blob: 9394d72a77e80a9115aa60e6ba374f7bb1bdf339 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/* Userspace key control operations
2 *
3 * Copyright (C) 2004-5 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/sched.h>
15#include <linux/sched/task.h>
16#include <linux/slab.h>
17#include <linux/syscalls.h>
18#include <linux/key.h>
19#include <linux/keyctl.h>
20#include <linux/fs.h>
21#include <linux/capability.h>
22#include <linux/cred.h>
23#include <linux/string.h>
24#include <linux/err.h>
25#include <linux/vmalloc.h>
26#include <linux/security.h>
27#include <linux/uio.h>
28#include <linux/uaccess.h>
29#include <keys/request_key_auth-type.h>
30#include "internal.h"
31
32#define KEY_MAX_DESC_SIZE 4096
33
34static int key_get_type_from_user(char *type,
35 const char __user *_type,
36 unsigned len)
37{
38 int ret;
39
40 ret = strncpy_from_user(type, _type, len);
41 if (ret < 0)
42 return ret;
43 if (ret == 0 || ret >= len)
44 return -EINVAL;
45 if (type[0] == '.')
46 return -EPERM;
47 type[len - 1] = '\0';
48 return 0;
49}
50
51/*
52 * Extract the description of a new key from userspace and either add it as a
53 * new key to the specified keyring or update a matching key in that keyring.
54 *
55 * If the description is NULL or an empty string, the key type is asked to
56 * generate one from the payload.
57 *
58 * The keyring must be writable so that we can attach the key to it.
59 *
60 * If successful, the new key's serial number is returned, otherwise an error
61 * code is returned.
62 */
63SYSCALL_DEFINE5(add_key, const char __user *, _type,
64 const char __user *, _description,
65 const void __user *, _payload,
66 size_t, plen,
67 key_serial_t, ringid)
68{
69 key_ref_t keyring_ref, key_ref;
70 char type[32], *description;
71 void *payload;
72 long ret;
73
74 ret = -EINVAL;
75 if (plen > 1024 * 1024 - 1)
76 goto error;
77
78 /* draw all the data into kernel space */
79 ret = key_get_type_from_user(type, _type, sizeof(type));
80 if (ret < 0)
81 goto error;
82
83 description = NULL;
84 if (_description) {
85 description = strndup_user(_description, KEY_MAX_DESC_SIZE);
86 if (IS_ERR(description)) {
87 ret = PTR_ERR(description);
88 goto error;
89 }
90 if (!*description) {
91 kfree(description);
92 description = NULL;
93 } else if ((description[0] == '.') &&
94 (strncmp(type, "keyring", 7) == 0)) {
95 ret = -EPERM;
96 goto error2;
97 }
98 }
99
100 /* pull the payload in if one was supplied */
101 payload = NULL;
102
103 if (plen) {
104 ret = -ENOMEM;
105 payload = kvmalloc(plen, GFP_KERNEL);
106 if (!payload)
107 goto error2;
108
109 ret = -EFAULT;
110 if (copy_from_user(payload, _payload, plen) != 0)
111 goto error3;
112 }
113
114 /* find the target keyring (which must be writable) */
115 keyring_ref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
116 if (IS_ERR(keyring_ref)) {
117 ret = PTR_ERR(keyring_ref);
118 goto error3;
119 }
120
121 /* create or update the requested key and add it to the target
122 * keyring */
123 key_ref = key_create_or_update(keyring_ref, type, description,
124 payload, plen, KEY_PERM_UNDEF,
125 KEY_ALLOC_IN_QUOTA);
126 if (!IS_ERR(key_ref)) {
127 ret = key_ref_to_ptr(key_ref)->serial;
128 key_ref_put(key_ref);
129 }
130 else {
131 ret = PTR_ERR(key_ref);
132 }
133
134 key_ref_put(keyring_ref);
135 error3:
136 kvfree_sensitive(payload, plen);
137 error2:
138 kfree(description);
139 error:
140 return ret;
141}
142
143/*
144 * Search the process keyrings and keyring trees linked from those for a
145 * matching key. Keyrings must have appropriate Search permission to be
146 * searched.
147 *
148 * If a key is found, it will be attached to the destination keyring if there's
149 * one specified and the serial number of the key will be returned.
150 *
151 * If no key is found, /sbin/request-key will be invoked if _callout_info is
152 * non-NULL in an attempt to create a key. The _callout_info string will be
153 * passed to /sbin/request-key to aid with completing the request. If the
154 * _callout_info string is "" then it will be changed to "-".
155 */
156SYSCALL_DEFINE4(request_key, const char __user *, _type,
157 const char __user *, _description,
158 const char __user *, _callout_info,
159 key_serial_t, destringid)
160{
161 struct key_type *ktype;
162 struct key *key;
163 key_ref_t dest_ref;
164 size_t callout_len;
165 char type[32], *description, *callout_info;
166 long ret;
167
168 /* pull the type into kernel space */
169 ret = key_get_type_from_user(type, _type, sizeof(type));
170 if (ret < 0)
171 goto error;
172
173 /* pull the description into kernel space */
174 description = strndup_user(_description, KEY_MAX_DESC_SIZE);
175 if (IS_ERR(description)) {
176 ret = PTR_ERR(description);
177 goto error;
178 }
179
180 /* pull the callout info into kernel space */
181 callout_info = NULL;
182 callout_len = 0;
183 if (_callout_info) {
184 callout_info = strndup_user(_callout_info, PAGE_SIZE);
185 if (IS_ERR(callout_info)) {
186 ret = PTR_ERR(callout_info);
187 goto error2;
188 }
189 callout_len = strlen(callout_info);
190 }
191
192 /* get the destination keyring if specified */
193 dest_ref = NULL;
194 if (destringid) {
195 dest_ref = lookup_user_key(destringid, KEY_LOOKUP_CREATE,
196 KEY_NEED_WRITE);
197 if (IS_ERR(dest_ref)) {
198 ret = PTR_ERR(dest_ref);
199 goto error3;
200 }
201 }
202
203 /* find the key type */
204 ktype = key_type_lookup(type);
205 if (IS_ERR(ktype)) {
206 ret = PTR_ERR(ktype);
207 goto error4;
208 }
209
210 /* do the search */
211 key = request_key_and_link(ktype, description, callout_info,
212 callout_len, NULL, key_ref_to_ptr(dest_ref),
213 KEY_ALLOC_IN_QUOTA);
214 if (IS_ERR(key)) {
215 ret = PTR_ERR(key);
216 goto error5;
217 }
218
219 /* wait for the key to finish being constructed */
220 ret = wait_for_key_construction(key, 1);
221 if (ret < 0)
222 goto error6;
223
224 ret = key->serial;
225
226error6:
227 key_put(key);
228error5:
229 key_type_put(ktype);
230error4:
231 key_ref_put(dest_ref);
232error3:
233 kfree(callout_info);
234error2:
235 kfree(description);
236error:
237 return ret;
238}
239
240/*
241 * Get the ID of the specified process keyring.
242 *
243 * The requested keyring must have search permission to be found.
244 *
245 * If successful, the ID of the requested keyring will be returned.
246 */
247long keyctl_get_keyring_ID(key_serial_t id, int create)
248{
249 key_ref_t key_ref;
250 unsigned long lflags;
251 long ret;
252
253 lflags = create ? KEY_LOOKUP_CREATE : 0;
254 key_ref = lookup_user_key(id, lflags, KEY_NEED_SEARCH);
255 if (IS_ERR(key_ref)) {
256 ret = PTR_ERR(key_ref);
257 goto error;
258 }
259
260 ret = key_ref_to_ptr(key_ref)->serial;
261 key_ref_put(key_ref);
262error:
263 return ret;
264}
265
266/*
267 * Join a (named) session keyring.
268 *
269 * Create and join an anonymous session keyring or join a named session
270 * keyring, creating it if necessary. A named session keyring must have Search
271 * permission for it to be joined. Session keyrings without this permit will
272 * be skipped over. It is not permitted for userspace to create or join
273 * keyrings whose name begin with a dot.
274 *
275 * If successful, the ID of the joined session keyring will be returned.
276 */
277long keyctl_join_session_keyring(const char __user *_name)
278{
279 char *name;
280 long ret;
281
282 /* fetch the name from userspace */
283 name = NULL;
284 if (_name) {
285 name = strndup_user(_name, KEY_MAX_DESC_SIZE);
286 if (IS_ERR(name)) {
287 ret = PTR_ERR(name);
288 goto error;
289 }
290
291 ret = -EPERM;
292 if (name[0] == '.')
293 goto error_name;
294 }
295
296 /* join the session */
297 ret = join_session_keyring(name);
298error_name:
299 kfree(name);
300error:
301 return ret;
302}
303
304/*
305 * Update a key's data payload from the given data.
306 *
307 * The key must grant the caller Write permission and the key type must support
308 * updating for this to work. A negative key can be positively instantiated
309 * with this call.
310 *
311 * If successful, 0 will be returned. If the key type does not support
312 * updating, then -EOPNOTSUPP will be returned.
313 */
314long keyctl_update_key(key_serial_t id,
315 const void __user *_payload,
316 size_t plen)
317{
318 key_ref_t key_ref;
319 void *payload;
320 long ret;
321
322 ret = -EINVAL;
323 if (plen > PAGE_SIZE)
324 goto error;
325
326 /* pull the payload in if one was supplied */
327 payload = NULL;
328 if (plen) {
329 ret = -ENOMEM;
330 payload = kvmalloc(plen, GFP_KERNEL);
331 if (!payload)
332 goto error;
333
334 ret = -EFAULT;
335 if (copy_from_user(payload, _payload, plen) != 0)
336 goto error2;
337 }
338
339 /* find the target key (which must be writable) */
340 key_ref = lookup_user_key(id, 0, KEY_NEED_WRITE);
341 if (IS_ERR(key_ref)) {
342 ret = PTR_ERR(key_ref);
343 goto error2;
344 }
345
346 /* update the key */
347 ret = key_update(key_ref, payload, plen);
348
349 key_ref_put(key_ref);
350error2:
351 kvfree_sensitive(payload, plen);
352error:
353 return ret;
354}
355
356/*
357 * Revoke a key.
358 *
359 * The key must be grant the caller Write or Setattr permission for this to
360 * work. The key type should give up its quota claim when revoked. The key
361 * and any links to the key will be automatically garbage collected after a
362 * certain amount of time (/proc/sys/kernel/keys/gc_delay).
363 *
364 * Keys with KEY_FLAG_KEEP set should not be revoked.
365 *
366 * If successful, 0 is returned.
367 */
368long keyctl_revoke_key(key_serial_t id)
369{
370 key_ref_t key_ref;
371 struct key *key;
372 long ret;
373
374 key_ref = lookup_user_key(id, 0, KEY_NEED_WRITE);
375 if (IS_ERR(key_ref)) {
376 ret = PTR_ERR(key_ref);
377 if (ret != -EACCES)
378 goto error;
379 key_ref = lookup_user_key(id, 0, KEY_NEED_SETATTR);
380 if (IS_ERR(key_ref)) {
381 ret = PTR_ERR(key_ref);
382 goto error;
383 }
384 }
385
386 key = key_ref_to_ptr(key_ref);
387 ret = 0;
388 if (test_bit(KEY_FLAG_KEEP, &key->flags))
389 ret = -EPERM;
390 else
391 key_revoke(key);
392
393 key_ref_put(key_ref);
394error:
395 return ret;
396}
397
398/*
399 * Invalidate a key.
400 *
401 * The key must be grant the caller Invalidate permission for this to work.
402 * The key and any links to the key will be automatically garbage collected
403 * immediately.
404 *
405 * Keys with KEY_FLAG_KEEP set should not be invalidated.
406 *
407 * If successful, 0 is returned.
408 */
409long keyctl_invalidate_key(key_serial_t id)
410{
411 key_ref_t key_ref;
412 struct key *key;
413 long ret;
414
415 kenter("%d", id);
416
417 key_ref = lookup_user_key(id, 0, KEY_NEED_SEARCH);
418 if (IS_ERR(key_ref)) {
419 ret = PTR_ERR(key_ref);
420
421 /* Root is permitted to invalidate certain special keys */
422 if (capable(CAP_SYS_ADMIN)) {
423 key_ref = lookup_user_key(id, 0, 0);
424 if (IS_ERR(key_ref))
425 goto error;
426 if (test_bit(KEY_FLAG_ROOT_CAN_INVAL,
427 &key_ref_to_ptr(key_ref)->flags))
428 goto invalidate;
429 goto error_put;
430 }
431
432 goto error;
433 }
434
435invalidate:
436 key = key_ref_to_ptr(key_ref);
437 ret = 0;
438 if (test_bit(KEY_FLAG_KEEP, &key->flags))
439 ret = -EPERM;
440 else
441 key_invalidate(key);
442error_put:
443 key_ref_put(key_ref);
444error:
445 kleave(" = %ld", ret);
446 return ret;
447}
448
449/*
450 * Clear the specified keyring, creating an empty process keyring if one of the
451 * special keyring IDs is used.
452 *
453 * The keyring must grant the caller Write permission and not have
454 * KEY_FLAG_KEEP set for this to work. If successful, 0 will be returned.
455 */
456long keyctl_keyring_clear(key_serial_t ringid)
457{
458 key_ref_t keyring_ref;
459 struct key *keyring;
460 long ret;
461
462 keyring_ref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
463 if (IS_ERR(keyring_ref)) {
464 ret = PTR_ERR(keyring_ref);
465
466 /* Root is permitted to invalidate certain special keyrings */
467 if (capable(CAP_SYS_ADMIN)) {
468 keyring_ref = lookup_user_key(ringid, 0, 0);
469 if (IS_ERR(keyring_ref))
470 goto error;
471 if (test_bit(KEY_FLAG_ROOT_CAN_CLEAR,
472 &key_ref_to_ptr(keyring_ref)->flags))
473 goto clear;
474 goto error_put;
475 }
476
477 goto error;
478 }
479
480clear:
481 keyring = key_ref_to_ptr(keyring_ref);
482 if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
483 ret = -EPERM;
484 else
485 ret = keyring_clear(keyring);
486error_put:
487 key_ref_put(keyring_ref);
488error:
489 return ret;
490}
491
492/*
493 * Create a link from a keyring to a key if there's no matching key in the
494 * keyring, otherwise replace the link to the matching key with a link to the
495 * new key.
496 *
497 * The key must grant the caller Link permission and the the keyring must grant
498 * the caller Write permission. Furthermore, if an additional link is created,
499 * the keyring's quota will be extended.
500 *
501 * If successful, 0 will be returned.
502 */
503long keyctl_keyring_link(key_serial_t id, key_serial_t ringid)
504{
505 key_ref_t keyring_ref, key_ref;
506 long ret;
507
508 keyring_ref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
509 if (IS_ERR(keyring_ref)) {
510 ret = PTR_ERR(keyring_ref);
511 goto error;
512 }
513
514 key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE, KEY_NEED_LINK);
515 if (IS_ERR(key_ref)) {
516 ret = PTR_ERR(key_ref);
517 goto error2;
518 }
519
520 ret = key_link(key_ref_to_ptr(keyring_ref), key_ref_to_ptr(key_ref));
521
522 key_ref_put(key_ref);
523error2:
524 key_ref_put(keyring_ref);
525error:
526 return ret;
527}
528
529/*
530 * Unlink a key from a keyring.
531 *
532 * The keyring must grant the caller Write permission for this to work; the key
533 * itself need not grant the caller anything. If the last link to a key is
534 * removed then that key will be scheduled for destruction.
535 *
536 * Keys or keyrings with KEY_FLAG_KEEP set should not be unlinked.
537 *
538 * If successful, 0 will be returned.
539 */
540long keyctl_keyring_unlink(key_serial_t id, key_serial_t ringid)
541{
542 key_ref_t keyring_ref, key_ref;
543 struct key *keyring, *key;
544 long ret;
545
546 keyring_ref = lookup_user_key(ringid, 0, KEY_NEED_WRITE);
547 if (IS_ERR(keyring_ref)) {
548 ret = PTR_ERR(keyring_ref);
549 goto error;
550 }
551
552 key_ref = lookup_user_key(id, KEY_LOOKUP_FOR_UNLINK, 0);
553 if (IS_ERR(key_ref)) {
554 ret = PTR_ERR(key_ref);
555 goto error2;
556 }
557
558 keyring = key_ref_to_ptr(keyring_ref);
559 key = key_ref_to_ptr(key_ref);
560 if (test_bit(KEY_FLAG_KEEP, &keyring->flags) &&
561 test_bit(KEY_FLAG_KEEP, &key->flags))
562 ret = -EPERM;
563 else
564 ret = key_unlink(keyring, key);
565
566 key_ref_put(key_ref);
567error2:
568 key_ref_put(keyring_ref);
569error:
570 return ret;
571}
572
573/*
574 * Return a description of a key to userspace.
575 *
576 * The key must grant the caller View permission for this to work.
577 *
578 * If there's a buffer, we place up to buflen bytes of data into it formatted
579 * in the following way:
580 *
581 * type;uid;gid;perm;description<NUL>
582 *
583 * If successful, we return the amount of description available, irrespective
584 * of how much we may have copied into the buffer.
585 */
586long keyctl_describe_key(key_serial_t keyid,
587 char __user *buffer,
588 size_t buflen)
589{
590 struct key *key, *instkey;
591 key_ref_t key_ref;
592 char *infobuf;
593 long ret;
594 int desclen, infolen;
595
596 key_ref = lookup_user_key(keyid, KEY_LOOKUP_PARTIAL, KEY_NEED_VIEW);
597 if (IS_ERR(key_ref)) {
598 /* viewing a key under construction is permitted if we have the
599 * authorisation token handy */
600 if (PTR_ERR(key_ref) == -EACCES) {
601 instkey = key_get_instantiation_authkey(keyid);
602 if (!IS_ERR(instkey)) {
603 key_put(instkey);
604 key_ref = lookup_user_key(keyid,
605 KEY_LOOKUP_PARTIAL,
606 0);
607 if (!IS_ERR(key_ref))
608 goto okay;
609 }
610 }
611
612 ret = PTR_ERR(key_ref);
613 goto error;
614 }
615
616okay:
617 key = key_ref_to_ptr(key_ref);
618 desclen = strlen(key->description);
619
620 /* calculate how much information we're going to return */
621 ret = -ENOMEM;
622 infobuf = kasprintf(GFP_KERNEL,
623 "%s;%d;%d;%08x;",
624 key->type->name,
625 from_kuid_munged(current_user_ns(), key->uid),
626 from_kgid_munged(current_user_ns(), key->gid),
627 key->perm);
628 if (!infobuf)
629 goto error2;
630 infolen = strlen(infobuf);
631 ret = infolen + desclen + 1;
632
633 /* consider returning the data */
634 if (buffer && buflen >= ret) {
635 if (copy_to_user(buffer, infobuf, infolen) != 0 ||
636 copy_to_user(buffer + infolen, key->description,
637 desclen + 1) != 0)
638 ret = -EFAULT;
639 }
640
641 kfree(infobuf);
642error2:
643 key_ref_put(key_ref);
644error:
645 return ret;
646}
647
648/*
649 * Search the specified keyring and any keyrings it links to for a matching
650 * key. Only keyrings that grant the caller Search permission will be searched
651 * (this includes the starting keyring). Only keys with Search permission can
652 * be found.
653 *
654 * If successful, the found key will be linked to the destination keyring if
655 * supplied and the key has Link permission, and the found key ID will be
656 * returned.
657 */
658long keyctl_keyring_search(key_serial_t ringid,
659 const char __user *_type,
660 const char __user *_description,
661 key_serial_t destringid)
662{
663 struct key_type *ktype;
664 key_ref_t keyring_ref, key_ref, dest_ref;
665 char type[32], *description;
666 long ret;
667
668 /* pull the type and description into kernel space */
669 ret = key_get_type_from_user(type, _type, sizeof(type));
670 if (ret < 0)
671 goto error;
672
673 description = strndup_user(_description, KEY_MAX_DESC_SIZE);
674 if (IS_ERR(description)) {
675 ret = PTR_ERR(description);
676 goto error;
677 }
678
679 /* get the keyring at which to begin the search */
680 keyring_ref = lookup_user_key(ringid, 0, KEY_NEED_SEARCH);
681 if (IS_ERR(keyring_ref)) {
682 ret = PTR_ERR(keyring_ref);
683 goto error2;
684 }
685
686 /* get the destination keyring if specified */
687 dest_ref = NULL;
688 if (destringid) {
689 dest_ref = lookup_user_key(destringid, KEY_LOOKUP_CREATE,
690 KEY_NEED_WRITE);
691 if (IS_ERR(dest_ref)) {
692 ret = PTR_ERR(dest_ref);
693 goto error3;
694 }
695 }
696
697 /* find the key type */
698 ktype = key_type_lookup(type);
699 if (IS_ERR(ktype)) {
700 ret = PTR_ERR(ktype);
701 goto error4;
702 }
703
704 /* do the search */
705 key_ref = keyring_search(keyring_ref, ktype, description);
706 if (IS_ERR(key_ref)) {
707 ret = PTR_ERR(key_ref);
708
709 /* treat lack or presence of a negative key the same */
710 if (ret == -EAGAIN)
711 ret = -ENOKEY;
712 goto error5;
713 }
714
715 /* link the resulting key to the destination keyring if we can */
716 if (dest_ref) {
717 ret = key_permission(key_ref, KEY_NEED_LINK);
718 if (ret < 0)
719 goto error6;
720
721 ret = key_link(key_ref_to_ptr(dest_ref), key_ref_to_ptr(key_ref));
722 if (ret < 0)
723 goto error6;
724 }
725
726 ret = key_ref_to_ptr(key_ref)->serial;
727
728error6:
729 key_ref_put(key_ref);
730error5:
731 key_type_put(ktype);
732error4:
733 key_ref_put(dest_ref);
734error3:
735 key_ref_put(keyring_ref);
736error2:
737 kfree(description);
738error:
739 return ret;
740}
741
742/*
743 * Call the read method
744 */
745static long __keyctl_read_key(struct key *key, char *buffer, size_t buflen)
746{
747 long ret;
748
749 down_read(&key->sem);
750 ret = key_validate(key);
751 if (ret == 0)
752 ret = key->type->read(key, buffer, buflen);
753 up_read(&key->sem);
754 return ret;
755}
756
757/*
758 * Read a key's payload.
759 *
760 * The key must either grant the caller Read permission, or it must grant the
761 * caller Search permission when searched for from the process keyrings.
762 *
763 * If successful, we place up to buflen bytes of data into the buffer, if one
764 * is provided, and return the amount of data that is available in the key,
765 * irrespective of how much we copied into the buffer.
766 */
767long keyctl_read_key(key_serial_t keyid, char __user *buffer, size_t buflen)
768{
769 struct key *key;
770 key_ref_t key_ref;
771 long ret;
772 char *key_data = NULL;
773 size_t key_data_len;
774
775 /* find the key first */
776 key_ref = lookup_user_key(keyid, 0, 0);
777 if (IS_ERR(key_ref)) {
778 ret = -ENOKEY;
779 goto out;
780 }
781
782 key = key_ref_to_ptr(key_ref);
783
784 ret = key_read_state(key);
785 if (ret < 0)
786 goto key_put_out; /* Negatively instantiated */
787
788 /* see if we can read it directly */
789 ret = key_permission(key_ref, KEY_NEED_READ);
790 if (ret == 0)
791 goto can_read_key;
792 if (ret != -EACCES)
793 goto key_put_out;
794
795 /* we can't; see if it's searchable from this process's keyrings
796 * - we automatically take account of the fact that it may be
797 * dangling off an instantiation key
798 */
799 if (!is_key_possessed(key_ref)) {
800 ret = -EACCES;
801 goto key_put_out;
802 }
803
804 /* the key is probably readable - now try to read it */
805can_read_key:
806 if (!key->type->read) {
807 ret = -EOPNOTSUPP;
808 goto key_put_out;
809 }
810
811 if (!buffer || !buflen) {
812 /* Get the key length from the read method */
813 ret = __keyctl_read_key(key, NULL, 0);
814 goto key_put_out;
815 }
816
817 /*
818 * Read the data with the semaphore held (since we might sleep)
819 * to protect against the key being updated or revoked.
820 *
821 * Allocating a temporary buffer to hold the keys before
822 * transferring them to user buffer to avoid potential
823 * deadlock involving page fault and mmap_sem.
824 *
825 * key_data_len = (buflen <= PAGE_SIZE)
826 * ? buflen : actual length of key data
827 *
828 * This prevents allocating arbitrary large buffer which can
829 * be much larger than the actual key length. In the latter case,
830 * at least 2 passes of this loop is required.
831 */
832 key_data_len = (buflen <= PAGE_SIZE) ? buflen : 0;
833 for (;;) {
834 if (key_data_len) {
835 key_data = kvmalloc(key_data_len, GFP_KERNEL);
836 if (!key_data) {
837 ret = -ENOMEM;
838 goto key_put_out;
839 }
840 }
841
842 ret = __keyctl_read_key(key, key_data, key_data_len);
843
844 /*
845 * Read methods will just return the required length without
846 * any copying if the provided length isn't large enough.
847 */
848 if (ret <= 0 || ret > buflen)
849 break;
850
851 /*
852 * The key may change (unlikely) in between 2 consecutive
853 * __keyctl_read_key() calls. In this case, we reallocate
854 * a larger buffer and redo the key read when
855 * key_data_len < ret <= buflen.
856 */
857 if (ret > key_data_len) {
858 if (unlikely(key_data))
859 kvfree_sensitive(key_data, key_data_len);
860 key_data_len = ret;
861 continue; /* Allocate buffer */
862 }
863
864 if (copy_to_user(buffer, key_data, ret))
865 ret = -EFAULT;
866 break;
867 }
868 kvfree_sensitive(key_data, key_data_len);
869
870key_put_out:
871 key_put(key);
872out:
873 return ret;
874}
875
876/*
877 * Change the ownership of a key
878 *
879 * The key must grant the caller Setattr permission for this to work, though
880 * the key need not be fully instantiated yet. For the UID to be changed, or
881 * for the GID to be changed to a group the caller is not a member of, the
882 * caller must have sysadmin capability. If either uid or gid is -1 then that
883 * attribute is not changed.
884 *
885 * If the UID is to be changed, the new user must have sufficient quota to
886 * accept the key. The quota deduction will be removed from the old user to
887 * the new user should the attribute be changed.
888 *
889 * If successful, 0 will be returned.
890 */
891long keyctl_chown_key(key_serial_t id, uid_t user, gid_t group)
892{
893 struct key_user *newowner, *zapowner = NULL;
894 struct key *key;
895 key_ref_t key_ref;
896 long ret;
897 kuid_t uid;
898 kgid_t gid;
899
900 uid = make_kuid(current_user_ns(), user);
901 gid = make_kgid(current_user_ns(), group);
902 ret = -EINVAL;
903 if ((user != (uid_t) -1) && !uid_valid(uid))
904 goto error;
905 if ((group != (gid_t) -1) && !gid_valid(gid))
906 goto error;
907
908 ret = 0;
909 if (user == (uid_t) -1 && group == (gid_t) -1)
910 goto error;
911
912 key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE | KEY_LOOKUP_PARTIAL,
913 KEY_NEED_SETATTR);
914 if (IS_ERR(key_ref)) {
915 ret = PTR_ERR(key_ref);
916 goto error;
917 }
918
919 key = key_ref_to_ptr(key_ref);
920
921 /* make the changes with the locks held to prevent chown/chown races */
922 ret = -EACCES;
923 down_write(&key->sem);
924
925 if (!capable(CAP_SYS_ADMIN)) {
926 /* only the sysadmin can chown a key to some other UID */
927 if (user != (uid_t) -1 && !uid_eq(key->uid, uid))
928 goto error_put;
929
930 /* only the sysadmin can set the key's GID to a group other
931 * than one of those that the current process subscribes to */
932 if (group != (gid_t) -1 && !gid_eq(gid, key->gid) && !in_group_p(gid))
933 goto error_put;
934 }
935
936 /* change the UID */
937 if (user != (uid_t) -1 && !uid_eq(uid, key->uid)) {
938 ret = -ENOMEM;
939 newowner = key_user_lookup(uid);
940 if (!newowner)
941 goto error_put;
942
943 /* transfer the quota burden to the new user */
944 if (test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
945 unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
946 key_quota_root_maxkeys : key_quota_maxkeys;
947 unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
948 key_quota_root_maxbytes : key_quota_maxbytes;
949
950 spin_lock(&newowner->lock);
951 if (newowner->qnkeys + 1 > maxkeys ||
952 newowner->qnbytes + key->quotalen > maxbytes ||
953 newowner->qnbytes + key->quotalen <
954 newowner->qnbytes)
955 goto quota_overrun;
956
957 newowner->qnkeys++;
958 newowner->qnbytes += key->quotalen;
959 spin_unlock(&newowner->lock);
960
961 spin_lock(&key->user->lock);
962 key->user->qnkeys--;
963 key->user->qnbytes -= key->quotalen;
964 spin_unlock(&key->user->lock);
965 }
966
967 atomic_dec(&key->user->nkeys);
968 atomic_inc(&newowner->nkeys);
969
970 if (key->state != KEY_IS_UNINSTANTIATED) {
971 atomic_dec(&key->user->nikeys);
972 atomic_inc(&newowner->nikeys);
973 }
974
975 zapowner = key->user;
976 key->user = newowner;
977 key->uid = uid;
978 }
979
980 /* change the GID */
981 if (group != (gid_t) -1)
982 key->gid = gid;
983
984 ret = 0;
985
986error_put:
987 up_write(&key->sem);
988 key_put(key);
989 if (zapowner)
990 key_user_put(zapowner);
991error:
992 return ret;
993
994quota_overrun:
995 spin_unlock(&newowner->lock);
996 zapowner = newowner;
997 ret = -EDQUOT;
998 goto error_put;
999}
1000
1001/*
1002 * Change the permission mask on a key.
1003 *
1004 * The key must grant the caller Setattr permission for this to work, though
1005 * the key need not be fully instantiated yet. If the caller does not have
1006 * sysadmin capability, it may only change the permission on keys that it owns.
1007 */
1008long keyctl_setperm_key(key_serial_t id, key_perm_t perm)
1009{
1010 struct key *key;
1011 key_ref_t key_ref;
1012 long ret;
1013
1014 ret = -EINVAL;
1015 if (perm & ~(KEY_POS_ALL | KEY_USR_ALL | KEY_GRP_ALL | KEY_OTH_ALL))
1016 goto error;
1017
1018 key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE | KEY_LOOKUP_PARTIAL,
1019 KEY_NEED_SETATTR);
1020 if (IS_ERR(key_ref)) {
1021 ret = PTR_ERR(key_ref);
1022 goto error;
1023 }
1024
1025 key = key_ref_to_ptr(key_ref);
1026
1027 /* make the changes with the locks held to prevent chown/chmod races */
1028 ret = -EACCES;
1029 down_write(&key->sem);
1030
1031 /* if we're not the sysadmin, we can only change a key that we own */
1032 if (capable(CAP_SYS_ADMIN) || uid_eq(key->uid, current_fsuid())) {
1033 key->perm = perm;
1034 ret = 0;
1035 }
1036
1037 up_write(&key->sem);
1038 key_put(key);
1039error:
1040 return ret;
1041}
1042
1043/*
1044 * Get the destination keyring for instantiation and check that the caller has
1045 * Write permission on it.
1046 */
1047static long get_instantiation_keyring(key_serial_t ringid,
1048 struct request_key_auth *rka,
1049 struct key **_dest_keyring)
1050{
1051 key_ref_t dkref;
1052
1053 *_dest_keyring = NULL;
1054
1055 /* just return a NULL pointer if we weren't asked to make a link */
1056 if (ringid == 0)
1057 return 0;
1058
1059 /* if a specific keyring is nominated by ID, then use that */
1060 if (ringid > 0) {
1061 dkref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
1062 if (IS_ERR(dkref))
1063 return PTR_ERR(dkref);
1064 *_dest_keyring = key_ref_to_ptr(dkref);
1065 return 0;
1066 }
1067
1068 if (ringid == KEY_SPEC_REQKEY_AUTH_KEY)
1069 return -EINVAL;
1070
1071 /* otherwise specify the destination keyring recorded in the
1072 * authorisation key (any KEY_SPEC_*_KEYRING) */
1073 if (ringid >= KEY_SPEC_REQUESTOR_KEYRING) {
1074 *_dest_keyring = key_get(rka->dest_keyring);
1075 return 0;
1076 }
1077
1078 return -ENOKEY;
1079}
1080
1081/*
1082 * Change the request_key authorisation key on the current process.
1083 */
1084static int keyctl_change_reqkey_auth(struct key *key)
1085{
1086 struct cred *new;
1087
1088 new = prepare_creds();
1089 if (!new)
1090 return -ENOMEM;
1091
1092 key_put(new->request_key_auth);
1093 new->request_key_auth = key_get(key);
1094
1095 return commit_creds(new);
1096}
1097
1098/*
1099 * Instantiate a key with the specified payload and link the key into the
1100 * destination keyring if one is given.
1101 *
1102 * The caller must have the appropriate instantiation permit set for this to
1103 * work (see keyctl_assume_authority). No other permissions are required.
1104 *
1105 * If successful, 0 will be returned.
1106 */
1107long keyctl_instantiate_key_common(key_serial_t id,
1108 struct iov_iter *from,
1109 key_serial_t ringid)
1110{
1111 const struct cred *cred = current_cred();
1112 struct request_key_auth *rka;
1113 struct key *instkey, *dest_keyring;
1114 size_t plen = from ? iov_iter_count(from) : 0;
1115 void *payload;
1116 long ret;
1117
1118 kenter("%d,,%zu,%d", id, plen, ringid);
1119
1120 if (!plen)
1121 from = NULL;
1122
1123 ret = -EINVAL;
1124 if (plen > 1024 * 1024 - 1)
1125 goto error;
1126
1127 /* the appropriate instantiation authorisation key must have been
1128 * assumed before calling this */
1129 ret = -EPERM;
1130 instkey = cred->request_key_auth;
1131 if (!instkey)
1132 goto error;
1133
1134 rka = instkey->payload.data[0];
1135 if (rka->target_key->serial != id)
1136 goto error;
1137
1138 /* pull the payload in if one was supplied */
1139 payload = NULL;
1140
1141 if (from) {
1142 ret = -ENOMEM;
1143 payload = kvmalloc(plen, GFP_KERNEL);
1144 if (!payload)
1145 goto error;
1146
1147 ret = -EFAULT;
1148 if (!copy_from_iter_full(payload, plen, from))
1149 goto error2;
1150 }
1151
1152 /* find the destination keyring amongst those belonging to the
1153 * requesting task */
1154 ret = get_instantiation_keyring(ringid, rka, &dest_keyring);
1155 if (ret < 0)
1156 goto error2;
1157
1158 /* instantiate the key and link it into a keyring */
1159 ret = key_instantiate_and_link(rka->target_key, payload, plen,
1160 dest_keyring, instkey);
1161
1162 key_put(dest_keyring);
1163
1164 /* discard the assumed authority if it's just been disabled by
1165 * instantiation of the key */
1166 if (ret == 0)
1167 keyctl_change_reqkey_auth(NULL);
1168
1169error2:
1170 kvfree_sensitive(payload, plen);
1171error:
1172 return ret;
1173}
1174
1175/*
1176 * Instantiate a key with the specified payload and link the key into the
1177 * destination keyring if one is given.
1178 *
1179 * The caller must have the appropriate instantiation permit set for this to
1180 * work (see keyctl_assume_authority). No other permissions are required.
1181 *
1182 * If successful, 0 will be returned.
1183 */
1184long keyctl_instantiate_key(key_serial_t id,
1185 const void __user *_payload,
1186 size_t plen,
1187 key_serial_t ringid)
1188{
1189 if (_payload && plen) {
1190 struct iovec iov;
1191 struct iov_iter from;
1192 int ret;
1193
1194 ret = import_single_range(WRITE, (void __user *)_payload, plen,
1195 &iov, &from);
1196 if (unlikely(ret))
1197 return ret;
1198
1199 return keyctl_instantiate_key_common(id, &from, ringid);
1200 }
1201
1202 return keyctl_instantiate_key_common(id, NULL, ringid);
1203}
1204
1205/*
1206 * Instantiate a key with the specified multipart payload and link the key into
1207 * the destination keyring if one is given.
1208 *
1209 * The caller must have the appropriate instantiation permit set for this to
1210 * work (see keyctl_assume_authority). No other permissions are required.
1211 *
1212 * If successful, 0 will be returned.
1213 */
1214long keyctl_instantiate_key_iov(key_serial_t id,
1215 const struct iovec __user *_payload_iov,
1216 unsigned ioc,
1217 key_serial_t ringid)
1218{
1219 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1220 struct iov_iter from;
1221 long ret;
1222
1223 if (!_payload_iov)
1224 ioc = 0;
1225
1226 ret = import_iovec(WRITE, _payload_iov, ioc,
1227 ARRAY_SIZE(iovstack), &iov, &from);
1228 if (ret < 0)
1229 return ret;
1230 ret = keyctl_instantiate_key_common(id, &from, ringid);
1231 kfree(iov);
1232 return ret;
1233}
1234
1235/*
1236 * Negatively instantiate the key with the given timeout (in seconds) and link
1237 * the key into the destination keyring if one is given.
1238 *
1239 * The caller must have the appropriate instantiation permit set for this to
1240 * work (see keyctl_assume_authority). No other permissions are required.
1241 *
1242 * The key and any links to the key will be automatically garbage collected
1243 * after the timeout expires.
1244 *
1245 * Negative keys are used to rate limit repeated request_key() calls by causing
1246 * them to return -ENOKEY until the negative key expires.
1247 *
1248 * If successful, 0 will be returned.
1249 */
1250long keyctl_negate_key(key_serial_t id, unsigned timeout, key_serial_t ringid)
1251{
1252 return keyctl_reject_key(id, timeout, ENOKEY, ringid);
1253}
1254
1255/*
1256 * Negatively instantiate the key with the given timeout (in seconds) and error
1257 * code and link the key into the destination keyring if one is given.
1258 *
1259 * The caller must have the appropriate instantiation permit set for this to
1260 * work (see keyctl_assume_authority). No other permissions are required.
1261 *
1262 * The key and any links to the key will be automatically garbage collected
1263 * after the timeout expires.
1264 *
1265 * Negative keys are used to rate limit repeated request_key() calls by causing
1266 * them to return the specified error code until the negative key expires.
1267 *
1268 * If successful, 0 will be returned.
1269 */
1270long keyctl_reject_key(key_serial_t id, unsigned timeout, unsigned error,
1271 key_serial_t ringid)
1272{
1273 const struct cred *cred = current_cred();
1274 struct request_key_auth *rka;
1275 struct key *instkey, *dest_keyring;
1276 long ret;
1277
1278 kenter("%d,%u,%u,%d", id, timeout, error, ringid);
1279
1280 /* must be a valid error code and mustn't be a kernel special */
1281 if (error <= 0 ||
1282 error >= MAX_ERRNO ||
1283 error == ERESTARTSYS ||
1284 error == ERESTARTNOINTR ||
1285 error == ERESTARTNOHAND ||
1286 error == ERESTART_RESTARTBLOCK)
1287 return -EINVAL;
1288
1289 /* the appropriate instantiation authorisation key must have been
1290 * assumed before calling this */
1291 ret = -EPERM;
1292 instkey = cred->request_key_auth;
1293 if (!instkey)
1294 goto error;
1295
1296 rka = instkey->payload.data[0];
1297 if (rka->target_key->serial != id)
1298 goto error;
1299
1300 /* find the destination keyring if present (which must also be
1301 * writable) */
1302 ret = get_instantiation_keyring(ringid, rka, &dest_keyring);
1303 if (ret < 0)
1304 goto error;
1305
1306 /* instantiate the key and link it into a keyring */
1307 ret = key_reject_and_link(rka->target_key, timeout, error,
1308 dest_keyring, instkey);
1309
1310 key_put(dest_keyring);
1311
1312 /* discard the assumed authority if it's just been disabled by
1313 * instantiation of the key */
1314 if (ret == 0)
1315 keyctl_change_reqkey_auth(NULL);
1316
1317error:
1318 return ret;
1319}
1320
1321/*
1322 * Read or set the default keyring in which request_key() will cache keys and
1323 * return the old setting.
1324 *
1325 * If a thread or process keyring is specified then it will be created if it
1326 * doesn't yet exist. The old setting will be returned if successful.
1327 */
1328long keyctl_set_reqkey_keyring(int reqkey_defl)
1329{
1330 struct cred *new;
1331 int ret, old_setting;
1332
1333 old_setting = current_cred_xxx(jit_keyring);
1334
1335 if (reqkey_defl == KEY_REQKEY_DEFL_NO_CHANGE)
1336 return old_setting;
1337
1338 new = prepare_creds();
1339 if (!new)
1340 return -ENOMEM;
1341
1342 switch (reqkey_defl) {
1343 case KEY_REQKEY_DEFL_THREAD_KEYRING:
1344 ret = install_thread_keyring_to_cred(new);
1345 if (ret < 0)
1346 goto error;
1347 goto set;
1348
1349 case KEY_REQKEY_DEFL_PROCESS_KEYRING:
1350 ret = install_process_keyring_to_cred(new);
1351 if (ret < 0)
1352 goto error;
1353 goto set;
1354
1355 case KEY_REQKEY_DEFL_DEFAULT:
1356 case KEY_REQKEY_DEFL_SESSION_KEYRING:
1357 case KEY_REQKEY_DEFL_USER_KEYRING:
1358 case KEY_REQKEY_DEFL_USER_SESSION_KEYRING:
1359 case KEY_REQKEY_DEFL_REQUESTOR_KEYRING:
1360 goto set;
1361
1362 case KEY_REQKEY_DEFL_NO_CHANGE:
1363 case KEY_REQKEY_DEFL_GROUP_KEYRING:
1364 default:
1365 ret = -EINVAL;
1366 goto error;
1367 }
1368
1369set:
1370 new->jit_keyring = reqkey_defl;
1371 commit_creds(new);
1372 return old_setting;
1373error:
1374 abort_creds(new);
1375 return ret;
1376}
1377
1378/*
1379 * Set or clear the timeout on a key.
1380 *
1381 * Either the key must grant the caller Setattr permission or else the caller
1382 * must hold an instantiation authorisation token for the key.
1383 *
1384 * The timeout is either 0 to clear the timeout, or a number of seconds from
1385 * the current time. The key and any links to the key will be automatically
1386 * garbage collected after the timeout expires.
1387 *
1388 * Keys with KEY_FLAG_KEEP set should not be timed out.
1389 *
1390 * If successful, 0 is returned.
1391 */
1392long keyctl_set_timeout(key_serial_t id, unsigned timeout)
1393{
1394 struct key *key, *instkey;
1395 key_ref_t key_ref;
1396 long ret;
1397
1398 key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE | KEY_LOOKUP_PARTIAL,
1399 KEY_NEED_SETATTR);
1400 if (IS_ERR(key_ref)) {
1401 /* setting the timeout on a key under construction is permitted
1402 * if we have the authorisation token handy */
1403 if (PTR_ERR(key_ref) == -EACCES) {
1404 instkey = key_get_instantiation_authkey(id);
1405 if (!IS_ERR(instkey)) {
1406 key_put(instkey);
1407 key_ref = lookup_user_key(id,
1408 KEY_LOOKUP_PARTIAL,
1409 0);
1410 if (!IS_ERR(key_ref))
1411 goto okay;
1412 }
1413 }
1414
1415 ret = PTR_ERR(key_ref);
1416 goto error;
1417 }
1418
1419okay:
1420 key = key_ref_to_ptr(key_ref);
1421 ret = 0;
1422 if (test_bit(KEY_FLAG_KEEP, &key->flags))
1423 ret = -EPERM;
1424 else
1425 key_set_timeout(key, timeout);
1426 key_put(key);
1427
1428error:
1429 return ret;
1430}
1431
1432/*
1433 * Assume (or clear) the authority to instantiate the specified key.
1434 *
1435 * This sets the authoritative token currently in force for key instantiation.
1436 * This must be done for a key to be instantiated. It has the effect of making
1437 * available all the keys from the caller of the request_key() that created a
1438 * key to request_key() calls made by the caller of this function.
1439 *
1440 * The caller must have the instantiation key in their process keyrings with a
1441 * Search permission grant available to the caller.
1442 *
1443 * If the ID given is 0, then the setting will be cleared and 0 returned.
1444 *
1445 * If the ID given has a matching an authorisation key, then that key will be
1446 * set and its ID will be returned. The authorisation key can be read to get
1447 * the callout information passed to request_key().
1448 */
1449long keyctl_assume_authority(key_serial_t id)
1450{
1451 struct key *authkey;
1452 long ret;
1453
1454 /* special key IDs aren't permitted */
1455 ret = -EINVAL;
1456 if (id < 0)
1457 goto error;
1458
1459 /* we divest ourselves of authority if given an ID of 0 */
1460 if (id == 0) {
1461 ret = keyctl_change_reqkey_auth(NULL);
1462 goto error;
1463 }
1464
1465 /* attempt to assume the authority temporarily granted to us whilst we
1466 * instantiate the specified key
1467 * - the authorisation key must be in the current task's keyrings
1468 * somewhere
1469 */
1470 authkey = key_get_instantiation_authkey(id);
1471 if (IS_ERR(authkey)) {
1472 ret = PTR_ERR(authkey);
1473 goto error;
1474 }
1475
1476 ret = keyctl_change_reqkey_auth(authkey);
1477 if (ret == 0)
1478 ret = authkey->serial;
1479 key_put(authkey);
1480error:
1481 return ret;
1482}
1483
1484/*
1485 * Get a key's the LSM security label.
1486 *
1487 * The key must grant the caller View permission for this to work.
1488 *
1489 * If there's a buffer, then up to buflen bytes of data will be placed into it.
1490 *
1491 * If successful, the amount of information available will be returned,
1492 * irrespective of how much was copied (including the terminal NUL).
1493 */
1494long keyctl_get_security(key_serial_t keyid,
1495 char __user *buffer,
1496 size_t buflen)
1497{
1498 struct key *key, *instkey;
1499 key_ref_t key_ref;
1500 char *context;
1501 long ret;
1502
1503 key_ref = lookup_user_key(keyid, KEY_LOOKUP_PARTIAL, KEY_NEED_VIEW);
1504 if (IS_ERR(key_ref)) {
1505 if (PTR_ERR(key_ref) != -EACCES)
1506 return PTR_ERR(key_ref);
1507
1508 /* viewing a key under construction is also permitted if we
1509 * have the authorisation token handy */
1510 instkey = key_get_instantiation_authkey(keyid);
1511 if (IS_ERR(instkey))
1512 return PTR_ERR(instkey);
1513 key_put(instkey);
1514
1515 key_ref = lookup_user_key(keyid, KEY_LOOKUP_PARTIAL, 0);
1516 if (IS_ERR(key_ref))
1517 return PTR_ERR(key_ref);
1518 }
1519
1520 key = key_ref_to_ptr(key_ref);
1521 ret = security_key_getsecurity(key, &context);
1522 if (ret == 0) {
1523 /* if no information was returned, give userspace an empty
1524 * string */
1525 ret = 1;
1526 if (buffer && buflen > 0 &&
1527 copy_to_user(buffer, "", 1) != 0)
1528 ret = -EFAULT;
1529 } else if (ret > 0) {
1530 /* return as much data as there's room for */
1531 if (buffer && buflen > 0) {
1532 if (buflen > ret)
1533 buflen = ret;
1534
1535 if (copy_to_user(buffer, context, buflen) != 0)
1536 ret = -EFAULT;
1537 }
1538
1539 kfree(context);
1540 }
1541
1542 key_ref_put(key_ref);
1543 return ret;
1544}
1545
1546/*
1547 * Attempt to install the calling process's session keyring on the process's
1548 * parent process.
1549 *
1550 * The keyring must exist and must grant the caller LINK permission, and the
1551 * parent process must be single-threaded and must have the same effective
1552 * ownership as this process and mustn't be SUID/SGID.
1553 *
1554 * The keyring will be emplaced on the parent when it next resumes userspace.
1555 *
1556 * If successful, 0 will be returned.
1557 */
1558long keyctl_session_to_parent(void)
1559{
1560 struct task_struct *me, *parent;
1561 const struct cred *mycred, *pcred;
1562 struct callback_head *newwork, *oldwork;
1563 key_ref_t keyring_r;
1564 struct cred *cred;
1565 int ret;
1566
1567 keyring_r = lookup_user_key(KEY_SPEC_SESSION_KEYRING, 0, KEY_NEED_LINK);
1568 if (IS_ERR(keyring_r))
1569 return PTR_ERR(keyring_r);
1570
1571 ret = -ENOMEM;
1572
1573 /* our parent is going to need a new cred struct, a new tgcred struct
1574 * and new security data, so we allocate them here to prevent ENOMEM in
1575 * our parent */
1576 cred = cred_alloc_blank();
1577 if (!cred)
1578 goto error_keyring;
1579 newwork = &cred->rcu;
1580
1581 cred->session_keyring = key_ref_to_ptr(keyring_r);
1582 keyring_r = NULL;
1583 init_task_work(newwork, key_change_session_keyring);
1584
1585 me = current;
1586 rcu_read_lock();
1587 write_lock_irq(&tasklist_lock);
1588
1589 ret = -EPERM;
1590 oldwork = NULL;
1591 parent = me->real_parent;
1592
1593 /* the parent mustn't be init and mustn't be a kernel thread */
1594 if (parent->pid <= 1 || !parent->mm)
1595 goto unlock;
1596
1597 /* the parent must be single threaded */
1598 if (!thread_group_empty(parent))
1599 goto unlock;
1600
1601 /* the parent and the child must have different session keyrings or
1602 * there's no point */
1603 mycred = current_cred();
1604 pcred = __task_cred(parent);
1605 if (mycred == pcred ||
1606 mycred->session_keyring == pcred->session_keyring) {
1607 ret = 0;
1608 goto unlock;
1609 }
1610
1611 /* the parent must have the same effective ownership and mustn't be
1612 * SUID/SGID */
1613 if (!uid_eq(pcred->uid, mycred->euid) ||
1614 !uid_eq(pcred->euid, mycred->euid) ||
1615 !uid_eq(pcred->suid, mycred->euid) ||
1616 !gid_eq(pcred->gid, mycred->egid) ||
1617 !gid_eq(pcred->egid, mycred->egid) ||
1618 !gid_eq(pcred->sgid, mycred->egid))
1619 goto unlock;
1620
1621 /* the keyrings must have the same UID */
1622 if ((pcred->session_keyring &&
1623 !uid_eq(pcred->session_keyring->uid, mycred->euid)) ||
1624 !uid_eq(mycred->session_keyring->uid, mycred->euid))
1625 goto unlock;
1626
1627 /* cancel an already pending keyring replacement */
1628 oldwork = task_work_cancel(parent, key_change_session_keyring);
1629
1630 /* the replacement session keyring is applied just prior to userspace
1631 * restarting */
1632 ret = task_work_add(parent, newwork, true);
1633 if (!ret)
1634 newwork = NULL;
1635unlock:
1636 write_unlock_irq(&tasklist_lock);
1637 rcu_read_unlock();
1638 if (oldwork)
1639 put_cred(container_of(oldwork, struct cred, rcu));
1640 if (newwork)
1641 put_cred(cred);
1642 return ret;
1643
1644error_keyring:
1645 key_ref_put(keyring_r);
1646 return ret;
1647}
1648
1649/*
1650 * Apply a restriction to a given keyring.
1651 *
1652 * The caller must have Setattr permission to change keyring restrictions.
1653 *
1654 * The requested type name may be a NULL pointer to reject all attempts
1655 * to link to the keyring. In this case, _restriction must also be NULL.
1656 * Otherwise, both _type and _restriction must be non-NULL.
1657 *
1658 * Returns 0 if successful.
1659 */
1660long keyctl_restrict_keyring(key_serial_t id, const char __user *_type,
1661 const char __user *_restriction)
1662{
1663 key_ref_t key_ref;
1664 char type[32];
1665 char *restriction = NULL;
1666 long ret;
1667
1668 key_ref = lookup_user_key(id, 0, KEY_NEED_SETATTR);
1669 if (IS_ERR(key_ref))
1670 return PTR_ERR(key_ref);
1671
1672 ret = -EINVAL;
1673 if (_type) {
1674 if (!_restriction)
1675 goto error;
1676
1677 ret = key_get_type_from_user(type, _type, sizeof(type));
1678 if (ret < 0)
1679 goto error;
1680
1681 restriction = strndup_user(_restriction, PAGE_SIZE);
1682 if (IS_ERR(restriction)) {
1683 ret = PTR_ERR(restriction);
1684 goto error;
1685 }
1686 } else {
1687 if (_restriction)
1688 goto error;
1689 }
1690
1691 ret = keyring_restrict(key_ref, _type ? type : NULL, restriction);
1692 kfree(restriction);
1693error:
1694 key_ref_put(key_ref);
1695 return ret;
1696}
1697
1698/*
1699 * The key control system call
1700 */
1701SYSCALL_DEFINE5(keyctl, int, option, unsigned long, arg2, unsigned long, arg3,
1702 unsigned long, arg4, unsigned long, arg5)
1703{
1704 switch (option) {
1705 case KEYCTL_GET_KEYRING_ID:
1706 return keyctl_get_keyring_ID((key_serial_t) arg2,
1707 (int) arg3);
1708
1709 case KEYCTL_JOIN_SESSION_KEYRING:
1710 return keyctl_join_session_keyring((const char __user *) arg2);
1711
1712 case KEYCTL_UPDATE:
1713 return keyctl_update_key((key_serial_t) arg2,
1714 (const void __user *) arg3,
1715 (size_t) arg4);
1716
1717 case KEYCTL_REVOKE:
1718 return keyctl_revoke_key((key_serial_t) arg2);
1719
1720 case KEYCTL_DESCRIBE:
1721 return keyctl_describe_key((key_serial_t) arg2,
1722 (char __user *) arg3,
1723 (unsigned) arg4);
1724
1725 case KEYCTL_CLEAR:
1726 return keyctl_keyring_clear((key_serial_t) arg2);
1727
1728 case KEYCTL_LINK:
1729 return keyctl_keyring_link((key_serial_t) arg2,
1730 (key_serial_t) arg3);
1731
1732 case KEYCTL_UNLINK:
1733 return keyctl_keyring_unlink((key_serial_t) arg2,
1734 (key_serial_t) arg3);
1735
1736 case KEYCTL_SEARCH:
1737 return keyctl_keyring_search((key_serial_t) arg2,
1738 (const char __user *) arg3,
1739 (const char __user *) arg4,
1740 (key_serial_t) arg5);
1741
1742 case KEYCTL_READ:
1743 return keyctl_read_key((key_serial_t) arg2,
1744 (char __user *) arg3,
1745 (size_t) arg4);
1746
1747 case KEYCTL_CHOWN:
1748 return keyctl_chown_key((key_serial_t) arg2,
1749 (uid_t) arg3,
1750 (gid_t) arg4);
1751
1752 case KEYCTL_SETPERM:
1753 return keyctl_setperm_key((key_serial_t) arg2,
1754 (key_perm_t) arg3);
1755
1756 case KEYCTL_INSTANTIATE:
1757 return keyctl_instantiate_key((key_serial_t) arg2,
1758 (const void __user *) arg3,
1759 (size_t) arg4,
1760 (key_serial_t) arg5);
1761
1762 case KEYCTL_NEGATE:
1763 return keyctl_negate_key((key_serial_t) arg2,
1764 (unsigned) arg3,
1765 (key_serial_t) arg4);
1766
1767 case KEYCTL_SET_REQKEY_KEYRING:
1768 return keyctl_set_reqkey_keyring(arg2);
1769
1770 case KEYCTL_SET_TIMEOUT:
1771 return keyctl_set_timeout((key_serial_t) arg2,
1772 (unsigned) arg3);
1773
1774 case KEYCTL_ASSUME_AUTHORITY:
1775 return keyctl_assume_authority((key_serial_t) arg2);
1776
1777 case KEYCTL_GET_SECURITY:
1778 return keyctl_get_security((key_serial_t) arg2,
1779 (char __user *) arg3,
1780 (size_t) arg4);
1781
1782 case KEYCTL_SESSION_TO_PARENT:
1783 return keyctl_session_to_parent();
1784
1785 case KEYCTL_REJECT:
1786 return keyctl_reject_key((key_serial_t) arg2,
1787 (unsigned) arg3,
1788 (unsigned) arg4,
1789 (key_serial_t) arg5);
1790
1791 case KEYCTL_INSTANTIATE_IOV:
1792 return keyctl_instantiate_key_iov(
1793 (key_serial_t) arg2,
1794 (const struct iovec __user *) arg3,
1795 (unsigned) arg4,
1796 (key_serial_t) arg5);
1797
1798 case KEYCTL_INVALIDATE:
1799 return keyctl_invalidate_key((key_serial_t) arg2);
1800
1801 case KEYCTL_GET_PERSISTENT:
1802 return keyctl_get_persistent((uid_t)arg2, (key_serial_t)arg3);
1803
1804 case KEYCTL_DH_COMPUTE:
1805 return keyctl_dh_compute((struct keyctl_dh_params __user *) arg2,
1806 (char __user *) arg3, (size_t) arg4,
1807 (struct keyctl_kdf_params __user *) arg5);
1808
1809 case KEYCTL_RESTRICT_KEYRING:
1810 return keyctl_restrict_keyring((key_serial_t) arg2,
1811 (const char __user *) arg3,
1812 (const char __user *) arg4);
1813
1814 default:
1815 return -EOPNOTSUPP;
1816 }
1817}