blob: 275f1c3c73b62e9982294f5803b744ef1fb4456f [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * numa.c
4 *
5 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
6 */
7
8#include <inttypes.h>
9/* For the CLR_() macros */
10#include <pthread.h>
11
12#include "../perf.h"
13#include "../builtin.h"
14#include "../util/util.h"
15#include <subcmd/parse-options.h>
16#include "../util/cloexec.h"
17
18#include "bench.h"
19
20#include <errno.h>
21#include <sched.h>
22#include <stdio.h>
23#include <assert.h>
24#include <malloc.h>
25#include <signal.h>
26#include <stdlib.h>
27#include <string.h>
28#include <unistd.h>
29#include <sys/mman.h>
30#include <sys/time.h>
31#include <sys/resource.h>
32#include <sys/wait.h>
33#include <sys/prctl.h>
34#include <sys/types.h>
35#include <linux/kernel.h>
36#include <linux/time64.h>
37
38#include <numa.h>
39#include <numaif.h>
40
41#ifndef RUSAGE_THREAD
42# define RUSAGE_THREAD 1
43#endif
44
45/*
46 * Regular printout to the terminal, supressed if -q is specified:
47 */
48#define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
49
50/*
51 * Debug printf:
52 */
53#undef dprintf
54#define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
55
56struct thread_data {
57 int curr_cpu;
58 cpu_set_t bind_cpumask;
59 int bind_node;
60 u8 *process_data;
61 int process_nr;
62 int thread_nr;
63 int task_nr;
64 unsigned int loops_done;
65 u64 val;
66 u64 runtime_ns;
67 u64 system_time_ns;
68 u64 user_time_ns;
69 double speed_gbs;
70 pthread_mutex_t *process_lock;
71};
72
73/* Parameters set by options: */
74
75struct params {
76 /* Startup synchronization: */
77 bool serialize_startup;
78
79 /* Task hierarchy: */
80 int nr_proc;
81 int nr_threads;
82
83 /* Working set sizes: */
84 const char *mb_global_str;
85 const char *mb_proc_str;
86 const char *mb_proc_locked_str;
87 const char *mb_thread_str;
88
89 double mb_global;
90 double mb_proc;
91 double mb_proc_locked;
92 double mb_thread;
93
94 /* Access patterns to the working set: */
95 bool data_reads;
96 bool data_writes;
97 bool data_backwards;
98 bool data_zero_memset;
99 bool data_rand_walk;
100 u32 nr_loops;
101 u32 nr_secs;
102 u32 sleep_usecs;
103
104 /* Working set initialization: */
105 bool init_zero;
106 bool init_random;
107 bool init_cpu0;
108
109 /* Misc options: */
110 int show_details;
111 int run_all;
112 int thp;
113
114 long bytes_global;
115 long bytes_process;
116 long bytes_process_locked;
117 long bytes_thread;
118
119 int nr_tasks;
120 bool show_quiet;
121
122 bool show_convergence;
123 bool measure_convergence;
124
125 int perturb_secs;
126 int nr_cpus;
127 int nr_nodes;
128
129 /* Affinity options -C and -N: */
130 char *cpu_list_str;
131 char *node_list_str;
132};
133
134
135/* Global, read-writable area, accessible to all processes and threads: */
136
137struct global_info {
138 u8 *data;
139
140 pthread_mutex_t startup_mutex;
141 int nr_tasks_started;
142
143 pthread_mutex_t startup_done_mutex;
144
145 pthread_mutex_t start_work_mutex;
146 int nr_tasks_working;
147
148 pthread_mutex_t stop_work_mutex;
149 u64 bytes_done;
150
151 struct thread_data *threads;
152
153 /* Convergence latency measurement: */
154 bool all_converged;
155 bool stop_work;
156
157 int print_once;
158
159 struct params p;
160};
161
162static struct global_info *g = NULL;
163
164static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
165static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
166
167struct params p0;
168
169static const struct option options[] = {
170 OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"),
171 OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"),
172
173 OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"),
174 OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"),
175 OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
176 OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"),
177
178 OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run (default: unlimited)"),
179 OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run (default: 5 secs)"),
180 OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"),
181
182 OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via writes (can be mixed with -W)"),
183 OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"),
184 OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"),
185 OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
186 OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"),
187
188
189 OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"),
190 OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"),
191 OPT_BOOLEAN('0', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"),
192 OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"),
193
194 OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"),
195 OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"),
196 OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
197 OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, "
198 "convergence is reached when each process (all its threads) is running on a single NUMA node."),
199 OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"),
200 OPT_BOOLEAN('q', "quiet" , &p0.show_quiet, "quiet mode"),
201 OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
202
203 /* Special option string parsing callbacks: */
204 OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
205 "bind the first N tasks to these specific cpus (the rest is unbound)",
206 parse_cpus_opt),
207 OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
208 "bind the first N tasks to these specific memory nodes (the rest is unbound)",
209 parse_nodes_opt),
210 OPT_END()
211};
212
213static const char * const bench_numa_usage[] = {
214 "perf bench numa <options>",
215 NULL
216};
217
218static const char * const numa_usage[] = {
219 "perf bench numa mem [<options>]",
220 NULL
221};
222
223/*
224 * To get number of numa nodes present.
225 */
226static int nr_numa_nodes(void)
227{
228 int i, nr_nodes = 0;
229
230 for (i = 0; i < g->p.nr_nodes; i++) {
231 if (numa_bitmask_isbitset(numa_nodes_ptr, i))
232 nr_nodes++;
233 }
234
235 return nr_nodes;
236}
237
238/*
239 * To check if given numa node is present.
240 */
241static int is_node_present(int node)
242{
243 return numa_bitmask_isbitset(numa_nodes_ptr, node);
244}
245
246/*
247 * To check given numa node has cpus.
248 */
249static bool node_has_cpus(int node)
250{
251 struct bitmask *cpu = numa_allocate_cpumask();
252 unsigned int i;
253
254 if (cpu && !numa_node_to_cpus(node, cpu)) {
255 for (i = 0; i < cpu->size; i++) {
256 if (numa_bitmask_isbitset(cpu, i))
257 return true;
258 }
259 }
260
261 return false; /* lets fall back to nocpus safely */
262}
263
264static cpu_set_t bind_to_cpu(int target_cpu)
265{
266 cpu_set_t orig_mask, mask;
267 int ret;
268
269 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
270 BUG_ON(ret);
271
272 CPU_ZERO(&mask);
273
274 if (target_cpu == -1) {
275 int cpu;
276
277 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
278 CPU_SET(cpu, &mask);
279 } else {
280 BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
281 CPU_SET(target_cpu, &mask);
282 }
283
284 ret = sched_setaffinity(0, sizeof(mask), &mask);
285 BUG_ON(ret);
286
287 return orig_mask;
288}
289
290static cpu_set_t bind_to_node(int target_node)
291{
292 int cpus_per_node = g->p.nr_cpus / nr_numa_nodes();
293 cpu_set_t orig_mask, mask;
294 int cpu;
295 int ret;
296
297 BUG_ON(cpus_per_node * nr_numa_nodes() != g->p.nr_cpus);
298 BUG_ON(!cpus_per_node);
299
300 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
301 BUG_ON(ret);
302
303 CPU_ZERO(&mask);
304
305 if (target_node == -1) {
306 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
307 CPU_SET(cpu, &mask);
308 } else {
309 int cpu_start = (target_node + 0) * cpus_per_node;
310 int cpu_stop = (target_node + 1) * cpus_per_node;
311
312 BUG_ON(cpu_stop > g->p.nr_cpus);
313
314 for (cpu = cpu_start; cpu < cpu_stop; cpu++)
315 CPU_SET(cpu, &mask);
316 }
317
318 ret = sched_setaffinity(0, sizeof(mask), &mask);
319 BUG_ON(ret);
320
321 return orig_mask;
322}
323
324static void bind_to_cpumask(cpu_set_t mask)
325{
326 int ret;
327
328 ret = sched_setaffinity(0, sizeof(mask), &mask);
329 BUG_ON(ret);
330}
331
332static void mempol_restore(void)
333{
334 int ret;
335
336 ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
337
338 BUG_ON(ret);
339}
340
341static void bind_to_memnode(int node)
342{
343 unsigned long nodemask;
344 int ret;
345
346 if (node == -1)
347 return;
348
349 BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8);
350 nodemask = 1L << node;
351
352 ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
353 dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
354
355 BUG_ON(ret);
356}
357
358#define HPSIZE (2*1024*1024)
359
360#define set_taskname(fmt...) \
361do { \
362 char name[20]; \
363 \
364 snprintf(name, 20, fmt); \
365 prctl(PR_SET_NAME, name); \
366} while (0)
367
368static u8 *alloc_data(ssize_t bytes0, int map_flags,
369 int init_zero, int init_cpu0, int thp, int init_random)
370{
371 cpu_set_t orig_mask;
372 ssize_t bytes;
373 u8 *buf;
374 int ret;
375
376 if (!bytes0)
377 return NULL;
378
379 /* Allocate and initialize all memory on CPU#0: */
380 if (init_cpu0) {
381 int node = numa_node_of_cpu(0);
382
383 orig_mask = bind_to_node(node);
384 bind_to_memnode(node);
385 }
386
387 bytes = bytes0 + HPSIZE;
388
389 buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
390 BUG_ON(buf == (void *)-1);
391
392 if (map_flags == MAP_PRIVATE) {
393 if (thp > 0) {
394 ret = madvise(buf, bytes, MADV_HUGEPAGE);
395 if (ret && !g->print_once) {
396 g->print_once = 1;
397 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
398 }
399 }
400 if (thp < 0) {
401 ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
402 if (ret && !g->print_once) {
403 g->print_once = 1;
404 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
405 }
406 }
407 }
408
409 if (init_zero) {
410 bzero(buf, bytes);
411 } else {
412 /* Initialize random contents, different in each word: */
413 if (init_random) {
414 u64 *wbuf = (void *)buf;
415 long off = rand();
416 long i;
417
418 for (i = 0; i < bytes/8; i++)
419 wbuf[i] = i + off;
420 }
421 }
422
423 /* Align to 2MB boundary: */
424 buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
425
426 /* Restore affinity: */
427 if (init_cpu0) {
428 bind_to_cpumask(orig_mask);
429 mempol_restore();
430 }
431
432 return buf;
433}
434
435static void free_data(void *data, ssize_t bytes)
436{
437 int ret;
438
439 if (!data)
440 return;
441
442 ret = munmap(data, bytes);
443 BUG_ON(ret);
444}
445
446/*
447 * Create a shared memory buffer that can be shared between processes, zeroed:
448 */
449static void * zalloc_shared_data(ssize_t bytes)
450{
451 return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random);
452}
453
454/*
455 * Create a shared memory buffer that can be shared between processes:
456 */
457static void * setup_shared_data(ssize_t bytes)
458{
459 return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
460}
461
462/*
463 * Allocate process-local memory - this will either be shared between
464 * threads of this process, or only be accessed by this thread:
465 */
466static void * setup_private_data(ssize_t bytes)
467{
468 return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
469}
470
471/*
472 * Return a process-shared (global) mutex:
473 */
474static void init_global_mutex(pthread_mutex_t *mutex)
475{
476 pthread_mutexattr_t attr;
477
478 pthread_mutexattr_init(&attr);
479 pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
480 pthread_mutex_init(mutex, &attr);
481}
482
483static int parse_cpu_list(const char *arg)
484{
485 p0.cpu_list_str = strdup(arg);
486
487 dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
488
489 return 0;
490}
491
492static int parse_setup_cpu_list(void)
493{
494 struct thread_data *td;
495 char *str0, *str;
496 int t;
497
498 if (!g->p.cpu_list_str)
499 return 0;
500
501 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
502
503 str0 = str = strdup(g->p.cpu_list_str);
504 t = 0;
505
506 BUG_ON(!str);
507
508 tprintf("# binding tasks to CPUs:\n");
509 tprintf("# ");
510
511 while (true) {
512 int bind_cpu, bind_cpu_0, bind_cpu_1;
513 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
514 int bind_len;
515 int step;
516 int mul;
517
518 tok = strsep(&str, ",");
519 if (!tok)
520 break;
521
522 tok_end = strstr(tok, "-");
523
524 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
525 if (!tok_end) {
526 /* Single CPU specified: */
527 bind_cpu_0 = bind_cpu_1 = atol(tok);
528 } else {
529 /* CPU range specified (for example: "5-11"): */
530 bind_cpu_0 = atol(tok);
531 bind_cpu_1 = atol(tok_end + 1);
532 }
533
534 step = 1;
535 tok_step = strstr(tok, "#");
536 if (tok_step) {
537 step = atol(tok_step + 1);
538 BUG_ON(step <= 0 || step >= g->p.nr_cpus);
539 }
540
541 /*
542 * Mask length.
543 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
544 * where the _4 means the next 4 CPUs are allowed.
545 */
546 bind_len = 1;
547 tok_len = strstr(tok, "_");
548 if (tok_len) {
549 bind_len = atol(tok_len + 1);
550 BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
551 }
552
553 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
554 mul = 1;
555 tok_mul = strstr(tok, "x");
556 if (tok_mul) {
557 mul = atol(tok_mul + 1);
558 BUG_ON(mul <= 0);
559 }
560
561 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
562
563 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
564 printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
565 return -1;
566 }
567
568 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
569 BUG_ON(bind_cpu_0 > bind_cpu_1);
570
571 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
572 int i;
573
574 for (i = 0; i < mul; i++) {
575 int cpu;
576
577 if (t >= g->p.nr_tasks) {
578 printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
579 goto out;
580 }
581 td = g->threads + t;
582
583 if (t)
584 tprintf(",");
585 if (bind_len > 1) {
586 tprintf("%2d/%d", bind_cpu, bind_len);
587 } else {
588 tprintf("%2d", bind_cpu);
589 }
590
591 CPU_ZERO(&td->bind_cpumask);
592 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
593 BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
594 CPU_SET(cpu, &td->bind_cpumask);
595 }
596 t++;
597 }
598 }
599 }
600out:
601
602 tprintf("\n");
603
604 if (t < g->p.nr_tasks)
605 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
606
607 free(str0);
608 return 0;
609}
610
611static int parse_cpus_opt(const struct option *opt __maybe_unused,
612 const char *arg, int unset __maybe_unused)
613{
614 if (!arg)
615 return -1;
616
617 return parse_cpu_list(arg);
618}
619
620static int parse_node_list(const char *arg)
621{
622 p0.node_list_str = strdup(arg);
623
624 dprintf("got NODE list: {%s}\n", p0.node_list_str);
625
626 return 0;
627}
628
629static int parse_setup_node_list(void)
630{
631 struct thread_data *td;
632 char *str0, *str;
633 int t;
634
635 if (!g->p.node_list_str)
636 return 0;
637
638 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
639
640 str0 = str = strdup(g->p.node_list_str);
641 t = 0;
642
643 BUG_ON(!str);
644
645 tprintf("# binding tasks to NODEs:\n");
646 tprintf("# ");
647
648 while (true) {
649 int bind_node, bind_node_0, bind_node_1;
650 char *tok, *tok_end, *tok_step, *tok_mul;
651 int step;
652 int mul;
653
654 tok = strsep(&str, ",");
655 if (!tok)
656 break;
657
658 tok_end = strstr(tok, "-");
659
660 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
661 if (!tok_end) {
662 /* Single NODE specified: */
663 bind_node_0 = bind_node_1 = atol(tok);
664 } else {
665 /* NODE range specified (for example: "5-11"): */
666 bind_node_0 = atol(tok);
667 bind_node_1 = atol(tok_end + 1);
668 }
669
670 step = 1;
671 tok_step = strstr(tok, "#");
672 if (tok_step) {
673 step = atol(tok_step + 1);
674 BUG_ON(step <= 0 || step >= g->p.nr_nodes);
675 }
676
677 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
678 mul = 1;
679 tok_mul = strstr(tok, "x");
680 if (tok_mul) {
681 mul = atol(tok_mul + 1);
682 BUG_ON(mul <= 0);
683 }
684
685 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
686
687 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
688 printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
689 return -1;
690 }
691
692 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
693 BUG_ON(bind_node_0 > bind_node_1);
694
695 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
696 int i;
697
698 for (i = 0; i < mul; i++) {
699 if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) {
700 printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
701 goto out;
702 }
703 td = g->threads + t;
704
705 if (!t)
706 tprintf(" %2d", bind_node);
707 else
708 tprintf(",%2d", bind_node);
709
710 td->bind_node = bind_node;
711 t++;
712 }
713 }
714 }
715out:
716
717 tprintf("\n");
718
719 if (t < g->p.nr_tasks)
720 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
721
722 free(str0);
723 return 0;
724}
725
726static int parse_nodes_opt(const struct option *opt __maybe_unused,
727 const char *arg, int unset __maybe_unused)
728{
729 if (!arg)
730 return -1;
731
732 return parse_node_list(arg);
733
734 return 0;
735}
736
737#define BIT(x) (1ul << x)
738
739static inline uint32_t lfsr_32(uint32_t lfsr)
740{
741 const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
742 return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
743}
744
745/*
746 * Make sure there's real data dependency to RAM (when read
747 * accesses are enabled), so the compiler, the CPU and the
748 * kernel (KSM, zero page, etc.) cannot optimize away RAM
749 * accesses:
750 */
751static inline u64 access_data(u64 *data, u64 val)
752{
753 if (g->p.data_reads)
754 val += *data;
755 if (g->p.data_writes)
756 *data = val + 1;
757 return val;
758}
759
760/*
761 * The worker process does two types of work, a forwards going
762 * loop and a backwards going loop.
763 *
764 * We do this so that on multiprocessor systems we do not create
765 * a 'train' of processing, with highly synchronized processes,
766 * skewing the whole benchmark.
767 */
768static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
769{
770 long words = bytes/sizeof(u64);
771 u64 *data = (void *)__data;
772 long chunk_0, chunk_1;
773 u64 *d0, *d, *d1;
774 long off;
775 long i;
776
777 BUG_ON(!data && words);
778 BUG_ON(data && !words);
779
780 if (!data)
781 return val;
782
783 /* Very simple memset() work variant: */
784 if (g->p.data_zero_memset && !g->p.data_rand_walk) {
785 bzero(data, bytes);
786 return val;
787 }
788
789 /* Spread out by PID/TID nr and by loop nr: */
790 chunk_0 = words/nr_max;
791 chunk_1 = words/g->p.nr_loops;
792 off = nr*chunk_0 + loop*chunk_1;
793
794 while (off >= words)
795 off -= words;
796
797 if (g->p.data_rand_walk) {
798 u32 lfsr = nr + loop + val;
799 int j;
800
801 for (i = 0; i < words/1024; i++) {
802 long start, end;
803
804 lfsr = lfsr_32(lfsr);
805
806 start = lfsr % words;
807 end = min(start + 1024, words-1);
808
809 if (g->p.data_zero_memset) {
810 bzero(data + start, (end-start) * sizeof(u64));
811 } else {
812 for (j = start; j < end; j++)
813 val = access_data(data + j, val);
814 }
815 }
816 } else if (!g->p.data_backwards || (nr + loop) & 1) {
817
818 d0 = data + off;
819 d = data + off + 1;
820 d1 = data + words;
821
822 /* Process data forwards: */
823 for (;;) {
824 if (unlikely(d >= d1))
825 d = data;
826 if (unlikely(d == d0))
827 break;
828
829 val = access_data(d, val);
830
831 d++;
832 }
833 } else {
834 /* Process data backwards: */
835
836 d0 = data + off;
837 d = data + off - 1;
838 d1 = data + words;
839
840 /* Process data forwards: */
841 for (;;) {
842 if (unlikely(d < data))
843 d = data + words-1;
844 if (unlikely(d == d0))
845 break;
846
847 val = access_data(d, val);
848
849 d--;
850 }
851 }
852
853 return val;
854}
855
856static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
857{
858 unsigned int cpu;
859
860 cpu = sched_getcpu();
861
862 g->threads[task_nr].curr_cpu = cpu;
863 prctl(0, bytes_worked);
864}
865
866#define MAX_NR_NODES 64
867
868/*
869 * Count the number of nodes a process's threads
870 * are spread out on.
871 *
872 * A count of 1 means that the process is compressed
873 * to a single node. A count of g->p.nr_nodes means it's
874 * spread out on the whole system.
875 */
876static int count_process_nodes(int process_nr)
877{
878 char node_present[MAX_NR_NODES] = { 0, };
879 int nodes;
880 int n, t;
881
882 for (t = 0; t < g->p.nr_threads; t++) {
883 struct thread_data *td;
884 int task_nr;
885 int node;
886
887 task_nr = process_nr*g->p.nr_threads + t;
888 td = g->threads + task_nr;
889
890 node = numa_node_of_cpu(td->curr_cpu);
891 if (node < 0) /* curr_cpu was likely still -1 */
892 return 0;
893
894 node_present[node] = 1;
895 }
896
897 nodes = 0;
898
899 for (n = 0; n < MAX_NR_NODES; n++)
900 nodes += node_present[n];
901
902 return nodes;
903}
904
905/*
906 * Count the number of distinct process-threads a node contains.
907 *
908 * A count of 1 means that the node contains only a single
909 * process. If all nodes on the system contain at most one
910 * process then we are well-converged.
911 */
912static int count_node_processes(int node)
913{
914 int processes = 0;
915 int t, p;
916
917 for (p = 0; p < g->p.nr_proc; p++) {
918 for (t = 0; t < g->p.nr_threads; t++) {
919 struct thread_data *td;
920 int task_nr;
921 int n;
922
923 task_nr = p*g->p.nr_threads + t;
924 td = g->threads + task_nr;
925
926 n = numa_node_of_cpu(td->curr_cpu);
927 if (n == node) {
928 processes++;
929 break;
930 }
931 }
932 }
933
934 return processes;
935}
936
937static void calc_convergence_compression(int *strong)
938{
939 unsigned int nodes_min, nodes_max;
940 int p;
941
942 nodes_min = -1;
943 nodes_max = 0;
944
945 for (p = 0; p < g->p.nr_proc; p++) {
946 unsigned int nodes = count_process_nodes(p);
947
948 if (!nodes) {
949 *strong = 0;
950 return;
951 }
952
953 nodes_min = min(nodes, nodes_min);
954 nodes_max = max(nodes, nodes_max);
955 }
956
957 /* Strong convergence: all threads compress on a single node: */
958 if (nodes_min == 1 && nodes_max == 1) {
959 *strong = 1;
960 } else {
961 *strong = 0;
962 tprintf(" {%d-%d}", nodes_min, nodes_max);
963 }
964}
965
966static void calc_convergence(double runtime_ns_max, double *convergence)
967{
968 unsigned int loops_done_min, loops_done_max;
969 int process_groups;
970 int nodes[MAX_NR_NODES];
971 int distance;
972 int nr_min;
973 int nr_max;
974 int strong;
975 int sum;
976 int nr;
977 int node;
978 int cpu;
979 int t;
980
981 if (!g->p.show_convergence && !g->p.measure_convergence)
982 return;
983
984 for (node = 0; node < g->p.nr_nodes; node++)
985 nodes[node] = 0;
986
987 loops_done_min = -1;
988 loops_done_max = 0;
989
990 for (t = 0; t < g->p.nr_tasks; t++) {
991 struct thread_data *td = g->threads + t;
992 unsigned int loops_done;
993
994 cpu = td->curr_cpu;
995
996 /* Not all threads have written it yet: */
997 if (cpu < 0)
998 continue;
999
1000 node = numa_node_of_cpu(cpu);
1001
1002 nodes[node]++;
1003
1004 loops_done = td->loops_done;
1005 loops_done_min = min(loops_done, loops_done_min);
1006 loops_done_max = max(loops_done, loops_done_max);
1007 }
1008
1009 nr_max = 0;
1010 nr_min = g->p.nr_tasks;
1011 sum = 0;
1012
1013 for (node = 0; node < g->p.nr_nodes; node++) {
1014 if (!is_node_present(node))
1015 continue;
1016 nr = nodes[node];
1017 nr_min = min(nr, nr_min);
1018 nr_max = max(nr, nr_max);
1019 sum += nr;
1020 }
1021 BUG_ON(nr_min > nr_max);
1022
1023 BUG_ON(sum > g->p.nr_tasks);
1024
1025 if (0 && (sum < g->p.nr_tasks))
1026 return;
1027
1028 /*
1029 * Count the number of distinct process groups present
1030 * on nodes - when we are converged this will decrease
1031 * to g->p.nr_proc:
1032 */
1033 process_groups = 0;
1034
1035 for (node = 0; node < g->p.nr_nodes; node++) {
1036 int processes;
1037
1038 if (!is_node_present(node))
1039 continue;
1040 processes = count_node_processes(node);
1041 nr = nodes[node];
1042 tprintf(" %2d/%-2d", nr, processes);
1043
1044 process_groups += processes;
1045 }
1046
1047 distance = nr_max - nr_min;
1048
1049 tprintf(" [%2d/%-2d]", distance, process_groups);
1050
1051 tprintf(" l:%3d-%-3d (%3d)",
1052 loops_done_min, loops_done_max, loops_done_max-loops_done_min);
1053
1054 if (loops_done_min && loops_done_max) {
1055 double skew = 1.0 - (double)loops_done_min/loops_done_max;
1056
1057 tprintf(" [%4.1f%%]", skew * 100.0);
1058 }
1059
1060 calc_convergence_compression(&strong);
1061
1062 if (strong && process_groups == g->p.nr_proc) {
1063 if (!*convergence) {
1064 *convergence = runtime_ns_max;
1065 tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1066 if (g->p.measure_convergence) {
1067 g->all_converged = true;
1068 g->stop_work = true;
1069 }
1070 }
1071 } else {
1072 if (*convergence) {
1073 tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1074 *convergence = 0;
1075 }
1076 tprintf("\n");
1077 }
1078}
1079
1080static void show_summary(double runtime_ns_max, int l, double *convergence)
1081{
1082 tprintf("\r # %5.1f%% [%.1f mins]",
1083 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1084
1085 calc_convergence(runtime_ns_max, convergence);
1086
1087 if (g->p.show_details >= 0)
1088 fflush(stdout);
1089}
1090
1091static void *worker_thread(void *__tdata)
1092{
1093 struct thread_data *td = __tdata;
1094 struct timeval start0, start, stop, diff;
1095 int process_nr = td->process_nr;
1096 int thread_nr = td->thread_nr;
1097 unsigned long last_perturbance;
1098 int task_nr = td->task_nr;
1099 int details = g->p.show_details;
1100 int first_task, last_task;
1101 double convergence = 0;
1102 u64 val = td->val;
1103 double runtime_ns_max;
1104 u8 *global_data;
1105 u8 *process_data;
1106 u8 *thread_data;
1107 u64 bytes_done, secs;
1108 long work_done;
1109 u32 l;
1110 struct rusage rusage;
1111
1112 bind_to_cpumask(td->bind_cpumask);
1113 bind_to_memnode(td->bind_node);
1114
1115 set_taskname("thread %d/%d", process_nr, thread_nr);
1116
1117 global_data = g->data;
1118 process_data = td->process_data;
1119 thread_data = setup_private_data(g->p.bytes_thread);
1120
1121 bytes_done = 0;
1122
1123 last_task = 0;
1124 if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1125 last_task = 1;
1126
1127 first_task = 0;
1128 if (process_nr == 0 && thread_nr == 0)
1129 first_task = 1;
1130
1131 if (details >= 2) {
1132 printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1133 process_nr, thread_nr, global_data, process_data, thread_data);
1134 }
1135
1136 if (g->p.serialize_startup) {
1137 pthread_mutex_lock(&g->startup_mutex);
1138 g->nr_tasks_started++;
1139 pthread_mutex_unlock(&g->startup_mutex);
1140
1141 /* Here we will wait for the main process to start us all at once: */
1142 pthread_mutex_lock(&g->start_work_mutex);
1143 g->nr_tasks_working++;
1144
1145 /* Last one wake the main process: */
1146 if (g->nr_tasks_working == g->p.nr_tasks)
1147 pthread_mutex_unlock(&g->startup_done_mutex);
1148
1149 pthread_mutex_unlock(&g->start_work_mutex);
1150 }
1151
1152 gettimeofday(&start0, NULL);
1153
1154 start = stop = start0;
1155 last_perturbance = start.tv_sec;
1156
1157 for (l = 0; l < g->p.nr_loops; l++) {
1158 start = stop;
1159
1160 if (g->stop_work)
1161 break;
1162
1163 val += do_work(global_data, g->p.bytes_global, process_nr, g->p.nr_proc, l, val);
1164 val += do_work(process_data, g->p.bytes_process, thread_nr, g->p.nr_threads, l, val);
1165 val += do_work(thread_data, g->p.bytes_thread, 0, 1, l, val);
1166
1167 if (g->p.sleep_usecs) {
1168 pthread_mutex_lock(td->process_lock);
1169 usleep(g->p.sleep_usecs);
1170 pthread_mutex_unlock(td->process_lock);
1171 }
1172 /*
1173 * Amount of work to be done under a process-global lock:
1174 */
1175 if (g->p.bytes_process_locked) {
1176 pthread_mutex_lock(td->process_lock);
1177 val += do_work(process_data, g->p.bytes_process_locked, thread_nr, g->p.nr_threads, l, val);
1178 pthread_mutex_unlock(td->process_lock);
1179 }
1180
1181 work_done = g->p.bytes_global + g->p.bytes_process +
1182 g->p.bytes_process_locked + g->p.bytes_thread;
1183
1184 update_curr_cpu(task_nr, work_done);
1185 bytes_done += work_done;
1186
1187 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1188 continue;
1189
1190 td->loops_done = l;
1191
1192 gettimeofday(&stop, NULL);
1193
1194 /* Check whether our max runtime timed out: */
1195 if (g->p.nr_secs) {
1196 timersub(&stop, &start0, &diff);
1197 if ((u32)diff.tv_sec >= g->p.nr_secs) {
1198 g->stop_work = true;
1199 break;
1200 }
1201 }
1202
1203 /* Update the summary at most once per second: */
1204 if (start.tv_sec == stop.tv_sec)
1205 continue;
1206
1207 /*
1208 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1209 * by migrating to CPU#0:
1210 */
1211 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1212 cpu_set_t orig_mask;
1213 int target_cpu;
1214 int this_cpu;
1215
1216 last_perturbance = stop.tv_sec;
1217
1218 /*
1219 * Depending on where we are running, move into
1220 * the other half of the system, to create some
1221 * real disturbance:
1222 */
1223 this_cpu = g->threads[task_nr].curr_cpu;
1224 if (this_cpu < g->p.nr_cpus/2)
1225 target_cpu = g->p.nr_cpus-1;
1226 else
1227 target_cpu = 0;
1228
1229 orig_mask = bind_to_cpu(target_cpu);
1230
1231 /* Here we are running on the target CPU already */
1232 if (details >= 1)
1233 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1234
1235 bind_to_cpumask(orig_mask);
1236 }
1237
1238 if (details >= 3) {
1239 timersub(&stop, &start, &diff);
1240 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1241 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1242
1243 if (details >= 0) {
1244 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1245 process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1246 }
1247 fflush(stdout);
1248 }
1249 if (!last_task)
1250 continue;
1251
1252 timersub(&stop, &start0, &diff);
1253 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1254 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1255
1256 show_summary(runtime_ns_max, l, &convergence);
1257 }
1258
1259 gettimeofday(&stop, NULL);
1260 timersub(&stop, &start0, &diff);
1261 td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1262 td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1263 secs = td->runtime_ns / NSEC_PER_SEC;
1264 td->speed_gbs = secs ? bytes_done / secs / 1e9 : 0;
1265
1266 getrusage(RUSAGE_THREAD, &rusage);
1267 td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1268 td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1269 td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1270 td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1271
1272 free_data(thread_data, g->p.bytes_thread);
1273
1274 pthread_mutex_lock(&g->stop_work_mutex);
1275 g->bytes_done += bytes_done;
1276 pthread_mutex_unlock(&g->stop_work_mutex);
1277
1278 return NULL;
1279}
1280
1281/*
1282 * A worker process starts a couple of threads:
1283 */
1284static void worker_process(int process_nr)
1285{
1286 pthread_mutex_t process_lock;
1287 struct thread_data *td;
1288 pthread_t *pthreads;
1289 u8 *process_data;
1290 int task_nr;
1291 int ret;
1292 int t;
1293
1294 pthread_mutex_init(&process_lock, NULL);
1295 set_taskname("process %d", process_nr);
1296
1297 /*
1298 * Pick up the memory policy and the CPU binding of our first thread,
1299 * so that we initialize memory accordingly:
1300 */
1301 task_nr = process_nr*g->p.nr_threads;
1302 td = g->threads + task_nr;
1303
1304 bind_to_memnode(td->bind_node);
1305 bind_to_cpumask(td->bind_cpumask);
1306
1307 pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1308 process_data = setup_private_data(g->p.bytes_process);
1309
1310 if (g->p.show_details >= 3) {
1311 printf(" # process %2d global mem: %p, process mem: %p\n",
1312 process_nr, g->data, process_data);
1313 }
1314
1315 for (t = 0; t < g->p.nr_threads; t++) {
1316 task_nr = process_nr*g->p.nr_threads + t;
1317 td = g->threads + task_nr;
1318
1319 td->process_data = process_data;
1320 td->process_nr = process_nr;
1321 td->thread_nr = t;
1322 td->task_nr = task_nr;
1323 td->val = rand();
1324 td->curr_cpu = -1;
1325 td->process_lock = &process_lock;
1326
1327 ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1328 BUG_ON(ret);
1329 }
1330
1331 for (t = 0; t < g->p.nr_threads; t++) {
1332 ret = pthread_join(pthreads[t], NULL);
1333 BUG_ON(ret);
1334 }
1335
1336 free_data(process_data, g->p.bytes_process);
1337 free(pthreads);
1338}
1339
1340static void print_summary(void)
1341{
1342 if (g->p.show_details < 0)
1343 return;
1344
1345 printf("\n ###\n");
1346 printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1347 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus);
1348 printf(" # %5dx %5ldMB global shared mem operations\n",
1349 g->p.nr_loops, g->p.bytes_global/1024/1024);
1350 printf(" # %5dx %5ldMB process shared mem operations\n",
1351 g->p.nr_loops, g->p.bytes_process/1024/1024);
1352 printf(" # %5dx %5ldMB thread local mem operations\n",
1353 g->p.nr_loops, g->p.bytes_thread/1024/1024);
1354
1355 printf(" ###\n");
1356
1357 printf("\n ###\n"); fflush(stdout);
1358}
1359
1360static void init_thread_data(void)
1361{
1362 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1363 int t;
1364
1365 g->threads = zalloc_shared_data(size);
1366
1367 for (t = 0; t < g->p.nr_tasks; t++) {
1368 struct thread_data *td = g->threads + t;
1369 int cpu;
1370
1371 /* Allow all nodes by default: */
1372 td->bind_node = -1;
1373
1374 /* Allow all CPUs by default: */
1375 CPU_ZERO(&td->bind_cpumask);
1376 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1377 CPU_SET(cpu, &td->bind_cpumask);
1378 }
1379}
1380
1381static void deinit_thread_data(void)
1382{
1383 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1384
1385 free_data(g->threads, size);
1386}
1387
1388static int init(void)
1389{
1390 g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1391
1392 /* Copy over options: */
1393 g->p = p0;
1394
1395 g->p.nr_cpus = numa_num_configured_cpus();
1396
1397 g->p.nr_nodes = numa_max_node() + 1;
1398
1399 /* char array in count_process_nodes(): */
1400 BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1401
1402 if (g->p.show_quiet && !g->p.show_details)
1403 g->p.show_details = -1;
1404
1405 /* Some memory should be specified: */
1406 if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1407 return -1;
1408
1409 if (g->p.mb_global_str) {
1410 g->p.mb_global = atof(g->p.mb_global_str);
1411 BUG_ON(g->p.mb_global < 0);
1412 }
1413
1414 if (g->p.mb_proc_str) {
1415 g->p.mb_proc = atof(g->p.mb_proc_str);
1416 BUG_ON(g->p.mb_proc < 0);
1417 }
1418
1419 if (g->p.mb_proc_locked_str) {
1420 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1421 BUG_ON(g->p.mb_proc_locked < 0);
1422 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1423 }
1424
1425 if (g->p.mb_thread_str) {
1426 g->p.mb_thread = atof(g->p.mb_thread_str);
1427 BUG_ON(g->p.mb_thread < 0);
1428 }
1429
1430 BUG_ON(g->p.nr_threads <= 0);
1431 BUG_ON(g->p.nr_proc <= 0);
1432
1433 g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1434
1435 g->p.bytes_global = g->p.mb_global *1024L*1024L;
1436 g->p.bytes_process = g->p.mb_proc *1024L*1024L;
1437 g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L;
1438 g->p.bytes_thread = g->p.mb_thread *1024L*1024L;
1439
1440 g->data = setup_shared_data(g->p.bytes_global);
1441
1442 /* Startup serialization: */
1443 init_global_mutex(&g->start_work_mutex);
1444 init_global_mutex(&g->startup_mutex);
1445 init_global_mutex(&g->startup_done_mutex);
1446 init_global_mutex(&g->stop_work_mutex);
1447
1448 init_thread_data();
1449
1450 tprintf("#\n");
1451 if (parse_setup_cpu_list() || parse_setup_node_list())
1452 return -1;
1453 tprintf("#\n");
1454
1455 print_summary();
1456
1457 return 0;
1458}
1459
1460static void deinit(void)
1461{
1462 free_data(g->data, g->p.bytes_global);
1463 g->data = NULL;
1464
1465 deinit_thread_data();
1466
1467 free_data(g, sizeof(*g));
1468 g = NULL;
1469}
1470
1471/*
1472 * Print a short or long result, depending on the verbosity setting:
1473 */
1474static void print_res(const char *name, double val,
1475 const char *txt_unit, const char *txt_short, const char *txt_long)
1476{
1477 if (!name)
1478 name = "main,";
1479
1480 if (!g->p.show_quiet)
1481 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1482 else
1483 printf(" %14.3f %s\n", val, txt_long);
1484}
1485
1486static int __bench_numa(const char *name)
1487{
1488 struct timeval start, stop, diff;
1489 u64 runtime_ns_min, runtime_ns_sum;
1490 pid_t *pids, pid, wpid;
1491 double delta_runtime;
1492 double runtime_avg;
1493 double runtime_sec_max;
1494 double runtime_sec_min;
1495 int wait_stat;
1496 double bytes;
1497 int i, t, p;
1498
1499 if (init())
1500 return -1;
1501
1502 pids = zalloc(g->p.nr_proc * sizeof(*pids));
1503 pid = -1;
1504
1505 /* All threads try to acquire it, this way we can wait for them to start up: */
1506 pthread_mutex_lock(&g->start_work_mutex);
1507
1508 if (g->p.serialize_startup) {
1509 tprintf(" #\n");
1510 tprintf(" # Startup synchronization: ..."); fflush(stdout);
1511 }
1512
1513 gettimeofday(&start, NULL);
1514
1515 for (i = 0; i < g->p.nr_proc; i++) {
1516 pid = fork();
1517 dprintf(" # process %2d: PID %d\n", i, pid);
1518
1519 BUG_ON(pid < 0);
1520 if (!pid) {
1521 /* Child process: */
1522 worker_process(i);
1523
1524 exit(0);
1525 }
1526 pids[i] = pid;
1527
1528 }
1529 /* Wait for all the threads to start up: */
1530 while (g->nr_tasks_started != g->p.nr_tasks)
1531 usleep(USEC_PER_MSEC);
1532
1533 BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
1534
1535 if (g->p.serialize_startup) {
1536 double startup_sec;
1537
1538 pthread_mutex_lock(&g->startup_done_mutex);
1539
1540 /* This will start all threads: */
1541 pthread_mutex_unlock(&g->start_work_mutex);
1542
1543 /* This mutex is locked - the last started thread will wake us: */
1544 pthread_mutex_lock(&g->startup_done_mutex);
1545
1546 gettimeofday(&stop, NULL);
1547
1548 timersub(&stop, &start, &diff);
1549
1550 startup_sec = diff.tv_sec * NSEC_PER_SEC;
1551 startup_sec += diff.tv_usec * NSEC_PER_USEC;
1552 startup_sec /= NSEC_PER_SEC;
1553
1554 tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1555 tprintf(" #\n");
1556
1557 start = stop;
1558 pthread_mutex_unlock(&g->startup_done_mutex);
1559 } else {
1560 gettimeofday(&start, NULL);
1561 }
1562
1563 /* Parent process: */
1564
1565
1566 for (i = 0; i < g->p.nr_proc; i++) {
1567 wpid = waitpid(pids[i], &wait_stat, 0);
1568 BUG_ON(wpid < 0);
1569 BUG_ON(!WIFEXITED(wait_stat));
1570
1571 }
1572
1573 runtime_ns_sum = 0;
1574 runtime_ns_min = -1LL;
1575
1576 for (t = 0; t < g->p.nr_tasks; t++) {
1577 u64 thread_runtime_ns = g->threads[t].runtime_ns;
1578
1579 runtime_ns_sum += thread_runtime_ns;
1580 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1581 }
1582
1583 gettimeofday(&stop, NULL);
1584 timersub(&stop, &start, &diff);
1585
1586 BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1587
1588 tprintf("\n ###\n");
1589 tprintf("\n");
1590
1591 runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1592 runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1593 runtime_sec_max /= NSEC_PER_SEC;
1594
1595 runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1596
1597 bytes = g->bytes_done;
1598 runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1599
1600 if (g->p.measure_convergence) {
1601 print_res(name, runtime_sec_max,
1602 "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1603 }
1604
1605 print_res(name, runtime_sec_max,
1606 "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime");
1607
1608 print_res(name, runtime_sec_min,
1609 "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime");
1610
1611 print_res(name, runtime_avg,
1612 "secs,", "runtime-avg/thread", "secs average thread-runtime");
1613
1614 delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1615 print_res(name, delta_runtime / runtime_sec_max * 100.0,
1616 "%,", "spread-runtime/thread", "% difference between max/avg runtime");
1617
1618 print_res(name, bytes / g->p.nr_tasks / 1e9,
1619 "GB,", "data/thread", "GB data processed, per thread");
1620
1621 print_res(name, bytes / 1e9,
1622 "GB,", "data-total", "GB data processed, total");
1623
1624 print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1625 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1626
1627 print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1628 "GB/sec,", "thread-speed", "GB/sec/thread speed");
1629
1630 print_res(name, bytes / runtime_sec_max / 1e9,
1631 "GB/sec,", "total-speed", "GB/sec total speed");
1632
1633 if (g->p.show_details >= 2) {
1634 char tname[14 + 2 * 10 + 1];
1635 struct thread_data *td;
1636 for (p = 0; p < g->p.nr_proc; p++) {
1637 for (t = 0; t < g->p.nr_threads; t++) {
1638 memset(tname, 0, sizeof(tname));
1639 td = g->threads + p*g->p.nr_threads + t;
1640 snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
1641 print_res(tname, td->speed_gbs,
1642 "GB/sec", "thread-speed", "GB/sec/thread speed");
1643 print_res(tname, td->system_time_ns / NSEC_PER_SEC,
1644 "secs", "thread-system-time", "system CPU time/thread");
1645 print_res(tname, td->user_time_ns / NSEC_PER_SEC,
1646 "secs", "thread-user-time", "user CPU time/thread");
1647 }
1648 }
1649 }
1650
1651 free(pids);
1652
1653 deinit();
1654
1655 return 0;
1656}
1657
1658#define MAX_ARGS 50
1659
1660static int command_size(const char **argv)
1661{
1662 int size = 0;
1663
1664 while (*argv) {
1665 size++;
1666 argv++;
1667 }
1668
1669 BUG_ON(size >= MAX_ARGS);
1670
1671 return size;
1672}
1673
1674static void init_params(struct params *p, const char *name, int argc, const char **argv)
1675{
1676 int i;
1677
1678 printf("\n # Running %s \"perf bench numa", name);
1679
1680 for (i = 0; i < argc; i++)
1681 printf(" %s", argv[i]);
1682
1683 printf("\"\n");
1684
1685 memset(p, 0, sizeof(*p));
1686
1687 /* Initialize nonzero defaults: */
1688
1689 p->serialize_startup = 1;
1690 p->data_reads = true;
1691 p->data_writes = true;
1692 p->data_backwards = true;
1693 p->data_rand_walk = true;
1694 p->nr_loops = -1;
1695 p->init_random = true;
1696 p->mb_global_str = "1";
1697 p->nr_proc = 1;
1698 p->nr_threads = 1;
1699 p->nr_secs = 5;
1700 p->run_all = argc == 1;
1701}
1702
1703static int run_bench_numa(const char *name, const char **argv)
1704{
1705 int argc = command_size(argv);
1706
1707 init_params(&p0, name, argc, argv);
1708 argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1709 if (argc)
1710 goto err;
1711
1712 if (__bench_numa(name))
1713 goto err;
1714
1715 return 0;
1716
1717err:
1718 return -1;
1719}
1720
1721#define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk"
1722#define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1"
1723
1724#define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1"
1725#define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1"
1726
1727#define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1"
1728#define OPT_BW_NOTHP OPT_BW, "--thp", "-1"
1729
1730/*
1731 * The built-in test-suite executed by "perf bench numa -a".
1732 *
1733 * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1734 */
1735static const char *tests[][MAX_ARGS] = {
1736 /* Basic single-stream NUMA bandwidth measurements: */
1737 { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1738 "-C" , "0", "-M", "0", OPT_BW_RAM },
1739 { "RAM-bw-local-NOTHP,",
1740 "mem", "-p", "1", "-t", "1", "-P", "1024",
1741 "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP },
1742 { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1743 "-C" , "0", "-M", "1", OPT_BW_RAM },
1744
1745 /* 2-stream NUMA bandwidth measurements: */
1746 { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1747 "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1748 { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1749 "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1750
1751 /* Cross-stream NUMA bandwidth measurement: */
1752 { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1753 "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1754
1755 /* Convergence latency measurements: */
1756 { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV },
1757 { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV },
1758 { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV },
1759 { " 2x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV },
1760 { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV },
1761 { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV },
1762 { " 4x4-convergence-NOTHP,",
1763 "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
1764 { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV },
1765 { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV },
1766 { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV },
1767 { " 8x4-convergence-NOTHP,",
1768 "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
1769 { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV },
1770 { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV },
1771 { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV },
1772 { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV },
1773 { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV },
1774
1775 /* Various NUMA process/thread layout bandwidth measurements: */
1776 { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW },
1777 { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW },
1778 { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW },
1779 { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW },
1780 { " 8x1-bw-process-NOTHP,",
1781 "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP },
1782 { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW },
1783
1784 { " 4x1-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW },
1785 { " 8x1-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW },
1786 { "16x1-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW },
1787 { "32x1-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW },
1788
1789 { " 2x3-bw-thread,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW },
1790 { " 4x4-bw-thread,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW },
1791 { " 4x6-bw-thread,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW },
1792 { " 4x8-bw-thread,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW },
1793 { " 4x8-bw-thread-NOTHP,",
1794 "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP },
1795 { " 3x3-bw-thread,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW },
1796 { " 5x5-bw-thread,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW },
1797
1798 { "2x16-bw-thread,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW },
1799 { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW },
1800
1801 { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW },
1802 { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP },
1803 { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW },
1804 { "numa01-bw-thread-NOTHP,",
1805 "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP },
1806};
1807
1808static int bench_all(void)
1809{
1810 int nr = ARRAY_SIZE(tests);
1811 int ret;
1812 int i;
1813
1814 ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1815 BUG_ON(ret < 0);
1816
1817 for (i = 0; i < nr; i++) {
1818 run_bench_numa(tests[i][0], tests[i] + 1);
1819 }
1820
1821 printf("\n");
1822
1823 return 0;
1824}
1825
1826int bench_numa(int argc, const char **argv)
1827{
1828 init_params(&p0, "main,", argc, argv);
1829 argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1830 if (argc)
1831 goto err;
1832
1833 if (p0.run_all)
1834 return bench_all();
1835
1836 if (__bench_numa(NULL))
1837 goto err;
1838
1839 return 0;
1840
1841err:
1842 usage_with_options(numa_usage, options);
1843 return -1;
1844}