blob: 7fe673248e984edd50f49ebf8a39e028645eafe6 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19#include <linux/mman.h>
20#include <linux/kvm_host.h>
21#include <linux/io.h>
22#include <linux/hugetlb.h>
23#include <linux/sched/signal.h>
24#include <trace/events/kvm.h>
25#include <asm/pgalloc.h>
26#include <asm/cacheflush.h>
27#include <asm/kvm_arm.h>
28#include <asm/kvm_mmu.h>
29#include <asm/kvm_mmio.h>
30#include <asm/kvm_asm.h>
31#include <asm/kvm_emulate.h>
32#include <asm/virt.h>
33#include <asm/system_misc.h>
34
35#include "trace.h"
36
37static pgd_t *boot_hyp_pgd;
38static pgd_t *hyp_pgd;
39static pgd_t *merged_hyp_pgd;
40static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
41
42static unsigned long hyp_idmap_start;
43static unsigned long hyp_idmap_end;
44static phys_addr_t hyp_idmap_vector;
45
46#define S2_PGD_SIZE (PTRS_PER_S2_PGD * sizeof(pgd_t))
47#define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
48
49#define KVM_S2PTE_FLAG_IS_IOMAP (1UL << 0)
50#define KVM_S2_FLAG_LOGGING_ACTIVE (1UL << 1)
51
52static bool memslot_is_logging(struct kvm_memory_slot *memslot)
53{
54 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
55}
56
57/**
58 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
59 * @kvm: pointer to kvm structure.
60 *
61 * Interface to HYP function to flush all VM TLB entries
62 */
63void kvm_flush_remote_tlbs(struct kvm *kvm)
64{
65 kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
66}
67
68static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
69{
70 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
71}
72
73/*
74 * D-Cache management functions. They take the page table entries by
75 * value, as they are flushing the cache using the kernel mapping (or
76 * kmap on 32bit).
77 */
78static void kvm_flush_dcache_pte(pte_t pte)
79{
80 __kvm_flush_dcache_pte(pte);
81}
82
83static void kvm_flush_dcache_pmd(pmd_t pmd)
84{
85 __kvm_flush_dcache_pmd(pmd);
86}
87
88static void kvm_flush_dcache_pud(pud_t pud)
89{
90 __kvm_flush_dcache_pud(pud);
91}
92
93static bool kvm_is_device_pfn(unsigned long pfn)
94{
95 return !pfn_valid(pfn);
96}
97
98/**
99 * stage2_dissolve_pmd() - clear and flush huge PMD entry
100 * @kvm: pointer to kvm structure.
101 * @addr: IPA
102 * @pmd: pmd pointer for IPA
103 *
104 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
105 * pages in the range dirty.
106 */
107static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
108{
109 if (!pmd_thp_or_huge(*pmd))
110 return;
111
112 pmd_clear(pmd);
113 kvm_tlb_flush_vmid_ipa(kvm, addr);
114 put_page(virt_to_page(pmd));
115}
116
117static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
118 int min, int max)
119{
120 void *page;
121
122 BUG_ON(max > KVM_NR_MEM_OBJS);
123 if (cache->nobjs >= min)
124 return 0;
125 while (cache->nobjs < max) {
126 page = (void *)__get_free_page(PGALLOC_GFP);
127 if (!page)
128 return -ENOMEM;
129 cache->objects[cache->nobjs++] = page;
130 }
131 return 0;
132}
133
134static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
135{
136 while (mc->nobjs)
137 free_page((unsigned long)mc->objects[--mc->nobjs]);
138}
139
140static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
141{
142 void *p;
143
144 BUG_ON(!mc || !mc->nobjs);
145 p = mc->objects[--mc->nobjs];
146 return p;
147}
148
149static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
150{
151 pud_t *pud_table __maybe_unused = stage2_pud_offset(pgd, 0UL);
152 stage2_pgd_clear(pgd);
153 kvm_tlb_flush_vmid_ipa(kvm, addr);
154 stage2_pud_free(pud_table);
155 put_page(virt_to_page(pgd));
156}
157
158static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
159{
160 pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(pud, 0);
161 VM_BUG_ON(stage2_pud_huge(*pud));
162 stage2_pud_clear(pud);
163 kvm_tlb_flush_vmid_ipa(kvm, addr);
164 stage2_pmd_free(pmd_table);
165 put_page(virt_to_page(pud));
166}
167
168static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
169{
170 pte_t *pte_table = pte_offset_kernel(pmd, 0);
171 VM_BUG_ON(pmd_thp_or_huge(*pmd));
172 pmd_clear(pmd);
173 kvm_tlb_flush_vmid_ipa(kvm, addr);
174 pte_free_kernel(NULL, pte_table);
175 put_page(virt_to_page(pmd));
176}
177
178/*
179 * Unmapping vs dcache management:
180 *
181 * If a guest maps certain memory pages as uncached, all writes will
182 * bypass the data cache and go directly to RAM. However, the CPUs
183 * can still speculate reads (not writes) and fill cache lines with
184 * data.
185 *
186 * Those cache lines will be *clean* cache lines though, so a
187 * clean+invalidate operation is equivalent to an invalidate
188 * operation, because no cache lines are marked dirty.
189 *
190 * Those clean cache lines could be filled prior to an uncached write
191 * by the guest, and the cache coherent IO subsystem would therefore
192 * end up writing old data to disk.
193 *
194 * This is why right after unmapping a page/section and invalidating
195 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
196 * the IO subsystem will never hit in the cache.
197 */
198static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
199 phys_addr_t addr, phys_addr_t end)
200{
201 phys_addr_t start_addr = addr;
202 pte_t *pte, *start_pte;
203
204 start_pte = pte = pte_offset_kernel(pmd, addr);
205 do {
206 if (!pte_none(*pte)) {
207 pte_t old_pte = *pte;
208
209 kvm_set_pte(pte, __pte(0));
210 kvm_tlb_flush_vmid_ipa(kvm, addr);
211
212 /* No need to invalidate the cache for device mappings */
213 if (!kvm_is_device_pfn(pte_pfn(old_pte)))
214 kvm_flush_dcache_pte(old_pte);
215
216 put_page(virt_to_page(pte));
217 }
218 } while (pte++, addr += PAGE_SIZE, addr != end);
219
220 if (stage2_pte_table_empty(start_pte))
221 clear_stage2_pmd_entry(kvm, pmd, start_addr);
222}
223
224static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
225 phys_addr_t addr, phys_addr_t end)
226{
227 phys_addr_t next, start_addr = addr;
228 pmd_t *pmd, *start_pmd;
229
230 start_pmd = pmd = stage2_pmd_offset(pud, addr);
231 do {
232 next = stage2_pmd_addr_end(addr, end);
233 if (!pmd_none(*pmd)) {
234 if (pmd_thp_or_huge(*pmd)) {
235 pmd_t old_pmd = *pmd;
236
237 pmd_clear(pmd);
238 kvm_tlb_flush_vmid_ipa(kvm, addr);
239
240 kvm_flush_dcache_pmd(old_pmd);
241
242 put_page(virt_to_page(pmd));
243 } else {
244 unmap_stage2_ptes(kvm, pmd, addr, next);
245 }
246 }
247 } while (pmd++, addr = next, addr != end);
248
249 if (stage2_pmd_table_empty(start_pmd))
250 clear_stage2_pud_entry(kvm, pud, start_addr);
251}
252
253static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
254 phys_addr_t addr, phys_addr_t end)
255{
256 phys_addr_t next, start_addr = addr;
257 pud_t *pud, *start_pud;
258
259 start_pud = pud = stage2_pud_offset(pgd, addr);
260 do {
261 next = stage2_pud_addr_end(addr, end);
262 if (!stage2_pud_none(*pud)) {
263 if (stage2_pud_huge(*pud)) {
264 pud_t old_pud = *pud;
265
266 stage2_pud_clear(pud);
267 kvm_tlb_flush_vmid_ipa(kvm, addr);
268 kvm_flush_dcache_pud(old_pud);
269 put_page(virt_to_page(pud));
270 } else {
271 unmap_stage2_pmds(kvm, pud, addr, next);
272 }
273 }
274 } while (pud++, addr = next, addr != end);
275
276 if (stage2_pud_table_empty(start_pud))
277 clear_stage2_pgd_entry(kvm, pgd, start_addr);
278}
279
280/**
281 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
282 * @kvm: The VM pointer
283 * @start: The intermediate physical base address of the range to unmap
284 * @size: The size of the area to unmap
285 *
286 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
287 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
288 * destroying the VM), otherwise another faulting VCPU may come in and mess
289 * with things behind our backs.
290 */
291static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
292{
293 pgd_t *pgd;
294 phys_addr_t addr = start, end = start + size;
295 phys_addr_t next;
296
297 assert_spin_locked(&kvm->mmu_lock);
298 pgd = kvm->arch.pgd + stage2_pgd_index(addr);
299 do {
300 /*
301 * Make sure the page table is still active, as another thread
302 * could have possibly freed the page table, while we released
303 * the lock.
304 */
305 if (!READ_ONCE(kvm->arch.pgd))
306 break;
307 next = stage2_pgd_addr_end(addr, end);
308 if (!stage2_pgd_none(*pgd))
309 unmap_stage2_puds(kvm, pgd, addr, next);
310 } while (pgd++, addr = next, addr != end);
311}
312
313static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
314 phys_addr_t addr, phys_addr_t end)
315{
316 pte_t *pte;
317
318 pte = pte_offset_kernel(pmd, addr);
319 do {
320 if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
321 kvm_flush_dcache_pte(*pte);
322 } while (pte++, addr += PAGE_SIZE, addr != end);
323}
324
325static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
326 phys_addr_t addr, phys_addr_t end)
327{
328 pmd_t *pmd;
329 phys_addr_t next;
330
331 pmd = stage2_pmd_offset(pud, addr);
332 do {
333 next = stage2_pmd_addr_end(addr, end);
334 if (!pmd_none(*pmd)) {
335 if (pmd_thp_or_huge(*pmd))
336 kvm_flush_dcache_pmd(*pmd);
337 else
338 stage2_flush_ptes(kvm, pmd, addr, next);
339 }
340 } while (pmd++, addr = next, addr != end);
341}
342
343static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
344 phys_addr_t addr, phys_addr_t end)
345{
346 pud_t *pud;
347 phys_addr_t next;
348
349 pud = stage2_pud_offset(pgd, addr);
350 do {
351 next = stage2_pud_addr_end(addr, end);
352 if (!stage2_pud_none(*pud)) {
353 if (stage2_pud_huge(*pud))
354 kvm_flush_dcache_pud(*pud);
355 else
356 stage2_flush_pmds(kvm, pud, addr, next);
357 }
358 } while (pud++, addr = next, addr != end);
359}
360
361static void stage2_flush_memslot(struct kvm *kvm,
362 struct kvm_memory_slot *memslot)
363{
364 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
365 phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
366 phys_addr_t next;
367 pgd_t *pgd;
368
369 pgd = kvm->arch.pgd + stage2_pgd_index(addr);
370 do {
371 next = stage2_pgd_addr_end(addr, end);
372 if (!stage2_pgd_none(*pgd))
373 stage2_flush_puds(kvm, pgd, addr, next);
374 } while (pgd++, addr = next, addr != end);
375}
376
377/**
378 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
379 * @kvm: The struct kvm pointer
380 *
381 * Go through the stage 2 page tables and invalidate any cache lines
382 * backing memory already mapped to the VM.
383 */
384static void stage2_flush_vm(struct kvm *kvm)
385{
386 struct kvm_memslots *slots;
387 struct kvm_memory_slot *memslot;
388 int idx;
389
390 idx = srcu_read_lock(&kvm->srcu);
391 spin_lock(&kvm->mmu_lock);
392
393 slots = kvm_memslots(kvm);
394 kvm_for_each_memslot(memslot, slots)
395 stage2_flush_memslot(kvm, memslot);
396
397 spin_unlock(&kvm->mmu_lock);
398 srcu_read_unlock(&kvm->srcu, idx);
399}
400
401static void clear_hyp_pgd_entry(pgd_t *pgd)
402{
403 pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
404 pgd_clear(pgd);
405 pud_free(NULL, pud_table);
406 put_page(virt_to_page(pgd));
407}
408
409static void clear_hyp_pud_entry(pud_t *pud)
410{
411 pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
412 VM_BUG_ON(pud_huge(*pud));
413 pud_clear(pud);
414 pmd_free(NULL, pmd_table);
415 put_page(virt_to_page(pud));
416}
417
418static void clear_hyp_pmd_entry(pmd_t *pmd)
419{
420 pte_t *pte_table = pte_offset_kernel(pmd, 0);
421 VM_BUG_ON(pmd_thp_or_huge(*pmd));
422 pmd_clear(pmd);
423 pte_free_kernel(NULL, pte_table);
424 put_page(virt_to_page(pmd));
425}
426
427static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
428{
429 pte_t *pte, *start_pte;
430
431 start_pte = pte = pte_offset_kernel(pmd, addr);
432 do {
433 if (!pte_none(*pte)) {
434 kvm_set_pte(pte, __pte(0));
435 put_page(virt_to_page(pte));
436 }
437 } while (pte++, addr += PAGE_SIZE, addr != end);
438
439 if (hyp_pte_table_empty(start_pte))
440 clear_hyp_pmd_entry(pmd);
441}
442
443static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
444{
445 phys_addr_t next;
446 pmd_t *pmd, *start_pmd;
447
448 start_pmd = pmd = pmd_offset(pud, addr);
449 do {
450 next = pmd_addr_end(addr, end);
451 /* Hyp doesn't use huge pmds */
452 if (!pmd_none(*pmd))
453 unmap_hyp_ptes(pmd, addr, next);
454 } while (pmd++, addr = next, addr != end);
455
456 if (hyp_pmd_table_empty(start_pmd))
457 clear_hyp_pud_entry(pud);
458}
459
460static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
461{
462 phys_addr_t next;
463 pud_t *pud, *start_pud;
464
465 start_pud = pud = pud_offset(pgd, addr);
466 do {
467 next = pud_addr_end(addr, end);
468 /* Hyp doesn't use huge puds */
469 if (!pud_none(*pud))
470 unmap_hyp_pmds(pud, addr, next);
471 } while (pud++, addr = next, addr != end);
472
473 if (hyp_pud_table_empty(start_pud))
474 clear_hyp_pgd_entry(pgd);
475}
476
477static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
478{
479 pgd_t *pgd;
480 phys_addr_t addr = start, end = start + size;
481 phys_addr_t next;
482
483 /*
484 * We don't unmap anything from HYP, except at the hyp tear down.
485 * Hence, we don't have to invalidate the TLBs here.
486 */
487 pgd = pgdp + pgd_index(addr);
488 do {
489 next = pgd_addr_end(addr, end);
490 if (!pgd_none(*pgd))
491 unmap_hyp_puds(pgd, addr, next);
492 } while (pgd++, addr = next, addr != end);
493}
494
495/**
496 * free_hyp_pgds - free Hyp-mode page tables
497 *
498 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
499 * therefore contains either mappings in the kernel memory area (above
500 * PAGE_OFFSET), or device mappings in the vmalloc range (from
501 * VMALLOC_START to VMALLOC_END).
502 *
503 * boot_hyp_pgd should only map two pages for the init code.
504 */
505void free_hyp_pgds(void)
506{
507 mutex_lock(&kvm_hyp_pgd_mutex);
508
509 if (boot_hyp_pgd) {
510 unmap_hyp_range(boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
511 free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
512 boot_hyp_pgd = NULL;
513 }
514
515 if (hyp_pgd) {
516 unmap_hyp_range(hyp_pgd, hyp_idmap_start, PAGE_SIZE);
517 unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET),
518 (uintptr_t)high_memory - PAGE_OFFSET);
519 unmap_hyp_range(hyp_pgd, kern_hyp_va(VMALLOC_START),
520 VMALLOC_END - VMALLOC_START);
521
522 free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
523 hyp_pgd = NULL;
524 }
525 if (merged_hyp_pgd) {
526 clear_page(merged_hyp_pgd);
527 free_page((unsigned long)merged_hyp_pgd);
528 merged_hyp_pgd = NULL;
529 }
530
531 mutex_unlock(&kvm_hyp_pgd_mutex);
532}
533
534static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
535 unsigned long end, unsigned long pfn,
536 pgprot_t prot)
537{
538 pte_t *pte;
539 unsigned long addr;
540
541 addr = start;
542 do {
543 pte = pte_offset_kernel(pmd, addr);
544 kvm_set_pte(pte, pfn_pte(pfn, prot));
545 get_page(virt_to_page(pte));
546 kvm_flush_dcache_to_poc(pte, sizeof(*pte));
547 pfn++;
548 } while (addr += PAGE_SIZE, addr != end);
549}
550
551static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
552 unsigned long end, unsigned long pfn,
553 pgprot_t prot)
554{
555 pmd_t *pmd;
556 pte_t *pte;
557 unsigned long addr, next;
558
559 addr = start;
560 do {
561 pmd = pmd_offset(pud, addr);
562
563 BUG_ON(pmd_sect(*pmd));
564
565 if (pmd_none(*pmd)) {
566 pte = pte_alloc_one_kernel(NULL, addr);
567 if (!pte) {
568 kvm_err("Cannot allocate Hyp pte\n");
569 return -ENOMEM;
570 }
571 pmd_populate_kernel(NULL, pmd, pte);
572 get_page(virt_to_page(pmd));
573 kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
574 }
575
576 next = pmd_addr_end(addr, end);
577
578 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
579 pfn += (next - addr) >> PAGE_SHIFT;
580 } while (addr = next, addr != end);
581
582 return 0;
583}
584
585static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
586 unsigned long end, unsigned long pfn,
587 pgprot_t prot)
588{
589 pud_t *pud;
590 pmd_t *pmd;
591 unsigned long addr, next;
592 int ret;
593
594 addr = start;
595 do {
596 pud = pud_offset(pgd, addr);
597
598 if (pud_none_or_clear_bad(pud)) {
599 pmd = pmd_alloc_one(NULL, addr);
600 if (!pmd) {
601 kvm_err("Cannot allocate Hyp pmd\n");
602 return -ENOMEM;
603 }
604 pud_populate(NULL, pud, pmd);
605 get_page(virt_to_page(pud));
606 kvm_flush_dcache_to_poc(pud, sizeof(*pud));
607 }
608
609 next = pud_addr_end(addr, end);
610 ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
611 if (ret)
612 return ret;
613 pfn += (next - addr) >> PAGE_SHIFT;
614 } while (addr = next, addr != end);
615
616 return 0;
617}
618
619static int __create_hyp_mappings(pgd_t *pgdp,
620 unsigned long start, unsigned long end,
621 unsigned long pfn, pgprot_t prot)
622{
623 pgd_t *pgd;
624 pud_t *pud;
625 unsigned long addr, next;
626 int err = 0;
627
628 mutex_lock(&kvm_hyp_pgd_mutex);
629 addr = start & PAGE_MASK;
630 end = PAGE_ALIGN(end);
631 do {
632 pgd = pgdp + pgd_index(addr);
633
634 if (pgd_none(*pgd)) {
635 pud = pud_alloc_one(NULL, addr);
636 if (!pud) {
637 kvm_err("Cannot allocate Hyp pud\n");
638 err = -ENOMEM;
639 goto out;
640 }
641 pgd_populate(NULL, pgd, pud);
642 get_page(virt_to_page(pgd));
643 kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
644 }
645
646 next = pgd_addr_end(addr, end);
647 err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
648 if (err)
649 goto out;
650 pfn += (next - addr) >> PAGE_SHIFT;
651 } while (addr = next, addr != end);
652out:
653 mutex_unlock(&kvm_hyp_pgd_mutex);
654 return err;
655}
656
657static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
658{
659 if (!is_vmalloc_addr(kaddr)) {
660 BUG_ON(!virt_addr_valid(kaddr));
661 return __pa(kaddr);
662 } else {
663 return page_to_phys(vmalloc_to_page(kaddr)) +
664 offset_in_page(kaddr);
665 }
666}
667
668/**
669 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
670 * @from: The virtual kernel start address of the range
671 * @to: The virtual kernel end address of the range (exclusive)
672 * @prot: The protection to be applied to this range
673 *
674 * The same virtual address as the kernel virtual address is also used
675 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
676 * physical pages.
677 */
678int create_hyp_mappings(void *from, void *to, pgprot_t prot)
679{
680 phys_addr_t phys_addr;
681 unsigned long virt_addr;
682 unsigned long start = kern_hyp_va((unsigned long)from);
683 unsigned long end = kern_hyp_va((unsigned long)to);
684
685 if (is_kernel_in_hyp_mode())
686 return 0;
687
688 start = start & PAGE_MASK;
689 end = PAGE_ALIGN(end);
690
691 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
692 int err;
693
694 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
695 err = __create_hyp_mappings(hyp_pgd, virt_addr,
696 virt_addr + PAGE_SIZE,
697 __phys_to_pfn(phys_addr),
698 prot);
699 if (err)
700 return err;
701 }
702
703 return 0;
704}
705
706/**
707 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
708 * @from: The kernel start VA of the range
709 * @to: The kernel end VA of the range (exclusive)
710 * @phys_addr: The physical start address which gets mapped
711 *
712 * The resulting HYP VA is the same as the kernel VA, modulo
713 * HYP_PAGE_OFFSET.
714 */
715int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
716{
717 unsigned long start = kern_hyp_va((unsigned long)from);
718 unsigned long end = kern_hyp_va((unsigned long)to);
719
720 if (is_kernel_in_hyp_mode())
721 return 0;
722
723 /* Check for a valid kernel IO mapping */
724 if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
725 return -EINVAL;
726
727 return __create_hyp_mappings(hyp_pgd, start, end,
728 __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
729}
730
731/**
732 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
733 * @kvm: The KVM struct pointer for the VM.
734 *
735 * Allocates only the stage-2 HW PGD level table(s) (can support either full
736 * 40-bit input addresses or limited to 32-bit input addresses). Clears the
737 * allocated pages.
738 *
739 * Note we don't need locking here as this is only called when the VM is
740 * created, which can only be done once.
741 */
742int kvm_alloc_stage2_pgd(struct kvm *kvm)
743{
744 pgd_t *pgd;
745
746 if (kvm->arch.pgd != NULL) {
747 kvm_err("kvm_arch already initialized?\n");
748 return -EINVAL;
749 }
750
751 /* Allocate the HW PGD, making sure that each page gets its own refcount */
752 pgd = alloc_pages_exact(S2_PGD_SIZE, GFP_KERNEL | __GFP_ZERO);
753 if (!pgd)
754 return -ENOMEM;
755
756 kvm->arch.pgd = pgd;
757 return 0;
758}
759
760static void stage2_unmap_memslot(struct kvm *kvm,
761 struct kvm_memory_slot *memslot)
762{
763 hva_t hva = memslot->userspace_addr;
764 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
765 phys_addr_t size = PAGE_SIZE * memslot->npages;
766 hva_t reg_end = hva + size;
767
768 /*
769 * A memory region could potentially cover multiple VMAs, and any holes
770 * between them, so iterate over all of them to find out if we should
771 * unmap any of them.
772 *
773 * +--------------------------------------------+
774 * +---------------+----------------+ +----------------+
775 * | : VMA 1 | VMA 2 | | VMA 3 : |
776 * +---------------+----------------+ +----------------+
777 * | memory region |
778 * +--------------------------------------------+
779 */
780 do {
781 struct vm_area_struct *vma = find_vma(current->mm, hva);
782 hva_t vm_start, vm_end;
783
784 if (!vma || vma->vm_start >= reg_end)
785 break;
786
787 /*
788 * Take the intersection of this VMA with the memory region
789 */
790 vm_start = max(hva, vma->vm_start);
791 vm_end = min(reg_end, vma->vm_end);
792
793 if (!(vma->vm_flags & VM_PFNMAP)) {
794 gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
795 unmap_stage2_range(kvm, gpa, vm_end - vm_start);
796 }
797 hva = vm_end;
798 } while (hva < reg_end);
799}
800
801/**
802 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
803 * @kvm: The struct kvm pointer
804 *
805 * Go through the memregions and unmap any reguler RAM
806 * backing memory already mapped to the VM.
807 */
808void stage2_unmap_vm(struct kvm *kvm)
809{
810 struct kvm_memslots *slots;
811 struct kvm_memory_slot *memslot;
812 int idx;
813
814 idx = srcu_read_lock(&kvm->srcu);
815 down_read(&current->mm->mmap_sem);
816 spin_lock(&kvm->mmu_lock);
817
818 slots = kvm_memslots(kvm);
819 kvm_for_each_memslot(memslot, slots)
820 stage2_unmap_memslot(kvm, memslot);
821
822 spin_unlock(&kvm->mmu_lock);
823 up_read(&current->mm->mmap_sem);
824 srcu_read_unlock(&kvm->srcu, idx);
825}
826
827/**
828 * kvm_free_stage2_pgd - free all stage-2 tables
829 * @kvm: The KVM struct pointer for the VM.
830 *
831 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
832 * underlying level-2 and level-3 tables before freeing the actual level-1 table
833 * and setting the struct pointer to NULL.
834 */
835void kvm_free_stage2_pgd(struct kvm *kvm)
836{
837 void *pgd = NULL;
838
839 spin_lock(&kvm->mmu_lock);
840 if (kvm->arch.pgd) {
841 unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
842 pgd = READ_ONCE(kvm->arch.pgd);
843 kvm->arch.pgd = NULL;
844 }
845 spin_unlock(&kvm->mmu_lock);
846
847 /* Free the HW pgd, one page at a time */
848 if (pgd)
849 free_pages_exact(pgd, S2_PGD_SIZE);
850}
851
852static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
853 phys_addr_t addr)
854{
855 pgd_t *pgd;
856 pud_t *pud;
857
858 pgd = kvm->arch.pgd + stage2_pgd_index(addr);
859 if (WARN_ON(stage2_pgd_none(*pgd))) {
860 if (!cache)
861 return NULL;
862 pud = mmu_memory_cache_alloc(cache);
863 stage2_pgd_populate(pgd, pud);
864 get_page(virt_to_page(pgd));
865 }
866
867 return stage2_pud_offset(pgd, addr);
868}
869
870static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
871 phys_addr_t addr)
872{
873 pud_t *pud;
874 pmd_t *pmd;
875
876 pud = stage2_get_pud(kvm, cache, addr);
877 if (!pud)
878 return NULL;
879
880 if (stage2_pud_none(*pud)) {
881 if (!cache)
882 return NULL;
883 pmd = mmu_memory_cache_alloc(cache);
884 stage2_pud_populate(pud, pmd);
885 get_page(virt_to_page(pud));
886 }
887
888 return stage2_pmd_offset(pud, addr);
889}
890
891static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
892 *cache, phys_addr_t addr, const pmd_t *new_pmd)
893{
894 pmd_t *pmd, old_pmd;
895
896 pmd = stage2_get_pmd(kvm, cache, addr);
897 VM_BUG_ON(!pmd);
898
899 old_pmd = *pmd;
900 if (pmd_present(old_pmd)) {
901 /*
902 * Multiple vcpus faulting on the same PMD entry, can
903 * lead to them sequentially updating the PMD with the
904 * same value. Following the break-before-make
905 * (pmd_clear() followed by tlb_flush()) process can
906 * hinder forward progress due to refaults generated
907 * on missing translations.
908 *
909 * Skip updating the page table if the entry is
910 * unchanged.
911 */
912 if (pmd_val(old_pmd) == pmd_val(*new_pmd))
913 return 0;
914
915 /*
916 * Mapping in huge pages should only happen through a
917 * fault. If a page is merged into a transparent huge
918 * page, the individual subpages of that huge page
919 * should be unmapped through MMU notifiers before we
920 * get here.
921 *
922 * Merging of CompoundPages is not supported; they
923 * should become splitting first, unmapped, merged,
924 * and mapped back in on-demand.
925 */
926 VM_BUG_ON(pmd_pfn(old_pmd) != pmd_pfn(*new_pmd));
927
928 pmd_clear(pmd);
929 kvm_tlb_flush_vmid_ipa(kvm, addr);
930 } else {
931 get_page(virt_to_page(pmd));
932 }
933
934 kvm_set_pmd(pmd, *new_pmd);
935 return 0;
936}
937
938static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
939 phys_addr_t addr, const pte_t *new_pte,
940 unsigned long flags)
941{
942 pmd_t *pmd;
943 pte_t *pte, old_pte;
944 bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
945 bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
946
947 VM_BUG_ON(logging_active && !cache);
948
949 /* Create stage-2 page table mapping - Levels 0 and 1 */
950 pmd = stage2_get_pmd(kvm, cache, addr);
951 if (!pmd) {
952 /*
953 * Ignore calls from kvm_set_spte_hva for unallocated
954 * address ranges.
955 */
956 return 0;
957 }
958
959 /*
960 * While dirty page logging - dissolve huge PMD, then continue on to
961 * allocate page.
962 */
963 if (logging_active)
964 stage2_dissolve_pmd(kvm, addr, pmd);
965
966 /* Create stage-2 page mappings - Level 2 */
967 if (pmd_none(*pmd)) {
968 if (!cache)
969 return 0; /* ignore calls from kvm_set_spte_hva */
970 pte = mmu_memory_cache_alloc(cache);
971 pmd_populate_kernel(NULL, pmd, pte);
972 get_page(virt_to_page(pmd));
973 }
974
975 pte = pte_offset_kernel(pmd, addr);
976
977 if (iomap && pte_present(*pte))
978 return -EFAULT;
979
980 /* Create 2nd stage page table mapping - Level 3 */
981 old_pte = *pte;
982 if (pte_present(old_pte)) {
983 /* Skip page table update if there is no change */
984 if (pte_val(old_pte) == pte_val(*new_pte))
985 return 0;
986
987 kvm_set_pte(pte, __pte(0));
988 kvm_tlb_flush_vmid_ipa(kvm, addr);
989 } else {
990 get_page(virt_to_page(pte));
991 }
992
993 kvm_set_pte(pte, *new_pte);
994 return 0;
995}
996
997#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
998static int stage2_ptep_test_and_clear_young(pte_t *pte)
999{
1000 if (pte_young(*pte)) {
1001 *pte = pte_mkold(*pte);
1002 return 1;
1003 }
1004 return 0;
1005}
1006#else
1007static int stage2_ptep_test_and_clear_young(pte_t *pte)
1008{
1009 return __ptep_test_and_clear_young(pte);
1010}
1011#endif
1012
1013static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
1014{
1015 return stage2_ptep_test_and_clear_young((pte_t *)pmd);
1016}
1017
1018/**
1019 * kvm_phys_addr_ioremap - map a device range to guest IPA
1020 *
1021 * @kvm: The KVM pointer
1022 * @guest_ipa: The IPA at which to insert the mapping
1023 * @pa: The physical address of the device
1024 * @size: The size of the mapping
1025 */
1026int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1027 phys_addr_t pa, unsigned long size, bool writable)
1028{
1029 phys_addr_t addr, end;
1030 int ret = 0;
1031 unsigned long pfn;
1032 struct kvm_mmu_memory_cache cache = { 0, };
1033
1034 end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
1035 pfn = __phys_to_pfn(pa);
1036
1037 for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1038 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
1039
1040 if (writable)
1041 pte = kvm_s2pte_mkwrite(pte);
1042
1043 ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
1044 KVM_NR_MEM_OBJS);
1045 if (ret)
1046 goto out;
1047 spin_lock(&kvm->mmu_lock);
1048 ret = stage2_set_pte(kvm, &cache, addr, &pte,
1049 KVM_S2PTE_FLAG_IS_IOMAP);
1050 spin_unlock(&kvm->mmu_lock);
1051 if (ret)
1052 goto out;
1053
1054 pfn++;
1055 }
1056
1057out:
1058 mmu_free_memory_cache(&cache);
1059 return ret;
1060}
1061
1062static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
1063{
1064 kvm_pfn_t pfn = *pfnp;
1065 gfn_t gfn = *ipap >> PAGE_SHIFT;
1066 struct page *page = pfn_to_page(pfn);
1067
1068 /*
1069 * PageTransCompoungMap() returns true for THP and
1070 * hugetlbfs. Make sure the adjustment is done only for THP
1071 * pages.
1072 */
1073 if (!PageHuge(page) && PageTransCompoundMap(page)) {
1074 unsigned long mask;
1075 /*
1076 * The address we faulted on is backed by a transparent huge
1077 * page. However, because we map the compound huge page and
1078 * not the individual tail page, we need to transfer the
1079 * refcount to the head page. We have to be careful that the
1080 * THP doesn't start to split while we are adjusting the
1081 * refcounts.
1082 *
1083 * We are sure this doesn't happen, because mmu_notifier_retry
1084 * was successful and we are holding the mmu_lock, so if this
1085 * THP is trying to split, it will be blocked in the mmu
1086 * notifier before touching any of the pages, specifically
1087 * before being able to call __split_huge_page_refcount().
1088 *
1089 * We can therefore safely transfer the refcount from PG_tail
1090 * to PG_head and switch the pfn from a tail page to the head
1091 * page accordingly.
1092 */
1093 mask = PTRS_PER_PMD - 1;
1094 VM_BUG_ON((gfn & mask) != (pfn & mask));
1095 if (pfn & mask) {
1096 *ipap &= PMD_MASK;
1097 kvm_release_pfn_clean(pfn);
1098 pfn &= ~mask;
1099 kvm_get_pfn(pfn);
1100 *pfnp = pfn;
1101 }
1102
1103 return true;
1104 }
1105
1106 return false;
1107}
1108
1109static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
1110{
1111 if (kvm_vcpu_trap_is_iabt(vcpu))
1112 return false;
1113
1114 return kvm_vcpu_dabt_iswrite(vcpu);
1115}
1116
1117/**
1118 * stage2_wp_ptes - write protect PMD range
1119 * @pmd: pointer to pmd entry
1120 * @addr: range start address
1121 * @end: range end address
1122 */
1123static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1124{
1125 pte_t *pte;
1126
1127 pte = pte_offset_kernel(pmd, addr);
1128 do {
1129 if (!pte_none(*pte)) {
1130 if (!kvm_s2pte_readonly(pte))
1131 kvm_set_s2pte_readonly(pte);
1132 }
1133 } while (pte++, addr += PAGE_SIZE, addr != end);
1134}
1135
1136/**
1137 * stage2_wp_pmds - write protect PUD range
1138 * @pud: pointer to pud entry
1139 * @addr: range start address
1140 * @end: range end address
1141 */
1142static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
1143{
1144 pmd_t *pmd;
1145 phys_addr_t next;
1146
1147 pmd = stage2_pmd_offset(pud, addr);
1148
1149 do {
1150 next = stage2_pmd_addr_end(addr, end);
1151 if (!pmd_none(*pmd)) {
1152 if (pmd_thp_or_huge(*pmd)) {
1153 if (!kvm_s2pmd_readonly(pmd))
1154 kvm_set_s2pmd_readonly(pmd);
1155 } else {
1156 stage2_wp_ptes(pmd, addr, next);
1157 }
1158 }
1159 } while (pmd++, addr = next, addr != end);
1160}
1161
1162/**
1163 * stage2_wp_puds - write protect PGD range
1164 * @pgd: pointer to pgd entry
1165 * @addr: range start address
1166 * @end: range end address
1167 *
1168 * Process PUD entries, for a huge PUD we cause a panic.
1169 */
1170static void stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
1171{
1172 pud_t *pud;
1173 phys_addr_t next;
1174
1175 pud = stage2_pud_offset(pgd, addr);
1176 do {
1177 next = stage2_pud_addr_end(addr, end);
1178 if (!stage2_pud_none(*pud)) {
1179 /* TODO:PUD not supported, revisit later if supported */
1180 BUG_ON(stage2_pud_huge(*pud));
1181 stage2_wp_pmds(pud, addr, next);
1182 }
1183 } while (pud++, addr = next, addr != end);
1184}
1185
1186/**
1187 * stage2_wp_range() - write protect stage2 memory region range
1188 * @kvm: The KVM pointer
1189 * @addr: Start address of range
1190 * @end: End address of range
1191 */
1192static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1193{
1194 pgd_t *pgd;
1195 phys_addr_t next;
1196
1197 pgd = kvm->arch.pgd + stage2_pgd_index(addr);
1198 do {
1199 /*
1200 * Release kvm_mmu_lock periodically if the memory region is
1201 * large. Otherwise, we may see kernel panics with
1202 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1203 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1204 * will also starve other vCPUs. We have to also make sure
1205 * that the page tables are not freed while we released
1206 * the lock.
1207 */
1208 cond_resched_lock(&kvm->mmu_lock);
1209 if (!READ_ONCE(kvm->arch.pgd))
1210 break;
1211 next = stage2_pgd_addr_end(addr, end);
1212 if (stage2_pgd_present(*pgd))
1213 stage2_wp_puds(pgd, addr, next);
1214 } while (pgd++, addr = next, addr != end);
1215}
1216
1217/**
1218 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1219 * @kvm: The KVM pointer
1220 * @slot: The memory slot to write protect
1221 *
1222 * Called to start logging dirty pages after memory region
1223 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1224 * all present PMD and PTEs are write protected in the memory region.
1225 * Afterwards read of dirty page log can be called.
1226 *
1227 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1228 * serializing operations for VM memory regions.
1229 */
1230void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1231{
1232 struct kvm_memslots *slots = kvm_memslots(kvm);
1233 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1234 phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
1235 phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1236
1237 spin_lock(&kvm->mmu_lock);
1238 stage2_wp_range(kvm, start, end);
1239 spin_unlock(&kvm->mmu_lock);
1240 kvm_flush_remote_tlbs(kvm);
1241}
1242
1243/**
1244 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1245 * @kvm: The KVM pointer
1246 * @slot: The memory slot associated with mask
1247 * @gfn_offset: The gfn offset in memory slot
1248 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
1249 * slot to be write protected
1250 *
1251 * Walks bits set in mask write protects the associated pte's. Caller must
1252 * acquire kvm_mmu_lock.
1253 */
1254static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1255 struct kvm_memory_slot *slot,
1256 gfn_t gfn_offset, unsigned long mask)
1257{
1258 phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1259 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
1260 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1261
1262 stage2_wp_range(kvm, start, end);
1263}
1264
1265/*
1266 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1267 * dirty pages.
1268 *
1269 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1270 * enable dirty logging for them.
1271 */
1272void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1273 struct kvm_memory_slot *slot,
1274 gfn_t gfn_offset, unsigned long mask)
1275{
1276 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1277}
1278
1279static void coherent_cache_guest_page(struct kvm_vcpu *vcpu, kvm_pfn_t pfn,
1280 unsigned long size)
1281{
1282 __coherent_cache_guest_page(vcpu, pfn, size);
1283}
1284
1285static void kvm_send_hwpoison_signal(unsigned long address,
1286 struct vm_area_struct *vma)
1287{
1288 siginfo_t info;
1289
1290 info.si_signo = SIGBUS;
1291 info.si_errno = 0;
1292 info.si_code = BUS_MCEERR_AR;
1293 info.si_addr = (void __user *)address;
1294
1295 if (is_vm_hugetlb_page(vma))
1296 info.si_addr_lsb = huge_page_shift(hstate_vma(vma));
1297 else
1298 info.si_addr_lsb = PAGE_SHIFT;
1299
1300 send_sig_info(SIGBUS, &info, current);
1301}
1302
1303static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1304 struct kvm_memory_slot *memslot, unsigned long hva,
1305 unsigned long fault_status)
1306{
1307 int ret;
1308 bool write_fault, writable, hugetlb = false, force_pte = false;
1309 unsigned long mmu_seq;
1310 gfn_t gfn = fault_ipa >> PAGE_SHIFT;
1311 struct kvm *kvm = vcpu->kvm;
1312 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1313 struct vm_area_struct *vma;
1314 kvm_pfn_t pfn;
1315 pgprot_t mem_type = PAGE_S2;
1316 bool logging_active = memslot_is_logging(memslot);
1317 unsigned long flags = 0;
1318
1319 write_fault = kvm_is_write_fault(vcpu);
1320 if (fault_status == FSC_PERM && !write_fault) {
1321 kvm_err("Unexpected L2 read permission error\n");
1322 return -EFAULT;
1323 }
1324
1325 /* Let's check if we will get back a huge page backed by hugetlbfs */
1326 down_read(&current->mm->mmap_sem);
1327 vma = find_vma_intersection(current->mm, hva, hva + 1);
1328 if (unlikely(!vma)) {
1329 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1330 up_read(&current->mm->mmap_sem);
1331 return -EFAULT;
1332 }
1333
1334 if (vma_kernel_pagesize(vma) == PMD_SIZE && !logging_active) {
1335 hugetlb = true;
1336 gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
1337 } else {
1338 /*
1339 * Pages belonging to memslots that don't have the same
1340 * alignment for userspace and IPA cannot be mapped using
1341 * block descriptors even if the pages belong to a THP for
1342 * the process, because the stage-2 block descriptor will
1343 * cover more than a single THP and we loose atomicity for
1344 * unmapping, updates, and splits of the THP or other pages
1345 * in the stage-2 block range.
1346 */
1347 if ((memslot->userspace_addr & ~PMD_MASK) !=
1348 ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
1349 force_pte = true;
1350 }
1351 up_read(&current->mm->mmap_sem);
1352
1353 /* We need minimum second+third level pages */
1354 ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
1355 KVM_NR_MEM_OBJS);
1356 if (ret)
1357 return ret;
1358
1359 mmu_seq = vcpu->kvm->mmu_notifier_seq;
1360 /*
1361 * Ensure the read of mmu_notifier_seq happens before we call
1362 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1363 * the page we just got a reference to gets unmapped before we have a
1364 * chance to grab the mmu_lock, which ensure that if the page gets
1365 * unmapped afterwards, the call to kvm_unmap_hva will take it away
1366 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1367 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1368 */
1369 smp_rmb();
1370
1371 pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1372 if (pfn == KVM_PFN_ERR_HWPOISON) {
1373 kvm_send_hwpoison_signal(hva, vma);
1374 return 0;
1375 }
1376 if (is_error_noslot_pfn(pfn))
1377 return -EFAULT;
1378
1379 if (kvm_is_device_pfn(pfn)) {
1380 mem_type = PAGE_S2_DEVICE;
1381 flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1382 } else if (logging_active) {
1383 /*
1384 * Faults on pages in a memslot with logging enabled
1385 * should not be mapped with huge pages (it introduces churn
1386 * and performance degradation), so force a pte mapping.
1387 */
1388 force_pte = true;
1389 flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1390
1391 /*
1392 * Only actually map the page as writable if this was a write
1393 * fault.
1394 */
1395 if (!write_fault)
1396 writable = false;
1397 }
1398
1399 spin_lock(&kvm->mmu_lock);
1400 if (mmu_notifier_retry(kvm, mmu_seq))
1401 goto out_unlock;
1402
1403 if (!hugetlb && !force_pte)
1404 hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
1405
1406 if (hugetlb) {
1407 pmd_t new_pmd = pfn_pmd(pfn, mem_type);
1408 new_pmd = pmd_mkhuge(new_pmd);
1409 if (writable) {
1410 new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1411 kvm_set_pfn_dirty(pfn);
1412 }
1413 coherent_cache_guest_page(vcpu, pfn, PMD_SIZE);
1414 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1415 } else {
1416 pte_t new_pte = pfn_pte(pfn, mem_type);
1417
1418 if (writable) {
1419 new_pte = kvm_s2pte_mkwrite(new_pte);
1420 kvm_set_pfn_dirty(pfn);
1421 mark_page_dirty(kvm, gfn);
1422 }
1423 coherent_cache_guest_page(vcpu, pfn, PAGE_SIZE);
1424 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1425 }
1426
1427out_unlock:
1428 spin_unlock(&kvm->mmu_lock);
1429 kvm_set_pfn_accessed(pfn);
1430 kvm_release_pfn_clean(pfn);
1431 return ret;
1432}
1433
1434/*
1435 * Resolve the access fault by making the page young again.
1436 * Note that because the faulting entry is guaranteed not to be
1437 * cached in the TLB, we don't need to invalidate anything.
1438 * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
1439 * so there is no need for atomic (pte|pmd)_mkyoung operations.
1440 */
1441static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1442{
1443 pmd_t *pmd;
1444 pte_t *pte;
1445 kvm_pfn_t pfn;
1446 bool pfn_valid = false;
1447
1448 trace_kvm_access_fault(fault_ipa);
1449
1450 spin_lock(&vcpu->kvm->mmu_lock);
1451
1452 pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
1453 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1454 goto out;
1455
1456 if (pmd_thp_or_huge(*pmd)) { /* THP, HugeTLB */
1457 *pmd = pmd_mkyoung(*pmd);
1458 pfn = pmd_pfn(*pmd);
1459 pfn_valid = true;
1460 goto out;
1461 }
1462
1463 pte = pte_offset_kernel(pmd, fault_ipa);
1464 if (pte_none(*pte)) /* Nothing there either */
1465 goto out;
1466
1467 *pte = pte_mkyoung(*pte); /* Just a page... */
1468 pfn = pte_pfn(*pte);
1469 pfn_valid = true;
1470out:
1471 spin_unlock(&vcpu->kvm->mmu_lock);
1472 if (pfn_valid)
1473 kvm_set_pfn_accessed(pfn);
1474}
1475
1476/**
1477 * kvm_handle_guest_abort - handles all 2nd stage aborts
1478 * @vcpu: the VCPU pointer
1479 * @run: the kvm_run structure
1480 *
1481 * Any abort that gets to the host is almost guaranteed to be caused by a
1482 * missing second stage translation table entry, which can mean that either the
1483 * guest simply needs more memory and we must allocate an appropriate page or it
1484 * can mean that the guest tried to access I/O memory, which is emulated by user
1485 * space. The distinction is based on the IPA causing the fault and whether this
1486 * memory region has been registered as standard RAM by user space.
1487 */
1488int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1489{
1490 unsigned long fault_status;
1491 phys_addr_t fault_ipa;
1492 struct kvm_memory_slot *memslot;
1493 unsigned long hva;
1494 bool is_iabt, write_fault, writable;
1495 gfn_t gfn;
1496 int ret, idx;
1497
1498 fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1499
1500 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1501 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1502
1503 /* Synchronous External Abort? */
1504 if (kvm_vcpu_dabt_isextabt(vcpu)) {
1505 /*
1506 * For RAS the host kernel may handle this abort.
1507 * There is no need to pass the error into the guest.
1508 */
1509 if (!handle_guest_sea(fault_ipa, kvm_vcpu_get_hsr(vcpu)))
1510 return 1;
1511
1512 if (unlikely(!is_iabt)) {
1513 kvm_inject_vabt(vcpu);
1514 return 1;
1515 }
1516 }
1517
1518 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1519 kvm_vcpu_get_hfar(vcpu), fault_ipa);
1520
1521 /* Check the stage-2 fault is trans. fault or write fault */
1522 if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1523 fault_status != FSC_ACCESS) {
1524 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1525 kvm_vcpu_trap_get_class(vcpu),
1526 (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1527 (unsigned long)kvm_vcpu_get_hsr(vcpu));
1528 return -EFAULT;
1529 }
1530
1531 idx = srcu_read_lock(&vcpu->kvm->srcu);
1532
1533 gfn = fault_ipa >> PAGE_SHIFT;
1534 memslot = gfn_to_memslot(vcpu->kvm, gfn);
1535 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1536 write_fault = kvm_is_write_fault(vcpu);
1537 if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1538 if (is_iabt) {
1539 /* Prefetch Abort on I/O address */
1540 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1541 ret = 1;
1542 goto out_unlock;
1543 }
1544
1545 /*
1546 * Check for a cache maintenance operation. Since we
1547 * ended-up here, we know it is outside of any memory
1548 * slot. But we can't find out if that is for a device,
1549 * or if the guest is just being stupid. The only thing
1550 * we know for sure is that this range cannot be cached.
1551 *
1552 * So let's assume that the guest is just being
1553 * cautious, and skip the instruction.
1554 */
1555 if (kvm_vcpu_dabt_is_cm(vcpu)) {
1556 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1557 ret = 1;
1558 goto out_unlock;
1559 }
1560
1561 /*
1562 * The IPA is reported as [MAX:12], so we need to
1563 * complement it with the bottom 12 bits from the
1564 * faulting VA. This is always 12 bits, irrespective
1565 * of the page size.
1566 */
1567 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1568 ret = io_mem_abort(vcpu, run, fault_ipa);
1569 goto out_unlock;
1570 }
1571
1572 /* Userspace should not be able to register out-of-bounds IPAs */
1573 VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);
1574
1575 if (fault_status == FSC_ACCESS) {
1576 handle_access_fault(vcpu, fault_ipa);
1577 ret = 1;
1578 goto out_unlock;
1579 }
1580
1581 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1582 if (ret == 0)
1583 ret = 1;
1584out_unlock:
1585 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1586 return ret;
1587}
1588
1589static int handle_hva_to_gpa(struct kvm *kvm,
1590 unsigned long start,
1591 unsigned long end,
1592 int (*handler)(struct kvm *kvm,
1593 gpa_t gpa, u64 size,
1594 void *data),
1595 void *data)
1596{
1597 struct kvm_memslots *slots;
1598 struct kvm_memory_slot *memslot;
1599 int ret = 0;
1600
1601 slots = kvm_memslots(kvm);
1602
1603 /* we only care about the pages that the guest sees */
1604 kvm_for_each_memslot(memslot, slots) {
1605 unsigned long hva_start, hva_end;
1606 gfn_t gpa;
1607
1608 hva_start = max(start, memslot->userspace_addr);
1609 hva_end = min(end, memslot->userspace_addr +
1610 (memslot->npages << PAGE_SHIFT));
1611 if (hva_start >= hva_end)
1612 continue;
1613
1614 gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
1615 ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
1616 }
1617
1618 return ret;
1619}
1620
1621static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1622{
1623 unmap_stage2_range(kvm, gpa, size);
1624 return 0;
1625}
1626
1627int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1628{
1629 unsigned long end = hva + PAGE_SIZE;
1630
1631 if (!kvm->arch.pgd)
1632 return 0;
1633
1634 trace_kvm_unmap_hva(hva);
1635 handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
1636 return 0;
1637}
1638
1639int kvm_unmap_hva_range(struct kvm *kvm,
1640 unsigned long start, unsigned long end)
1641{
1642 if (!kvm->arch.pgd)
1643 return 0;
1644
1645 trace_kvm_unmap_hva_range(start, end);
1646 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
1647 return 0;
1648}
1649
1650static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1651{
1652 pte_t *pte = (pte_t *)data;
1653
1654 WARN_ON(size != PAGE_SIZE);
1655 /*
1656 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
1657 * flag clear because MMU notifiers will have unmapped a huge PMD before
1658 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1659 * therefore stage2_set_pte() never needs to clear out a huge PMD
1660 * through this calling path.
1661 */
1662 stage2_set_pte(kvm, NULL, gpa, pte, 0);
1663 return 0;
1664}
1665
1666
1667void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1668{
1669 unsigned long end = hva + PAGE_SIZE;
1670 pte_t stage2_pte;
1671
1672 if (!kvm->arch.pgd)
1673 return;
1674
1675 trace_kvm_set_spte_hva(hva);
1676 stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
1677 handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
1678}
1679
1680static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1681{
1682 pmd_t *pmd;
1683 pte_t *pte;
1684
1685 WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1686 pmd = stage2_get_pmd(kvm, NULL, gpa);
1687 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1688 return 0;
1689
1690 if (pmd_thp_or_huge(*pmd)) /* THP, HugeTLB */
1691 return stage2_pmdp_test_and_clear_young(pmd);
1692
1693 pte = pte_offset_kernel(pmd, gpa);
1694 if (pte_none(*pte))
1695 return 0;
1696
1697 return stage2_ptep_test_and_clear_young(pte);
1698}
1699
1700static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1701{
1702 pmd_t *pmd;
1703 pte_t *pte;
1704
1705 WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1706 pmd = stage2_get_pmd(kvm, NULL, gpa);
1707 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1708 return 0;
1709
1710 if (pmd_thp_or_huge(*pmd)) /* THP, HugeTLB */
1711 return pmd_young(*pmd);
1712
1713 pte = pte_offset_kernel(pmd, gpa);
1714 if (!pte_none(*pte)) /* Just a page... */
1715 return pte_young(*pte);
1716
1717 return 0;
1718}
1719
1720int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1721{
1722 if (!kvm->arch.pgd)
1723 return 0;
1724 trace_kvm_age_hva(start, end);
1725 return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
1726}
1727
1728int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1729{
1730 if (!kvm->arch.pgd)
1731 return 0;
1732 trace_kvm_test_age_hva(hva);
1733 return handle_hva_to_gpa(kvm, hva, hva + PAGE_SIZE,
1734 kvm_test_age_hva_handler, NULL);
1735}
1736
1737void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1738{
1739 mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
1740}
1741
1742phys_addr_t kvm_mmu_get_httbr(void)
1743{
1744 if (__kvm_cpu_uses_extended_idmap())
1745 return virt_to_phys(merged_hyp_pgd);
1746 else
1747 return virt_to_phys(hyp_pgd);
1748}
1749
1750phys_addr_t kvm_get_idmap_vector(void)
1751{
1752 return hyp_idmap_vector;
1753}
1754
1755static int kvm_map_idmap_text(pgd_t *pgd)
1756{
1757 int err;
1758
1759 /* Create the idmap in the boot page tables */
1760 err = __create_hyp_mappings(pgd,
1761 hyp_idmap_start, hyp_idmap_end,
1762 __phys_to_pfn(hyp_idmap_start),
1763 PAGE_HYP_EXEC);
1764 if (err)
1765 kvm_err("Failed to idmap %lx-%lx\n",
1766 hyp_idmap_start, hyp_idmap_end);
1767
1768 return err;
1769}
1770
1771int kvm_mmu_init(void)
1772{
1773 int err;
1774
1775 hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1776 hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1777 hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1778
1779 /*
1780 * We rely on the linker script to ensure at build time that the HYP
1781 * init code does not cross a page boundary.
1782 */
1783 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1784
1785 kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
1786 kvm_debug("HYP VA range: %lx:%lx\n",
1787 kern_hyp_va(PAGE_OFFSET), kern_hyp_va(~0UL));
1788
1789 if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1790 hyp_idmap_start < kern_hyp_va(~0UL) &&
1791 hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1792 /*
1793 * The idmap page is intersecting with the VA space,
1794 * it is not safe to continue further.
1795 */
1796 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1797 err = -EINVAL;
1798 goto out;
1799 }
1800
1801 hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1802 if (!hyp_pgd) {
1803 kvm_err("Hyp mode PGD not allocated\n");
1804 err = -ENOMEM;
1805 goto out;
1806 }
1807
1808 if (__kvm_cpu_uses_extended_idmap()) {
1809 boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1810 hyp_pgd_order);
1811 if (!boot_hyp_pgd) {
1812 kvm_err("Hyp boot PGD not allocated\n");
1813 err = -ENOMEM;
1814 goto out;
1815 }
1816
1817 err = kvm_map_idmap_text(boot_hyp_pgd);
1818 if (err)
1819 goto out;
1820
1821 merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1822 if (!merged_hyp_pgd) {
1823 kvm_err("Failed to allocate extra HYP pgd\n");
1824 goto out;
1825 }
1826 __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
1827 hyp_idmap_start);
1828 } else {
1829 err = kvm_map_idmap_text(hyp_pgd);
1830 if (err)
1831 goto out;
1832 }
1833
1834 return 0;
1835out:
1836 free_hyp_pgds();
1837 return err;
1838}
1839
1840void kvm_arch_commit_memory_region(struct kvm *kvm,
1841 const struct kvm_userspace_memory_region *mem,
1842 const struct kvm_memory_slot *old,
1843 const struct kvm_memory_slot *new,
1844 enum kvm_mr_change change)
1845{
1846 /*
1847 * At this point memslot has been committed and there is an
1848 * allocated dirty_bitmap[], dirty pages will be be tracked while the
1849 * memory slot is write protected.
1850 */
1851 if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
1852 kvm_mmu_wp_memory_region(kvm, mem->slot);
1853}
1854
1855int kvm_arch_prepare_memory_region(struct kvm *kvm,
1856 struct kvm_memory_slot *memslot,
1857 const struct kvm_userspace_memory_region *mem,
1858 enum kvm_mr_change change)
1859{
1860 hva_t hva = mem->userspace_addr;
1861 hva_t reg_end = hva + mem->memory_size;
1862 bool writable = !(mem->flags & KVM_MEM_READONLY);
1863 int ret = 0;
1864
1865 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1866 change != KVM_MR_FLAGS_ONLY)
1867 return 0;
1868
1869 /*
1870 * Prevent userspace from creating a memory region outside of the IPA
1871 * space addressable by the KVM guest IPA space.
1872 */
1873 if (memslot->base_gfn + memslot->npages >=
1874 (KVM_PHYS_SIZE >> PAGE_SHIFT))
1875 return -EFAULT;
1876
1877 down_read(&current->mm->mmap_sem);
1878 /*
1879 * A memory region could potentially cover multiple VMAs, and any holes
1880 * between them, so iterate over all of them to find out if we can map
1881 * any of them right now.
1882 *
1883 * +--------------------------------------------+
1884 * +---------------+----------------+ +----------------+
1885 * | : VMA 1 | VMA 2 | | VMA 3 : |
1886 * +---------------+----------------+ +----------------+
1887 * | memory region |
1888 * +--------------------------------------------+
1889 */
1890 do {
1891 struct vm_area_struct *vma = find_vma(current->mm, hva);
1892 hva_t vm_start, vm_end;
1893
1894 if (!vma || vma->vm_start >= reg_end)
1895 break;
1896
1897 /*
1898 * Mapping a read-only VMA is only allowed if the
1899 * memory region is configured as read-only.
1900 */
1901 if (writable && !(vma->vm_flags & VM_WRITE)) {
1902 ret = -EPERM;
1903 break;
1904 }
1905
1906 /*
1907 * Take the intersection of this VMA with the memory region
1908 */
1909 vm_start = max(hva, vma->vm_start);
1910 vm_end = min(reg_end, vma->vm_end);
1911
1912 if (vma->vm_flags & VM_PFNMAP) {
1913 gpa_t gpa = mem->guest_phys_addr +
1914 (vm_start - mem->userspace_addr);
1915 phys_addr_t pa;
1916
1917 pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
1918 pa += vm_start - vma->vm_start;
1919
1920 /* IO region dirty page logging not allowed */
1921 if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1922 ret = -EINVAL;
1923 goto out;
1924 }
1925
1926 ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
1927 vm_end - vm_start,
1928 writable);
1929 if (ret)
1930 break;
1931 }
1932 hva = vm_end;
1933 } while (hva < reg_end);
1934
1935 if (change == KVM_MR_FLAGS_ONLY)
1936 goto out;
1937
1938 spin_lock(&kvm->mmu_lock);
1939 if (ret)
1940 unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
1941 else
1942 stage2_flush_memslot(kvm, memslot);
1943 spin_unlock(&kvm->mmu_lock);
1944out:
1945 up_read(&current->mm->mmap_sem);
1946 return ret;
1947}
1948
1949void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
1950 struct kvm_memory_slot *dont)
1951{
1952}
1953
1954int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
1955 unsigned long npages)
1956{
1957 return 0;
1958}
1959
1960void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
1961{
1962}
1963
1964void kvm_arch_flush_shadow_all(struct kvm *kvm)
1965{
1966 kvm_free_stage2_pgd(kvm);
1967}
1968
1969void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1970 struct kvm_memory_slot *slot)
1971{
1972 gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1973 phys_addr_t size = slot->npages << PAGE_SHIFT;
1974
1975 spin_lock(&kvm->mmu_lock);
1976 unmap_stage2_range(kvm, gpa, size);
1977 spin_unlock(&kvm->mmu_lock);
1978}
1979
1980/*
1981 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1982 *
1983 * Main problems:
1984 * - S/W ops are local to a CPU (not broadcast)
1985 * - We have line migration behind our back (speculation)
1986 * - System caches don't support S/W at all (damn!)
1987 *
1988 * In the face of the above, the best we can do is to try and convert
1989 * S/W ops to VA ops. Because the guest is not allowed to infer the
1990 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1991 * which is a rather good thing for us.
1992 *
1993 * Also, it is only used when turning caches on/off ("The expected
1994 * usage of the cache maintenance instructions that operate by set/way
1995 * is associated with the cache maintenance instructions associated
1996 * with the powerdown and powerup of caches, if this is required by
1997 * the implementation.").
1998 *
1999 * We use the following policy:
2000 *
2001 * - If we trap a S/W operation, we enable VM trapping to detect
2002 * caches being turned on/off, and do a full clean.
2003 *
2004 * - We flush the caches on both caches being turned on and off.
2005 *
2006 * - Once the caches are enabled, we stop trapping VM ops.
2007 */
2008void kvm_set_way_flush(struct kvm_vcpu *vcpu)
2009{
2010 unsigned long hcr = vcpu_get_hcr(vcpu);
2011
2012 /*
2013 * If this is the first time we do a S/W operation
2014 * (i.e. HCR_TVM not set) flush the whole memory, and set the
2015 * VM trapping.
2016 *
2017 * Otherwise, rely on the VM trapping to wait for the MMU +
2018 * Caches to be turned off. At that point, we'll be able to
2019 * clean the caches again.
2020 */
2021 if (!(hcr & HCR_TVM)) {
2022 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
2023 vcpu_has_cache_enabled(vcpu));
2024 stage2_flush_vm(vcpu->kvm);
2025 vcpu_set_hcr(vcpu, hcr | HCR_TVM);
2026 }
2027}
2028
2029void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
2030{
2031 bool now_enabled = vcpu_has_cache_enabled(vcpu);
2032
2033 /*
2034 * If switching the MMU+caches on, need to invalidate the caches.
2035 * If switching it off, need to clean the caches.
2036 * Clean + invalidate does the trick always.
2037 */
2038 if (now_enabled != was_enabled)
2039 stage2_flush_vm(vcpu->kvm);
2040
2041 /* Caches are now on, stop trapping VM ops (until a S/W op) */
2042 if (now_enabled)
2043 vcpu_set_hcr(vcpu, vcpu_get_hcr(vcpu) & ~HCR_TVM);
2044
2045 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
2046}