /* if no packet is in qdisc/device queue, then allow XPS to select
1037 * another queue. We can be called from tcp_tsq_handler()
1038 * which holds one reference to sk_wmem_alloc.
1039 *
1040 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1041 * One way to get this would be to set skb->truesize = 2 on them.
1042 */
1043 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1044
1045 /* If we had to use memory reserve to allocate this skb,
1046 * this might cause drops if packet is looped back :
1047 * Other socket might not have SOCK_MEMALLOC.
1048 * Packets not looped back do not care about pfmemalloc.
1049 */
1050 skb->pfmemalloc = 0;
1051
1052 skb_push(skb, tcp_header_size);
1053 skb_reset_transport_header(skb);
1054
1055 skb_orphan(skb);
1056 skb->sk = sk;
1057 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1058 skb_set_hash_from_sk(skb, sk);
1059 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1060
1061 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1062
1063 /* Build TCP header and checksum it. */
1064 th = (struct tcphdr *)skb->data;
1065 th->source = inet->inet_sport;
1066 th->dest = inet->inet_dport;
1067 th->seq = htonl(tcb->seq);
1068 th->ack_seq = htonl(rcv_nxt);
1069 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
1070 tcb->tcp_flags);
1071
1072 th->check = 0;
1073 th->urg_ptr = 0;
1074
1075 /* The urg_mode check is necessary during a below snd_una win probe */
1076 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1077 if (before(tp->snd_up, tcb->seq + 0x10000)) {
1078 th->urg_ptr = htons(tp->snd_up - tcb->seq);
1079 th->urg = 1;
1080 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1081 th->urg_ptr = htons(0xFFFF);
1082 th->urg = 1;
1083 }
1084 }
1085
1086 tcp_options_write((__be32 *)(th + 1), tp, &opts);
1087 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1088 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1089 th->window = htons(tcp_select_window(sk));
1090 tcp_ecn_send(sk, skb, th, tcp_header_size);
1091 } else {
1092 /* RFC1323: The window in SYN & SYN/ACK segments
1093 * is never scaled.
1094 */
1095 th->window = htons(min(tp->rcv_wnd, 65535U));
1096 }
1097#ifdef CONFIG_TCP_MD5SIG
1098 /* Calculate the MD5 hash, as we have all we need now */
1099 if (md5) {
1100 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1101 tp->af_specific->calc_md5_hash(opts.hash_location,
1102 md5, sk, skb);
1103 }
1104#endif
1105
1106 icsk->icsk_af_ops->send_check(sk, skb);
1107
1108 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1109 tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1110
1111 if (skb->len != tcp_header_size) {
1112 tcp_event_data_sent(tp, sk);
1113 tp->data_segs_out += tcp_skb_pcount(skb);
1114 tcp_internal_pacing(sk, skb);
1115 }
1116
1117 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1118 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1119 tcp_skb_pcount(skb));
1120
1121 tp->segs_out += tcp_skb_pcount(skb);
1122 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1123 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1124 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1125
1126 /* Our usage of tstamp should remain private */
1127 skb->tstamp = 0;
1128
1129 /* Cleanup our debris for IP stacks */
1130 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1131 sizeof(struct inet6_skb_parm)));
1132
1133 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1134
1135 if (unlikely(err > 0)) {
1136 tcp_enter_cwr(sk);
1137 err = net_xmit_eval(err);
1138 }
1139 if (!err && oskb) {
1140 oskb->skb_mstamp = tp->tcp_mstamp;
1141 tcp_rate_skb_sent(sk, oskb);
1142 }
1143 return err;
1144}
1145
1146static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1147 gfp_t gfp_mask)
1148{
1149 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1150 tcp_sk(sk)->rcv_nxt);
1151}
1152
1153/* This routine just queues the buffer for sending.
1154 *
1155 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1156 * otherwise socket can stall.
1157 */
1158static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1159{
1160 struct tcp_sock *tp = tcp_sk(sk);
1161
1162 /* Advance write_seq and place onto the write_queue. */
1163 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1164 __skb_header_release(skb);
1165 tcp_add_write_queue_tail(sk, skb);
1166 sk->sk_wmem_queued += skb->truesize;
1167 sk_mem_charge(sk, skb->truesize);
1168}
1169
1170/* Initialize TSO segments for a packet. */
1171static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1172{
1173 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1174 /* Avoid the costly divide in the normal
1175 * non-TSO case.
1176 */
1177 tcp_skb_pcount_set(skb, 1);
1178 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1179 } else {
1180 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1181 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1182 }
1183}
1184
1185/* When a modification to fackets out becomes necessary, we need to check
1186 * skb is counted to fackets_out or not.
1187 */
1188static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1189 int decr)
1190{
1191 struct tcp_sock *tp = tcp_sk(sk);
1192
1193 if (!tp->sacked_out || tcp_is_reno(tp))
1194 return;
1195
1196 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1197 tp->fackets_out -= decr;
1198}
1199
1200/* Pcount in the middle of the write queue got changed, we need to do various
1201 * tweaks to fix counters
1202 */
1203static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1204{
1205 struct tcp_sock *tp = tcp_sk(sk);
1206
1207 tp->packets_out -= decr;
1208
1209 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1210 tp->sacked_out -= decr;
1211 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1212 tp->retrans_out -= decr;
1213 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1214 tp->lost_out -= decr;
1215
1216 /* Reno case is special. Sigh... */
1217 if (tcp_is_reno(tp) && decr > 0)
1218 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1219
1220 tcp_adjust_fackets_out(sk, skb, decr);
1221
1222 if (tp->lost_skb_hint &&
1223 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1224 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1225 tp->lost_cnt_hint -= decr;
1226
1227 tcp_verify_left_out(tp);
1228}
1229
1230static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1231{
1232 return TCP_SKB_CB(skb)->txstamp_ack ||
1233 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1234}
1235
1236static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1237{
1238 struct skb_shared_info *shinfo = skb_shinfo(skb);
1239
1240 if (unlikely(tcp_has_tx_tstamp(skb)) &&
1241 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1242 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1243 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1244
1245 shinfo->tx_flags &= ~tsflags;
1246 shinfo2->tx_flags |= tsflags;
1247 swap(shinfo->tskey, shinfo2->tskey);
1248 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1249 TCP_SKB_CB(skb)->txstamp_ack = 0;
1250 }
1251}
1252
1253static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1254{
1255 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1256 TCP_SKB_CB(skb)->eor = 0;
1257}
1258
1259/* Function to create two new TCP segments. Shrinks the given segment
1260 * to the specified size and appends a new segment with the rest of the
1261 * packet to the list. This won't be called frequently, I hope.
1262 * Remember, these are still headerless SKBs at this point.
1263 */
1264int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1265 unsigned int mss_now, gfp_t gfp)
1266{
1267 struct tcp_sock *tp = tcp_sk(sk);
1268 struct sk_buff *buff;
1269 int nsize, old_factor;
1270 long limit;
1271 int nlen;
1272 u8 flags;
1273
1274 if (WARN_ON(len > skb->len))
1275 return -EINVAL;
1276
1277 nsize = skb_headlen(skb) - len;
1278 if (nsize < 0)
1279 nsize = 0;
1280
1281 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1282 * We need some allowance to not penalize applications setting small
1283 * SO_SNDBUF values.
1284 * Also allow first and last skb in retransmit queue to be split.
1285 */
1286 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_MAX_SIZE);
1287 if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1288 skb != tcp_rtx_queue_head(sk) &&
1289 skb != tcp_rtx_queue_tail(sk))) {
1290 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1291 return -ENOMEM;
1292 }
1293
1294 if (skb_unclone(skb, gfp))
1295 return -ENOMEM;
1296
1297 /* Get a new skb... force flag on. */
1298 buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1299 if (!buff)
1300 return -ENOMEM; /* We'll just try again later. */
1301
1302 sk->sk_wmem_queued += buff->truesize;
1303 sk_mem_charge(sk, buff->truesize);
1304 nlen = skb->len - len - nsize;
1305 buff->truesize += nlen;
1306 skb->truesize -= nlen;
1307
1308 /* Correct the sequence numbers. */
1309 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1310 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1311 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1312
1313 /* PSH and FIN should only be set in the second packet. */
1314 flags = TCP_SKB_CB(skb)->tcp_flags;
1315 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1316 TCP_SKB_CB(buff)->tcp_flags = flags;
1317 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1318 tcp_skb_fragment_eor(skb, buff);
1319
1320 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1321 /* Copy and checksum data tail into the new buffer. */
1322 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1323 skb_put(buff, nsize),
1324 nsize, 0);
1325
1326 skb_trim(skb, len);
1327
1328 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1329 } else {
1330 skb->ip_summed = CHECKSUM_PARTIAL;
1331 skb_split(skb, buff, len);
1332 }
1333
1334 buff->ip_summed = skb->ip_summed;
1335
1336 buff->tstamp = skb->tstamp;
1337 tcp_fragment_tstamp(skb, buff);
1338
1339 old_factor = tcp_skb_pcount(skb);
1340
1341 /* Fix up tso_factor for both original and new SKB. */
1342 tcp_set_skb_tso_segs(skb, mss_now);
1343 tcp_set_skb_tso_segs(buff, mss_now);
1344
1345 /* Update delivered info for the new segment */
1346 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1347
1348 /* If this packet has been sent out already, we must
1349 * adjust the various packet counters.
1350 */
1351 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1352 int diff = old_factor - tcp_skb_pcount(skb) -
1353 tcp_skb_pcount(buff);
1354
1355 if (diff)
1356 tcp_adjust_pcount(sk, skb, diff);
1357 }
1358
1359 /* Link BUFF into the send queue. */
1360 __skb_header_release(buff);
1361 tcp_insert_write_queue_after(skb, buff, sk);
1362
1363 return 0;
1364}
1365
1366/* This is similar to __pskb_pull_tail(). The difference is that pulled
1367 * data is not copied, but immediately discarded.
1368 */
1369static int __pskb_trim_head(struct sk_buff *skb, int len)
1370{
1371 struct skb_shared_info *shinfo;
1372 int i, k, eat;
1373
1374 eat = min_t(int, len, skb_headlen(skb));
1375 if (eat) {
1376 __skb_pull(skb, eat);
1377 len -= eat;
1378 if (!len)
1379 return 0;
1380 }
1381 eat = len;
1382 k = 0;
1383 shinfo = skb_shinfo(skb);
1384 for (i = 0; i < shinfo->nr_frags; i++) {
1385 int size = skb_frag_size(&shinfo->frags[i]);
1386
1387 if (size <= eat) {
1388 skb_frag_unref(skb, i);
1389 eat -= size;
1390 } else {
1391 shinfo->frags[k] = shinfo->frags[i];
1392 if (eat) {
1393 shinfo->frags[k].page_offset += eat;
1394 skb_frag_size_sub(&shinfo->frags[k], eat);
1395 eat = 0;
1396 }
1397 k++;
1398 }
1399 }
1400 shinfo->nr_frags = k;
1401
1402 skb->data_len -= len;
1403 skb->len = skb->data_len;
1404 return len;
1405}
1406
1407/* Remove acked data from a packet in the transmit queue. */
1408int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1409{
1410 u32 delta_truesize;
1411
1412 if (skb_unclone(skb, GFP_ATOMIC))
1413 return -ENOMEM;
1414
1415 delta_truesize = __pskb_trim_head(skb, len);
1416
1417 TCP_SKB_CB(skb)->seq += len;
1418 skb->ip_summed = CHECKSUM_PARTIAL;
1419
1420 if (delta_truesize) {
1421 skb->truesize -= delta_truesize;
1422 sk->sk_wmem_queued -= delta_truesize;
1423 sk_mem_uncharge(sk, delta_truesize);
1424 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1425 }
1426
1427 /* Any change of skb->len requires recalculation of tso factor. */
1428 if (tcp_skb_pcount(skb) > 1)
1429 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1430
1431 return 0;
1432}
1433
1434/* Calculate MSS not accounting any TCP options. */
1435static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1436{
1437 const struct tcp_sock *tp = tcp_sk(sk);
1438 const struct inet_connection_sock *icsk = inet_csk(sk);
1439 int mss_now;
1440
1441 /* Calculate base mss without TCP options:
1442 It is MMS_S - sizeof(tcphdr) of rfc1122
1443 */
1444 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1445
1446 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1447 if (icsk->icsk_af_ops->net_frag_header_len) {
1448 const struct dst_entry *dst = __sk_dst_get(sk);
1449
1450 if (dst && dst_allfrag(dst))
1451 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1452 }
1453
1454 /* Clamp it (mss_clamp does not include tcp options) */
1455 if (mss_now > tp->rx_opt.mss_clamp)
1456 mss_now = tp->rx_opt.mss_clamp;
1457
1458 /* Now subtract optional transport overhead */
1459 mss_now -= icsk->icsk_ext_hdr_len;
1460
1461 /* Then reserve room for full set of TCP options and 8 bytes of data */
1462 mss_now = max(mss_now, sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss);
1463 return mss_now;
1464}
1465
1466/* Calculate MSS. Not accounting for SACKs here. */
1467int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1468{
1469 /* Subtract TCP options size, not including SACKs */
1470 return __tcp_mtu_to_mss(sk, pmtu) -
1471 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1472}
1473
1474/* Inverse of above */
1475int tcp_mss_to_mtu(struct sock *sk, int mss)
1476{
1477 const struct tcp_sock *tp = tcp_sk(sk);
1478 const struct inet_connection_sock *icsk = inet_csk(sk);
1479 int mtu;
1480
1481 mtu = mss +
1482 tp->tcp_header_len +
1483 icsk->icsk_ext_hdr_len +
1484 icsk->icsk_af_ops->net_header_len;
1485
1486 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1487 if (icsk->icsk_af_ops->net_frag_header_len) {
1488 const struct dst_entry *dst = __sk_dst_get(sk);
1489
1490 if (dst && dst_allfrag(dst))
1491 mtu += icsk->icsk_af_ops->net_frag_header_len;
1492 }
1493 return mtu;
1494}
1495EXPORT_SYMBOL(tcp_mss_to_mtu);
1496
1497/* MTU probing init per socket */
1498void tcp_mtup_init(struct sock *sk)
1499{
1500 struct tcp_sock *tp = tcp_sk(sk);
1501 struct inet_connection_sock *icsk = inet_csk(sk);
1502 struct net *net = sock_net(sk);
1503
1504 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1505 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1506 icsk->icsk_af_ops->net_header_len;
1507 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1508 icsk->icsk_mtup.probe_size = 0;
1509 if (icsk->icsk_mtup.enabled)
1510 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1511}
1512EXPORT_SYMBOL(tcp_mtup_init);
1513
1514/* This function synchronize snd mss to current pmtu/exthdr set.
1515
1516 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1517 for TCP options, but includes only bare TCP header.
1518
1519 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1520 It is minimum of user_mss and mss received with SYN.
1521 It also does not include TCP options.
1522
1523 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1524
1525 tp->mss_cache is current effective sending mss, including
1526 all tcp options except for SACKs. It is evaluated,
1527 taking into account current pmtu, but never exceeds
1528 tp->rx_opt.mss_clamp.
1529
1530 NOTE1. rfc1122 clearly states that advertised MSS
1531 DOES NOT include either tcp or ip options.
1532
1533 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1534 are READ ONLY outside this function. --ANK (980731)
1535 */
1536unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1537{
1538 struct tcp_sock *tp = tcp_sk(sk);
1539 struct inet_connection_sock *icsk = inet_csk(sk);
1540 int mss_now;
1541
1542 if (icsk->icsk_mtup.search_high > pmtu)
1543 icsk->icsk_mtup.search_high = pmtu;
1544
1545 mss_now = tcp_mtu_to_mss(sk, pmtu);
1546 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1547
1548 /* And store cached results */
1549 icsk->icsk_pmtu_cookie = pmtu;
1550 if (icsk->icsk_mtup.enabled)
1551 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1552 tp->mss_cache = mss_now;
1553
1554 return mss_now;
1555}
1556EXPORT_SYMBOL(tcp_sync_mss);
1557
1558/* Compute the current effective MSS, taking SACKs and IP options,
1559 * and even PMTU discovery events into account.
1560 */
1561unsigned int tcp_current_mss(struct sock *sk)
1562{
1563 const struct tcp_sock *tp = tcp_sk(sk);
1564 const struct dst_entry *dst = __sk_dst_get(sk);
1565 u32 mss_now;
1566 unsigned int header_len;
1567 struct tcp_out_options opts;
1568 struct tcp_md5sig_key *md5;
1569
1570 mss_now = tp->mss_cache;
1571
1572 if (dst) {
1573 u32 mtu = dst_mtu(dst);
1574 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1575 mss_now = tcp_sync_mss(sk, mtu);
1576 }
1577
1578 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1579 sizeof(struct tcphdr);
1580 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1581 * some common options. If this is an odd packet (because we have SACK
1582 * blocks etc) then our calculated header_len will be different, and
1583 * we have to adjust mss_now correspondingly */
1584 if (header_len != tp->tcp_header_len) {
1585 int delta = (int) header_len - tp->tcp_header_len;
1586 mss_now -= delta;
1587 }
1588
1589 return mss_now;
1590}
1591
1592/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1593 * As additional protections, we do not touch cwnd in retransmission phases,
1594 * and if application hit its sndbuf limit recently.
1595 */
1596static void tcp_cwnd_application_limited(struct sock *sk)
1597{
1598 struct tcp_sock *tp = tcp_sk(sk);
1599
1600 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1601 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1602 /* Limited by application or receiver window. */
1603 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1604 u32 win_used = max(tp->snd_cwnd_used, init_win);
1605 if (win_used < tp->snd_cwnd) {
1606 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1607 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1608 }
1609 tp->snd_cwnd_used = 0;
1610 }
1611 tp->snd_cwnd_stamp = tcp_jiffies32;
1612}
1613
1614static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1615{
1616 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1617 struct tcp_sock *tp = tcp_sk(sk);
1618
1619 /* Track the maximum number of outstanding packets in each
1620 * window, and remember whether we were cwnd-limited then.
1621 */
1622 if (!before(tp->snd_una, tp->max_packets_seq) ||
1623 tp->packets_out > tp->max_packets_out) {
1624 tp->max_packets_out = tp->packets_out;
1625 tp->max_packets_seq = tp->snd_nxt;
1626 tp->is_cwnd_limited = is_cwnd_limited;
1627 }
1628
1629 if (tcp_is_cwnd_limited(sk)) {
1630 /* Network is feed fully. */
1631 tp->snd_cwnd_used = 0;
1632 tp->snd_cwnd_stamp = tcp_jiffies32;
1633 } else {
1634 /* Network starves. */
1635 if (tp->packets_out > tp->snd_cwnd_used)
1636 tp->snd_cwnd_used = tp->packets_out;
1637
1638 if (sysctl_tcp_slow_start_after_idle &&
1639 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1640 !ca_ops->cong_control)
1641 tcp_cwnd_application_limited(sk);
1642
1643 /* The following conditions together indicate the starvation
1644 * is caused by insufficient sender buffer:
1645 * 1) just sent some data (see tcp_write_xmit)
1646 * 2) not cwnd limited (this else condition)
1647 * 3) no more data to send (null tcp_send_head )
1648 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1649 */
1650 if (!tcp_send_head(sk) && sk->sk_socket &&
1651 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1652 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1653 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1654 }
1655}
1656
1657/* Minshall's variant of the Nagle send check. */
1658static bool tcp_minshall_check(const struct tcp_sock *tp)
1659{
1660 return after(tp->snd_sml, tp->snd_una) &&
1661 !after(tp->snd_sml, tp->snd_nxt);
1662}
1663
1664/* Update snd_sml if this skb is under mss
1665 * Note that a TSO packet might end with a sub-mss segment
1666 * The test is really :
1667 * if ((skb->len % mss) != 0)
1668 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1669 * But we can avoid doing the divide again given we already have
1670 * skb_pcount = skb->len / mss_now
1671 */
1672static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1673 const struct sk_buff *skb)
1674{
1675 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1676 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1677}
1678
1679/* Return false, if packet can be sent now without violation Nagle's rules:
1680 * 1. It is full sized. (provided by caller in %partial bool)
1681 * 2. Or it contains FIN. (already checked by caller)
1682 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1683 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1684 * With Minshall's modification: all sent small packets are ACKed.
1685 */
1686static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1687 int nonagle)
1688{
1689 return partial &&
1690 ((nonagle & TCP_NAGLE_CORK) ||
1691 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1692}
1693
1694/* Return how many segs we'd like on a TSO packet,
1695 * to send one TSO packet per ms
1696 */
1697u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1698 int min_tso_segs)
1699{
1700 u32 bytes, segs;
1701
1702 bytes = min(sk->sk_pacing_rate >> 10,
1703 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1704
1705 /* Goal is to send at least one packet per ms,
1706 * not one big TSO packet every 100 ms.
1707 * This preserves ACK clocking and is consistent
1708 * with tcp_tso_should_defer() heuristic.
1709 */
1710 segs = max_t(u32, bytes / mss_now, min_tso_segs);
1711
1712 return segs;
1713}
1714EXPORT_SYMBOL(tcp_tso_autosize);
1715
1716/* Return the number of segments we want in the skb we are transmitting.
1717 * See if congestion control module wants to decide; otherwise, autosize.
1718 */
1719static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1720{
1721 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1722 u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0;
1723
1724 if (!tso_segs)
1725 tso_segs = tcp_tso_autosize(sk, mss_now,
1726 sysctl_tcp_min_tso_segs);
1727 return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1728}
1729
1730/* Returns the portion of skb which can be sent right away */
1731static unsigned int tcp_mss_split_point(const struct sock *sk,
1732 const struct sk_buff *skb,
1733 unsigned int mss_now,
1734 unsigned int max_segs,
1735 int nonagle)
1736{
1737 const struct tcp_sock *tp = tcp_sk(sk);
1738 u32 partial, needed, window, max_len;
1739
1740 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1741 max_len = mss_now * max_segs;
1742
1743 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1744 return max_len;
1745
1746 needed = min(skb->len, window);
1747
1748 if (max_len <= needed)
1749 return max_len;
1750
1751 partial = needed % mss_now;
1752 /* If last segment is not a full MSS, check if Nagle rules allow us
1753 * to include this last segment in this skb.
1754 * Otherwise, we'll split the skb at last MSS boundary
1755 */
1756 if (tcp_nagle_check(partial != 0, tp, nonagle))
1757 return needed - partial;
1758
1759 return needed;
1760}
1761
1762/* Can at least one segment of SKB be sent right now, according to the
1763 * congestion window rules? If so, return how many segments are allowed.
1764 */
1765static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1766 const struct sk_buff *skb)
1767{
1768 u32 in_flight, cwnd, halfcwnd;
1769
1770 /* Don't be strict about the congestion window for the final FIN. */
1771 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1772 tcp_skb_pcount(skb) == 1)
1773 return 1;
1774
1775 in_flight = tcp_packets_in_flight(tp);
1776 cwnd = tp->snd_cwnd;
1777 if (in_flight >= cwnd)
1778 return 0;
1779
1780 /* For better scheduling, ensure we have at least
1781 * 2 GSO packets in flight.
1782 */
1783 halfcwnd = max(cwnd >> 1, 1U);
1784 return min(halfcwnd, cwnd - in_flight);
1785}
1786
1787/* Initialize TSO state of a skb.
1788 * This must be invoked the first time we consider transmitting
1789 * SKB onto the wire.
1790 */
1791static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1792{
1793 int tso_segs = tcp_skb_pcount(skb);
1794
1795 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1796 tcp_set_skb_tso_segs(skb, mss_now);
1797 tso_segs = tcp_skb_pcount(skb);
1798 }
1799 return tso_segs;
1800}
1801
1802
1803/* Return true if the Nagle test allows this packet to be
1804 * sent now.
1805 */
1806static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1807 unsigned int cur_mss, int nonagle)
1808{
1809 /* Nagle rule does not apply to frames, which sit in the middle of the
1810 * write_queue (they have no chances to get new data).
1811 *
1812 * This is implemented in the callers, where they modify the 'nonagle'
1813 * argument based upon the location of SKB in the send queue.
1814 */
1815 if (nonagle & TCP_NAGLE_PUSH)
1816 return true;
1817
1818 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1819 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1820 return true;
1821
1822 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1823 return true;
1824
1825 return false;
1826}
1827
1828/* Does at least the first segment of SKB fit into the send window? */
1829static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1830 const struct sk_buff *skb,
1831 unsigned int cur_mss)
1832{
1833 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1834
1835 if (skb->len > cur_mss)
1836 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1837
1838 return !after(end_seq, tcp_wnd_end(tp));
1839}
1840
1841/* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1842 * which is put after SKB on the list. It is very much like
1843 * tcp_fragment() except that it may make several kinds of assumptions
1844 * in order to speed up the splitting operation. In particular, we
1845 * know that all the data is in scatter-gather pages, and that the
1846 * packet has never been sent out before (and thus is not cloned).
1847 */
1848static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1849 unsigned int mss_now, gfp_t gfp)
1850{
1851 struct sk_buff *buff;
1852 int nlen = skb->len - len;
1853 u8 flags;
1854
1855 /* All of a TSO frame must be composed of paged data. */
1856 if (skb->len != skb->data_len)
1857 return tcp_fragment(sk, skb, len, mss_now, gfp);
1858
1859 buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1860 if (unlikely(!buff))
1861 return -ENOMEM;
1862
1863 sk->sk_wmem_queued += buff->truesize;
1864 sk_mem_charge(sk, buff->truesize);
1865 buff->truesize += nlen;
1866 skb->truesize -= nlen;
1867
1868 /* Correct the sequence numbers. */
1869 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1870 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1871 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1872
1873 /* PSH and FIN should only be set in the second packet. */
1874 flags = TCP_SKB_CB(skb)->tcp_flags;
1875 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1876 TCP_SKB_CB(buff)->tcp_flags = flags;
1877
1878 /* This packet was never sent out yet, so no SACK bits. */
1879 TCP_SKB_CB(buff)->sacked = 0;
1880
1881 tcp_skb_fragment_eor(skb, buff);
1882
1883 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1884 skb_split(skb, buff, len);
1885 tcp_fragment_tstamp(skb, buff);
1886
1887 /* Fix up tso_factor for both original and new SKB. */
1888 tcp_set_skb_tso_segs(skb, mss_now);
1889 tcp_set_skb_tso_segs(buff, mss_now);
1890
1891 /* Link BUFF into the send queue. */
1892 __skb_header_release(buff);
1893 tcp_insert_write_queue_after(skb, buff, sk);
1894
1895 return 0;
1896}
1897
1898/* Try to defer sending, if possible, in order to minimize the amount
1899 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1900 *
1901 * This algorithm is from John Heffner.
1902 */
1903static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1904 bool *is_cwnd_limited,
1905 bool *is_rwnd_limited,
1906 u32 max_segs)
1907{
1908 const struct inet_connection_sock *icsk = inet_csk(sk);
1909 u32 age, send_win, cong_win, limit, in_flight;
1910 struct tcp_sock *tp = tcp_sk(sk);
1911 struct sk_buff *head;
1912 int win_divisor;
1913
1914 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1915 goto send_now;
1916
1917 /* Avoid bursty behavior by allowing defer
1918 * only if the last write was recent.
1919 */
1920 if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0)
1921 goto send_now;
1922
1923 in_flight = tcp_packets_in_flight(tp);
1924
1925 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1926
1927 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1928
1929 /* From in_flight test above, we know that cwnd > in_flight. */
1930 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1931
1932 limit = min(send_win, cong_win);
1933
1934 /* If a full-sized TSO skb can be sent, do it. */
1935 if (limit >= max_segs * tp->mss_cache)
1936 goto send_now;
1937
1938 /* Middle in queue won't get any more data, full sendable already? */
1939 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1940 goto send_now;
1941
1942 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1943 if (win_divisor) {
1944 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1945
1946 /* If at least some fraction of a window is available,
1947 * just use it.
1948 */
1949 chunk /= win_divisor;
1950 if (limit >= chunk)
1951 goto send_now;
1952 } else {
1953 /* Different approach, try not to defer past a single
1954 * ACK. Receiver should ACK every other full sized
1955 * frame, so if we have space for more than 3 frames
1956 * then send now.
1957 */
1958 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1959 goto send_now;
1960 }
1961
1962 head = tcp_write_queue_head(sk);
1963
1964 age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp);
1965 /* If next ACK is likely to come too late (half srtt), do not defer */
1966 if (age < (tp->srtt_us >> 4))
1967 goto send_now;
1968
1969 /* Ok, it looks like it is advisable to defer.
1970 * Three cases are tracked :
1971 * 1) We are cwnd-limited
1972 * 2) We are rwnd-limited
1973 * 3) We are application limited.
1974 */
1975 if (cong_win < send_win) {
1976 if (cong_win <= skb->len) {
1977 *is_cwnd_limited = true;
1978 return true;
1979 }
1980 } else {
1981 if (send_win <= skb->len) {
1982 *is_rwnd_limited = true;
1983 return true;
1984 }
1985 }
1986
1987 /* If this packet won't get more data, do not wait. */
1988 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1989 goto send_now;
1990
1991 return true;
1992
1993send_now:
1994 return false;
1995}
1996
1997static inline void tcp_mtu_check_reprobe(struct sock *sk)
1998{
1999 struct inet_connection_sock *icsk = inet_csk(sk);
2000 struct tcp_sock *tp = tcp_sk(sk);
2001 struct net *net = sock_net(sk);
2002 u32 interval;
2003 s32 delta;
2004
2005 interval = net->ipv4.sysctl_tcp_probe_interval;
2006 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2007 if (unlikely(delta >= interval * HZ)) {
2008 int mss = tcp_current_mss(sk);
2009
2010 /* Update current search range */
2011 icsk->icsk_mtup.probe_size = 0;
2012 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2013 sizeof(struct tcphdr) +
2014 icsk->icsk_af_ops->net_header_len;
2015 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2016
2017 /* Update probe time stamp */
2018 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2019 }
2020}
2021
2022static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2023{
2024 struct sk_buff *skb, *next;
2025
2026 skb = tcp_send_head(sk);
2027 tcp_for_write_queue_from_safe(skb, next, sk) {
2028 if (len <= skb->len)
2029 break;
2030
2031 if (unlikely(TCP_SKB_CB(skb)->eor) || tcp_has_tx_tstamp(skb))
2032 return false;
2033
2034 len -= skb->len;
2035 }
2036
2037 return true;
2038}
2039
2040/* Create a new MTU probe if we are ready.
2041 * MTU probe is regularly attempting to increase the path MTU by
2042 * deliberately sending larger packets. This discovers routing
2043 * changes resulting in larger path MTUs.
2044 *
2045 * Returns 0 if we should wait to probe (no cwnd available),
2046 * 1 if a probe was sent,
2047 * -1 otherwise
2048 */
2049static int tcp_mtu_probe(struct sock *sk)
2050{
2051 struct inet_connection_sock *icsk = inet_csk(sk);
2052 struct tcp_sock *tp = tcp_sk(sk);
2053 struct sk_buff *skb, *nskb, *next;
2054 struct net *net = sock_net(sk);
2055 int probe_size;
2056 int size_needed;
2057 int copy, len;
2058 int mss_now;
2059 int interval;
2060
2061 /* Not currently probing/verifying,
2062 * not in recovery,
2063 * have enough cwnd, and
2064 * not SACKing (the variable headers throw things off)
2065 */
2066 if (likely(!icsk->icsk_mtup.enabled ||
2067 icsk->icsk_mtup.probe_size ||
2068 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2069 tp->snd_cwnd < 11 ||
2070 tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2071 return -1;
2072
2073 /* Use binary search for probe_size between tcp_mss_base,
2074 * and current mss_clamp. if (search_high - search_low)
2075 * smaller than a threshold, backoff from probing.
2076 */
2077 mss_now = tcp_current_mss(sk);
2078 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2079 icsk->icsk_mtup.search_low) >> 1);
2080 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2081 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2082 /* When misfortune happens, we are reprobing actively,
2083 * and then reprobe timer has expired. We stick with current
2084 * probing process by not resetting search range to its orignal.
2085 */
2086 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2087 interval < net->ipv4.sysctl_tcp_probe_threshold) {
2088 /* Check whether enough time has elaplased for
2089 * another round of probing.
2090 */
2091 tcp_mtu_check_reprobe(sk);
2092 return -1;
2093 }
2094
2095 /* Have enough data in the send queue to probe? */
2096 if (tp->write_seq - tp->snd_nxt < size_needed)
2097 return -1;
2098
2099 if (tp->snd_wnd < size_needed)
2100 return -1;
2101 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2102 return 0;
2103
2104 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2105 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2106 if (!tcp_packets_in_flight(tp))
2107 return -1;
2108 else
2109 return 0;
2110 }
2111
2112 if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2113 return -1;
2114
2115 /* We're allowed to probe. Build it now. */
2116 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2117 if (!nskb)
2118 return -1;
2119 sk->sk_wmem_queued += nskb->truesize;
2120 sk_mem_charge(sk, nskb->truesize);
2121
2122 skb = tcp_send_head(sk);
2123
2124 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2125 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2126 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2127 TCP_SKB_CB(nskb)->sacked = 0;
2128 nskb->csum = 0;
2129 nskb->ip_summed = skb->ip_summed;
2130
2131 tcp_insert_write_queue_before(nskb, skb, sk);
2132 tcp_highest_sack_replace(sk, skb, nskb);
2133
2134 len = 0;
2135 tcp_for_write_queue_from_safe(skb, next, sk) {
2136 copy = min_t(int, skb->len, probe_size - len);
2137 if (nskb->ip_summed) {
2138 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2139 } else {
2140 __wsum csum = skb_copy_and_csum_bits(skb, 0,
2141 skb_put(nskb, copy),
2142 copy, 0);
2143 nskb->csum = csum_block_add(nskb->csum, csum, len);
2144 }
2145
2146 if (skb->len <= copy) {
2147 /* We've eaten all the data from this skb.
2148 * Throw it away. */
2149 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2150 /* If this is the last SKB we copy and eor is set
2151 * we need to propagate it to the new skb.
2152 */
2153 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2154 tcp_skb_collapse_tstamp(nskb, skb);
2155 tcp_unlink_write_queue(skb, sk);
2156 sk_wmem_free_skb(sk, skb);
2157 } else {
2158 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2159 ~(TCPHDR_FIN|TCPHDR_PSH);
2160 if (!skb_shinfo(skb)->nr_frags) {
2161 skb_pull(skb, copy);
2162 if (skb->ip_summed != CHECKSUM_PARTIAL)
2163 skb->csum = csum_partial(skb->data,
2164 skb->len, 0);
2165 } else {
2166 __pskb_trim_head(skb, copy);
2167 tcp_set_skb_tso_segs(skb, mss_now);
2168 }
2169 TCP_SKB_CB(skb)->seq += copy;
2170 }
2171
2172 len += copy;
2173
2174 if (len >= probe_size)
2175 break;
2176 }
2177 tcp_init_tso_segs(nskb, nskb->len);
2178
2179 /* We're ready to send. If this fails, the probe will
2180 * be resegmented into mss-sized pieces by tcp_write_xmit().
2181 */
2182 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2183 /* Decrement cwnd here because we are sending
2184 * effectively two packets. */
2185 tp->snd_cwnd--;
2186 tcp_event_new_data_sent(sk, nskb);
2187
2188 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2189 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2190 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2191
2192 return 1;
2193 }
2194
2195 return -1;
2196}
2197
2198static bool tcp_pacing_check(const struct sock *sk)
2199{
2200 return tcp_needs_internal_pacing(sk) &&
2201 hrtimer_active(&tcp_sk(sk)->pacing_timer);
2202}
2203
2204/* TCP Small Queues :
2205 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2206 * (These limits are doubled for retransmits)
2207 * This allows for :
2208 * - better RTT estimation and ACK scheduling
2209 * - faster recovery
2210 * - high rates
2211 * Alas, some drivers / subsystems require a fair amount
2212 * of queued bytes to ensure line rate.
2213 * One example is wifi aggregation (802.11 AMPDU)
2214 */
2215static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2216 unsigned int factor)
2217{
2218 unsigned int limit;
2219
2220 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2221 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2222 limit <<= factor;
2223
2224 if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2225 /* Always send the 1st or 2nd skb in write queue.
2226 * No need to wait for TX completion to call us back,
2227 * after softirq/tasklet schedule.
2228 * This helps when TX completions are delayed too much.
2229 */
2230 if (skb == sk->sk_write_queue.next ||
2231 skb->prev == sk->sk_write_queue.next)
2232 return false;
2233
2234 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2235 /* It is possible TX completion already happened
2236 * before we set TSQ_THROTTLED, so we must
2237 * test again the condition.
2238 */
2239 smp_mb__after_atomic();
2240 if (refcount_read(&sk->sk_wmem_alloc) > limit)
2241 return true;
2242 }
2243 return false;
2244}
2245
2246static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2247{
2248 const u32 now = tcp_jiffies32;
2249 enum tcp_chrono old = tp->chrono_type;
2250
2251 if (old > TCP_CHRONO_UNSPEC)
2252 tp->chrono_stat[old - 1] += now - tp->chrono_start;
2253 tp->chrono_start = now;
2254 tp->chrono_type = new;
2255}
2256
2257void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2258{
2259 struct tcp_sock *tp = tcp_sk(sk);
2260
2261 /* If there are multiple conditions worthy of tracking in a
2262 * chronograph then the highest priority enum takes precedence
2263 * over the other conditions. So that if something "more interesting"
2264 * starts happening, stop the previous chrono and start a new one.
2265 */
2266 if (type > tp->chrono_type)
2267 tcp_chrono_set(tp, type);
2268}
2269
2270void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2271{
2272 struct tcp_sock *tp = tcp_sk(sk);
2273
2274
2275 /* There are multiple conditions worthy of tracking in a
2276 * chronograph, so that the highest priority enum takes
2277 * precedence over the other conditions (see tcp_chrono_start).
2278 * If a condition stops, we only stop chrono tracking if
2279 * it's the "most interesting" or current chrono we are
2280 * tracking and starts busy chrono if we have pending data.
2281 */
2282 if (tcp_write_queue_empty(sk))
2283 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2284 else if (type == tp->chrono_type)
2285 tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2286}
2287
2288/* This routine writes packets to the network. It advances the
2289 * send_head. This happens as incoming acks open up the remote
2290 * window for us.
2291 *
2292 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2293 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2294 * account rare use of URG, this is not a big flaw.
2295 *
2296 * Send at most one packet when push_one > 0. Temporarily ignore
2297 * cwnd limit to force at most one packet out when push_one == 2.
2298
2299 * Returns true, if no segments are in flight and we have queued segments,
2300 * but cannot send anything now because of SWS or another problem.
2301 */
2302static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2303 int push_one, gfp_t gfp)
2304{
2305 struct tcp_sock *tp = tcp_sk(sk);
2306 struct sk_buff *skb;
2307 unsigned int tso_segs, sent_pkts;
2308 int cwnd_quota;
2309 int result;
2310 bool is_cwnd_limited = false, is_rwnd_limited = false;
2311 u32 max_segs;
2312
2313 sent_pkts = 0;
2314
2315 tcp_mstamp_refresh(tp);
2316 if (!push_one) {
2317 /* Do MTU probing. */
2318 result = tcp_mtu_probe(sk);
2319 if (!result) {
2320 return false;
2321 } else if (result > 0) {
2322 sent_pkts = 1;
2323 }
2324 }
2325
2326 max_segs = tcp_tso_segs(sk, mss_now);
2327 while ((skb = tcp_send_head(sk))) {
2328 unsigned int limit;
2329
2330 if (tcp_pacing_check(sk))
2331 break;
2332
2333 tso_segs = tcp_init_tso_segs(skb, mss_now);
2334 BUG_ON(!tso_segs);
2335
2336 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2337 /* "skb_mstamp" is used as a start point for the retransmit timer */
2338 skb->skb_mstamp = tp->tcp_mstamp;
2339 goto repair; /* Skip network transmission */
2340 }
2341
2342 cwnd_quota = tcp_cwnd_test(tp, skb);
2343 if (!cwnd_quota) {
2344 if (push_one == 2)
2345 /* Force out a loss probe pkt. */
2346 cwnd_quota = 1;
2347 else
2348 break;
2349 }
2350
2351 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2352 is_rwnd_limited = true;
2353 break;
2354 }
2355
2356 if (tso_segs == 1) {
2357 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2358 (tcp_skb_is_last(sk, skb) ?
2359 nonagle : TCP_NAGLE_PUSH))))
2360 break;
2361 } else {
2362 if (!push_one &&
2363 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2364 &is_rwnd_limited, max_segs))
2365 break;
2366 }
2367
2368 limit = mss_now;
2369 if (tso_segs > 1 && !tcp_urg_mode(tp))
2370 limit = tcp_mss_split_point(sk, skb, mss_now,
2371 min_t(unsigned int,
2372 cwnd_quota,
2373 max_segs),
2374 nonagle);
2375
2376 if (skb->len > limit &&
2377 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2378 break;
2379
2380 if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
2381 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
2382 if (tcp_small_queue_check(sk, skb, 0))
2383 break;
2384
2385 /* Argh, we hit an empty skb(), presumably a thread
2386 * is sleeping in sendmsg()/sk_stream_wait_memory().
2387 * We do not want to send a pure-ack packet and have
2388 * a strange looking rtx queue with empty packet(s).
2389 */
2390 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2391 break;
2392
2393 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2394 break;
2395
2396repair:
2397 /* Advance the send_head. This one is sent out.
2398 * This call will increment packets_out.
2399 */
2400 tcp_event_new_data_sent(sk, skb);
2401
2402 tcp_minshall_update(tp, mss_now, skb);
2403 sent_pkts += tcp_skb_pcount(skb);
2404
2405 if (push_one)
2406 break;
2407 }
2408
2409 if (is_rwnd_limited)
2410 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2411 else
2412 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2413
2414 if (likely(sent_pkts)) {
2415 if (tcp_in_cwnd_reduction(sk))
2416 tp->prr_out += sent_pkts;
2417
2418 /* Send one loss probe per tail loss episode. */
2419 if (push_one != 2)
2420 tcp_schedule_loss_probe(sk, false);
2421 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2422 tcp_cwnd_validate(sk, is_cwnd_limited);
2423 return false;
2424 }
2425 return !tp->packets_out && tcp_send_head(sk);
2426}
2427
2428bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2429{
2430 struct inet_connection_sock *icsk = inet_csk(sk);
2431 struct tcp_sock *tp = tcp_sk(sk);
2432 u32 timeout, rto_delta_us;
2433
2434 /* Don't do any loss probe on a Fast Open connection before 3WHS
2435 * finishes.
2436 */
2437 if (tp->fastopen_rsk)
2438 return false;
2439
2440 /* Schedule a loss probe in 2*RTT for SACK capable connections
2441 * in Open state, that are either limited by cwnd or application.
2442 */
2443 if ((sysctl_tcp_early_retrans != 3 && sysctl_tcp_early_retrans != 4) ||
2444 !tp->packets_out || !tcp_is_sack(tp) ||
2445 icsk->icsk_ca_state != TCP_CA_Open)
2446 return false;
2447
2448 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2449 tcp_send_head(sk))
2450 return false;
2451
2452 /* Probe timeout is 2*rtt. Add minimum RTO to account
2453 * for delayed ack when there's one outstanding packet. If no RTT
2454 * sample is available then probe after TCP_TIMEOUT_INIT.
2455 */
2456 if (tp->srtt_us) {
2457 timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2458 if (tp->packets_out == 1)
2459 timeout += TCP_RTO_MIN;
2460 else
2461 timeout += TCP_TIMEOUT_MIN;
2462 } else {
2463 timeout = TCP_TIMEOUT_INIT;
2464 }
2465
2466 /* If the RTO formula yields an earlier time, then use that time. */
2467 rto_delta_us = advancing_rto ?
2468 jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2469 tcp_rto_delta_us(sk); /* How far in future is RTO? */
2470 if (rto_delta_us > 0)
2471 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2472
2473 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2474 TCP_RTO_MAX);
2475 return true;
2476}
2477
2478/* Thanks to skb fast clones, we can detect if a prior transmit of
2479 * a packet is still in a qdisc or driver queue.
2480 * In this case, there is very little point doing a retransmit !
2481 */
2482static bool skb_still_in_host_queue(const struct sock *sk,
2483 const struct sk_buff *skb)
2484{
2485 if (unlikely(skb_fclone_busy(sk, skb))) {
2486 NET_INC_STATS(sock_net(sk),
2487 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2488 return true;
2489 }
2490 return false;
2491}
2492
2493/* When probe timeout (PTO) fires, try send a new segment if possible, else
2494 * retransmit the last segment.
2495 */
2496void tcp_send_loss_probe(struct sock *sk)
2497{
2498 struct tcp_sock *tp = tcp_sk(sk);
2499 struct sk_buff *skb;
2500 int pcount;
2501 int mss = tcp_current_mss(sk);
2502
2503 /* At most one outstanding TLP */
2504 if (tp->tlp_high_seq)
2505 goto rearm_timer;
2506
2507 tp->tlp_retrans = 0;
2508 skb = tcp_send_head(sk);
2509 if (skb) {
2510 if (tcp_snd_wnd_test(tp, skb, mss)) {
2511 pcount = tp->packets_out;
2512 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2513 if (tp->packets_out > pcount)
2514 goto probe_sent;
2515 goto rearm_timer;
2516 }
2517 skb = tcp_write_queue_prev(sk, skb);
2518 } else {
2519 skb = tcp_write_queue_tail(sk);
2520 }
2521
2522 if (unlikely(!skb)) {
2523 WARN_ONCE(tp->packets_out,
2524 "invalid inflight: %u state %u cwnd %u mss %d\n",
2525 tp->packets_out, sk->sk_state, tp->snd_cwnd, mss);
2526 inet_csk(sk)->icsk_pending = 0;
2527 return;
2528 }
2529
2530 if (skb_still_in_host_queue(sk, skb))
2531 goto rearm_timer;
2532
2533 pcount = tcp_skb_pcount(skb);
2534 if (WARN_ON(!pcount))
2535 goto rearm_timer;
2536
2537 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2538 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2539 GFP_ATOMIC)))
2540 goto rearm_timer;
2541 skb = tcp_write_queue_next(sk, skb);
2542 }
2543
2544 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2545 goto rearm_timer;
2546
2547 if (__tcp_retransmit_skb(sk, skb, 1))
2548 goto rearm_timer;
2549
2550 tp->tlp_retrans = 1;
2551
2552probe_sent:
2553 /* Record snd_nxt for loss detection. */
2554 tp->tlp_high_seq = tp->snd_nxt;
2555
2556 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2557 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2558 inet_csk(sk)->icsk_pending = 0;
2559rearm_timer:
2560 tcp_rearm_rto(sk);
2561}
2562
2563/* Push out any pending frames which were held back due to
2564 * TCP_CORK or attempt at coalescing tiny packets.
2565 * The socket must be locked by the caller.
2566 */
2567void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2568 int nonagle)
2569{
2570 /* If we are closed, the bytes will have to remain here.
2571 * In time closedown will finish, we empty the write queue and
2572 * all will be happy.
2573 */
2574 if (unlikely(sk->sk_state == TCP_CLOSE))
2575 return;
2576
2577 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2578 sk_gfp_mask(sk, GFP_ATOMIC)))
2579 tcp_check_probe_timer(sk);
2580}
2581
2582/* Send _single_ skb sitting at the send head. This function requires
2583 * true push pending frames to setup probe timer etc.
2584 */
2585void tcp_push_one(struct sock *sk, unsigned int mss_now)
2586{
2587 struct sk_buff *skb = tcp_send_head(sk);
2588
2589 BUG_ON(!skb || skb->len < mss_now);
2590
2591 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2592}
2593
2594/* This function returns the amount that we can raise the
2595 * usable window based on the following constraints
2596 *
2597 * 1. The window can never be shrunk once it is offered (RFC 793)
2598 * 2. We limit memory per socket
2599 *
2600 * RFC 1122:
2601 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2602 * RECV.NEXT + RCV.WIN fixed until:
2603 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2604 *
2605 * i.e. don't raise the right edge of the window until you can raise
2606 * it at least MSS bytes.
2607 *
2608 * Unfortunately, the recommended algorithm breaks header prediction,
2609 * since header prediction assumes th->window stays fixed.
2610 *
2611 * Strictly speaking, keeping th->window fixed violates the receiver
2612 * side SWS prevention criteria. The problem is that under this rule
2613 * a stream of single byte packets will cause the right side of the
2614 * window to always advance by a single byte.
2615 *
2616 * Of course, if the sender implements sender side SWS prevention
2617 * then this will not be a problem.
2618 *
2619 * BSD seems to make the following compromise:
2620 *
2621 * If the free space is less than the 1/4 of the maximum
2622 * space available and the free space is less than 1/2 mss,
2623 * then set the window to 0.
2624 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2625 * Otherwise, just prevent the window from shrinking
2626 * and from being larger than the largest representable value.
2627 *
2628 * This prevents incremental opening of the window in the regime
2629 * where TCP is limited by the speed of the reader side taking
2630 * data out of the TCP receive queue. It does nothing about
2631 * those cases where the window is constrained on the sender side
2632 * because the pipeline is full.
2633 *
2634 * BSD also seems to "accidentally" limit itself to windows that are a
2635 * multiple of MSS, at least until the free space gets quite small.
2636 * This would appear to be a side effect of the mbuf implementation.
2637 * Combining these two algorithms results in the observed behavior
2638 * of having a fixed window size at almost all times.
2639 *
2640 * Below we obtain similar behavior by forcing the offered window to
2641 * a multiple of the mss when it is feasible to do so.
2642 *
2643 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2644 * Regular options like TIMESTAMP are taken into account.
2645 */
2646u32 __tcp_select_window(struct sock *sk)
2647{
2648 struct inet_connection_sock *icsk = inet_csk(sk);
2649 struct tcp_sock *tp = tcp_sk(sk);
2650 /* MSS for the peer's data. Previous versions used mss_clamp
2651 * here. I don't know if the value based on our guesses
2652 * of peer's MSS is better for the performance. It's more correct
2653 * but may be worse for the performance because of rcv_mss
2654 * fluctuations. --SAW 1998/11/1
2655 */
2656 int mss = icsk->icsk_ack.rcv_mss;
2657 int free_space = tcp_space(sk);
2658 int allowed_space = tcp_full_space(sk);
2659 int full_space = min_t(int, tp->window_clamp, allowed_space);
2660 int window;
2661
2662 if (unlikely(mss > full_space)) {
2663 mss = full_space;
2664 if (mss <= 0)
2665 return 0;
2666 }
2667 if (free_space < (full_space >> 1)) {
2668 icsk->icsk_ack.quick = 0;
2669
2670 if (tcp_under_memory_pressure(sk))
2671 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2672 4U * tp->advmss);
2673
2674 /* free_space might become our new window, make sure we don't
2675 * increase it due to wscale.
2676 */
2677 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2678
2679 /* if free space is less than mss estimate, or is below 1/16th
2680 * of the maximum allowed, try to move to zero-window, else
2681 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2682 * new incoming data is dropped due to memory limits.
2683 * With large window, mss test triggers way too late in order
2684 * to announce zero window in time before rmem limit kicks in.
2685 */
2686 if (free_space < (allowed_space >> 4) || free_space < mss)
2687 return 0;
2688 }
2689
2690 if (free_space > tp->rcv_ssthresh)
2691 free_space = tp->rcv_ssthresh;
2692
2693 /* Don't do rounding if we are using window scaling, since the
2694 * scaled window will not line up with the MSS boundary anyway.
2695 */
2696 if (tp->rx_opt.rcv_wscale) {
2697 window = free_space;
2698
2699 /* Advertise enough space so that it won't get scaled away.
2700 * Import case: prevent zero window announcement if
2701 * 1<<rcv_wscale > mss.
2702 */
2703 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2704 } else {
2705 window = tp->rcv_wnd;
2706 /* Get the largest window that is a nice multiple of mss.
2707 * Window clamp already applied above.
2708 * If our current window offering is within 1 mss of the
2709 * free space we just keep it. This prevents the divide
2710 * and multiply from happening most of the time.
2711 * We also don't do any window rounding when the free space
2712 * is too small.
2713 */
2714 if (window <= free_space - mss || window > free_space)
2715 window = rounddown(free_space, mss);
2716 else if (mss == full_space &&
2717 free_space > window + (full_space >> 1))
2718 window = free_space;
2719 }
2720
2721 return window;
2722}
2723
2724void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2725 const struct sk_buff *next_skb)
2726{
2727 if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2728 const struct skb_shared_info *next_shinfo =
2729 skb_shinfo(next_skb);
2730 struct skb_shared_info *shinfo = skb_shinfo(skb);
2731
2732 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2733 shinfo->tskey = next_shinfo->tskey;
2734 TCP_SKB_CB(skb)->txstamp_ack |=
2735 TCP_SKB_CB(next_skb)->txstamp_ack;
2736 }
2737}
2738
2739/* Collapses two adjacent SKB's during retransmission. */
2740static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2741{
2742 struct tcp_sock *tp = tcp_sk(sk);
2743 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2744 int skb_size, next_skb_size;
2745
2746 skb_size = skb->len;
2747 next_skb_size = next_skb->len;
2748
2749 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2750
2751 if (next_skb_size) {
2752 if (next_skb_size <= skb_availroom(skb))
2753 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2754 next_skb_size);
2755 else if (!tcp_skb_shift(skb, next_skb, 1, next_skb_size))
2756 return false;
2757 }
2758 tcp_highest_sack_replace(sk, next_skb, skb);
2759
2760 tcp_unlink_write_queue(next_skb, sk);
2761
2762 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2763 skb->ip_summed = CHECKSUM_PARTIAL;
2764
2765 if (skb->ip_summed != CHECKSUM_PARTIAL)
2766 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2767
2768 /* Update sequence range on original skb. */
2769 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2770
2771 /* Merge over control information. This moves PSH/FIN etc. over */
2772 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2773
2774 /* All done, get rid of second SKB and account for it so
2775 * packet counting does not break.
2776 */
2777 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2778 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2779
2780 /* changed transmit queue under us so clear hints */
2781 tcp_clear_retrans_hints_partial(tp);
2782 if (next_skb == tp->retransmit_skb_hint)
2783 tp->retransmit_skb_hint = skb;
2784
2785 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2786
2787 tcp_skb_collapse_tstamp(skb, next_skb);
2788
2789 sk_wmem_free_skb(sk, next_skb);
2790 return true;
2791}
2792
2793/* Check if coalescing SKBs is legal. */
2794static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2795{
2796 if (tcp_skb_pcount(skb) > 1)
2797 return false;
2798 if (skb_cloned(skb))
2799 return false;
2800 if (skb == tcp_send_head(sk))
2801 return false;
2802 /* Some heuristics for collapsing over SACK'd could be invented */
2803 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2804 return false;
2805
2806 return true;
2807}
2808
2809/* Collapse packets in the retransmit queue to make to create
2810 * less packets on the wire. This is only done on retransmission.
2811 */
2812static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2813 int space)
2814{
2815 struct tcp_sock *tp = tcp_sk(sk);
2816 struct sk_buff *skb = to, *tmp;
2817 bool first = true;
2818
2819 if (!sysctl_tcp_retrans_collapse)
2820 return;
2821 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2822 return;
2823
2824 tcp_for_write_queue_from_safe(skb, tmp, sk) {
2825 if (!tcp_can_collapse(sk, skb))
2826 break;
2827
2828 if (!tcp_skb_can_collapse_to(to))
2829 break;
2830
2831 space -= skb->len;
2832
2833 if (first) {
2834 first = false;
2835 continue;
2836 }
2837
2838 if (space < 0)
2839 break;
2840
2841 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2842 break;
2843
2844 if (!tcp_collapse_retrans(sk, to))
2845 break;
2846 }
2847}
2848
2849/* This retransmits one SKB. Policy decisions and retransmit queue
2850 * state updates are done by the caller. Returns non-zero if an
2851 * error occurred which prevented the send.
2852 */
2853int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2854{
2855 struct inet_connection_sock *icsk = inet_csk(sk);
2856 struct tcp_sock *tp = tcp_sk(sk);
2857 unsigned int cur_mss;
2858 int diff, len, err;
2859
2860
2861 /* Inconclusive MTU probe */
2862 if (icsk->icsk_mtup.probe_size)
2863 icsk->icsk_mtup.probe_size = 0;
2864
2865 /* Do not sent more than we queued. 1/4 is reserved for possible
2866 * copying overhead: fragmentation, tunneling, mangling etc.
2867 */
2868 if (refcount_read(&sk->sk_wmem_alloc) >
2869 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2870 sk->sk_sndbuf))
2871 return -EAGAIN;
2872
2873 if (skb_still_in_host_queue(sk, skb))
2874 return -EBUSY;
2875
2876 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2877 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
2878 WARN_ON_ONCE(1);
2879 return -EINVAL;
2880 }
2881 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2882 return -ENOMEM;
2883 }
2884
2885 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2886 return -EHOSTUNREACH; /* Routing failure or similar. */
2887
2888 cur_mss = tcp_current_mss(sk);
2889
2890 /* If receiver has shrunk his window, and skb is out of
2891 * new window, do not retransmit it. The exception is the
2892 * case, when window is shrunk to zero. In this case
2893 * our retransmit serves as a zero window probe.
2894 */
2895 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2896 TCP_SKB_CB(skb)->seq != tp->snd_una)
2897 return -EAGAIN;
2898
2899 len = cur_mss * segs;
2900 if (skb->len > len) {
2901 if (tcp_fragment(sk, skb, len, cur_mss, GFP_ATOMIC))
2902 return -ENOMEM; /* We'll try again later. */
2903 } else {
2904 if (skb_unclone(skb, GFP_ATOMIC))
2905 return -ENOMEM;
2906
2907 diff = tcp_skb_pcount(skb);
2908 tcp_set_skb_tso_segs(skb, cur_mss);
2909 diff -= tcp_skb_pcount(skb);
2910 if (diff)
2911 tcp_adjust_pcount(sk, skb, diff);
2912 if (skb->len < cur_mss)
2913 tcp_retrans_try_collapse(sk, skb, cur_mss);
2914 }
2915
2916 /* RFC3168, section 6.1.1.1. ECN fallback */
2917 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2918 tcp_ecn_clear_syn(sk, skb);
2919
2920 /* Update global and local TCP statistics. */
2921 segs = tcp_skb_pcount(skb);
2922 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2923 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2924 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2925 tp->total_retrans += segs;
2926
2927 /* make sure skb->data is aligned on arches that require it
2928 * and check if ack-trimming & collapsing extended the headroom
2929 * beyond what csum_start can cover.
2930 */
2931 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2932 skb_headroom(skb) >= 0xFFFF)) {
2933 struct sk_buff *nskb;
2934
2935 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2936 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2937 -ENOBUFS;
2938 if (!err) {
2939 skb->skb_mstamp = tp->tcp_mstamp;
2940 tcp_rate_skb_sent(sk, skb);
2941 }
2942 } else {
2943 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2944 }
2945
2946 if (likely(!err)) {
2947 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2948 } else if (err != -EBUSY) {
2949 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
2950 }
2951 return err;
2952}
2953
2954int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2955{
2956 struct tcp_sock *tp = tcp_sk(sk);
2957 int err = __tcp_retransmit_skb(sk, skb, segs);
2958
2959 if (err == 0) {
2960#if FASTRETRANS_DEBUG > 0
2961 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2962 net_dbg_ratelimited("retrans_out leaked\n");
2963 }
2964#endif
2965 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2966 tp->retrans_out += tcp_skb_pcount(skb);
2967
2968 /* Save stamp of the first retransmit. */
2969 if (!tp->retrans_stamp)
2970 tp->retrans_stamp = tcp_skb_timestamp(skb);
2971
2972 }
2973
2974 if (tp->undo_retrans < 0)
2975 tp->undo_retrans = 0;
2976 tp->undo_retrans += tcp_skb_pcount(skb);
2977 return err;
2978}
2979
2980/* This gets called after a retransmit timeout, and the initially
2981 * retransmitted data is acknowledged. It tries to continue
2982 * resending the rest of the retransmit queue, until either
2983 * we've sent it all or the congestion window limit is reached.
2984 * If doing SACK, the first ACK which comes back for a timeout
2985 * based retransmit packet might feed us FACK information again.
2986 * If so, we use it to avoid unnecessarily retransmissions.
2987 */
2988void tcp_xmit_retransmit_queue(struct sock *sk)
2989{
2990 const struct inet_connection_sock *icsk = inet_csk(sk);
2991 struct tcp_sock *tp = tcp_sk(sk);
2992 struct sk_buff *skb;
2993 struct sk_buff *hole = NULL;
2994 u32 max_segs;
2995 int mib_idx;
2996
2997 if (!tp->packets_out)
2998 return;
2999
3000 if (tp->retransmit_skb_hint) {
3001 skb = tp->retransmit_skb_hint;
3002 } else {
3003 skb = tcp_write_queue_head(sk);
3004 }
3005
3006 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3007 tcp_for_write_queue_from(skb, sk) {
3008 __u8 sacked;
3009 int segs;
3010
3011 if (skb == tcp_send_head(sk))
3012 break;
3013
3014 if (tcp_pacing_check(sk))
3015 break;
3016
3017 /* we could do better than to assign each time */
3018 if (!hole)
3019 tp->retransmit_skb_hint = skb;
3020
3021 segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
3022 if (segs <= 0)
3023 return;
3024 sacked = TCP_SKB_CB(skb)->sacked;
3025 /* In case tcp_shift_skb_data() have aggregated large skbs,
3026 * we need to make sure not sending too bigs TSO packets
3027 */
3028 segs = min_t(int, segs, max_segs);
3029
3030 if (tp->retrans_out >= tp->lost_out) {
3031 break;
3032 } else if (!(sacked & TCPCB_LOST)) {
3033 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3034 hole = skb;
3035 continue;
3036
3037 } else {
3038 if (icsk->icsk_ca_state != TCP_CA_Loss)
3039 mib_idx = LINUX_MIB_TCPFASTRETRANS;
3040 else
3041 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3042 }
3043
3044 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3045 continue;
3046
3047 if (tcp_small_queue_check(sk, skb, 1))
3048 return;
3049
3050 if (tcp_retransmit_skb(sk, skb, segs))
3051 return;
3052
3053 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3054
3055 if (tcp_in_cwnd_reduction(sk))
3056 tp->prr_out += tcp_skb_pcount(skb);
3057
3058 if (skb == tcp_write_queue_head(sk) &&
3059 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3060 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3061 inet_csk(sk)->icsk_rto,
3062 TCP_RTO_MAX);
3063 }
3064}
3065
3066/* We allow to exceed memory limits for FIN packets to expedite
3067 * connection tear down and (memory) recovery.
3068 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3069 * or even be forced to close flow without any FIN.
3070 * In general, we want to allow one skb per socket to avoid hangs
3071 * with edge trigger epoll()
3072 */
3073void sk_forced_mem_schedule(struct sock *sk, int size)
3074{
3075 int amt;
3076
3077 if (size <= sk->sk_forward_alloc)
3078 return;
3079 amt = sk_mem_pages(size);
3080 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3081 sk_memory_allocated_add(sk, amt);
3082
3083 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3084 mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3085}
3086
3087/* Send a FIN. The caller locks the socket for us.
3088 * We should try to send a FIN packet really hard, but eventually give up.
3089 */
3090void tcp_send_fin(struct sock *sk)
3091{
3092 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
3093 struct tcp_sock *tp = tcp_sk(sk);
3094
3095 /* Optimization, tack on the FIN if we have one skb in write queue and
3096 * this skb was not yet sent, or we are under memory pressure.
3097 * Note: in the latter case, FIN packet will be sent after a timeout,
3098 * as TCP stack thinks it has already been transmitted.
3099 */
3100 if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
3101coalesce:
3102 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3103 TCP_SKB_CB(tskb)->end_seq++;
3104 tp->write_seq++;
3105 if (!tcp_send_head(sk)) {
3106 /* This means tskb was already sent.
3107 * Pretend we included the FIN on previous transmit.
3108 * We need to set tp->snd_nxt to the value it would have
3109 * if FIN had been sent. This is because retransmit path
3110 * does not change tp->snd_nxt.
3111 */
3112 tp->snd_nxt++;
3113 return;
3114 }
3115 } else {
3116 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3117 if (unlikely(!skb)) {
3118 if (tskb)
3119 goto coalesce;
3120 return;
3121 }
3122 skb_reserve(skb, MAX_TCP_HEADER);
3123 sk_forced_mem_schedule(sk, skb->truesize);
3124 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3125 tcp_init_nondata_skb(skb, tp->write_seq,
3126 TCPHDR_ACK | TCPHDR_FIN);
3127 tcp_queue_skb(sk, skb);
3128 }
3129 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3130}
3131
3132/* We get here when a process closes a file descriptor (either due to
3133 * an explicit close() or as a byproduct of exit()'ing) and there
3134 * was unread data in the receive queue. This behavior is recommended
3135 * by RFC 2525, section 2.17. -DaveM
3136 */
3137void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3138{
3139 struct sk_buff *skb;
3140
3141 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3142
3143 /* NOTE: No TCP options attached and we never retransmit this. */
3144 skb = alloc_skb(MAX_TCP_HEADER, priority);
3145 if (!skb) {
3146 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3147 return;
3148 }
3149
3150 /* Reserve space for headers and prepare control bits. */
3151 skb_reserve(skb, MAX_TCP_HEADER);
3152 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3153 TCPHDR_ACK | TCPHDR_RST);
3154 tcp_mstamp_refresh(tcp_sk(sk));
3155 /* Send it off. */
3156 if (tcp_transmit_skb(sk, skb, 0, priority))
3157 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3158}
3159
3160/* Send a crossed SYN-ACK during socket establishment.
3161 * WARNING: This routine must only be called when we have already sent
3162 * a SYN packet that crossed the incoming SYN that caused this routine
3163 * to get called. If this assumption fails then the initial rcv_wnd
3164 * and rcv_wscale values will not be correct.
3165 */
3166int tcp_send_synack(struct sock *sk)
3167{
3168 struct sk_buff *skb;
3169
3170 skb = tcp_write_queue_head(sk);
3171 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3172 pr_debug("%s: wrong queue state\n", __func__);
3173 return -EFAULT;
3174 }
3175 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3176 if (skb_cloned(skb)) {
3177 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
3178 if (!nskb)
3179 return -ENOMEM;
3180 tcp_unlink_write_queue(skb, sk);
3181 __skb_header_release(nskb);
3182 __tcp_add_write_queue_head(sk, nskb);
3183 sk_wmem_free_skb(sk, skb);
3184 sk->sk_wmem_queued += nskb->truesize;
3185 sk_mem_charge(sk, nskb->truesize);
3186 skb = nskb;
3187 }
3188
3189 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3190 tcp_ecn_send_synack(sk, skb);
3191 }
3192 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3193}
3194
3195/**
3196 * tcp_make_synack - Prepare a SYN-ACK.
3197 * sk: listener socket
3198 * dst: dst entry attached to the SYNACK
3199 * req: request_sock pointer
3200 *
3201 * Allocate one skb and build a SYNACK packet.
3202 * @dst is consumed : Caller should not use it again.
3203 */
3204struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3205 struct request_sock *req,
3206 struct tcp_fastopen_cookie *foc,
3207 enum tcp_synack_type synack_type)
3208{
3209 struct inet_request_sock *ireq = inet_rsk(req);
3210 const struct tcp_sock *tp = tcp_sk(sk);
3211 struct tcp_md5sig_key *md5 = NULL;
3212 struct tcp_out_options opts;
3213 struct sk_buff *skb;
3214 int tcp_header_size;
3215 struct tcphdr *th;
3216 int mss;
3217
3218 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3219 if (unlikely(!skb)) {
3220 dst_release(dst);
3221 return NULL;
3222 }
3223 /* Reserve space for headers. */
3224 skb_reserve(skb, MAX_TCP_HEADER);
3225
3226 switch (synack_type) {
3227 case TCP_SYNACK_NORMAL:
3228 skb_set_owner_w(skb, req_to_sk(req));
3229 break;
3230 case TCP_SYNACK_COOKIE:
3231 /* Under synflood, we do not attach skb to a socket,
3232 * to avoid false sharing.
3233 */
3234 break;
3235 case TCP_SYNACK_FASTOPEN:
3236 /* sk is a const pointer, because we want to express multiple
3237 * cpu might call us concurrently.
3238 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3239 */
3240 skb_set_owner_w(skb, (struct sock *)sk);
3241 break;
3242 }
3243 skb_dst_set(skb, dst);
3244
3245 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3246
3247 memset(&opts, 0, sizeof(opts));
3248#ifdef CONFIG_SYN_COOKIES
3249 if (unlikely(req->cookie_ts))
3250 skb->skb_mstamp = cookie_init_timestamp(req);
3251 else
3252#endif
3253 skb->skb_mstamp = tcp_clock_us();
3254
3255#ifdef CONFIG_TCP_MD5SIG
3256 rcu_read_lock();
3257 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3258#endif
3259 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3260 tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5,
3261 foc, synack_type) + sizeof(*th);
3262
3263 skb_push(skb, tcp_header_size);
3264 skb_reset_transport_header(skb);
3265
3266 th = (struct tcphdr *)skb->data;
3267 memset(th, 0, sizeof(struct tcphdr));
3268 th->syn = 1;
3269 th->ack = 1;
3270 tcp_ecn_make_synack(req, th);
3271 th->source = htons(ireq->ir_num);
3272 th->dest = ireq->ir_rmt_port;
3273 skb->mark = ireq->ir_mark;
3274 skb->ip_summed = CHECKSUM_PARTIAL;
3275 th->seq = htonl(tcp_rsk(req)->snt_isn);
3276 /* XXX data is queued and acked as is. No buffer/window check */
3277 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3278
3279 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3280 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3281 tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3282 th->doff = (tcp_header_size >> 2);
3283 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3284
3285#ifdef CONFIG_TCP_MD5SIG
3286 /* Okay, we have all we need - do the md5 hash if needed */
3287 if (md5)
3288 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3289 md5, req_to_sk(req), skb);
3290 rcu_read_unlock();
3291#endif
3292
3293 /* Do not fool tcpdump (if any), clean our debris */
3294 skb->tstamp = 0;
3295 return skb;
3296}
3297EXPORT_SYMBOL(tcp_make_synack);
3298
3299static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3300{
3301 struct inet_connection_sock *icsk = inet_csk(sk);
3302 const struct tcp_congestion_ops *ca;
3303 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3304
3305 if (ca_key == TCP_CA_UNSPEC)
3306 return;
3307
3308 rcu_read_lock();
3309 ca = tcp_ca_find_key(ca_key);
3310 if (likely(ca && try_module_get(ca->owner))) {
3311 module_put(icsk->icsk_ca_ops->owner);
3312 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3313 icsk->icsk_ca_ops = ca;
3314 }
3315 rcu_read_unlock();
3316}
3317
3318/* Do all connect socket setups that can be done AF independent. */
3319static void tcp_connect_init(struct sock *sk)
3320{
3321 const struct dst_entry *dst = __sk_dst_get(sk);
3322 struct tcp_sock *tp = tcp_sk(sk);
3323 __u8 rcv_wscale;
3324 u32 rcv_wnd;
3325
3326 /* We'll fix this up when we get a response from the other end.
3327 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3328 */
3329 tp->tcp_header_len = sizeof(struct tcphdr);
3330 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3331 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3332
3333#ifdef CONFIG_TCP_MD5SIG
3334 if (tp->af_specific->md5_lookup(sk, sk))
3335 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3336#endif
3337
3338 /* If user gave his TCP_MAXSEG, record it to clamp */
3339 if (tp->rx_opt.user_mss)
3340 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3341 tp->max_window = 0;
3342 tcp_mtup_init(sk);
3343 tcp_sync_mss(sk, dst_mtu(dst));
3344
3345 tcp_ca_dst_init(sk, dst);
3346
3347 if (!tp->window_clamp)
3348 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3349 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3350
3351 tcp_initialize_rcv_mss(sk);
3352
3353 /* limit the window selection if the user enforce a smaller rx buffer */
3354 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3355 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3356 tp->window_clamp = tcp_full_space(sk);
3357
3358 rcv_wnd = tcp_rwnd_init_bpf(sk);
3359 if (rcv_wnd == 0)
3360 rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3361
3362 tcp_select_initial_window(tcp_full_space(sk),
3363 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3364 &tp->rcv_wnd,
3365 &tp->window_clamp,
3366 sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3367 &rcv_wscale,
3368 rcv_wnd);
3369
3370 tp->rx_opt.rcv_wscale = rcv_wscale;
3371 tp->rcv_ssthresh = tp->rcv_wnd;
3372
3373 sk->sk_err = 0;
3374 sock_reset_flag(sk, SOCK_DONE);
3375 tp->snd_wnd = 0;
3376 tcp_init_wl(tp, 0);
3377 tcp_write_queue_purge(sk);
3378 tp->snd_una = tp->write_seq;
3379 tp->snd_sml = tp->write_seq;
3380 tp->snd_up = tp->write_seq;
3381 tp->snd_nxt = tp->write_seq;
3382
3383 if (likely(!tp->repair))
3384 tp->rcv_nxt = 0;
3385 else
3386 tp->rcv_tstamp = tcp_jiffies32;
3387 tp->rcv_wup = tp->rcv_nxt;
3388 tp->copied_seq = tp->rcv_nxt;
3389
3390 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3391 inet_csk(sk)->icsk_retransmits = 0;
3392 tcp_clear_retrans(tp);
3393}
3394
3395static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3396{
3397 struct tcp_sock *tp = tcp_sk(sk);
3398 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3399
3400 tcb->end_seq += skb->len;
3401 __skb_header_release(skb);
3402 __tcp_add_write_queue_tail(sk, skb);
3403 sk->sk_wmem_queued += skb->truesize;
3404 sk_mem_charge(sk, skb->truesize);
3405 tp->write_seq = tcb->end_seq;
3406 tp->packets_out += tcp_skb_pcount(skb);
3407}
3408
3409/* Build and send a SYN with data and (cached) Fast Open cookie. However,
3410 * queue a data-only packet after the regular SYN, such that regular SYNs
3411 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3412 * only the SYN sequence, the data are retransmitted in the first ACK.
3413 * If cookie is not cached or other error occurs, falls back to send a
3414 * regular SYN with Fast Open cookie request option.
3415 */
3416static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3417{
3418 struct tcp_sock *tp = tcp_sk(sk);
3419 struct tcp_fastopen_request *fo = tp->fastopen_req;
3420 int space, err = 0;
3421 struct sk_buff *syn_data;
3422
3423 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3424 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3425 goto fallback;
3426
3427 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3428 * user-MSS. Reserve maximum option space for middleboxes that add
3429 * private TCP options. The cost is reduced data space in SYN :(
3430 */
3431 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3432
3433 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3434 MAX_TCP_OPTION_SPACE;
3435
3436 space = min_t(size_t, space, fo->size);
3437
3438 /* limit to order-0 allocations */
3439 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3440
3441 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3442 if (!syn_data)
3443 goto fallback;
3444 syn_data->ip_summed = CHECKSUM_PARTIAL;
3445 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3446 if (space) {
3447 int copied = copy_from_iter(skb_put(syn_data, space), space,
3448 &fo->data->msg_iter);
3449 if (unlikely(!copied)) {
3450 kfree_skb(syn_data);
3451 goto fallback;
3452 }
3453 if (copied != space) {
3454 skb_trim(syn_data, copied);
3455 space = copied;
3456 }
3457 }
3458 /* No more data pending in inet_wait_for_connect() */
3459 if (space == fo->size)
3460 fo->data = NULL;
3461 fo->copied = space;
3462
3463 tcp_connect_queue_skb(sk, syn_data);
3464 if (syn_data->len)
3465 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3466
3467 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3468
3469 syn->skb_mstamp = syn_data->skb_mstamp;
3470
3471 /* Now full SYN+DATA was cloned and sent (or not),
3472 * remove the SYN from the original skb (syn_data)
3473 * we keep in write queue in case of a retransmit, as we
3474 * also have the SYN packet (with no data) in the same queue.
3475 */
3476 TCP_SKB_CB(syn_data)->seq++;
3477 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3478 if (!err) {
3479 tp->syn_data = (fo->copied > 0);
3480 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3481 goto done;
3482 }
3483
3484 /* data was not sent, this is our new send_head */
3485 sk->sk_send_head = syn_data;
3486 tp->packets_out -= tcp_skb_pcount(syn_data);
3487
3488fallback:
3489 /* Send a regular SYN with Fast Open cookie request option */
3490 if (fo->cookie.len > 0)
3491 fo->cookie.len = 0;
3492 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3493 if (err)
3494 tp->syn_fastopen = 0;
3495done:
3496 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3497 return err;
3498}
3499
3500/* Build a SYN and send it off. */
3501int tcp_connect(struct sock *sk)
3502{
3503 struct tcp_sock *tp = tcp_sk(sk);
3504 struct sk_buff *buff;
3505 int err;
3506
3507 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB);
3508
3509 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3510 return -EHOSTUNREACH; /* Routing failure or similar. */
3511
3512 tcp_connect_init(sk);
3513
3514 if (unlikely(tp->repair)) {
3515 tcp_finish_connect(sk, NULL);
3516 return 0;
3517 }
3518
3519 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3520 if (unlikely(!buff))
3521 return -ENOBUFS;
3522
3523 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3524 tcp_mstamp_refresh(tp);
3525 tp->retrans_stamp = tcp_time_stamp(tp);
3526 tcp_connect_queue_skb(sk, buff);
3527 tcp_ecn_send_syn(sk, buff);
3528
3529 /* Send off SYN; include data in Fast Open. */
3530 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3531 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3532 if (err == -ECONNREFUSED)
3533 return err;
3534
3535 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3536 * in order to make this packet get counted in tcpOutSegs.
3537 */
3538 tp->snd_nxt = tp->write_seq;
3539 tp->pushed_seq = tp->write_seq;
3540 buff = tcp_send_head(sk);
3541 if (unlikely(buff)) {
3542 tp->snd_nxt = TCP_SKB_CB(buff)->seq;
3543 tp->pushed_seq = TCP_SKB_CB(buff)->seq;
3544 }
3545 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3546
3547 /* Timer for repeating the SYN until an answer. */
3548 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3549 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3550 return 0;
3551}
3552EXPORT_SYMBOL(tcp_connect);
3553
3554/* Send out a delayed ack, the caller does the policy checking
3555 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3556 * for details.
3557 */
3558void tcp_send_delayed_ack(struct sock *sk)
3559{
3560 struct inet_connection_sock *icsk = inet_csk(sk);
3561 int ato = icsk->icsk_ack.ato;
3562 unsigned long timeout;
3563
3564 if (ato > TCP_DELACK_MIN) {
3565 const struct tcp_sock *tp = tcp_sk(sk);
3566 int max_ato = HZ / 2;
3567
3568 if (icsk->icsk_ack.pingpong ||
3569 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3570 max_ato = TCP_DELACK_MAX;
3571
3572 /* Slow path, intersegment interval is "high". */
3573
3574 /* If some rtt estimate is known, use it to bound delayed ack.
3575 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3576 * directly.
3577 */
3578 if (tp->srtt_us) {
3579 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3580 TCP_DELACK_MIN);
3581
3582 if (rtt < max_ato)
3583 max_ato = rtt;
3584 }
3585
3586 ato = min(ato, max_ato);
3587 }
3588
3589 /* Stay within the limit we were given */
3590 timeout = jiffies + ato;
3591
3592 /* Use new timeout only if there wasn't a older one earlier. */
3593 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3594 /* If delack timer was blocked or is about to expire,
3595 * send ACK now.
3596 */
3597 if (icsk->icsk_ack.blocked ||
3598 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3599 tcp_send_ack(sk);
3600 return;
3601 }
3602
3603 if (!time_before(timeout, icsk->icsk_ack.timeout))
3604 timeout = icsk->icsk_ack.timeout;
3605 }
3606 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3607 icsk->icsk_ack.timeout = timeout;
3608 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3609}
3610
3611/* This routine sends an ack and also updates the window. */
3612void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3613{
3614 struct sk_buff *buff;
3615
3616 /* If we have been reset, we may not send again. */
3617 if (sk->sk_state == TCP_CLOSE)
3618 return;
3619
3620 /* We are not putting this on the write queue, so
3621 * tcp_transmit_skb() will set the ownership to this
3622 * sock.
3623 */
3624 buff = alloc_skb(MAX_TCP_HEADER,
3625 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3626 if (unlikely(!buff)) {
3627 inet_csk_schedule_ack(sk);
3628 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3629 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3630 TCP_DELACK_MAX, TCP_RTO_MAX);
3631 return;
3632 }
3633
3634 /* Reserve space for headers and prepare control bits. */
3635 skb_reserve(buff, MAX_TCP_HEADER);
3636 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3637
3638 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3639 * too much.
3640 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3641 */
3642 skb_set_tcp_pure_ack(buff);
3643
3644 /* Send it off, this clears delayed acks for us. */
3645 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
3646}
3647EXPORT_SYMBOL_GPL(__tcp_send_ack);
3648
3649void tcp_send_ack(struct sock *sk)
3650{
3651 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
3652}
3653
3654/* This routine sends a packet with an out of date sequence
3655 * number. It assumes the other end will try to ack it.
3656 *
3657 * Question: what should we make while urgent mode?
3658 * 4.4BSD forces sending single byte of data. We cannot send
3659 * out of window data, because we have SND.NXT==SND.MAX...
3660 *
3661 * Current solution: to send TWO zero-length segments in urgent mode:
3662 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3663 * out-of-date with SND.UNA-1 to probe window.
3664 */
3665static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3666{
3667 struct tcp_sock *tp = tcp_sk(sk);
3668 struct sk_buff *skb;
3669
3670 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3671 skb = alloc_skb(MAX_TCP_HEADER,
3672 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3673 if (!skb)
3674 return -1;
3675
3676 /* Reserve space for headers and set control bits. */
3677 skb_reserve(skb, MAX_TCP_HEADER);
3678 /* Use a previous sequence. This should cause the other
3679 * end to send an ack. Don't queue or clone SKB, just
3680 * send it.
3681 */
3682 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3683 NET_INC_STATS(sock_net(sk), mib);
3684 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3685}
3686
3687/* Called from setsockopt( ... TCP_REPAIR ) */
3688void tcp_send_window_probe(struct sock *sk)
3689{
3690 if (sk->sk_state == TCP_ESTABLISHED) {
3691 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3692 tcp_mstamp_refresh(tcp_sk(sk));
3693 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3694 }
3695}
3696
3697/* Initiate keepalive or window probe from timer. */
3698int tcp_write_wakeup(struct sock *sk, int mib)
3699{
3700 struct tcp_sock *tp = tcp_sk(sk);
3701 struct sk_buff *skb;
3702
3703 if (sk->sk_state == TCP_CLOSE)
3704 return -1;
3705
3706 skb = tcp_send_head(sk);
3707 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3708 int err;
3709 unsigned int mss = tcp_current_mss(sk);
3710 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3711
3712 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3713 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3714
3715 /* We are probing the opening of a window
3716 * but the window size is != 0
3717 * must have been a result SWS avoidance ( sender )
3718 */
3719 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3720 skb->len > mss) {
3721 seg_size = min(seg_size, mss);
3722 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3723 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3724 return -1;
3725 } else if (!tcp_skb_pcount(skb))
3726 tcp_set_skb_tso_segs(skb, mss);
3727
3728 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3729 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3730 if (!err)
3731 tcp_event_new_data_sent(sk, skb);
3732 return err;
3733 } else {
3734 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3735 tcp_xmit_probe_skb(sk, 1, mib);
3736 return tcp_xmit_probe_skb(sk, 0, mib);
3737 }
3738}
3739
3740/* A window probe timeout has occurred. If window is not closed send
3741 * a partial packet else a zero probe.
3742 */
3743void tcp_send_probe0(struct sock *sk)
3744{
3745 struct inet_connection_sock *icsk = inet_csk(sk);
3746 struct tcp_sock *tp = tcp_sk(sk);
3747 struct net *net = sock_net(sk);
3748 unsigned long probe_max;
3749 int err;
3750
3751 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3752
3753 if (tp->packets_out || !tcp_send_head(sk)) {
3754 /* Cancel probe timer, if it is not required. */
3755 icsk->icsk_probes_out = 0;
3756 icsk->icsk_backoff = 0;
3757 return;
3758 }
3759
3760 if (err <= 0) {
3761 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3762 icsk->icsk_backoff++;
3763 icsk->icsk_probes_out++;
3764 probe_max = TCP_RTO_MAX;
3765 } else {
3766 /* If packet was not sent due to local congestion,
3767 * do not backoff and do not remember icsk_probes_out.
3768 * Let local senders to fight for local resources.
3769 *
3770 * Use accumulated backoff yet.
3771 */
3772 if (!icsk->icsk_probes_out)
3773 icsk->icsk_probes_out = 1;
3774 probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3775 }
3776 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3777 tcp_probe0_when(sk, probe_max),
3778 TCP_RTO_MAX);
3779}
3780
3781int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3782{
3783 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3784 struct flowi fl;
3785 int res;
3786
3787 tcp_rsk(req)->txhash = net_tx_rndhash();
3788 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3789 if (!res) {
3790 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3791 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3792 if (unlikely(tcp_passive_fastopen(sk)))
3793 tcp_sk(sk)->total_retrans++;
3794 }
3795 return res;
3796}
3797EXPORT_SYMBOL(tcp_rtx_synack);