blob: bca1ce8f1c54cee1906f5843478c6af2d60e2523 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * Audio and Music Data Transmission Protocol (IEC 61883-6) streams
3 * with Common Isochronous Packet (IEC 61883-1) headers
4 *
5 * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
6 * Licensed under the terms of the GNU General Public License, version 2.
7 */
8
9#include <linux/device.h>
10#include <linux/err.h>
11#include <linux/firewire.h>
12#include <linux/module.h>
13#include <linux/slab.h>
14#include <sound/pcm.h>
15#include <sound/pcm_params.h>
16#include "amdtp-stream.h"
17
18#define TICKS_PER_CYCLE 3072
19#define CYCLES_PER_SECOND 8000
20#define TICKS_PER_SECOND (TICKS_PER_CYCLE * CYCLES_PER_SECOND)
21
22/* Always support Linux tracing subsystem. */
23#define CREATE_TRACE_POINTS
24#include "amdtp-stream-trace.h"
25
26#define TRANSFER_DELAY_TICKS 0x2e00 /* 479.17 microseconds */
27
28/* isochronous header parameters */
29#define ISO_DATA_LENGTH_SHIFT 16
30#define TAG_NO_CIP_HEADER 0
31#define TAG_CIP 1
32
33/* common isochronous packet header parameters */
34#define CIP_EOH_SHIFT 31
35#define CIP_EOH (1u << CIP_EOH_SHIFT)
36#define CIP_EOH_MASK 0x80000000
37#define CIP_SID_SHIFT 24
38#define CIP_SID_MASK 0x3f000000
39#define CIP_DBS_MASK 0x00ff0000
40#define CIP_DBS_SHIFT 16
41#define CIP_SPH_MASK 0x00000400
42#define CIP_SPH_SHIFT 10
43#define CIP_DBC_MASK 0x000000ff
44#define CIP_FMT_SHIFT 24
45#define CIP_FMT_MASK 0x3f000000
46#define CIP_FDF_MASK 0x00ff0000
47#define CIP_FDF_SHIFT 16
48#define CIP_SYT_MASK 0x0000ffff
49#define CIP_SYT_NO_INFO 0xffff
50
51/* Audio and Music transfer protocol specific parameters */
52#define CIP_FMT_AM 0x10
53#define AMDTP_FDF_NO_DATA 0xff
54
55/* TODO: make these configurable */
56#define INTERRUPT_INTERVAL 16
57#define QUEUE_LENGTH 48
58
59#define IN_PACKET_HEADER_SIZE 4
60#define OUT_PACKET_HEADER_SIZE 0
61
62static void pcm_period_tasklet(unsigned long data);
63
64/**
65 * amdtp_stream_init - initialize an AMDTP stream structure
66 * @s: the AMDTP stream to initialize
67 * @unit: the target of the stream
68 * @dir: the direction of stream
69 * @flags: the packet transmission method to use
70 * @fmt: the value of fmt field in CIP header
71 * @process_data_blocks: callback handler to process data blocks
72 * @protocol_size: the size to allocate newly for protocol
73 */
74int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit,
75 enum amdtp_stream_direction dir, enum cip_flags flags,
76 unsigned int fmt,
77 amdtp_stream_process_data_blocks_t process_data_blocks,
78 unsigned int protocol_size)
79{
80 if (process_data_blocks == NULL)
81 return -EINVAL;
82
83 s->protocol = kzalloc(protocol_size, GFP_KERNEL);
84 if (!s->protocol)
85 return -ENOMEM;
86
87 s->unit = unit;
88 s->direction = dir;
89 s->flags = flags;
90 s->context = ERR_PTR(-1);
91 mutex_init(&s->mutex);
92 tasklet_init(&s->period_tasklet, pcm_period_tasklet, (unsigned long)s);
93 s->packet_index = 0;
94
95 init_waitqueue_head(&s->callback_wait);
96 s->callbacked = false;
97
98 s->fmt = fmt;
99 s->process_data_blocks = process_data_blocks;
100
101 return 0;
102}
103EXPORT_SYMBOL(amdtp_stream_init);
104
105/**
106 * amdtp_stream_destroy - free stream resources
107 * @s: the AMDTP stream to destroy
108 */
109void amdtp_stream_destroy(struct amdtp_stream *s)
110{
111 /* Not initialized. */
112 if (s->protocol == NULL)
113 return;
114
115 WARN_ON(amdtp_stream_running(s));
116 kfree(s->protocol);
117 mutex_destroy(&s->mutex);
118}
119EXPORT_SYMBOL(amdtp_stream_destroy);
120
121const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = {
122 [CIP_SFC_32000] = 8,
123 [CIP_SFC_44100] = 8,
124 [CIP_SFC_48000] = 8,
125 [CIP_SFC_88200] = 16,
126 [CIP_SFC_96000] = 16,
127 [CIP_SFC_176400] = 32,
128 [CIP_SFC_192000] = 32,
129};
130EXPORT_SYMBOL(amdtp_syt_intervals);
131
132const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = {
133 [CIP_SFC_32000] = 32000,
134 [CIP_SFC_44100] = 44100,
135 [CIP_SFC_48000] = 48000,
136 [CIP_SFC_88200] = 88200,
137 [CIP_SFC_96000] = 96000,
138 [CIP_SFC_176400] = 176400,
139 [CIP_SFC_192000] = 192000,
140};
141EXPORT_SYMBOL(amdtp_rate_table);
142
143/**
144 * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream
145 * @s: the AMDTP stream, which must be initialized.
146 * @runtime: the PCM substream runtime
147 */
148int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s,
149 struct snd_pcm_runtime *runtime)
150{
151 struct snd_pcm_hardware *hw = &runtime->hw;
152 int err;
153
154 hw->info = SNDRV_PCM_INFO_BATCH |
155 SNDRV_PCM_INFO_BLOCK_TRANSFER |
156 SNDRV_PCM_INFO_INTERLEAVED |
157 SNDRV_PCM_INFO_JOINT_DUPLEX |
158 SNDRV_PCM_INFO_MMAP |
159 SNDRV_PCM_INFO_MMAP_VALID;
160
161 /* SNDRV_PCM_INFO_BATCH */
162 hw->periods_min = 2;
163 hw->periods_max = UINT_MAX;
164
165 /* bytes for a frame */
166 hw->period_bytes_min = 4 * hw->channels_max;
167
168 /* Just to prevent from allocating much pages. */
169 hw->period_bytes_max = hw->period_bytes_min * 2048;
170 hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min;
171
172 /*
173 * Currently firewire-lib processes 16 packets in one software
174 * interrupt callback. This equals to 2msec but actually the
175 * interval of the interrupts has a jitter.
176 * Additionally, even if adding a constraint to fit period size to
177 * 2msec, actual calculated frames per period doesn't equal to 2msec,
178 * depending on sampling rate.
179 * Anyway, the interval to call snd_pcm_period_elapsed() cannot 2msec.
180 * Here let us use 5msec for safe period interrupt.
181 */
182 err = snd_pcm_hw_constraint_minmax(runtime,
183 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
184 5000, UINT_MAX);
185 if (err < 0)
186 goto end;
187
188 /* Non-Blocking stream has no more constraints */
189 if (!(s->flags & CIP_BLOCKING))
190 goto end;
191
192 /*
193 * One AMDTP packet can include some frames. In blocking mode, the
194 * number equals to SYT_INTERVAL. So the number is 8, 16 or 32,
195 * depending on its sampling rate. For accurate period interrupt, it's
196 * preferrable to align period/buffer sizes to current SYT_INTERVAL.
197 *
198 * TODO: These constraints can be improved with proper rules.
199 * Currently apply LCM of SYT_INTERVALs.
200 */
201 err = snd_pcm_hw_constraint_step(runtime, 0,
202 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 32);
203 if (err < 0)
204 goto end;
205 err = snd_pcm_hw_constraint_step(runtime, 0,
206 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 32);
207end:
208 return err;
209}
210EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints);
211
212/**
213 * amdtp_stream_set_parameters - set stream parameters
214 * @s: the AMDTP stream to configure
215 * @rate: the sample rate
216 * @data_block_quadlets: the size of a data block in quadlet unit
217 *
218 * The parameters must be set before the stream is started, and must not be
219 * changed while the stream is running.
220 */
221int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate,
222 unsigned int data_block_quadlets)
223{
224 unsigned int sfc;
225
226 for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) {
227 if (amdtp_rate_table[sfc] == rate)
228 break;
229 }
230 if (sfc == ARRAY_SIZE(amdtp_rate_table))
231 return -EINVAL;
232
233 s->sfc = sfc;
234 s->data_block_quadlets = data_block_quadlets;
235 s->syt_interval = amdtp_syt_intervals[sfc];
236
237 /* default buffering in the device */
238 s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;
239 if (s->flags & CIP_BLOCKING)
240 /* additional buffering needed to adjust for no-data packets */
241 s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate;
242
243 return 0;
244}
245EXPORT_SYMBOL(amdtp_stream_set_parameters);
246
247/**
248 * amdtp_stream_get_max_payload - get the stream's packet size
249 * @s: the AMDTP stream
250 *
251 * This function must not be called before the stream has been configured
252 * with amdtp_stream_set_parameters().
253 */
254unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s)
255{
256 unsigned int multiplier = 1;
257 unsigned int header_size = 0;
258
259 if (s->flags & CIP_JUMBO_PAYLOAD)
260 multiplier = 5;
261 if (!(s->flags & CIP_NO_HEADER))
262 header_size = 8;
263
264 return header_size +
265 s->syt_interval * s->data_block_quadlets * 4 * multiplier;
266}
267EXPORT_SYMBOL(amdtp_stream_get_max_payload);
268
269/**
270 * amdtp_stream_pcm_prepare - prepare PCM device for running
271 * @s: the AMDTP stream
272 *
273 * This function should be called from the PCM device's .prepare callback.
274 */
275void amdtp_stream_pcm_prepare(struct amdtp_stream *s)
276{
277 tasklet_kill(&s->period_tasklet);
278 s->pcm_buffer_pointer = 0;
279 s->pcm_period_pointer = 0;
280}
281EXPORT_SYMBOL(amdtp_stream_pcm_prepare);
282
283static unsigned int calculate_data_blocks(struct amdtp_stream *s,
284 unsigned int syt)
285{
286 unsigned int phase, data_blocks;
287
288 /* Blocking mode. */
289 if (s->flags & CIP_BLOCKING) {
290 /* This module generate empty packet for 'no data'. */
291 if (syt == CIP_SYT_NO_INFO)
292 data_blocks = 0;
293 else
294 data_blocks = s->syt_interval;
295 /* Non-blocking mode. */
296 } else {
297 if (!cip_sfc_is_base_44100(s->sfc)) {
298 /* Sample_rate / 8000 is an integer, and precomputed. */
299 data_blocks = s->data_block_state;
300 } else {
301 phase = s->data_block_state;
302
303 /*
304 * This calculates the number of data blocks per packet so that
305 * 1) the overall rate is correct and exactly synchronized to
306 * the bus clock, and
307 * 2) packets with a rounded-up number of blocks occur as early
308 * as possible in the sequence (to prevent underruns of the
309 * device's buffer).
310 */
311 if (s->sfc == CIP_SFC_44100)
312 /* 6 6 5 6 5 6 5 ... */
313 data_blocks = 5 + ((phase & 1) ^
314 (phase == 0 || phase >= 40));
315 else
316 /* 12 11 11 11 11 ... or 23 22 22 22 22 ... */
317 data_blocks = 11 * (s->sfc >> 1) + (phase == 0);
318 if (++phase >= (80 >> (s->sfc >> 1)))
319 phase = 0;
320 s->data_block_state = phase;
321 }
322 }
323
324 return data_blocks;
325}
326
327static unsigned int calculate_syt(struct amdtp_stream *s,
328 unsigned int cycle)
329{
330 unsigned int syt_offset, phase, index, syt;
331
332 if (s->last_syt_offset < TICKS_PER_CYCLE) {
333 if (!cip_sfc_is_base_44100(s->sfc))
334 syt_offset = s->last_syt_offset + s->syt_offset_state;
335 else {
336 /*
337 * The time, in ticks, of the n'th SYT_INTERVAL sample is:
338 * n * SYT_INTERVAL * 24576000 / sample_rate
339 * Modulo TICKS_PER_CYCLE, the difference between successive
340 * elements is about 1386.23. Rounding the results of this
341 * formula to the SYT precision results in a sequence of
342 * differences that begins with:
343 * 1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ...
344 * This code generates _exactly_ the same sequence.
345 */
346 phase = s->syt_offset_state;
347 index = phase % 13;
348 syt_offset = s->last_syt_offset;
349 syt_offset += 1386 + ((index && !(index & 3)) ||
350 phase == 146);
351 if (++phase >= 147)
352 phase = 0;
353 s->syt_offset_state = phase;
354 }
355 } else
356 syt_offset = s->last_syt_offset - TICKS_PER_CYCLE;
357 s->last_syt_offset = syt_offset;
358
359 if (syt_offset < TICKS_PER_CYCLE) {
360 syt_offset += s->transfer_delay;
361 syt = (cycle + syt_offset / TICKS_PER_CYCLE) << 12;
362 syt += syt_offset % TICKS_PER_CYCLE;
363
364 return syt & CIP_SYT_MASK;
365 } else {
366 return CIP_SYT_NO_INFO;
367 }
368}
369
370static void update_pcm_pointers(struct amdtp_stream *s,
371 struct snd_pcm_substream *pcm,
372 unsigned int frames)
373{
374 unsigned int ptr;
375
376 ptr = s->pcm_buffer_pointer + frames;
377 if (ptr >= pcm->runtime->buffer_size)
378 ptr -= pcm->runtime->buffer_size;
379 ACCESS_ONCE(s->pcm_buffer_pointer) = ptr;
380
381 s->pcm_period_pointer += frames;
382 if (s->pcm_period_pointer >= pcm->runtime->period_size) {
383 s->pcm_period_pointer -= pcm->runtime->period_size;
384 tasklet_hi_schedule(&s->period_tasklet);
385 }
386}
387
388static void pcm_period_tasklet(unsigned long data)
389{
390 struct amdtp_stream *s = (void *)data;
391 struct snd_pcm_substream *pcm = ACCESS_ONCE(s->pcm);
392
393 if (pcm)
394 snd_pcm_period_elapsed(pcm);
395}
396
397static int queue_packet(struct amdtp_stream *s, unsigned int header_length,
398 unsigned int payload_length)
399{
400 struct fw_iso_packet p = {0};
401 int err = 0;
402
403 if (IS_ERR(s->context))
404 goto end;
405
406 p.interrupt = IS_ALIGNED(s->packet_index + 1, INTERRUPT_INTERVAL);
407 p.tag = s->tag;
408 p.header_length = header_length;
409 if (payload_length > 0)
410 p.payload_length = payload_length;
411 else
412 p.skip = true;
413 err = fw_iso_context_queue(s->context, &p, &s->buffer.iso_buffer,
414 s->buffer.packets[s->packet_index].offset);
415 if (err < 0) {
416 dev_err(&s->unit->device, "queueing error: %d\n", err);
417 goto end;
418 }
419
420 if (++s->packet_index >= QUEUE_LENGTH)
421 s->packet_index = 0;
422end:
423 return err;
424}
425
426static inline int queue_out_packet(struct amdtp_stream *s,
427 unsigned int payload_length)
428{
429 return queue_packet(s, OUT_PACKET_HEADER_SIZE, payload_length);
430}
431
432static inline int queue_in_packet(struct amdtp_stream *s)
433{
434 return queue_packet(s, IN_PACKET_HEADER_SIZE, s->max_payload_length);
435}
436
437static int handle_out_packet(struct amdtp_stream *s,
438 unsigned int payload_length, unsigned int cycle,
439 unsigned int index)
440{
441 __be32 *buffer;
442 unsigned int syt;
443 unsigned int data_blocks;
444 unsigned int pcm_frames;
445 struct snd_pcm_substream *pcm;
446
447 buffer = s->buffer.packets[s->packet_index].buffer;
448 syt = calculate_syt(s, cycle);
449 data_blocks = calculate_data_blocks(s, syt);
450 pcm_frames = s->process_data_blocks(s, buffer + 2, data_blocks, &syt);
451
452 if (s->flags & CIP_DBC_IS_END_EVENT)
453 s->data_block_counter =
454 (s->data_block_counter + data_blocks) & 0xff;
455
456 buffer[0] = cpu_to_be32(ACCESS_ONCE(s->source_node_id_field) |
457 (s->data_block_quadlets << CIP_DBS_SHIFT) |
458 ((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) |
459 s->data_block_counter);
460 buffer[1] = cpu_to_be32(CIP_EOH |
461 ((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) |
462 ((s->fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) |
463 (syt & CIP_SYT_MASK));
464
465 if (!(s->flags & CIP_DBC_IS_END_EVENT))
466 s->data_block_counter =
467 (s->data_block_counter + data_blocks) & 0xff;
468 payload_length = 8 + data_blocks * 4 * s->data_block_quadlets;
469
470 trace_out_packet(s, cycle, buffer, payload_length, index);
471
472 if (queue_out_packet(s, payload_length) < 0)
473 return -EIO;
474
475 pcm = ACCESS_ONCE(s->pcm);
476 if (pcm && pcm_frames > 0)
477 update_pcm_pointers(s, pcm, pcm_frames);
478
479 /* No need to return the number of handled data blocks. */
480 return 0;
481}
482
483static int handle_out_packet_without_header(struct amdtp_stream *s,
484 unsigned int payload_length, unsigned int cycle,
485 unsigned int index)
486{
487 __be32 *buffer;
488 unsigned int syt;
489 unsigned int data_blocks;
490 unsigned int pcm_frames;
491 struct snd_pcm_substream *pcm;
492
493 buffer = s->buffer.packets[s->packet_index].buffer;
494 syt = calculate_syt(s, cycle);
495 data_blocks = calculate_data_blocks(s, syt);
496 pcm_frames = s->process_data_blocks(s, buffer, data_blocks, &syt);
497 s->data_block_counter = (s->data_block_counter + data_blocks) & 0xff;
498
499 payload_length = data_blocks * 4 * s->data_block_quadlets;
500
501 trace_out_packet_without_header(s, cycle, payload_length, data_blocks,
502 index);
503
504 if (queue_out_packet(s, payload_length) < 0)
505 return -EIO;
506
507 pcm = ACCESS_ONCE(s->pcm);
508 if (pcm && pcm_frames > 0)
509 update_pcm_pointers(s, pcm, pcm_frames);
510
511 /* No need to return the number of handled data blocks. */
512 return 0;
513}
514
515static int handle_in_packet(struct amdtp_stream *s,
516 unsigned int payload_length, unsigned int cycle,
517 unsigned int index)
518{
519 __be32 *buffer;
520 u32 cip_header[2];
521 unsigned int sph, fmt, fdf, syt;
522 unsigned int data_block_quadlets, data_block_counter, dbc_interval;
523 unsigned int data_blocks;
524 struct snd_pcm_substream *pcm;
525 unsigned int pcm_frames;
526 bool lost;
527
528 buffer = s->buffer.packets[s->packet_index].buffer;
529 cip_header[0] = be32_to_cpu(buffer[0]);
530 cip_header[1] = be32_to_cpu(buffer[1]);
531
532 trace_in_packet(s, cycle, cip_header, payload_length, index);
533
534 /*
535 * This module supports 'Two-quadlet CIP header with SYT field'.
536 * For convenience, also check FMT field is AM824 or not.
537 */
538 if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) ||
539 ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) &&
540 (!(s->flags & CIP_HEADER_WITHOUT_EOH))) {
541 dev_info_ratelimited(&s->unit->device,
542 "Invalid CIP header for AMDTP: %08X:%08X\n",
543 cip_header[0], cip_header[1]);
544 data_blocks = 0;
545 pcm_frames = 0;
546 goto end;
547 }
548
549 /* Check valid protocol or not. */
550 sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT;
551 fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT;
552 if (sph != s->sph || fmt != s->fmt) {
553 dev_info_ratelimited(&s->unit->device,
554 "Detect unexpected protocol: %08x %08x\n",
555 cip_header[0], cip_header[1]);
556 data_blocks = 0;
557 pcm_frames = 0;
558 goto end;
559 }
560
561 /* Calculate data blocks */
562 fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT;
563 if (payload_length < 12 ||
564 (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) {
565 data_blocks = 0;
566 } else {
567 data_block_quadlets =
568 (cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT;
569 /* avoid division by zero */
570 if (data_block_quadlets == 0) {
571 dev_err(&s->unit->device,
572 "Detect invalid value in dbs field: %08X\n",
573 cip_header[0]);
574 return -EPROTO;
575 }
576 if (s->flags & CIP_WRONG_DBS)
577 data_block_quadlets = s->data_block_quadlets;
578
579 data_blocks = (payload_length / 4 - 2) /
580 data_block_quadlets;
581 }
582
583 /* Check data block counter continuity */
584 data_block_counter = cip_header[0] & CIP_DBC_MASK;
585 if (data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) &&
586 s->data_block_counter != UINT_MAX)
587 data_block_counter = s->data_block_counter;
588
589 if (((s->flags & CIP_SKIP_DBC_ZERO_CHECK) &&
590 data_block_counter == s->tx_first_dbc) ||
591 s->data_block_counter == UINT_MAX) {
592 lost = false;
593 } else if (!(s->flags & CIP_DBC_IS_END_EVENT)) {
594 lost = data_block_counter != s->data_block_counter;
595 } else {
596 if (data_blocks > 0 && s->tx_dbc_interval > 0)
597 dbc_interval = s->tx_dbc_interval;
598 else
599 dbc_interval = data_blocks;
600
601 lost = data_block_counter !=
602 ((s->data_block_counter + dbc_interval) & 0xff);
603 }
604
605 if (lost) {
606 dev_err(&s->unit->device,
607 "Detect discontinuity of CIP: %02X %02X\n",
608 s->data_block_counter, data_block_counter);
609 return -EIO;
610 }
611
612 syt = be32_to_cpu(buffer[1]) & CIP_SYT_MASK;
613 pcm_frames = s->process_data_blocks(s, buffer + 2, data_blocks, &syt);
614
615 if (s->flags & CIP_DBC_IS_END_EVENT)
616 s->data_block_counter = data_block_counter;
617 else
618 s->data_block_counter =
619 (data_block_counter + data_blocks) & 0xff;
620end:
621 if (queue_in_packet(s) < 0)
622 return -EIO;
623
624 pcm = ACCESS_ONCE(s->pcm);
625 if (pcm && pcm_frames > 0)
626 update_pcm_pointers(s, pcm, pcm_frames);
627
628 return 0;
629}
630
631static int handle_in_packet_without_header(struct amdtp_stream *s,
632 unsigned int payload_length, unsigned int cycle,
633 unsigned int index)
634{
635 __be32 *buffer;
636 unsigned int payload_quadlets;
637 unsigned int data_blocks;
638 struct snd_pcm_substream *pcm;
639 unsigned int pcm_frames;
640
641 buffer = s->buffer.packets[s->packet_index].buffer;
642 payload_quadlets = payload_length / 4;
643 data_blocks = payload_quadlets / s->data_block_quadlets;
644
645 trace_in_packet_without_header(s, cycle, payload_quadlets, data_blocks,
646 index);
647
648 pcm_frames = s->process_data_blocks(s, buffer, data_blocks, NULL);
649 s->data_block_counter = (s->data_block_counter + data_blocks) & 0xff;
650
651 if (queue_in_packet(s) < 0)
652 return -EIO;
653
654 pcm = ACCESS_ONCE(s->pcm);
655 if (pcm && pcm_frames > 0)
656 update_pcm_pointers(s, pcm, pcm_frames);
657
658 return 0;
659}
660
661/*
662 * In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On
663 * the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent
664 * it. Thus, via Linux firewire subsystem, we can get the 3 bits for second.
665 */
666static inline u32 compute_cycle_count(u32 tstamp)
667{
668 return (((tstamp >> 13) & 0x07) * 8000) + (tstamp & 0x1fff);
669}
670
671static inline u32 increment_cycle_count(u32 cycle, unsigned int addend)
672{
673 cycle += addend;
674 if (cycle >= 8 * CYCLES_PER_SECOND)
675 cycle -= 8 * CYCLES_PER_SECOND;
676 return cycle;
677}
678
679static inline u32 decrement_cycle_count(u32 cycle, unsigned int subtrahend)
680{
681 if (cycle < subtrahend)
682 cycle += 8 * CYCLES_PER_SECOND;
683 return cycle - subtrahend;
684}
685
686static void out_stream_callback(struct fw_iso_context *context, u32 tstamp,
687 size_t header_length, void *header,
688 void *private_data)
689{
690 struct amdtp_stream *s = private_data;
691 unsigned int i, packets = header_length / 4;
692 u32 cycle;
693
694 if (s->packet_index < 0)
695 return;
696
697 cycle = compute_cycle_count(tstamp);
698
699 /* Align to actual cycle count for the last packet. */
700 cycle = increment_cycle_count(cycle, QUEUE_LENGTH - packets);
701
702 for (i = 0; i < packets; ++i) {
703 cycle = increment_cycle_count(cycle, 1);
704 if (s->handle_packet(s, 0, cycle, i) < 0) {
705 s->packet_index = -1;
706 if (in_interrupt())
707 amdtp_stream_pcm_abort(s);
708 WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN);
709 return;
710 }
711 }
712
713 fw_iso_context_queue_flush(s->context);
714}
715
716static void in_stream_callback(struct fw_iso_context *context, u32 tstamp,
717 size_t header_length, void *header,
718 void *private_data)
719{
720 struct amdtp_stream *s = private_data;
721 unsigned int i, packets;
722 unsigned int payload_length, max_payload_length;
723 __be32 *headers = header;
724 u32 cycle;
725
726 if (s->packet_index < 0)
727 return;
728
729 /* The number of packets in buffer */
730 packets = header_length / IN_PACKET_HEADER_SIZE;
731
732 cycle = compute_cycle_count(tstamp);
733
734 /* Align to actual cycle count for the last packet. */
735 cycle = decrement_cycle_count(cycle, packets);
736
737 /* For buffer-over-run prevention. */
738 max_payload_length = s->max_payload_length;
739
740 for (i = 0; i < packets; i++) {
741 cycle = increment_cycle_count(cycle, 1);
742
743 /* The number of bytes in this packet */
744 payload_length =
745 (be32_to_cpu(headers[i]) >> ISO_DATA_LENGTH_SHIFT);
746 if (payload_length > max_payload_length) {
747 dev_err(&s->unit->device,
748 "Detect jumbo payload: %04x %04x\n",
749 payload_length, max_payload_length);
750 break;
751 }
752
753 if (s->handle_packet(s, payload_length, cycle, i) < 0)
754 break;
755 }
756
757 /* Queueing error or detecting invalid payload. */
758 if (i < packets) {
759 s->packet_index = -1;
760 if (in_interrupt())
761 amdtp_stream_pcm_abort(s);
762 WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN);
763 return;
764 }
765
766 fw_iso_context_queue_flush(s->context);
767}
768
769/* this is executed one time */
770static void amdtp_stream_first_callback(struct fw_iso_context *context,
771 u32 tstamp, size_t header_length,
772 void *header, void *private_data)
773{
774 struct amdtp_stream *s = private_data;
775 u32 cycle;
776 unsigned int packets;
777
778 /*
779 * For in-stream, first packet has come.
780 * For out-stream, prepared to transmit first packet
781 */
782 s->callbacked = true;
783 wake_up(&s->callback_wait);
784
785 cycle = compute_cycle_count(tstamp);
786
787 if (s->direction == AMDTP_IN_STREAM) {
788 packets = header_length / IN_PACKET_HEADER_SIZE;
789 cycle = decrement_cycle_count(cycle, packets);
790 context->callback.sc = in_stream_callback;
791 if (s->flags & CIP_NO_HEADER)
792 s->handle_packet = handle_in_packet_without_header;
793 else
794 s->handle_packet = handle_in_packet;
795 } else {
796 packets = header_length / 4;
797 cycle = increment_cycle_count(cycle, QUEUE_LENGTH - packets);
798 context->callback.sc = out_stream_callback;
799 if (s->flags & CIP_NO_HEADER)
800 s->handle_packet = handle_out_packet_without_header;
801 else
802 s->handle_packet = handle_out_packet;
803 }
804
805 s->start_cycle = cycle;
806
807 context->callback.sc(context, tstamp, header_length, header, s);
808}
809
810/**
811 * amdtp_stream_start - start transferring packets
812 * @s: the AMDTP stream to start
813 * @channel: the isochronous channel on the bus
814 * @speed: firewire speed code
815 *
816 * The stream cannot be started until it has been configured with
817 * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI
818 * device can be started.
819 */
820int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed)
821{
822 static const struct {
823 unsigned int data_block;
824 unsigned int syt_offset;
825 } initial_state[] = {
826 [CIP_SFC_32000] = { 4, 3072 },
827 [CIP_SFC_48000] = { 6, 1024 },
828 [CIP_SFC_96000] = { 12, 1024 },
829 [CIP_SFC_192000] = { 24, 1024 },
830 [CIP_SFC_44100] = { 0, 67 },
831 [CIP_SFC_88200] = { 0, 67 },
832 [CIP_SFC_176400] = { 0, 67 },
833 };
834 unsigned int header_size;
835 enum dma_data_direction dir;
836 int type, tag, err;
837
838 mutex_lock(&s->mutex);
839
840 if (WARN_ON(amdtp_stream_running(s) ||
841 (s->data_block_quadlets < 1))) {
842 err = -EBADFD;
843 goto err_unlock;
844 }
845
846 if (s->direction == AMDTP_IN_STREAM)
847 s->data_block_counter = UINT_MAX;
848 else
849 s->data_block_counter = 0;
850 s->data_block_state = initial_state[s->sfc].data_block;
851 s->syt_offset_state = initial_state[s->sfc].syt_offset;
852 s->last_syt_offset = TICKS_PER_CYCLE;
853
854 /* initialize packet buffer */
855 if (s->direction == AMDTP_IN_STREAM) {
856 dir = DMA_FROM_DEVICE;
857 type = FW_ISO_CONTEXT_RECEIVE;
858 header_size = IN_PACKET_HEADER_SIZE;
859 } else {
860 dir = DMA_TO_DEVICE;
861 type = FW_ISO_CONTEXT_TRANSMIT;
862 header_size = OUT_PACKET_HEADER_SIZE;
863 }
864 err = iso_packets_buffer_init(&s->buffer, s->unit, QUEUE_LENGTH,
865 amdtp_stream_get_max_payload(s), dir);
866 if (err < 0)
867 goto err_unlock;
868
869 s->context = fw_iso_context_create(fw_parent_device(s->unit)->card,
870 type, channel, speed, header_size,
871 amdtp_stream_first_callback, s);
872 if (IS_ERR(s->context)) {
873 err = PTR_ERR(s->context);
874 if (err == -EBUSY)
875 dev_err(&s->unit->device,
876 "no free stream on this controller\n");
877 goto err_buffer;
878 }
879
880 amdtp_stream_update(s);
881
882 if (s->direction == AMDTP_IN_STREAM)
883 s->max_payload_length = amdtp_stream_get_max_payload(s);
884
885 if (s->flags & CIP_NO_HEADER)
886 s->tag = TAG_NO_CIP_HEADER;
887 else
888 s->tag = TAG_CIP;
889
890 s->packet_index = 0;
891 do {
892 if (s->direction == AMDTP_IN_STREAM)
893 err = queue_in_packet(s);
894 else
895 err = queue_out_packet(s, 0);
896 if (err < 0)
897 goto err_context;
898 } while (s->packet_index > 0);
899
900 /* NOTE: TAG1 matches CIP. This just affects in stream. */
901 tag = FW_ISO_CONTEXT_MATCH_TAG1;
902 if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER))
903 tag |= FW_ISO_CONTEXT_MATCH_TAG0;
904
905 s->callbacked = false;
906 err = fw_iso_context_start(s->context, -1, 0, tag);
907 if (err < 0)
908 goto err_context;
909
910 mutex_unlock(&s->mutex);
911
912 return 0;
913
914err_context:
915 fw_iso_context_destroy(s->context);
916 s->context = ERR_PTR(-1);
917err_buffer:
918 iso_packets_buffer_destroy(&s->buffer, s->unit);
919err_unlock:
920 mutex_unlock(&s->mutex);
921
922 return err;
923}
924EXPORT_SYMBOL(amdtp_stream_start);
925
926/**
927 * amdtp_stream_pcm_pointer - get the PCM buffer position
928 * @s: the AMDTP stream that transports the PCM data
929 *
930 * Returns the current buffer position, in frames.
931 */
932unsigned long amdtp_stream_pcm_pointer(struct amdtp_stream *s)
933{
934 /*
935 * This function is called in software IRQ context of period_tasklet or
936 * process context.
937 *
938 * When the software IRQ context was scheduled by software IRQ context
939 * of IR/IT contexts, queued packets were already handled. Therefore,
940 * no need to flush the queue in buffer anymore.
941 *
942 * When the process context reach here, some packets will be already
943 * queued in the buffer. These packets should be handled immediately
944 * to keep better granularity of PCM pointer.
945 *
946 * Later, the process context will sometimes schedules software IRQ
947 * context of the period_tasklet. Then, no need to flush the queue by
948 * the same reason as described for IR/IT contexts.
949 */
950 if (!in_interrupt() && amdtp_stream_running(s))
951 fw_iso_context_flush_completions(s->context);
952
953 return ACCESS_ONCE(s->pcm_buffer_pointer);
954}
955EXPORT_SYMBOL(amdtp_stream_pcm_pointer);
956
957/**
958 * amdtp_stream_pcm_ack - acknowledge queued PCM frames
959 * @s: the AMDTP stream that transfers the PCM frames
960 *
961 * Returns zero always.
962 */
963int amdtp_stream_pcm_ack(struct amdtp_stream *s)
964{
965 /*
966 * Process isochronous packets for recent isochronous cycle to handle
967 * queued PCM frames.
968 */
969 if (amdtp_stream_running(s))
970 fw_iso_context_flush_completions(s->context);
971
972 return 0;
973}
974EXPORT_SYMBOL(amdtp_stream_pcm_ack);
975
976/**
977 * amdtp_stream_update - update the stream after a bus reset
978 * @s: the AMDTP stream
979 */
980void amdtp_stream_update(struct amdtp_stream *s)
981{
982 /* Precomputing. */
983 ACCESS_ONCE(s->source_node_id_field) =
984 (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) &
985 CIP_SID_MASK;
986}
987EXPORT_SYMBOL(amdtp_stream_update);
988
989/**
990 * amdtp_stream_stop - stop sending packets
991 * @s: the AMDTP stream to stop
992 *
993 * All PCM and MIDI devices of the stream must be stopped before the stream
994 * itself can be stopped.
995 */
996void amdtp_stream_stop(struct amdtp_stream *s)
997{
998 mutex_lock(&s->mutex);
999
1000 if (!amdtp_stream_running(s)) {
1001 mutex_unlock(&s->mutex);
1002 return;
1003 }
1004
1005 tasklet_kill(&s->period_tasklet);
1006 fw_iso_context_stop(s->context);
1007 fw_iso_context_destroy(s->context);
1008 s->context = ERR_PTR(-1);
1009 iso_packets_buffer_destroy(&s->buffer, s->unit);
1010
1011 s->callbacked = false;
1012
1013 mutex_unlock(&s->mutex);
1014}
1015EXPORT_SYMBOL(amdtp_stream_stop);
1016
1017/**
1018 * amdtp_stream_pcm_abort - abort the running PCM device
1019 * @s: the AMDTP stream about to be stopped
1020 *
1021 * If the isochronous stream needs to be stopped asynchronously, call this
1022 * function first to stop the PCM device.
1023 */
1024void amdtp_stream_pcm_abort(struct amdtp_stream *s)
1025{
1026 struct snd_pcm_substream *pcm;
1027
1028 pcm = ACCESS_ONCE(s->pcm);
1029 if (pcm)
1030 snd_pcm_stop_xrun(pcm);
1031}
1032EXPORT_SYMBOL(amdtp_stream_pcm_abort);