blob: 09ef6260477e650857bd6b3ebf9bd794a818ae36 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19#include <linux/cpu_pm.h>
20#include <linux/errno.h>
21#include <linux/err.h>
22#include <linux/kvm_host.h>
23#include <linux/list.h>
24#include <linux/module.h>
25#include <linux/vmalloc.h>
26#include <linux/fs.h>
27#include <linux/mman.h>
28#include <linux/sched.h>
29#include <linux/kvm.h>
30#include <trace/events/kvm.h>
31#include <kvm/arm_pmu.h>
32#include <kvm/arm_psci.h>
33
34#define CREATE_TRACE_POINTS
35#include "trace.h"
36
37#include <linux/uaccess.h>
38#include <asm/ptrace.h>
39#include <asm/mman.h>
40#include <asm/tlbflush.h>
41#include <asm/cacheflush.h>
42#include <asm/virt.h>
43#include <asm/kvm_arm.h>
44#include <asm/kvm_asm.h>
45#include <asm/kvm_mmu.h>
46#include <asm/kvm_emulate.h>
47#include <asm/kvm_coproc.h>
48#include <asm/sections.h>
49
50#ifdef REQUIRES_VIRT
51__asm__(".arch_extension virt");
52#endif
53
54DEFINE_PER_CPU(kvm_cpu_context_t, kvm_host_cpu_state);
55static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
56
57/* Per-CPU variable containing the currently running vcpu. */
58static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
59
60/* The VMID used in the VTTBR */
61static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
62static u32 kvm_next_vmid;
63static unsigned int kvm_vmid_bits __read_mostly;
64static DEFINE_SPINLOCK(kvm_vmid_lock);
65
66static bool vgic_present;
67
68static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
69
70static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
71{
72 BUG_ON(preemptible());
73 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
74}
75
76/**
77 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
78 * Must be called from non-preemptible context
79 */
80struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
81{
82 BUG_ON(preemptible());
83 return __this_cpu_read(kvm_arm_running_vcpu);
84}
85
86/**
87 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
88 */
89struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
90{
91 return &kvm_arm_running_vcpu;
92}
93
94int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
95{
96 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
97}
98
99int kvm_arch_hardware_setup(void)
100{
101 return 0;
102}
103
104void kvm_arch_check_processor_compat(void *rtn)
105{
106 *(int *)rtn = 0;
107}
108
109
110/**
111 * kvm_arch_init_vm - initializes a VM data structure
112 * @kvm: pointer to the KVM struct
113 */
114int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
115{
116 int ret, cpu;
117
118 if (type)
119 return -EINVAL;
120
121 kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
122 if (!kvm->arch.last_vcpu_ran)
123 return -ENOMEM;
124
125 for_each_possible_cpu(cpu)
126 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
127
128 ret = kvm_alloc_stage2_pgd(kvm);
129 if (ret)
130 goto out_fail_alloc;
131
132 ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
133 if (ret)
134 goto out_free_stage2_pgd;
135
136 kvm_vgic_early_init(kvm);
137
138 /* Mark the initial VMID generation invalid */
139 kvm->arch.vmid_gen = 0;
140
141 /* The maximum number of VCPUs is limited by the host's GIC model */
142 kvm->arch.max_vcpus = vgic_present ?
143 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
144
145 return ret;
146out_free_stage2_pgd:
147 kvm_free_stage2_pgd(kvm);
148out_fail_alloc:
149 free_percpu(kvm->arch.last_vcpu_ran);
150 kvm->arch.last_vcpu_ran = NULL;
151 return ret;
152}
153
154bool kvm_arch_has_vcpu_debugfs(void)
155{
156 return false;
157}
158
159int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
160{
161 return 0;
162}
163
164int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
165{
166 return VM_FAULT_SIGBUS;
167}
168
169
170/**
171 * kvm_arch_destroy_vm - destroy the VM data structure
172 * @kvm: pointer to the KVM struct
173 */
174void kvm_arch_destroy_vm(struct kvm *kvm)
175{
176 int i;
177
178 free_percpu(kvm->arch.last_vcpu_ran);
179 kvm->arch.last_vcpu_ran = NULL;
180
181 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
182 if (kvm->vcpus[i]) {
183 kvm_arch_vcpu_free(kvm->vcpus[i]);
184 kvm->vcpus[i] = NULL;
185 }
186 }
187
188 kvm_vgic_destroy(kvm);
189}
190
191int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
192{
193 int r;
194 switch (ext) {
195 case KVM_CAP_IRQCHIP:
196 r = vgic_present;
197 break;
198 case KVM_CAP_IOEVENTFD:
199 case KVM_CAP_DEVICE_CTRL:
200 case KVM_CAP_USER_MEMORY:
201 case KVM_CAP_SYNC_MMU:
202 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
203 case KVM_CAP_ONE_REG:
204 case KVM_CAP_ARM_PSCI:
205 case KVM_CAP_ARM_PSCI_0_2:
206 case KVM_CAP_READONLY_MEM:
207 case KVM_CAP_MP_STATE:
208 case KVM_CAP_IMMEDIATE_EXIT:
209 r = 1;
210 break;
211 case KVM_CAP_ARM_SET_DEVICE_ADDR:
212 r = 1;
213 break;
214 case KVM_CAP_NR_VCPUS:
215 r = num_online_cpus();
216 break;
217 case KVM_CAP_MAX_VCPUS:
218 r = KVM_MAX_VCPUS;
219 break;
220 case KVM_CAP_MAX_VCPU_ID:
221 r = KVM_MAX_VCPU_ID;
222 break;
223 case KVM_CAP_NR_MEMSLOTS:
224 r = KVM_USER_MEM_SLOTS;
225 break;
226 case KVM_CAP_MSI_DEVID:
227 if (!kvm)
228 r = -EINVAL;
229 else
230 r = kvm->arch.vgic.msis_require_devid;
231 break;
232 case KVM_CAP_ARM_USER_IRQ:
233 /*
234 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
235 * (bump this number if adding more devices)
236 */
237 r = 1;
238 break;
239 default:
240 r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
241 break;
242 }
243 return r;
244}
245
246long kvm_arch_dev_ioctl(struct file *filp,
247 unsigned int ioctl, unsigned long arg)
248{
249 return -EINVAL;
250}
251
252
253struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
254{
255 int err;
256 struct kvm_vcpu *vcpu;
257
258 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
259 err = -EBUSY;
260 goto out;
261 }
262
263 if (id >= kvm->arch.max_vcpus) {
264 err = -EINVAL;
265 goto out;
266 }
267
268 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
269 if (!vcpu) {
270 err = -ENOMEM;
271 goto out;
272 }
273
274 err = kvm_vcpu_init(vcpu, kvm, id);
275 if (err)
276 goto free_vcpu;
277
278 err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
279 if (err)
280 goto vcpu_uninit;
281
282 return vcpu;
283vcpu_uninit:
284 kvm_vcpu_uninit(vcpu);
285free_vcpu:
286 kmem_cache_free(kvm_vcpu_cache, vcpu);
287out:
288 return ERR_PTR(err);
289}
290
291void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
292{
293 kvm_vgic_vcpu_early_init(vcpu);
294}
295
296void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
297{
298 kvm_mmu_free_memory_caches(vcpu);
299 kvm_timer_vcpu_terminate(vcpu);
300 kvm_vgic_vcpu_destroy(vcpu);
301 kvm_pmu_vcpu_destroy(vcpu);
302 kvm_vcpu_uninit(vcpu);
303 kmem_cache_free(kvm_vcpu_cache, vcpu);
304}
305
306void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
307{
308 kvm_arch_vcpu_free(vcpu);
309}
310
311int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
312{
313 return kvm_timer_should_fire(vcpu_vtimer(vcpu)) ||
314 kvm_timer_should_fire(vcpu_ptimer(vcpu));
315}
316
317void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
318{
319 kvm_timer_schedule(vcpu);
320 /*
321 * If we're about to block (most likely because we've just hit a
322 * WFI), we need to sync back the state of the GIC CPU interface
323 * so that we have the lastest PMR and group enables. This ensures
324 * that kvm_arch_vcpu_runnable has up-to-date data to decide
325 * whether we have pending interrupts.
326 */
327 preempt_disable();
328 kvm_vgic_vmcr_sync(vcpu);
329 preempt_enable();
330}
331
332void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
333{
334 kvm_timer_unschedule(vcpu);
335}
336
337int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
338{
339 /* Force users to call KVM_ARM_VCPU_INIT */
340 vcpu->arch.target = -1;
341 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
342
343 /* Set up the timer */
344 kvm_timer_vcpu_init(vcpu);
345
346 kvm_arm_reset_debug_ptr(vcpu);
347
348 return kvm_vgic_vcpu_init(vcpu);
349}
350
351void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
352{
353 int *last_ran;
354
355 last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
356
357 /*
358 * We might get preempted before the vCPU actually runs, but
359 * over-invalidation doesn't affect correctness.
360 */
361 if (*last_ran != vcpu->vcpu_id) {
362 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
363 *last_ran = vcpu->vcpu_id;
364 }
365
366 vcpu->cpu = cpu;
367 vcpu->arch.host_cpu_context = this_cpu_ptr(&kvm_host_cpu_state);
368
369 kvm_arm_set_running_vcpu(vcpu);
370
371 kvm_vgic_load(vcpu);
372}
373
374void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
375{
376 kvm_vgic_put(vcpu);
377
378 vcpu->cpu = -1;
379
380 kvm_arm_set_running_vcpu(NULL);
381 kvm_timer_vcpu_put(vcpu);
382}
383
384static void vcpu_power_off(struct kvm_vcpu *vcpu)
385{
386 vcpu->arch.power_off = true;
387 kvm_make_request(KVM_REQ_SLEEP, vcpu);
388 kvm_vcpu_kick(vcpu);
389}
390
391int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
392 struct kvm_mp_state *mp_state)
393{
394 if (vcpu->arch.power_off)
395 mp_state->mp_state = KVM_MP_STATE_STOPPED;
396 else
397 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
398
399 return 0;
400}
401
402int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
403 struct kvm_mp_state *mp_state)
404{
405 switch (mp_state->mp_state) {
406 case KVM_MP_STATE_RUNNABLE:
407 vcpu->arch.power_off = false;
408 break;
409 case KVM_MP_STATE_STOPPED:
410 vcpu_power_off(vcpu);
411 break;
412 default:
413 return -EINVAL;
414 }
415
416 return 0;
417}
418
419/**
420 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
421 * @v: The VCPU pointer
422 *
423 * If the guest CPU is not waiting for interrupts or an interrupt line is
424 * asserted, the CPU is by definition runnable.
425 */
426int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
427{
428 return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
429 && !v->arch.power_off && !v->arch.pause);
430}
431
432bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
433{
434 return vcpu_mode_priv(vcpu);
435}
436
437/* Just ensure a guest exit from a particular CPU */
438static void exit_vm_noop(void *info)
439{
440}
441
442void force_vm_exit(const cpumask_t *mask)
443{
444 preempt_disable();
445 smp_call_function_many(mask, exit_vm_noop, NULL, true);
446 preempt_enable();
447}
448
449/**
450 * need_new_vmid_gen - check that the VMID is still valid
451 * @kvm: The VM's VMID to check
452 *
453 * return true if there is a new generation of VMIDs being used
454 *
455 * The hardware supports only 256 values with the value zero reserved for the
456 * host, so we check if an assigned value belongs to a previous generation,
457 * which which requires us to assign a new value. If we're the first to use a
458 * VMID for the new generation, we must flush necessary caches and TLBs on all
459 * CPUs.
460 */
461static bool need_new_vmid_gen(struct kvm *kvm)
462{
463 u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
464 smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
465 return unlikely(READ_ONCE(kvm->arch.vmid_gen) != current_vmid_gen);
466}
467
468/**
469 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
470 * @kvm The guest that we are about to run
471 *
472 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
473 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
474 * caches and TLBs.
475 */
476static void update_vttbr(struct kvm *kvm)
477{
478 phys_addr_t pgd_phys;
479 u64 vmid;
480
481 if (!need_new_vmid_gen(kvm))
482 return;
483
484 spin_lock(&kvm_vmid_lock);
485
486 /*
487 * We need to re-check the vmid_gen here to ensure that if another vcpu
488 * already allocated a valid vmid for this vm, then this vcpu should
489 * use the same vmid.
490 */
491 if (!need_new_vmid_gen(kvm)) {
492 spin_unlock(&kvm_vmid_lock);
493 return;
494 }
495
496 /* First user of a new VMID generation? */
497 if (unlikely(kvm_next_vmid == 0)) {
498 atomic64_inc(&kvm_vmid_gen);
499 kvm_next_vmid = 1;
500
501 /*
502 * On SMP we know no other CPUs can use this CPU's or each
503 * other's VMID after force_vm_exit returns since the
504 * kvm_vmid_lock blocks them from reentry to the guest.
505 */
506 force_vm_exit(cpu_all_mask);
507 /*
508 * Now broadcast TLB + ICACHE invalidation over the inner
509 * shareable domain to make sure all data structures are
510 * clean.
511 */
512 kvm_call_hyp(__kvm_flush_vm_context);
513 }
514
515 kvm->arch.vmid = kvm_next_vmid;
516 kvm_next_vmid++;
517 kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
518
519 /* update vttbr to be used with the new vmid */
520 pgd_phys = virt_to_phys(kvm->arch.pgd);
521 BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
522 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
523 kvm->arch.vttbr = pgd_phys | vmid;
524
525 smp_wmb();
526 WRITE_ONCE(kvm->arch.vmid_gen, atomic64_read(&kvm_vmid_gen));
527
528 spin_unlock(&kvm_vmid_lock);
529}
530
531static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
532{
533 struct kvm *kvm = vcpu->kvm;
534 int ret = 0;
535
536 if (likely(vcpu->arch.has_run_once))
537 return 0;
538
539 vcpu->arch.has_run_once = true;
540
541 /*
542 * Map the VGIC hardware resources before running a vcpu the first
543 * time on this VM.
544 */
545 if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
546 ret = kvm_vgic_map_resources(kvm);
547 if (ret)
548 return ret;
549 }
550
551 ret = kvm_timer_enable(vcpu);
552 if (ret)
553 return ret;
554
555 ret = kvm_arm_pmu_v3_enable(vcpu);
556
557 return ret;
558}
559
560bool kvm_arch_intc_initialized(struct kvm *kvm)
561{
562 return vgic_initialized(kvm);
563}
564
565void kvm_arm_halt_guest(struct kvm *kvm)
566{
567 int i;
568 struct kvm_vcpu *vcpu;
569
570 kvm_for_each_vcpu(i, vcpu, kvm)
571 vcpu->arch.pause = true;
572 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
573}
574
575void kvm_arm_resume_guest(struct kvm *kvm)
576{
577 int i;
578 struct kvm_vcpu *vcpu;
579
580 kvm_for_each_vcpu(i, vcpu, kvm) {
581 vcpu->arch.pause = false;
582 swake_up(kvm_arch_vcpu_wq(vcpu));
583 }
584}
585
586static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
587{
588 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
589
590 swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
591 (!vcpu->arch.pause)));
592
593 if (vcpu->arch.power_off || vcpu->arch.pause) {
594 /* Awaken to handle a signal, request we sleep again later. */
595 kvm_make_request(KVM_REQ_SLEEP, vcpu);
596 }
597}
598
599static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
600{
601 return vcpu->arch.target >= 0;
602}
603
604static void check_vcpu_requests(struct kvm_vcpu *vcpu)
605{
606 if (kvm_request_pending(vcpu)) {
607 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
608 vcpu_req_sleep(vcpu);
609
610 /*
611 * Clear IRQ_PENDING requests that were made to guarantee
612 * that a VCPU sees new virtual interrupts.
613 */
614 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
615 }
616}
617
618/**
619 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
620 * @vcpu: The VCPU pointer
621 * @run: The kvm_run structure pointer used for userspace state exchange
622 *
623 * This function is called through the VCPU_RUN ioctl called from user space. It
624 * will execute VM code in a loop until the time slice for the process is used
625 * or some emulation is needed from user space in which case the function will
626 * return with return value 0 and with the kvm_run structure filled in with the
627 * required data for the requested emulation.
628 */
629int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
630{
631 int ret;
632
633 if (unlikely(!kvm_vcpu_initialized(vcpu)))
634 return -ENOEXEC;
635
636 ret = kvm_vcpu_first_run_init(vcpu);
637 if (ret)
638 return ret;
639
640 if (run->exit_reason == KVM_EXIT_MMIO) {
641 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
642 if (ret)
643 return ret;
644 }
645
646 if (run->immediate_exit)
647 return -EINTR;
648
649 kvm_sigset_activate(vcpu);
650
651 ret = 1;
652 run->exit_reason = KVM_EXIT_UNKNOWN;
653 while (ret > 0) {
654 /*
655 * Check conditions before entering the guest
656 */
657 cond_resched();
658
659 update_vttbr(vcpu->kvm);
660
661 check_vcpu_requests(vcpu);
662
663 /*
664 * Preparing the interrupts to be injected also
665 * involves poking the GIC, which must be done in a
666 * non-preemptible context.
667 */
668 preempt_disable();
669
670 kvm_pmu_flush_hwstate(vcpu);
671
672 kvm_timer_flush_hwstate(vcpu);
673 kvm_vgic_flush_hwstate(vcpu);
674
675 local_irq_disable();
676
677 /*
678 * If we have a singal pending, or need to notify a userspace
679 * irqchip about timer or PMU level changes, then we exit (and
680 * update the timer level state in kvm_timer_update_run
681 * below).
682 */
683 if (signal_pending(current) ||
684 kvm_timer_should_notify_user(vcpu) ||
685 kvm_pmu_should_notify_user(vcpu)) {
686 ret = -EINTR;
687 run->exit_reason = KVM_EXIT_INTR;
688 }
689
690 /*
691 * Ensure we set mode to IN_GUEST_MODE after we disable
692 * interrupts and before the final VCPU requests check.
693 * See the comment in kvm_vcpu_exiting_guest_mode() and
694 * Documentation/virtual/kvm/vcpu-requests.rst
695 */
696 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
697
698 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
699 kvm_request_pending(vcpu)) {
700 vcpu->mode = OUTSIDE_GUEST_MODE;
701 local_irq_enable();
702 kvm_pmu_sync_hwstate(vcpu);
703 kvm_timer_sync_hwstate(vcpu);
704 kvm_vgic_sync_hwstate(vcpu);
705 preempt_enable();
706 continue;
707 }
708
709 kvm_arm_setup_debug(vcpu);
710
711 /**************************************************************
712 * Enter the guest
713 */
714 trace_kvm_entry(*vcpu_pc(vcpu));
715 guest_enter_irqoff();
716
717 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
718
719 vcpu->mode = OUTSIDE_GUEST_MODE;
720 vcpu->stat.exits++;
721 /*
722 * Back from guest
723 *************************************************************/
724
725 kvm_arm_clear_debug(vcpu);
726
727 /*
728 * We may have taken a host interrupt in HYP mode (ie
729 * while executing the guest). This interrupt is still
730 * pending, as we haven't serviced it yet!
731 *
732 * We're now back in SVC mode, with interrupts
733 * disabled. Enabling the interrupts now will have
734 * the effect of taking the interrupt again, in SVC
735 * mode this time.
736 */
737 local_irq_enable();
738
739 /*
740 * We do local_irq_enable() before calling guest_exit() so
741 * that if a timer interrupt hits while running the guest we
742 * account that tick as being spent in the guest. We enable
743 * preemption after calling guest_exit() so that if we get
744 * preempted we make sure ticks after that is not counted as
745 * guest time.
746 */
747 guest_exit();
748 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
749
750 /*
751 * We must sync the PMU and timer state before the vgic state so
752 * that the vgic can properly sample the updated state of the
753 * interrupt line.
754 */
755 kvm_pmu_sync_hwstate(vcpu);
756 kvm_timer_sync_hwstate(vcpu);
757
758 kvm_vgic_sync_hwstate(vcpu);
759
760 preempt_enable();
761
762 ret = handle_exit(vcpu, run, ret);
763 }
764
765 /* Tell userspace about in-kernel device output levels */
766 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
767 kvm_timer_update_run(vcpu);
768 kvm_pmu_update_run(vcpu);
769 }
770
771 kvm_sigset_deactivate(vcpu);
772
773 return ret;
774}
775
776static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
777{
778 int bit_index;
779 bool set;
780 unsigned long *ptr;
781
782 if (number == KVM_ARM_IRQ_CPU_IRQ)
783 bit_index = __ffs(HCR_VI);
784 else /* KVM_ARM_IRQ_CPU_FIQ */
785 bit_index = __ffs(HCR_VF);
786
787 ptr = (unsigned long *)&vcpu->arch.irq_lines;
788 if (level)
789 set = test_and_set_bit(bit_index, ptr);
790 else
791 set = test_and_clear_bit(bit_index, ptr);
792
793 /*
794 * If we didn't change anything, no need to wake up or kick other CPUs
795 */
796 if (set == level)
797 return 0;
798
799 /*
800 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
801 * trigger a world-switch round on the running physical CPU to set the
802 * virtual IRQ/FIQ fields in the HCR appropriately.
803 */
804 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
805 kvm_vcpu_kick(vcpu);
806
807 return 0;
808}
809
810int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
811 bool line_status)
812{
813 u32 irq = irq_level->irq;
814 unsigned int irq_type, vcpu_idx, irq_num;
815 int nrcpus = atomic_read(&kvm->online_vcpus);
816 struct kvm_vcpu *vcpu = NULL;
817 bool level = irq_level->level;
818
819 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
820 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
821 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
822
823 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
824
825 switch (irq_type) {
826 case KVM_ARM_IRQ_TYPE_CPU:
827 if (irqchip_in_kernel(kvm))
828 return -ENXIO;
829
830 if (vcpu_idx >= nrcpus)
831 return -EINVAL;
832
833 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
834 if (!vcpu)
835 return -EINVAL;
836
837 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
838 return -EINVAL;
839
840 return vcpu_interrupt_line(vcpu, irq_num, level);
841 case KVM_ARM_IRQ_TYPE_PPI:
842 if (!irqchip_in_kernel(kvm))
843 return -ENXIO;
844
845 if (vcpu_idx >= nrcpus)
846 return -EINVAL;
847
848 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
849 if (!vcpu)
850 return -EINVAL;
851
852 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
853 return -EINVAL;
854
855 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
856 case KVM_ARM_IRQ_TYPE_SPI:
857 if (!irqchip_in_kernel(kvm))
858 return -ENXIO;
859
860 if (irq_num < VGIC_NR_PRIVATE_IRQS)
861 return -EINVAL;
862
863 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
864 }
865
866 return -EINVAL;
867}
868
869static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
870 const struct kvm_vcpu_init *init)
871{
872 unsigned int i, ret;
873 int phys_target = kvm_target_cpu();
874
875 if (init->target != phys_target)
876 return -EINVAL;
877
878 /*
879 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
880 * use the same target.
881 */
882 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
883 return -EINVAL;
884
885 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
886 for (i = 0; i < sizeof(init->features) * 8; i++) {
887 bool set = (init->features[i / 32] & (1 << (i % 32)));
888
889 if (set && i >= KVM_VCPU_MAX_FEATURES)
890 return -ENOENT;
891
892 /*
893 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
894 * use the same feature set.
895 */
896 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
897 test_bit(i, vcpu->arch.features) != set)
898 return -EINVAL;
899
900 if (set)
901 set_bit(i, vcpu->arch.features);
902 }
903
904 vcpu->arch.target = phys_target;
905
906 /* Now we know what it is, we can reset it. */
907 ret = kvm_reset_vcpu(vcpu);
908 if (ret) {
909 vcpu->arch.target = -1;
910 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
911 }
912
913 return ret;
914}
915
916static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
917 struct kvm_vcpu_init *init)
918{
919 int ret;
920
921 ret = kvm_vcpu_set_target(vcpu, init);
922 if (ret)
923 return ret;
924
925 /*
926 * Ensure a rebooted VM will fault in RAM pages and detect if the
927 * guest MMU is turned off and flush the caches as needed.
928 */
929 if (vcpu->arch.has_run_once)
930 stage2_unmap_vm(vcpu->kvm);
931
932 vcpu_reset_hcr(vcpu);
933
934 /*
935 * Handle the "start in power-off" case.
936 */
937 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
938 vcpu_power_off(vcpu);
939 else
940 vcpu->arch.power_off = false;
941
942 return 0;
943}
944
945static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
946 struct kvm_device_attr *attr)
947{
948 int ret = -ENXIO;
949
950 switch (attr->group) {
951 default:
952 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
953 break;
954 }
955
956 return ret;
957}
958
959static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
960 struct kvm_device_attr *attr)
961{
962 int ret = -ENXIO;
963
964 switch (attr->group) {
965 default:
966 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
967 break;
968 }
969
970 return ret;
971}
972
973static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
974 struct kvm_device_attr *attr)
975{
976 int ret = -ENXIO;
977
978 switch (attr->group) {
979 default:
980 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
981 break;
982 }
983
984 return ret;
985}
986
987long kvm_arch_vcpu_ioctl(struct file *filp,
988 unsigned int ioctl, unsigned long arg)
989{
990 struct kvm_vcpu *vcpu = filp->private_data;
991 void __user *argp = (void __user *)arg;
992 struct kvm_device_attr attr;
993
994 switch (ioctl) {
995 case KVM_ARM_VCPU_INIT: {
996 struct kvm_vcpu_init init;
997
998 if (copy_from_user(&init, argp, sizeof(init)))
999 return -EFAULT;
1000
1001 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1002 }
1003 case KVM_SET_ONE_REG:
1004 case KVM_GET_ONE_REG: {
1005 struct kvm_one_reg reg;
1006
1007 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1008 return -ENOEXEC;
1009
1010 if (copy_from_user(&reg, argp, sizeof(reg)))
1011 return -EFAULT;
1012 if (ioctl == KVM_SET_ONE_REG)
1013 return kvm_arm_set_reg(vcpu, &reg);
1014 else
1015 return kvm_arm_get_reg(vcpu, &reg);
1016 }
1017 case KVM_GET_REG_LIST: {
1018 struct kvm_reg_list __user *user_list = argp;
1019 struct kvm_reg_list reg_list;
1020 unsigned n;
1021
1022 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1023 return -ENOEXEC;
1024
1025 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1026 return -EFAULT;
1027 n = reg_list.n;
1028 reg_list.n = kvm_arm_num_regs(vcpu);
1029 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1030 return -EFAULT;
1031 if (n < reg_list.n)
1032 return -E2BIG;
1033 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1034 }
1035 case KVM_SET_DEVICE_ATTR: {
1036 if (copy_from_user(&attr, argp, sizeof(attr)))
1037 return -EFAULT;
1038 return kvm_arm_vcpu_set_attr(vcpu, &attr);
1039 }
1040 case KVM_GET_DEVICE_ATTR: {
1041 if (copy_from_user(&attr, argp, sizeof(attr)))
1042 return -EFAULT;
1043 return kvm_arm_vcpu_get_attr(vcpu, &attr);
1044 }
1045 case KVM_HAS_DEVICE_ATTR: {
1046 if (copy_from_user(&attr, argp, sizeof(attr)))
1047 return -EFAULT;
1048 return kvm_arm_vcpu_has_attr(vcpu, &attr);
1049 }
1050 default:
1051 return -EINVAL;
1052 }
1053}
1054
1055/**
1056 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1057 * @kvm: kvm instance
1058 * @log: slot id and address to which we copy the log
1059 *
1060 * Steps 1-4 below provide general overview of dirty page logging. See
1061 * kvm_get_dirty_log_protect() function description for additional details.
1062 *
1063 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1064 * always flush the TLB (step 4) even if previous step failed and the dirty
1065 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1066 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1067 * writes will be marked dirty for next log read.
1068 *
1069 * 1. Take a snapshot of the bit and clear it if needed.
1070 * 2. Write protect the corresponding page.
1071 * 3. Copy the snapshot to the userspace.
1072 * 4. Flush TLB's if needed.
1073 */
1074int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1075{
1076 bool is_dirty = false;
1077 int r;
1078
1079 mutex_lock(&kvm->slots_lock);
1080
1081 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1082
1083 if (is_dirty)
1084 kvm_flush_remote_tlbs(kvm);
1085
1086 mutex_unlock(&kvm->slots_lock);
1087 return r;
1088}
1089
1090static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1091 struct kvm_arm_device_addr *dev_addr)
1092{
1093 unsigned long dev_id, type;
1094
1095 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1096 KVM_ARM_DEVICE_ID_SHIFT;
1097 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1098 KVM_ARM_DEVICE_TYPE_SHIFT;
1099
1100 switch (dev_id) {
1101 case KVM_ARM_DEVICE_VGIC_V2:
1102 if (!vgic_present)
1103 return -ENXIO;
1104 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1105 default:
1106 return -ENODEV;
1107 }
1108}
1109
1110long kvm_arch_vm_ioctl(struct file *filp,
1111 unsigned int ioctl, unsigned long arg)
1112{
1113 struct kvm *kvm = filp->private_data;
1114 void __user *argp = (void __user *)arg;
1115
1116 switch (ioctl) {
1117 case KVM_CREATE_IRQCHIP: {
1118 int ret;
1119 if (!vgic_present)
1120 return -ENXIO;
1121 mutex_lock(&kvm->lock);
1122 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1123 mutex_unlock(&kvm->lock);
1124 return ret;
1125 }
1126 case KVM_ARM_SET_DEVICE_ADDR: {
1127 struct kvm_arm_device_addr dev_addr;
1128
1129 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1130 return -EFAULT;
1131 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1132 }
1133 case KVM_ARM_PREFERRED_TARGET: {
1134 int err;
1135 struct kvm_vcpu_init init;
1136
1137 err = kvm_vcpu_preferred_target(&init);
1138 if (err)
1139 return err;
1140
1141 if (copy_to_user(argp, &init, sizeof(init)))
1142 return -EFAULT;
1143
1144 return 0;
1145 }
1146 default:
1147 return -EINVAL;
1148 }
1149}
1150
1151static void cpu_init_hyp_mode(void *dummy)
1152{
1153 phys_addr_t pgd_ptr;
1154 unsigned long hyp_stack_ptr;
1155 unsigned long stack_page;
1156 unsigned long vector_ptr;
1157
1158 /* Switch from the HYP stub to our own HYP init vector */
1159 __hyp_set_vectors(kvm_get_idmap_vector());
1160
1161 pgd_ptr = kvm_mmu_get_httbr();
1162 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1163 hyp_stack_ptr = stack_page + PAGE_SIZE;
1164 vector_ptr = (unsigned long)kvm_get_hyp_vector();
1165
1166 __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1167 __cpu_init_stage2();
1168}
1169
1170static void cpu_hyp_reset(void)
1171{
1172 if (!is_kernel_in_hyp_mode())
1173 __hyp_reset_vectors();
1174}
1175
1176static void cpu_hyp_reinit(void)
1177{
1178 cpu_hyp_reset();
1179
1180 if (is_kernel_in_hyp_mode()) {
1181 /*
1182 * __cpu_init_stage2() is safe to call even if the PM
1183 * event was cancelled before the CPU was reset.
1184 */
1185 __cpu_init_stage2();
1186 kvm_timer_init_vhe();
1187 } else {
1188 cpu_init_hyp_mode(NULL);
1189 }
1190
1191 kvm_arm_init_debug();
1192
1193 if (vgic_present)
1194 kvm_vgic_init_cpu_hardware();
1195}
1196
1197static void _kvm_arch_hardware_enable(void *discard)
1198{
1199 if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1200 cpu_hyp_reinit();
1201 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1202 }
1203}
1204
1205int kvm_arch_hardware_enable(void)
1206{
1207 _kvm_arch_hardware_enable(NULL);
1208 return 0;
1209}
1210
1211static void _kvm_arch_hardware_disable(void *discard)
1212{
1213 if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1214 cpu_hyp_reset();
1215 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1216 }
1217}
1218
1219void kvm_arch_hardware_disable(void)
1220{
1221 _kvm_arch_hardware_disable(NULL);
1222}
1223
1224#ifdef CONFIG_CPU_PM
1225static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1226 unsigned long cmd,
1227 void *v)
1228{
1229 /*
1230 * kvm_arm_hardware_enabled is left with its old value over
1231 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1232 * re-enable hyp.
1233 */
1234 switch (cmd) {
1235 case CPU_PM_ENTER:
1236 if (__this_cpu_read(kvm_arm_hardware_enabled))
1237 /*
1238 * don't update kvm_arm_hardware_enabled here
1239 * so that the hardware will be re-enabled
1240 * when we resume. See below.
1241 */
1242 cpu_hyp_reset();
1243
1244 return NOTIFY_OK;
1245 case CPU_PM_ENTER_FAILED:
1246 case CPU_PM_EXIT:
1247 if (__this_cpu_read(kvm_arm_hardware_enabled))
1248 /* The hardware was enabled before suspend. */
1249 cpu_hyp_reinit();
1250
1251 return NOTIFY_OK;
1252
1253 default:
1254 return NOTIFY_DONE;
1255 }
1256}
1257
1258static struct notifier_block hyp_init_cpu_pm_nb = {
1259 .notifier_call = hyp_init_cpu_pm_notifier,
1260};
1261
1262static void __init hyp_cpu_pm_init(void)
1263{
1264 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1265}
1266static void __init hyp_cpu_pm_exit(void)
1267{
1268 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1269}
1270#else
1271static inline void hyp_cpu_pm_init(void)
1272{
1273}
1274static inline void hyp_cpu_pm_exit(void)
1275{
1276}
1277#endif
1278
1279static int init_common_resources(void)
1280{
1281 /* set size of VMID supported by CPU */
1282 kvm_vmid_bits = kvm_get_vmid_bits();
1283 kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1284
1285 return 0;
1286}
1287
1288static int init_subsystems(void)
1289{
1290 int err = 0;
1291
1292 /*
1293 * Enable hardware so that subsystem initialisation can access EL2.
1294 */
1295 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1296
1297 /*
1298 * Register CPU lower-power notifier
1299 */
1300 hyp_cpu_pm_init();
1301
1302 /*
1303 * Init HYP view of VGIC
1304 */
1305 err = kvm_vgic_hyp_init();
1306 switch (err) {
1307 case 0:
1308 vgic_present = true;
1309 break;
1310 case -ENODEV:
1311 case -ENXIO:
1312 vgic_present = false;
1313 err = 0;
1314 break;
1315 default:
1316 goto out;
1317 }
1318
1319 /*
1320 * Init HYP architected timer support
1321 */
1322 err = kvm_timer_hyp_init();
1323 if (err)
1324 goto out;
1325
1326 kvm_perf_init();
1327 kvm_coproc_table_init();
1328
1329out:
1330 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1331
1332 return err;
1333}
1334
1335static void teardown_hyp_mode(void)
1336{
1337 int cpu;
1338
1339 free_hyp_pgds();
1340 for_each_possible_cpu(cpu)
1341 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1342 hyp_cpu_pm_exit();
1343}
1344
1345/**
1346 * Inits Hyp-mode on all online CPUs
1347 */
1348static int init_hyp_mode(void)
1349{
1350 int cpu;
1351 int err = 0;
1352
1353 /*
1354 * Allocate Hyp PGD and setup Hyp identity mapping
1355 */
1356 err = kvm_mmu_init();
1357 if (err)
1358 goto out_err;
1359
1360 /*
1361 * Allocate stack pages for Hypervisor-mode
1362 */
1363 for_each_possible_cpu(cpu) {
1364 unsigned long stack_page;
1365
1366 stack_page = __get_free_page(GFP_KERNEL);
1367 if (!stack_page) {
1368 err = -ENOMEM;
1369 goto out_err;
1370 }
1371
1372 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1373 }
1374
1375 /*
1376 * Map the Hyp-code called directly from the host
1377 */
1378 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1379 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1380 if (err) {
1381 kvm_err("Cannot map world-switch code\n");
1382 goto out_err;
1383 }
1384
1385 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1386 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1387 if (err) {
1388 kvm_err("Cannot map rodata section\n");
1389 goto out_err;
1390 }
1391
1392 err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1393 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1394 if (err) {
1395 kvm_err("Cannot map bss section\n");
1396 goto out_err;
1397 }
1398
1399 err = kvm_map_vectors();
1400 if (err) {
1401 kvm_err("Cannot map vectors\n");
1402 goto out_err;
1403 }
1404
1405 /*
1406 * Map the Hyp stack pages
1407 */
1408 for_each_possible_cpu(cpu) {
1409 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1410 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1411 PAGE_HYP);
1412
1413 if (err) {
1414 kvm_err("Cannot map hyp stack\n");
1415 goto out_err;
1416 }
1417 }
1418
1419 for_each_possible_cpu(cpu) {
1420 kvm_cpu_context_t *cpu_ctxt;
1421
1422 cpu_ctxt = per_cpu_ptr(&kvm_host_cpu_state, cpu);
1423 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1424
1425 if (err) {
1426 kvm_err("Cannot map host CPU state: %d\n", err);
1427 goto out_err;
1428 }
1429 }
1430
1431 err = hyp_map_aux_data();
1432 if (err)
1433 kvm_err("Cannot map host auxilary data: %d\n", err);
1434
1435 return 0;
1436
1437out_err:
1438 teardown_hyp_mode();
1439 kvm_err("error initializing Hyp mode: %d\n", err);
1440 return err;
1441}
1442
1443static void check_kvm_target_cpu(void *ret)
1444{
1445 *(int *)ret = kvm_target_cpu();
1446}
1447
1448struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1449{
1450 struct kvm_vcpu *vcpu;
1451 int i;
1452
1453 mpidr &= MPIDR_HWID_BITMASK;
1454 kvm_for_each_vcpu(i, vcpu, kvm) {
1455 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1456 return vcpu;
1457 }
1458 return NULL;
1459}
1460
1461/**
1462 * Initialize Hyp-mode and memory mappings on all CPUs.
1463 */
1464int kvm_arch_init(void *opaque)
1465{
1466 int err;
1467 int ret, cpu;
1468 bool in_hyp_mode;
1469
1470 if (!is_hyp_mode_available()) {
1471 kvm_info("HYP mode not available\n");
1472 return -ENODEV;
1473 }
1474
1475 for_each_online_cpu(cpu) {
1476 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1477 if (ret < 0) {
1478 kvm_err("Error, CPU %d not supported!\n", cpu);
1479 return -ENODEV;
1480 }
1481 }
1482
1483 err = init_common_resources();
1484 if (err)
1485 return err;
1486
1487 in_hyp_mode = is_kernel_in_hyp_mode();
1488
1489 if (!in_hyp_mode) {
1490 err = init_hyp_mode();
1491 if (err)
1492 goto out_err;
1493 }
1494
1495 err = init_subsystems();
1496 if (err)
1497 goto out_hyp;
1498
1499 if (in_hyp_mode)
1500 kvm_info("VHE mode initialized successfully\n");
1501 else
1502 kvm_info("Hyp mode initialized successfully\n");
1503
1504 return 0;
1505
1506out_hyp:
1507 if (!in_hyp_mode)
1508 teardown_hyp_mode();
1509out_err:
1510 return err;
1511}
1512
1513/* NOP: Compiling as a module not supported */
1514void kvm_arch_exit(void)
1515{
1516 kvm_perf_teardown();
1517}
1518
1519static int arm_init(void)
1520{
1521 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1522 return rc;
1523}
1524
1525module_init(arm_init);