blob: f7cf371bcd2a8588f56e059ba6ab548c9d60063b [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/* Keyring handling
2 *
3 * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/sched.h>
15#include <linux/slab.h>
16#include <linux/security.h>
17#include <linux/seq_file.h>
18#include <linux/err.h>
19#include <keys/keyring-type.h>
20#include <keys/user-type.h>
21#include <linux/assoc_array_priv.h>
22#include <linux/uaccess.h>
23#include "internal.h"
24
25/*
26 * When plumbing the depths of the key tree, this sets a hard limit
27 * set on how deep we're willing to go.
28 */
29#define KEYRING_SEARCH_MAX_DEPTH 6
30
31/*
32 * We keep all named keyrings in a hash to speed looking them up.
33 */
34#define KEYRING_NAME_HASH_SIZE (1 << 5)
35
36/*
37 * We mark pointers we pass to the associative array with bit 1 set if
38 * they're keyrings and clear otherwise.
39 */
40#define KEYRING_PTR_SUBTYPE 0x2UL
41
42static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
43{
44 return (unsigned long)x & KEYRING_PTR_SUBTYPE;
45}
46static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
47{
48 void *object = assoc_array_ptr_to_leaf(x);
49 return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
50}
51static inline void *keyring_key_to_ptr(struct key *key)
52{
53 if (key->type == &key_type_keyring)
54 return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
55 return key;
56}
57
58static struct list_head keyring_name_hash[KEYRING_NAME_HASH_SIZE];
59static DEFINE_RWLOCK(keyring_name_lock);
60
61static inline unsigned keyring_hash(const char *desc)
62{
63 unsigned bucket = 0;
64
65 for (; *desc; desc++)
66 bucket += (unsigned char)*desc;
67
68 return bucket & (KEYRING_NAME_HASH_SIZE - 1);
69}
70
71/*
72 * The keyring key type definition. Keyrings are simply keys of this type and
73 * can be treated as ordinary keys in addition to having their own special
74 * operations.
75 */
76static int keyring_preparse(struct key_preparsed_payload *prep);
77static void keyring_free_preparse(struct key_preparsed_payload *prep);
78static int keyring_instantiate(struct key *keyring,
79 struct key_preparsed_payload *prep);
80static void keyring_revoke(struct key *keyring);
81static void keyring_destroy(struct key *keyring);
82static void keyring_describe(const struct key *keyring, struct seq_file *m);
83static long keyring_read(const struct key *keyring,
84 char __user *buffer, size_t buflen);
85
86struct key_type key_type_keyring = {
87 .name = "keyring",
88 .def_datalen = 0,
89 .preparse = keyring_preparse,
90 .free_preparse = keyring_free_preparse,
91 .instantiate = keyring_instantiate,
92 .revoke = keyring_revoke,
93 .destroy = keyring_destroy,
94 .describe = keyring_describe,
95 .read = keyring_read,
96};
97EXPORT_SYMBOL(key_type_keyring);
98
99/*
100 * Semaphore to serialise link/link calls to prevent two link calls in parallel
101 * introducing a cycle.
102 */
103static DECLARE_RWSEM(keyring_serialise_link_sem);
104
105/*
106 * Publish the name of a keyring so that it can be found by name (if it has
107 * one).
108 */
109static void keyring_publish_name(struct key *keyring)
110{
111 int bucket;
112
113 if (keyring->description) {
114 bucket = keyring_hash(keyring->description);
115
116 write_lock(&keyring_name_lock);
117
118 if (!keyring_name_hash[bucket].next)
119 INIT_LIST_HEAD(&keyring_name_hash[bucket]);
120
121 list_add_tail(&keyring->name_link,
122 &keyring_name_hash[bucket]);
123
124 write_unlock(&keyring_name_lock);
125 }
126}
127
128/*
129 * Preparse a keyring payload
130 */
131static int keyring_preparse(struct key_preparsed_payload *prep)
132{
133 return prep->datalen != 0 ? -EINVAL : 0;
134}
135
136/*
137 * Free a preparse of a user defined key payload
138 */
139static void keyring_free_preparse(struct key_preparsed_payload *prep)
140{
141}
142
143/*
144 * Initialise a keyring.
145 *
146 * Returns 0 on success, -EINVAL if given any data.
147 */
148static int keyring_instantiate(struct key *keyring,
149 struct key_preparsed_payload *prep)
150{
151 assoc_array_init(&keyring->keys);
152 /* make the keyring available by name if it has one */
153 keyring_publish_name(keyring);
154 return 0;
155}
156
157/*
158 * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit. Ideally we'd
159 * fold the carry back too, but that requires inline asm.
160 */
161static u64 mult_64x32_and_fold(u64 x, u32 y)
162{
163 u64 hi = (u64)(u32)(x >> 32) * y;
164 u64 lo = (u64)(u32)(x) * y;
165 return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
166}
167
168/*
169 * Hash a key type and description.
170 */
171static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key)
172{
173 const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
174 const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
175 const char *description = index_key->description;
176 unsigned long hash, type;
177 u32 piece;
178 u64 acc;
179 int n, desc_len = index_key->desc_len;
180
181 type = (unsigned long)index_key->type;
182
183 acc = mult_64x32_and_fold(type, desc_len + 13);
184 acc = mult_64x32_and_fold(acc, 9207);
185 for (;;) {
186 n = desc_len;
187 if (n <= 0)
188 break;
189 if (n > 4)
190 n = 4;
191 piece = 0;
192 memcpy(&piece, description, n);
193 description += n;
194 desc_len -= n;
195 acc = mult_64x32_and_fold(acc, piece);
196 acc = mult_64x32_and_fold(acc, 9207);
197 }
198
199 /* Fold the hash down to 32 bits if need be. */
200 hash = acc;
201 if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
202 hash ^= acc >> 32;
203
204 /* Squidge all the keyrings into a separate part of the tree to
205 * ordinary keys by making sure the lowest level segment in the hash is
206 * zero for keyrings and non-zero otherwise.
207 */
208 if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
209 return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
210 if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
211 return (hash + (hash << level_shift)) & ~fan_mask;
212 return hash;
213}
214
215/*
216 * Build the next index key chunk.
217 *
218 * On 32-bit systems the index key is laid out as:
219 *
220 * 0 4 5 9...
221 * hash desclen typeptr desc[]
222 *
223 * On 64-bit systems:
224 *
225 * 0 8 9 17...
226 * hash desclen typeptr desc[]
227 *
228 * We return it one word-sized chunk at a time.
229 */
230static unsigned long keyring_get_key_chunk(const void *data, int level)
231{
232 const struct keyring_index_key *index_key = data;
233 unsigned long chunk = 0;
234 long offset = 0;
235 int desc_len = index_key->desc_len, n = sizeof(chunk);
236
237 level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
238 switch (level) {
239 case 0:
240 return hash_key_type_and_desc(index_key);
241 case 1:
242 return ((unsigned long)index_key->type << 8) | desc_len;
243 case 2:
244 if (desc_len == 0)
245 return (u8)((unsigned long)index_key->type >>
246 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
247 n--;
248 offset = 1;
249 default:
250 offset += sizeof(chunk) - 1;
251 offset += (level - 3) * sizeof(chunk);
252 if (offset >= desc_len)
253 return 0;
254 desc_len -= offset;
255 if (desc_len > n)
256 desc_len = n;
257 offset += desc_len;
258 do {
259 chunk <<= 8;
260 chunk |= ((u8*)index_key->description)[--offset];
261 } while (--desc_len > 0);
262
263 if (level == 2) {
264 chunk <<= 8;
265 chunk |= (u8)((unsigned long)index_key->type >>
266 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
267 }
268 return chunk;
269 }
270}
271
272static unsigned long keyring_get_object_key_chunk(const void *object, int level)
273{
274 const struct key *key = keyring_ptr_to_key(object);
275 return keyring_get_key_chunk(&key->index_key, level);
276}
277
278static bool keyring_compare_object(const void *object, const void *data)
279{
280 const struct keyring_index_key *index_key = data;
281 const struct key *key = keyring_ptr_to_key(object);
282
283 return key->index_key.type == index_key->type &&
284 key->index_key.desc_len == index_key->desc_len &&
285 memcmp(key->index_key.description, index_key->description,
286 index_key->desc_len) == 0;
287}
288
289/*
290 * Compare the index keys of a pair of objects and determine the bit position
291 * at which they differ - if they differ.
292 */
293static int keyring_diff_objects(const void *object, const void *data)
294{
295 const struct key *key_a = keyring_ptr_to_key(object);
296 const struct keyring_index_key *a = &key_a->index_key;
297 const struct keyring_index_key *b = data;
298 unsigned long seg_a, seg_b;
299 int level, i;
300
301 level = 0;
302 seg_a = hash_key_type_and_desc(a);
303 seg_b = hash_key_type_and_desc(b);
304 if ((seg_a ^ seg_b) != 0)
305 goto differ;
306
307 /* The number of bits contributed by the hash is controlled by a
308 * constant in the assoc_array headers. Everything else thereafter we
309 * can deal with as being machine word-size dependent.
310 */
311 level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
312 seg_a = a->desc_len;
313 seg_b = b->desc_len;
314 if ((seg_a ^ seg_b) != 0)
315 goto differ;
316
317 /* The next bit may not work on big endian */
318 level++;
319 seg_a = (unsigned long)a->type;
320 seg_b = (unsigned long)b->type;
321 if ((seg_a ^ seg_b) != 0)
322 goto differ;
323
324 level += sizeof(unsigned long);
325 if (a->desc_len == 0)
326 goto same;
327
328 i = 0;
329 if (((unsigned long)a->description | (unsigned long)b->description) &
330 (sizeof(unsigned long) - 1)) {
331 do {
332 seg_a = *(unsigned long *)(a->description + i);
333 seg_b = *(unsigned long *)(b->description + i);
334 if ((seg_a ^ seg_b) != 0)
335 goto differ_plus_i;
336 i += sizeof(unsigned long);
337 } while (i < (a->desc_len & (sizeof(unsigned long) - 1)));
338 }
339
340 for (; i < a->desc_len; i++) {
341 seg_a = *(unsigned char *)(a->description + i);
342 seg_b = *(unsigned char *)(b->description + i);
343 if ((seg_a ^ seg_b) != 0)
344 goto differ_plus_i;
345 }
346
347same:
348 return -1;
349
350differ_plus_i:
351 level += i;
352differ:
353 i = level * 8 + __ffs(seg_a ^ seg_b);
354 return i;
355}
356
357/*
358 * Free an object after stripping the keyring flag off of the pointer.
359 */
360static void keyring_free_object(void *object)
361{
362 key_put(keyring_ptr_to_key(object));
363}
364
365/*
366 * Operations for keyring management by the index-tree routines.
367 */
368static const struct assoc_array_ops keyring_assoc_array_ops = {
369 .get_key_chunk = keyring_get_key_chunk,
370 .get_object_key_chunk = keyring_get_object_key_chunk,
371 .compare_object = keyring_compare_object,
372 .diff_objects = keyring_diff_objects,
373 .free_object = keyring_free_object,
374};
375
376/*
377 * Clean up a keyring when it is destroyed. Unpublish its name if it had one
378 * and dispose of its data.
379 *
380 * The garbage collector detects the final key_put(), removes the keyring from
381 * the serial number tree and then does RCU synchronisation before coming here,
382 * so we shouldn't need to worry about code poking around here with the RCU
383 * readlock held by this time.
384 */
385static void keyring_destroy(struct key *keyring)
386{
387 if (keyring->description) {
388 write_lock(&keyring_name_lock);
389
390 if (keyring->name_link.next != NULL &&
391 !list_empty(&keyring->name_link))
392 list_del(&keyring->name_link);
393
394 write_unlock(&keyring_name_lock);
395 }
396
397 if (keyring->restrict_link) {
398 struct key_restriction *keyres = keyring->restrict_link;
399
400 key_put(keyres->key);
401 kfree(keyres);
402 }
403
404 assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
405}
406
407/*
408 * Describe a keyring for /proc.
409 */
410static void keyring_describe(const struct key *keyring, struct seq_file *m)
411{
412 if (keyring->description)
413 seq_puts(m, keyring->description);
414 else
415 seq_puts(m, "[anon]");
416
417 if (key_is_positive(keyring)) {
418 if (keyring->keys.nr_leaves_on_tree != 0)
419 seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
420 else
421 seq_puts(m, ": empty");
422 }
423}
424
425struct keyring_read_iterator_context {
426 size_t buflen;
427 size_t count;
428 key_serial_t __user *buffer;
429};
430
431static int keyring_read_iterator(const void *object, void *data)
432{
433 struct keyring_read_iterator_context *ctx = data;
434 const struct key *key = keyring_ptr_to_key(object);
435
436 kenter("{%s,%d},,{%zu/%zu}",
437 key->type->name, key->serial, ctx->count, ctx->buflen);
438
439 if (ctx->count >= ctx->buflen)
440 return 1;
441
442 *ctx->buffer++ = key->serial;
443 ctx->count += sizeof(key->serial);
444 return 0;
445}
446
447/*
448 * Read a list of key IDs from the keyring's contents in binary form
449 *
450 * The keyring's semaphore is read-locked by the caller. This prevents someone
451 * from modifying it under us - which could cause us to read key IDs multiple
452 * times.
453 */
454static long keyring_read(const struct key *keyring,
455 char __user *buffer, size_t buflen)
456{
457 struct keyring_read_iterator_context ctx;
458 long ret;
459
460 kenter("{%d},,%zu", key_serial(keyring), buflen);
461
462 if (buflen & (sizeof(key_serial_t) - 1))
463 return -EINVAL;
464
465 /* Copy as many key IDs as fit into the buffer */
466 if (buffer && buflen) {
467 ctx.buffer = (key_serial_t __user *)buffer;
468 ctx.buflen = buflen;
469 ctx.count = 0;
470 ret = assoc_array_iterate(&keyring->keys,
471 keyring_read_iterator, &ctx);
472 if (ret < 0) {
473 kleave(" = %ld [iterate]", ret);
474 return ret;
475 }
476 }
477
478 /* Return the size of the buffer needed */
479 ret = keyring->keys.nr_leaves_on_tree * sizeof(key_serial_t);
480 if (ret <= buflen)
481 kleave("= %ld [ok]", ret);
482 else
483 kleave("= %ld [buffer too small]", ret);
484 return ret;
485}
486
487/*
488 * Allocate a keyring and link into the destination keyring.
489 */
490struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
491 const struct cred *cred, key_perm_t perm,
492 unsigned long flags,
493 struct key_restriction *restrict_link,
494 struct key *dest)
495{
496 struct key *keyring;
497 int ret;
498
499 keyring = key_alloc(&key_type_keyring, description,
500 uid, gid, cred, perm, flags, restrict_link);
501 if (!IS_ERR(keyring)) {
502 ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
503 if (ret < 0) {
504 key_put(keyring);
505 keyring = ERR_PTR(ret);
506 }
507 }
508
509 return keyring;
510}
511EXPORT_SYMBOL(keyring_alloc);
512
513/**
514 * restrict_link_reject - Give -EPERM to restrict link
515 * @keyring: The keyring being added to.
516 * @type: The type of key being added.
517 * @payload: The payload of the key intended to be added.
518 * @data: Additional data for evaluating restriction.
519 *
520 * Reject the addition of any links to a keyring. It can be overridden by
521 * passing KEY_ALLOC_BYPASS_RESTRICTION to key_instantiate_and_link() when
522 * adding a key to a keyring.
523 *
524 * This is meant to be stored in a key_restriction structure which is passed
525 * in the restrict_link parameter to keyring_alloc().
526 */
527int restrict_link_reject(struct key *keyring,
528 const struct key_type *type,
529 const union key_payload *payload,
530 struct key *restriction_key)
531{
532 return -EPERM;
533}
534
535/*
536 * By default, we keys found by getting an exact match on their descriptions.
537 */
538bool key_default_cmp(const struct key *key,
539 const struct key_match_data *match_data)
540{
541 return strcmp(key->description, match_data->raw_data) == 0;
542}
543
544/*
545 * Iteration function to consider each key found.
546 */
547static int keyring_search_iterator(const void *object, void *iterator_data)
548{
549 struct keyring_search_context *ctx = iterator_data;
550 const struct key *key = keyring_ptr_to_key(object);
551 unsigned long kflags = READ_ONCE(key->flags);
552 short state = READ_ONCE(key->state);
553
554 kenter("{%d}", key->serial);
555
556 /* ignore keys not of this type */
557 if (key->type != ctx->index_key.type) {
558 kleave(" = 0 [!type]");
559 return 0;
560 }
561
562 /* skip invalidated, revoked and expired keys */
563 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
564 time_t expiry = READ_ONCE(key->expiry);
565
566 if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
567 (1 << KEY_FLAG_REVOKED))) {
568 ctx->result = ERR_PTR(-EKEYREVOKED);
569 kleave(" = %d [invrev]", ctx->skipped_ret);
570 goto skipped;
571 }
572
573 if (expiry && ctx->now.tv_sec >= expiry) {
574 if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED))
575 ctx->result = ERR_PTR(-EKEYEXPIRED);
576 kleave(" = %d [expire]", ctx->skipped_ret);
577 goto skipped;
578 }
579 }
580
581 /* keys that don't match */
582 if (!ctx->match_data.cmp(key, &ctx->match_data)) {
583 kleave(" = 0 [!match]");
584 return 0;
585 }
586
587 /* key must have search permissions */
588 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
589 key_task_permission(make_key_ref(key, ctx->possessed),
590 ctx->cred, KEY_NEED_SEARCH) < 0) {
591 ctx->result = ERR_PTR(-EACCES);
592 kleave(" = %d [!perm]", ctx->skipped_ret);
593 goto skipped;
594 }
595
596 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
597 /* we set a different error code if we pass a negative key */
598 if (state < 0) {
599 ctx->result = ERR_PTR(state);
600 kleave(" = %d [neg]", ctx->skipped_ret);
601 goto skipped;
602 }
603 }
604
605 /* Found */
606 ctx->result = make_key_ref(key, ctx->possessed);
607 kleave(" = 1 [found]");
608 return 1;
609
610skipped:
611 return ctx->skipped_ret;
612}
613
614/*
615 * Search inside a keyring for a key. We can search by walking to it
616 * directly based on its index-key or we can iterate over the entire
617 * tree looking for it, based on the match function.
618 */
619static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
620{
621 if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) {
622 const void *object;
623
624 object = assoc_array_find(&keyring->keys,
625 &keyring_assoc_array_ops,
626 &ctx->index_key);
627 return object ? ctx->iterator(object, ctx) : 0;
628 }
629 return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
630}
631
632/*
633 * Search a tree of keyrings that point to other keyrings up to the maximum
634 * depth.
635 */
636static bool search_nested_keyrings(struct key *keyring,
637 struct keyring_search_context *ctx)
638{
639 struct {
640 struct key *keyring;
641 struct assoc_array_node *node;
642 int slot;
643 } stack[KEYRING_SEARCH_MAX_DEPTH];
644
645 struct assoc_array_shortcut *shortcut;
646 struct assoc_array_node *node;
647 struct assoc_array_ptr *ptr;
648 struct key *key;
649 int sp = 0, slot;
650
651 kenter("{%d},{%s,%s}",
652 keyring->serial,
653 ctx->index_key.type->name,
654 ctx->index_key.description);
655
656#define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK)
657 BUG_ON((ctx->flags & STATE_CHECKS) == 0 ||
658 (ctx->flags & STATE_CHECKS) == STATE_CHECKS);
659
660 /* Check to see if this top-level keyring is what we are looking for
661 * and whether it is valid or not.
662 */
663 if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE ||
664 keyring_compare_object(keyring, &ctx->index_key)) {
665 ctx->skipped_ret = 2;
666 switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
667 case 1:
668 goto found;
669 case 2:
670 return false;
671 default:
672 break;
673 }
674 }
675
676 ctx->skipped_ret = 0;
677
678 /* Start processing a new keyring */
679descend_to_keyring:
680 kdebug("descend to %d", keyring->serial);
681 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
682 (1 << KEY_FLAG_REVOKED)))
683 goto not_this_keyring;
684
685 /* Search through the keys in this keyring before its searching its
686 * subtrees.
687 */
688 if (search_keyring(keyring, ctx))
689 goto found;
690
691 /* Then manually iterate through the keyrings nested in this one.
692 *
693 * Start from the root node of the index tree. Because of the way the
694 * hash function has been set up, keyrings cluster on the leftmost
695 * branch of the root node (root slot 0) or in the root node itself.
696 * Non-keyrings avoid the leftmost branch of the root entirely (root
697 * slots 1-15).
698 */
699 ptr = READ_ONCE(keyring->keys.root);
700 if (!ptr)
701 goto not_this_keyring;
702
703 if (assoc_array_ptr_is_shortcut(ptr)) {
704 /* If the root is a shortcut, either the keyring only contains
705 * keyring pointers (everything clusters behind root slot 0) or
706 * doesn't contain any keyring pointers.
707 */
708 shortcut = assoc_array_ptr_to_shortcut(ptr);
709 smp_read_barrier_depends();
710 if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
711 goto not_this_keyring;
712
713 ptr = READ_ONCE(shortcut->next_node);
714 node = assoc_array_ptr_to_node(ptr);
715 goto begin_node;
716 }
717
718 node = assoc_array_ptr_to_node(ptr);
719 smp_read_barrier_depends();
720
721 ptr = node->slots[0];
722 if (!assoc_array_ptr_is_meta(ptr))
723 goto begin_node;
724
725descend_to_node:
726 /* Descend to a more distal node in this keyring's content tree and go
727 * through that.
728 */
729 kdebug("descend");
730 if (assoc_array_ptr_is_shortcut(ptr)) {
731 shortcut = assoc_array_ptr_to_shortcut(ptr);
732 smp_read_barrier_depends();
733 ptr = READ_ONCE(shortcut->next_node);
734 BUG_ON(!assoc_array_ptr_is_node(ptr));
735 }
736 node = assoc_array_ptr_to_node(ptr);
737
738begin_node:
739 kdebug("begin_node");
740 smp_read_barrier_depends();
741 slot = 0;
742ascend_to_node:
743 /* Go through the slots in a node */
744 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
745 ptr = READ_ONCE(node->slots[slot]);
746
747 if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
748 goto descend_to_node;
749
750 if (!keyring_ptr_is_keyring(ptr))
751 continue;
752
753 key = keyring_ptr_to_key(ptr);
754
755 if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
756 if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
757 ctx->result = ERR_PTR(-ELOOP);
758 return false;
759 }
760 goto not_this_keyring;
761 }
762
763 /* Search a nested keyring */
764 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
765 key_task_permission(make_key_ref(key, ctx->possessed),
766 ctx->cred, KEY_NEED_SEARCH) < 0)
767 continue;
768
769 /* stack the current position */
770 stack[sp].keyring = keyring;
771 stack[sp].node = node;
772 stack[sp].slot = slot;
773 sp++;
774
775 /* begin again with the new keyring */
776 keyring = key;
777 goto descend_to_keyring;
778 }
779
780 /* We've dealt with all the slots in the current node, so now we need
781 * to ascend to the parent and continue processing there.
782 */
783 ptr = READ_ONCE(node->back_pointer);
784 slot = node->parent_slot;
785
786 if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
787 shortcut = assoc_array_ptr_to_shortcut(ptr);
788 smp_read_barrier_depends();
789 ptr = READ_ONCE(shortcut->back_pointer);
790 slot = shortcut->parent_slot;
791 }
792 if (!ptr)
793 goto not_this_keyring;
794 node = assoc_array_ptr_to_node(ptr);
795 smp_read_barrier_depends();
796 slot++;
797
798 /* If we've ascended to the root (zero backpointer), we must have just
799 * finished processing the leftmost branch rather than the root slots -
800 * so there can't be any more keyrings for us to find.
801 */
802 if (node->back_pointer) {
803 kdebug("ascend %d", slot);
804 goto ascend_to_node;
805 }
806
807 /* The keyring we're looking at was disqualified or didn't contain a
808 * matching key.
809 */
810not_this_keyring:
811 kdebug("not_this_keyring %d", sp);
812 if (sp <= 0) {
813 kleave(" = false");
814 return false;
815 }
816
817 /* Resume the processing of a keyring higher up in the tree */
818 sp--;
819 keyring = stack[sp].keyring;
820 node = stack[sp].node;
821 slot = stack[sp].slot + 1;
822 kdebug("ascend to %d [%d]", keyring->serial, slot);
823 goto ascend_to_node;
824
825 /* We found a viable match */
826found:
827 key = key_ref_to_ptr(ctx->result);
828 key_check(key);
829 if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
830 key->last_used_at = ctx->now.tv_sec;
831 keyring->last_used_at = ctx->now.tv_sec;
832 while (sp > 0)
833 stack[--sp].keyring->last_used_at = ctx->now.tv_sec;
834 }
835 kleave(" = true");
836 return true;
837}
838
839/**
840 * keyring_search_aux - Search a keyring tree for a key matching some criteria
841 * @keyring_ref: A pointer to the keyring with possession indicator.
842 * @ctx: The keyring search context.
843 *
844 * Search the supplied keyring tree for a key that matches the criteria given.
845 * The root keyring and any linked keyrings must grant Search permission to the
846 * caller to be searchable and keys can only be found if they too grant Search
847 * to the caller. The possession flag on the root keyring pointer controls use
848 * of the possessor bits in permissions checking of the entire tree. In
849 * addition, the LSM gets to forbid keyring searches and key matches.
850 *
851 * The search is performed as a breadth-then-depth search up to the prescribed
852 * limit (KEYRING_SEARCH_MAX_DEPTH).
853 *
854 * Keys are matched to the type provided and are then filtered by the match
855 * function, which is given the description to use in any way it sees fit. The
856 * match function may use any attributes of a key that it wishes to to
857 * determine the match. Normally the match function from the key type would be
858 * used.
859 *
860 * RCU can be used to prevent the keyring key lists from disappearing without
861 * the need to take lots of locks.
862 *
863 * Returns a pointer to the found key and increments the key usage count if
864 * successful; -EAGAIN if no matching keys were found, or if expired or revoked
865 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
866 * specified keyring wasn't a keyring.
867 *
868 * In the case of a successful return, the possession attribute from
869 * @keyring_ref is propagated to the returned key reference.
870 */
871key_ref_t keyring_search_aux(key_ref_t keyring_ref,
872 struct keyring_search_context *ctx)
873{
874 struct key *keyring;
875 long err;
876
877 ctx->iterator = keyring_search_iterator;
878 ctx->possessed = is_key_possessed(keyring_ref);
879 ctx->result = ERR_PTR(-EAGAIN);
880
881 keyring = key_ref_to_ptr(keyring_ref);
882 key_check(keyring);
883
884 if (keyring->type != &key_type_keyring)
885 return ERR_PTR(-ENOTDIR);
886
887 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
888 err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH);
889 if (err < 0)
890 return ERR_PTR(err);
891 }
892
893 rcu_read_lock();
894 ctx->now = current_kernel_time();
895 if (search_nested_keyrings(keyring, ctx))
896 __key_get(key_ref_to_ptr(ctx->result));
897 rcu_read_unlock();
898 return ctx->result;
899}
900
901/**
902 * keyring_search - Search the supplied keyring tree for a matching key
903 * @keyring: The root of the keyring tree to be searched.
904 * @type: The type of keyring we want to find.
905 * @description: The name of the keyring we want to find.
906 *
907 * As keyring_search_aux() above, but using the current task's credentials and
908 * type's default matching function and preferred search method.
909 */
910key_ref_t keyring_search(key_ref_t keyring,
911 struct key_type *type,
912 const char *description)
913{
914 struct keyring_search_context ctx = {
915 .index_key.type = type,
916 .index_key.description = description,
917 .index_key.desc_len = strlen(description),
918 .cred = current_cred(),
919 .match_data.cmp = key_default_cmp,
920 .match_data.raw_data = description,
921 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
922 .flags = KEYRING_SEARCH_DO_STATE_CHECK,
923 };
924 key_ref_t key;
925 int ret;
926
927 if (type->match_preparse) {
928 ret = type->match_preparse(&ctx.match_data);
929 if (ret < 0)
930 return ERR_PTR(ret);
931 }
932
933 key = keyring_search_aux(keyring, &ctx);
934
935 if (type->match_free)
936 type->match_free(&ctx.match_data);
937 return key;
938}
939EXPORT_SYMBOL(keyring_search);
940
941static struct key_restriction *keyring_restriction_alloc(
942 key_restrict_link_func_t check)
943{
944 struct key_restriction *keyres =
945 kzalloc(sizeof(struct key_restriction), GFP_KERNEL);
946
947 if (!keyres)
948 return ERR_PTR(-ENOMEM);
949
950 keyres->check = check;
951
952 return keyres;
953}
954
955/*
956 * Semaphore to serialise restriction setup to prevent reference count
957 * cycles through restriction key pointers.
958 */
959static DECLARE_RWSEM(keyring_serialise_restrict_sem);
960
961/*
962 * Check for restriction cycles that would prevent keyring garbage collection.
963 * keyring_serialise_restrict_sem must be held.
964 */
965static bool keyring_detect_restriction_cycle(const struct key *dest_keyring,
966 struct key_restriction *keyres)
967{
968 while (keyres && keyres->key &&
969 keyres->key->type == &key_type_keyring) {
970 if (keyres->key == dest_keyring)
971 return true;
972
973 keyres = keyres->key->restrict_link;
974 }
975
976 return false;
977}
978
979/**
980 * keyring_restrict - Look up and apply a restriction to a keyring
981 *
982 * @keyring: The keyring to be restricted
983 * @restriction: The restriction options to apply to the keyring
984 */
985int keyring_restrict(key_ref_t keyring_ref, const char *type,
986 const char *restriction)
987{
988 struct key *keyring;
989 struct key_type *restrict_type = NULL;
990 struct key_restriction *restrict_link;
991 int ret = 0;
992
993 keyring = key_ref_to_ptr(keyring_ref);
994 key_check(keyring);
995
996 if (keyring->type != &key_type_keyring)
997 return -ENOTDIR;
998
999 if (!type) {
1000 restrict_link = keyring_restriction_alloc(restrict_link_reject);
1001 } else {
1002 restrict_type = key_type_lookup(type);
1003
1004 if (IS_ERR(restrict_type))
1005 return PTR_ERR(restrict_type);
1006
1007 if (!restrict_type->lookup_restriction) {
1008 ret = -ENOENT;
1009 goto error;
1010 }
1011
1012 restrict_link = restrict_type->lookup_restriction(restriction);
1013 }
1014
1015 if (IS_ERR(restrict_link)) {
1016 ret = PTR_ERR(restrict_link);
1017 goto error;
1018 }
1019
1020 down_write(&keyring->sem);
1021 down_write(&keyring_serialise_restrict_sem);
1022
1023 if (keyring->restrict_link)
1024 ret = -EEXIST;
1025 else if (keyring_detect_restriction_cycle(keyring, restrict_link))
1026 ret = -EDEADLK;
1027 else
1028 keyring->restrict_link = restrict_link;
1029
1030 up_write(&keyring_serialise_restrict_sem);
1031 up_write(&keyring->sem);
1032
1033 if (ret < 0) {
1034 key_put(restrict_link->key);
1035 kfree(restrict_link);
1036 }
1037
1038error:
1039 if (restrict_type)
1040 key_type_put(restrict_type);
1041
1042 return ret;
1043}
1044EXPORT_SYMBOL(keyring_restrict);
1045
1046/*
1047 * Search the given keyring for a key that might be updated.
1048 *
1049 * The caller must guarantee that the keyring is a keyring and that the
1050 * permission is granted to modify the keyring as no check is made here. The
1051 * caller must also hold a lock on the keyring semaphore.
1052 *
1053 * Returns a pointer to the found key with usage count incremented if
1054 * successful and returns NULL if not found. Revoked and invalidated keys are
1055 * skipped over.
1056 *
1057 * If successful, the possession indicator is propagated from the keyring ref
1058 * to the returned key reference.
1059 */
1060key_ref_t find_key_to_update(key_ref_t keyring_ref,
1061 const struct keyring_index_key *index_key)
1062{
1063 struct key *keyring, *key;
1064 const void *object;
1065
1066 keyring = key_ref_to_ptr(keyring_ref);
1067
1068 kenter("{%d},{%s,%s}",
1069 keyring->serial, index_key->type->name, index_key->description);
1070
1071 object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
1072 index_key);
1073
1074 if (object)
1075 goto found;
1076
1077 kleave(" = NULL");
1078 return NULL;
1079
1080found:
1081 key = keyring_ptr_to_key(object);
1082 if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
1083 (1 << KEY_FLAG_REVOKED))) {
1084 kleave(" = NULL [x]");
1085 return NULL;
1086 }
1087 __key_get(key);
1088 kleave(" = {%d}", key->serial);
1089 return make_key_ref(key, is_key_possessed(keyring_ref));
1090}
1091
1092/*
1093 * Find a keyring with the specified name.
1094 *
1095 * Only keyrings that have nonzero refcount, are not revoked, and are owned by a
1096 * user in the current user namespace are considered. If @uid_keyring is %true,
1097 * the keyring additionally must have been allocated as a user or user session
1098 * keyring; otherwise, it must grant Search permission directly to the caller.
1099 *
1100 * Returns a pointer to the keyring with the keyring's refcount having being
1101 * incremented on success. -ENOKEY is returned if a key could not be found.
1102 */
1103struct key *find_keyring_by_name(const char *name, bool uid_keyring)
1104{
1105 struct key *keyring;
1106 int bucket;
1107
1108 if (!name)
1109 return ERR_PTR(-EINVAL);
1110
1111 bucket = keyring_hash(name);
1112
1113 read_lock(&keyring_name_lock);
1114
1115 if (keyring_name_hash[bucket].next) {
1116 /* search this hash bucket for a keyring with a matching name
1117 * that's readable and that hasn't been revoked */
1118 list_for_each_entry(keyring,
1119 &keyring_name_hash[bucket],
1120 name_link
1121 ) {
1122 if (!kuid_has_mapping(current_user_ns(), keyring->user->uid))
1123 continue;
1124
1125 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1126 continue;
1127
1128 if (strcmp(keyring->description, name) != 0)
1129 continue;
1130
1131 if (uid_keyring) {
1132 if (!test_bit(KEY_FLAG_UID_KEYRING,
1133 &keyring->flags))
1134 continue;
1135 } else {
1136 if (key_permission(make_key_ref(keyring, 0),
1137 KEY_NEED_SEARCH) < 0)
1138 continue;
1139 }
1140
1141 /* we've got a match but we might end up racing with
1142 * key_cleanup() if the keyring is currently 'dead'
1143 * (ie. it has a zero usage count) */
1144 if (!refcount_inc_not_zero(&keyring->usage))
1145 continue;
1146 keyring->last_used_at = current_kernel_time().tv_sec;
1147 goto out;
1148 }
1149 }
1150
1151 keyring = ERR_PTR(-ENOKEY);
1152out:
1153 read_unlock(&keyring_name_lock);
1154 return keyring;
1155}
1156
1157static int keyring_detect_cycle_iterator(const void *object,
1158 void *iterator_data)
1159{
1160 struct keyring_search_context *ctx = iterator_data;
1161 const struct key *key = keyring_ptr_to_key(object);
1162
1163 kenter("{%d}", key->serial);
1164
1165 /* We might get a keyring with matching index-key that is nonetheless a
1166 * different keyring. */
1167 if (key != ctx->match_data.raw_data)
1168 return 0;
1169
1170 ctx->result = ERR_PTR(-EDEADLK);
1171 return 1;
1172}
1173
1174/*
1175 * See if a cycle will will be created by inserting acyclic tree B in acyclic
1176 * tree A at the topmost level (ie: as a direct child of A).
1177 *
1178 * Since we are adding B to A at the top level, checking for cycles should just
1179 * be a matter of seeing if node A is somewhere in tree B.
1180 */
1181static int keyring_detect_cycle(struct key *A, struct key *B)
1182{
1183 struct keyring_search_context ctx = {
1184 .index_key = A->index_key,
1185 .match_data.raw_data = A,
1186 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
1187 .iterator = keyring_detect_cycle_iterator,
1188 .flags = (KEYRING_SEARCH_NO_STATE_CHECK |
1189 KEYRING_SEARCH_NO_UPDATE_TIME |
1190 KEYRING_SEARCH_NO_CHECK_PERM |
1191 KEYRING_SEARCH_DETECT_TOO_DEEP),
1192 };
1193
1194 rcu_read_lock();
1195 search_nested_keyrings(B, &ctx);
1196 rcu_read_unlock();
1197 return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
1198}
1199
1200/*
1201 * Preallocate memory so that a key can be linked into to a keyring.
1202 */
1203int __key_link_begin(struct key *keyring,
1204 const struct keyring_index_key *index_key,
1205 struct assoc_array_edit **_edit)
1206 __acquires(&keyring->sem)
1207 __acquires(&keyring_serialise_link_sem)
1208{
1209 struct assoc_array_edit *edit;
1210 int ret;
1211
1212 kenter("%d,%s,%s,",
1213 keyring->serial, index_key->type->name, index_key->description);
1214
1215 BUG_ON(index_key->desc_len == 0);
1216
1217 if (keyring->type != &key_type_keyring)
1218 return -ENOTDIR;
1219
1220 down_write(&keyring->sem);
1221
1222 ret = -EKEYREVOKED;
1223 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1224 goto error_krsem;
1225
1226 /* serialise link/link calls to prevent parallel calls causing a cycle
1227 * when linking two keyring in opposite orders */
1228 if (index_key->type == &key_type_keyring)
1229 down_write(&keyring_serialise_link_sem);
1230
1231 /* Create an edit script that will insert/replace the key in the
1232 * keyring tree.
1233 */
1234 edit = assoc_array_insert(&keyring->keys,
1235 &keyring_assoc_array_ops,
1236 index_key,
1237 NULL);
1238 if (IS_ERR(edit)) {
1239 ret = PTR_ERR(edit);
1240 goto error_sem;
1241 }
1242
1243 /* If we're not replacing a link in-place then we're going to need some
1244 * extra quota.
1245 */
1246 if (!edit->dead_leaf) {
1247 ret = key_payload_reserve(keyring,
1248 keyring->datalen + KEYQUOTA_LINK_BYTES);
1249 if (ret < 0)
1250 goto error_cancel;
1251 }
1252
1253 *_edit = edit;
1254 kleave(" = 0");
1255 return 0;
1256
1257error_cancel:
1258 assoc_array_cancel_edit(edit);
1259error_sem:
1260 if (index_key->type == &key_type_keyring)
1261 up_write(&keyring_serialise_link_sem);
1262error_krsem:
1263 up_write(&keyring->sem);
1264 kleave(" = %d", ret);
1265 return ret;
1266}
1267
1268/*
1269 * Check already instantiated keys aren't going to be a problem.
1270 *
1271 * The caller must have called __key_link_begin(). Don't need to call this for
1272 * keys that were created since __key_link_begin() was called.
1273 */
1274int __key_link_check_live_key(struct key *keyring, struct key *key)
1275{
1276 if (key->type == &key_type_keyring)
1277 /* check that we aren't going to create a cycle by linking one
1278 * keyring to another */
1279 return keyring_detect_cycle(keyring, key);
1280 return 0;
1281}
1282
1283/*
1284 * Link a key into to a keyring.
1285 *
1286 * Must be called with __key_link_begin() having being called. Discards any
1287 * already extant link to matching key if there is one, so that each keyring
1288 * holds at most one link to any given key of a particular type+description
1289 * combination.
1290 */
1291void __key_link(struct key *key, struct assoc_array_edit **_edit)
1292{
1293 __key_get(key);
1294 assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
1295 assoc_array_apply_edit(*_edit);
1296 *_edit = NULL;
1297}
1298
1299/*
1300 * Finish linking a key into to a keyring.
1301 *
1302 * Must be called with __key_link_begin() having being called.
1303 */
1304void __key_link_end(struct key *keyring,
1305 const struct keyring_index_key *index_key,
1306 struct assoc_array_edit *edit)
1307 __releases(&keyring->sem)
1308 __releases(&keyring_serialise_link_sem)
1309{
1310 BUG_ON(index_key->type == NULL);
1311 kenter("%d,%s,", keyring->serial, index_key->type->name);
1312
1313 if (index_key->type == &key_type_keyring)
1314 up_write(&keyring_serialise_link_sem);
1315
1316 if (edit) {
1317 if (!edit->dead_leaf) {
1318 key_payload_reserve(keyring,
1319 keyring->datalen - KEYQUOTA_LINK_BYTES);
1320 }
1321 assoc_array_cancel_edit(edit);
1322 }
1323 up_write(&keyring->sem);
1324}
1325
1326/*
1327 * Check addition of keys to restricted keyrings.
1328 */
1329static int __key_link_check_restriction(struct key *keyring, struct key *key)
1330{
1331 if (!keyring->restrict_link || !keyring->restrict_link->check)
1332 return 0;
1333 return keyring->restrict_link->check(keyring, key->type, &key->payload,
1334 keyring->restrict_link->key);
1335}
1336
1337/**
1338 * key_link - Link a key to a keyring
1339 * @keyring: The keyring to make the link in.
1340 * @key: The key to link to.
1341 *
1342 * Make a link in a keyring to a key, such that the keyring holds a reference
1343 * on that key and the key can potentially be found by searching that keyring.
1344 *
1345 * This function will write-lock the keyring's semaphore and will consume some
1346 * of the user's key data quota to hold the link.
1347 *
1348 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
1349 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
1350 * full, -EDQUOT if there is insufficient key data quota remaining to add
1351 * another link or -ENOMEM if there's insufficient memory.
1352 *
1353 * It is assumed that the caller has checked that it is permitted for a link to
1354 * be made (the keyring should have Write permission and the key Link
1355 * permission).
1356 */
1357int key_link(struct key *keyring, struct key *key)
1358{
1359 struct assoc_array_edit *edit;
1360 int ret;
1361
1362 kenter("{%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1363
1364 key_check(keyring);
1365 key_check(key);
1366
1367 ret = __key_link_begin(keyring, &key->index_key, &edit);
1368 if (ret == 0) {
1369 kdebug("begun {%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1370 ret = __key_link_check_restriction(keyring, key);
1371 if (ret == 0)
1372 ret = __key_link_check_live_key(keyring, key);
1373 if (ret == 0)
1374 __key_link(key, &edit);
1375 __key_link_end(keyring, &key->index_key, edit);
1376 }
1377
1378 kleave(" = %d {%d,%d}", ret, keyring->serial, refcount_read(&keyring->usage));
1379 return ret;
1380}
1381EXPORT_SYMBOL(key_link);
1382
1383/**
1384 * key_unlink - Unlink the first link to a key from a keyring.
1385 * @keyring: The keyring to remove the link from.
1386 * @key: The key the link is to.
1387 *
1388 * Remove a link from a keyring to a key.
1389 *
1390 * This function will write-lock the keyring's semaphore.
1391 *
1392 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1393 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1394 * memory.
1395 *
1396 * It is assumed that the caller has checked that it is permitted for a link to
1397 * be removed (the keyring should have Write permission; no permissions are
1398 * required on the key).
1399 */
1400int key_unlink(struct key *keyring, struct key *key)
1401{
1402 struct assoc_array_edit *edit;
1403 int ret;
1404
1405 key_check(keyring);
1406 key_check(key);
1407
1408 if (keyring->type != &key_type_keyring)
1409 return -ENOTDIR;
1410
1411 down_write(&keyring->sem);
1412
1413 edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
1414 &key->index_key);
1415 if (IS_ERR(edit)) {
1416 ret = PTR_ERR(edit);
1417 goto error;
1418 }
1419 ret = -ENOENT;
1420 if (edit == NULL)
1421 goto error;
1422
1423 assoc_array_apply_edit(edit);
1424 key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
1425 ret = 0;
1426
1427error:
1428 up_write(&keyring->sem);
1429 return ret;
1430}
1431EXPORT_SYMBOL(key_unlink);
1432
1433/**
1434 * keyring_clear - Clear a keyring
1435 * @keyring: The keyring to clear.
1436 *
1437 * Clear the contents of the specified keyring.
1438 *
1439 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1440 */
1441int keyring_clear(struct key *keyring)
1442{
1443 struct assoc_array_edit *edit;
1444 int ret;
1445
1446 if (keyring->type != &key_type_keyring)
1447 return -ENOTDIR;
1448
1449 down_write(&keyring->sem);
1450
1451 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1452 if (IS_ERR(edit)) {
1453 ret = PTR_ERR(edit);
1454 } else {
1455 if (edit)
1456 assoc_array_apply_edit(edit);
1457 key_payload_reserve(keyring, 0);
1458 ret = 0;
1459 }
1460
1461 up_write(&keyring->sem);
1462 return ret;
1463}
1464EXPORT_SYMBOL(keyring_clear);
1465
1466/*
1467 * Dispose of the links from a revoked keyring.
1468 *
1469 * This is called with the key sem write-locked.
1470 */
1471static void keyring_revoke(struct key *keyring)
1472{
1473 struct assoc_array_edit *edit;
1474
1475 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1476 if (!IS_ERR(edit)) {
1477 if (edit)
1478 assoc_array_apply_edit(edit);
1479 key_payload_reserve(keyring, 0);
1480 }
1481}
1482
1483static bool keyring_gc_select_iterator(void *object, void *iterator_data)
1484{
1485 struct key *key = keyring_ptr_to_key(object);
1486 time_t *limit = iterator_data;
1487
1488 if (key_is_dead(key, *limit))
1489 return false;
1490 key_get(key);
1491 return true;
1492}
1493
1494static int keyring_gc_check_iterator(const void *object, void *iterator_data)
1495{
1496 const struct key *key = keyring_ptr_to_key(object);
1497 time_t *limit = iterator_data;
1498
1499 key_check(key);
1500 return key_is_dead(key, *limit);
1501}
1502
1503/*
1504 * Garbage collect pointers from a keyring.
1505 *
1506 * Not called with any locks held. The keyring's key struct will not be
1507 * deallocated under us as only our caller may deallocate it.
1508 */
1509void keyring_gc(struct key *keyring, time_t limit)
1510{
1511 int result;
1512
1513 kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1514
1515 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
1516 (1 << KEY_FLAG_REVOKED)))
1517 goto dont_gc;
1518
1519 /* scan the keyring looking for dead keys */
1520 rcu_read_lock();
1521 result = assoc_array_iterate(&keyring->keys,
1522 keyring_gc_check_iterator, &limit);
1523 rcu_read_unlock();
1524 if (result == true)
1525 goto do_gc;
1526
1527dont_gc:
1528 kleave(" [no gc]");
1529 return;
1530
1531do_gc:
1532 down_write(&keyring->sem);
1533 assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
1534 keyring_gc_select_iterator, &limit);
1535 up_write(&keyring->sem);
1536 kleave(" [gc]");
1537}
1538
1539/*
1540 * Garbage collect restriction pointers from a keyring.
1541 *
1542 * Keyring restrictions are associated with a key type, and must be cleaned
1543 * up if the key type is unregistered. The restriction is altered to always
1544 * reject additional keys so a keyring cannot be opened up by unregistering
1545 * a key type.
1546 *
1547 * Not called with any keyring locks held. The keyring's key struct will not
1548 * be deallocated under us as only our caller may deallocate it.
1549 *
1550 * The caller is required to hold key_types_sem and dead_type->sem. This is
1551 * fulfilled by key_gc_keytype() holding the locks on behalf of
1552 * key_garbage_collector(), which it invokes on a workqueue.
1553 */
1554void keyring_restriction_gc(struct key *keyring, struct key_type *dead_type)
1555{
1556 struct key_restriction *keyres;
1557
1558 kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1559
1560 /*
1561 * keyring->restrict_link is only assigned at key allocation time
1562 * or with the key type locked, so the only values that could be
1563 * concurrently assigned to keyring->restrict_link are for key
1564 * types other than dead_type. Given this, it's ok to check
1565 * the key type before acquiring keyring->sem.
1566 */
1567 if (!dead_type || !keyring->restrict_link ||
1568 keyring->restrict_link->keytype != dead_type) {
1569 kleave(" [no restriction gc]");
1570 return;
1571 }
1572
1573 /* Lock the keyring to ensure that a link is not in progress */
1574 down_write(&keyring->sem);
1575
1576 keyres = keyring->restrict_link;
1577
1578 keyres->check = restrict_link_reject;
1579
1580 key_put(keyres->key);
1581 keyres->key = NULL;
1582 keyres->keytype = NULL;
1583
1584 up_write(&keyring->sem);
1585
1586 kleave(" [restriction gc]");
1587}