| rjw | 1f88458 | 2022-01-06 17:20:42 +0800 | [diff] [blame] | 1 | /* | 
 | 2 |  * caam - Freescale FSL CAAM support for Public Key Cryptography | 
 | 3 |  * | 
 | 4 |  * Copyright 2016 Freescale Semiconductor, Inc. | 
 | 5 |  * | 
 | 6 |  * There is no Shared Descriptor for PKC so that the Job Descriptor must carry | 
 | 7 |  * all the desired key parameters, input and output pointers. | 
 | 8 |  */ | 
 | 9 | #include "compat.h" | 
 | 10 | #include "regs.h" | 
 | 11 | #include "intern.h" | 
 | 12 | #include "jr.h" | 
 | 13 | #include "error.h" | 
 | 14 | #include "desc_constr.h" | 
 | 15 | #include "sg_sw_sec4.h" | 
 | 16 | #include "caampkc.h" | 
 | 17 |  | 
 | 18 | #define DESC_RSA_PUB_LEN	(2 * CAAM_CMD_SZ + sizeof(struct rsa_pub_pdb)) | 
 | 19 | #define DESC_RSA_PRIV_F1_LEN	(2 * CAAM_CMD_SZ + \ | 
 | 20 | 				 sizeof(struct rsa_priv_f1_pdb)) | 
 | 21 | #define DESC_RSA_PRIV_F2_LEN	(2 * CAAM_CMD_SZ + \ | 
 | 22 | 				 sizeof(struct rsa_priv_f2_pdb)) | 
 | 23 | #define DESC_RSA_PRIV_F3_LEN	(2 * CAAM_CMD_SZ + \ | 
 | 24 | 				 sizeof(struct rsa_priv_f3_pdb)) | 
 | 25 |  | 
 | 26 | static void rsa_io_unmap(struct device *dev, struct rsa_edesc *edesc, | 
 | 27 | 			 struct akcipher_request *req) | 
 | 28 | { | 
 | 29 | 	dma_unmap_sg(dev, req->dst, edesc->dst_nents, DMA_FROM_DEVICE); | 
 | 30 | 	dma_unmap_sg(dev, req->src, edesc->src_nents, DMA_TO_DEVICE); | 
 | 31 |  | 
 | 32 | 	if (edesc->sec4_sg_bytes) | 
 | 33 | 		dma_unmap_single(dev, edesc->sec4_sg_dma, edesc->sec4_sg_bytes, | 
 | 34 | 				 DMA_TO_DEVICE); | 
 | 35 | } | 
 | 36 |  | 
 | 37 | static void rsa_pub_unmap(struct device *dev, struct rsa_edesc *edesc, | 
 | 38 | 			  struct akcipher_request *req) | 
 | 39 | { | 
 | 40 | 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); | 
 | 41 | 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); | 
 | 42 | 	struct caam_rsa_key *key = &ctx->key; | 
 | 43 | 	struct rsa_pub_pdb *pdb = &edesc->pdb.pub; | 
 | 44 |  | 
 | 45 | 	dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE); | 
 | 46 | 	dma_unmap_single(dev, pdb->e_dma, key->e_sz, DMA_TO_DEVICE); | 
 | 47 | } | 
 | 48 |  | 
 | 49 | static void rsa_priv_f1_unmap(struct device *dev, struct rsa_edesc *edesc, | 
 | 50 | 			      struct akcipher_request *req) | 
 | 51 | { | 
 | 52 | 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); | 
 | 53 | 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); | 
 | 54 | 	struct caam_rsa_key *key = &ctx->key; | 
 | 55 | 	struct rsa_priv_f1_pdb *pdb = &edesc->pdb.priv_f1; | 
 | 56 |  | 
 | 57 | 	dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE); | 
 | 58 | 	dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE); | 
 | 59 | } | 
 | 60 |  | 
 | 61 | static void rsa_priv_f2_unmap(struct device *dev, struct rsa_edesc *edesc, | 
 | 62 | 			      struct akcipher_request *req) | 
 | 63 | { | 
 | 64 | 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); | 
 | 65 | 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); | 
 | 66 | 	struct caam_rsa_key *key = &ctx->key; | 
 | 67 | 	struct rsa_priv_f2_pdb *pdb = &edesc->pdb.priv_f2; | 
 | 68 | 	size_t p_sz = key->p_sz; | 
 | 69 | 	size_t q_sz = key->q_sz; | 
 | 70 |  | 
 | 71 | 	dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE); | 
 | 72 | 	dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE); | 
 | 73 | 	dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE); | 
 | 74 | 	dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL); | 
 | 75 | 	dma_unmap_single(dev, pdb->tmp2_dma, q_sz, DMA_BIDIRECTIONAL); | 
 | 76 | } | 
 | 77 |  | 
 | 78 | static void rsa_priv_f3_unmap(struct device *dev, struct rsa_edesc *edesc, | 
 | 79 | 			      struct akcipher_request *req) | 
 | 80 | { | 
 | 81 | 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); | 
 | 82 | 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); | 
 | 83 | 	struct caam_rsa_key *key = &ctx->key; | 
 | 84 | 	struct rsa_priv_f3_pdb *pdb = &edesc->pdb.priv_f3; | 
 | 85 | 	size_t p_sz = key->p_sz; | 
 | 86 | 	size_t q_sz = key->q_sz; | 
 | 87 |  | 
 | 88 | 	dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE); | 
 | 89 | 	dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE); | 
 | 90 | 	dma_unmap_single(dev, pdb->dp_dma, p_sz, DMA_TO_DEVICE); | 
 | 91 | 	dma_unmap_single(dev, pdb->dq_dma, q_sz, DMA_TO_DEVICE); | 
 | 92 | 	dma_unmap_single(dev, pdb->c_dma, p_sz, DMA_TO_DEVICE); | 
 | 93 | 	dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL); | 
 | 94 | 	dma_unmap_single(dev, pdb->tmp2_dma, q_sz, DMA_BIDIRECTIONAL); | 
 | 95 | } | 
 | 96 |  | 
 | 97 | /* RSA Job Completion handler */ | 
 | 98 | static void rsa_pub_done(struct device *dev, u32 *desc, u32 err, void *context) | 
 | 99 | { | 
 | 100 | 	struct akcipher_request *req = context; | 
 | 101 | 	struct rsa_edesc *edesc; | 
 | 102 |  | 
 | 103 | 	if (err) | 
 | 104 | 		caam_jr_strstatus(dev, err); | 
 | 105 |  | 
 | 106 | 	edesc = container_of(desc, struct rsa_edesc, hw_desc[0]); | 
 | 107 |  | 
 | 108 | 	rsa_pub_unmap(dev, edesc, req); | 
 | 109 | 	rsa_io_unmap(dev, edesc, req); | 
 | 110 | 	kfree(edesc); | 
 | 111 |  | 
 | 112 | 	akcipher_request_complete(req, err); | 
 | 113 | } | 
 | 114 |  | 
 | 115 | static void rsa_priv_f1_done(struct device *dev, u32 *desc, u32 err, | 
 | 116 | 			     void *context) | 
 | 117 | { | 
 | 118 | 	struct akcipher_request *req = context; | 
 | 119 | 	struct rsa_edesc *edesc; | 
 | 120 |  | 
 | 121 | 	if (err) | 
 | 122 | 		caam_jr_strstatus(dev, err); | 
 | 123 |  | 
 | 124 | 	edesc = container_of(desc, struct rsa_edesc, hw_desc[0]); | 
 | 125 |  | 
 | 126 | 	rsa_priv_f1_unmap(dev, edesc, req); | 
 | 127 | 	rsa_io_unmap(dev, edesc, req); | 
 | 128 | 	kfree(edesc); | 
 | 129 |  | 
 | 130 | 	akcipher_request_complete(req, err); | 
 | 131 | } | 
 | 132 |  | 
 | 133 | static void rsa_priv_f2_done(struct device *dev, u32 *desc, u32 err, | 
 | 134 | 			     void *context) | 
 | 135 | { | 
 | 136 | 	struct akcipher_request *req = context; | 
 | 137 | 	struct rsa_edesc *edesc; | 
 | 138 |  | 
 | 139 | 	if (err) | 
 | 140 | 		caam_jr_strstatus(dev, err); | 
 | 141 |  | 
 | 142 | 	edesc = container_of(desc, struct rsa_edesc, hw_desc[0]); | 
 | 143 |  | 
 | 144 | 	rsa_priv_f2_unmap(dev, edesc, req); | 
 | 145 | 	rsa_io_unmap(dev, edesc, req); | 
 | 146 | 	kfree(edesc); | 
 | 147 |  | 
 | 148 | 	akcipher_request_complete(req, err); | 
 | 149 | } | 
 | 150 |  | 
 | 151 | static void rsa_priv_f3_done(struct device *dev, u32 *desc, u32 err, | 
 | 152 | 			     void *context) | 
 | 153 | { | 
 | 154 | 	struct akcipher_request *req = context; | 
 | 155 | 	struct rsa_edesc *edesc; | 
 | 156 |  | 
 | 157 | 	if (err) | 
 | 158 | 		caam_jr_strstatus(dev, err); | 
 | 159 |  | 
 | 160 | 	edesc = container_of(desc, struct rsa_edesc, hw_desc[0]); | 
 | 161 |  | 
 | 162 | 	rsa_priv_f3_unmap(dev, edesc, req); | 
 | 163 | 	rsa_io_unmap(dev, edesc, req); | 
 | 164 | 	kfree(edesc); | 
 | 165 |  | 
 | 166 | 	akcipher_request_complete(req, err); | 
 | 167 | } | 
 | 168 |  | 
 | 169 | static int caam_rsa_count_leading_zeros(struct scatterlist *sgl, | 
 | 170 | 					unsigned int nbytes, | 
 | 171 | 					unsigned int flags) | 
 | 172 | { | 
 | 173 | 	struct sg_mapping_iter miter; | 
 | 174 | 	int lzeros, ents; | 
 | 175 | 	unsigned int len; | 
 | 176 | 	unsigned int tbytes = nbytes; | 
 | 177 | 	const u8 *buff; | 
 | 178 |  | 
 | 179 | 	ents = sg_nents_for_len(sgl, nbytes); | 
 | 180 | 	if (ents < 0) | 
 | 181 | 		return ents; | 
 | 182 |  | 
 | 183 | 	sg_miter_start(&miter, sgl, ents, SG_MITER_FROM_SG | flags); | 
 | 184 |  | 
 | 185 | 	lzeros = 0; | 
 | 186 | 	len = 0; | 
 | 187 | 	while (nbytes > 0) { | 
 | 188 | 		while (len && !*buff) { | 
 | 189 | 			lzeros++; | 
 | 190 | 			len--; | 
 | 191 | 			buff++; | 
 | 192 | 		} | 
 | 193 |  | 
 | 194 | 		if (len && *buff) | 
 | 195 | 			break; | 
 | 196 |  | 
 | 197 | 		sg_miter_next(&miter); | 
 | 198 | 		buff = miter.addr; | 
 | 199 | 		len = miter.length; | 
 | 200 |  | 
 | 201 | 		nbytes -= lzeros; | 
 | 202 | 		lzeros = 0; | 
 | 203 | 	} | 
 | 204 |  | 
 | 205 | 	miter.consumed = lzeros; | 
 | 206 | 	sg_miter_stop(&miter); | 
 | 207 | 	nbytes -= lzeros; | 
 | 208 |  | 
 | 209 | 	return tbytes - nbytes; | 
 | 210 | } | 
 | 211 |  | 
 | 212 | static struct rsa_edesc *rsa_edesc_alloc(struct akcipher_request *req, | 
 | 213 | 					 size_t desclen) | 
 | 214 | { | 
 | 215 | 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); | 
 | 216 | 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); | 
 | 217 | 	struct device *dev = ctx->dev; | 
 | 218 | 	struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); | 
 | 219 | 	struct rsa_edesc *edesc; | 
 | 220 | 	gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? | 
 | 221 | 		       GFP_KERNEL : GFP_ATOMIC; | 
 | 222 | 	int sg_flags = (flags == GFP_ATOMIC) ? SG_MITER_ATOMIC : 0; | 
 | 223 | 	int sgc; | 
 | 224 | 	int sec4_sg_index, sec4_sg_len = 0, sec4_sg_bytes; | 
 | 225 | 	int src_nents, dst_nents; | 
 | 226 | 	int lzeros; | 
 | 227 |  | 
 | 228 | 	lzeros = caam_rsa_count_leading_zeros(req->src, req->src_len, sg_flags); | 
 | 229 | 	if (lzeros < 0) | 
 | 230 | 		return ERR_PTR(lzeros); | 
 | 231 |  | 
 | 232 | 	req->src_len -= lzeros; | 
 | 233 | 	req->src = scatterwalk_ffwd(req_ctx->src, req->src, lzeros); | 
 | 234 |  | 
 | 235 | 	src_nents = sg_nents_for_len(req->src, req->src_len); | 
 | 236 | 	dst_nents = sg_nents_for_len(req->dst, req->dst_len); | 
 | 237 |  | 
 | 238 | 	if (src_nents > 1) | 
 | 239 | 		sec4_sg_len = src_nents; | 
 | 240 | 	if (dst_nents > 1) | 
 | 241 | 		sec4_sg_len += dst_nents; | 
 | 242 |  | 
 | 243 | 	sec4_sg_bytes = sec4_sg_len * sizeof(struct sec4_sg_entry); | 
 | 244 |  | 
 | 245 | 	/* allocate space for base edesc, hw desc commands and link tables */ | 
 | 246 | 	edesc = kzalloc(sizeof(*edesc) + desclen + sec4_sg_bytes, | 
 | 247 | 			GFP_DMA | flags); | 
 | 248 | 	if (!edesc) | 
 | 249 | 		return ERR_PTR(-ENOMEM); | 
 | 250 |  | 
 | 251 | 	sgc = dma_map_sg(dev, req->src, src_nents, DMA_TO_DEVICE); | 
 | 252 | 	if (unlikely(!sgc)) { | 
 | 253 | 		dev_err(dev, "unable to map source\n"); | 
 | 254 | 		goto src_fail; | 
 | 255 | 	} | 
 | 256 |  | 
 | 257 | 	sgc = dma_map_sg(dev, req->dst, dst_nents, DMA_FROM_DEVICE); | 
 | 258 | 	if (unlikely(!sgc)) { | 
 | 259 | 		dev_err(dev, "unable to map destination\n"); | 
 | 260 | 		goto dst_fail; | 
 | 261 | 	} | 
 | 262 |  | 
 | 263 | 	edesc->sec4_sg = (void *)edesc + sizeof(*edesc) + desclen; | 
 | 264 |  | 
 | 265 | 	sec4_sg_index = 0; | 
 | 266 | 	if (src_nents > 1) { | 
 | 267 | 		sg_to_sec4_sg_last(req->src, src_nents, edesc->sec4_sg, 0); | 
 | 268 | 		sec4_sg_index += src_nents; | 
 | 269 | 	} | 
 | 270 | 	if (dst_nents > 1) | 
 | 271 | 		sg_to_sec4_sg_last(req->dst, dst_nents, | 
 | 272 | 				   edesc->sec4_sg + sec4_sg_index, 0); | 
 | 273 |  | 
 | 274 | 	/* Save nents for later use in Job Descriptor */ | 
 | 275 | 	edesc->src_nents = src_nents; | 
 | 276 | 	edesc->dst_nents = dst_nents; | 
 | 277 |  | 
 | 278 | 	if (!sec4_sg_bytes) | 
 | 279 | 		return edesc; | 
 | 280 |  | 
 | 281 | 	edesc->sec4_sg_dma = dma_map_single(dev, edesc->sec4_sg, | 
 | 282 | 					    sec4_sg_bytes, DMA_TO_DEVICE); | 
 | 283 | 	if (dma_mapping_error(dev, edesc->sec4_sg_dma)) { | 
 | 284 | 		dev_err(dev, "unable to map S/G table\n"); | 
 | 285 | 		goto sec4_sg_fail; | 
 | 286 | 	} | 
 | 287 |  | 
 | 288 | 	edesc->sec4_sg_bytes = sec4_sg_bytes; | 
 | 289 |  | 
 | 290 | 	return edesc; | 
 | 291 |  | 
 | 292 | sec4_sg_fail: | 
 | 293 | 	dma_unmap_sg(dev, req->dst, dst_nents, DMA_FROM_DEVICE); | 
 | 294 | dst_fail: | 
 | 295 | 	dma_unmap_sg(dev, req->src, src_nents, DMA_TO_DEVICE); | 
 | 296 | src_fail: | 
 | 297 | 	kfree(edesc); | 
 | 298 | 	return ERR_PTR(-ENOMEM); | 
 | 299 | } | 
 | 300 |  | 
 | 301 | static int set_rsa_pub_pdb(struct akcipher_request *req, | 
 | 302 | 			   struct rsa_edesc *edesc) | 
 | 303 | { | 
 | 304 | 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); | 
 | 305 | 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); | 
 | 306 | 	struct caam_rsa_key *key = &ctx->key; | 
 | 307 | 	struct device *dev = ctx->dev; | 
 | 308 | 	struct rsa_pub_pdb *pdb = &edesc->pdb.pub; | 
 | 309 | 	int sec4_sg_index = 0; | 
 | 310 |  | 
 | 311 | 	pdb->n_dma = dma_map_single(dev, key->n, key->n_sz, DMA_TO_DEVICE); | 
 | 312 | 	if (dma_mapping_error(dev, pdb->n_dma)) { | 
 | 313 | 		dev_err(dev, "Unable to map RSA modulus memory\n"); | 
 | 314 | 		return -ENOMEM; | 
 | 315 | 	} | 
 | 316 |  | 
 | 317 | 	pdb->e_dma = dma_map_single(dev, key->e, key->e_sz, DMA_TO_DEVICE); | 
 | 318 | 	if (dma_mapping_error(dev, pdb->e_dma)) { | 
 | 319 | 		dev_err(dev, "Unable to map RSA public exponent memory\n"); | 
 | 320 | 		dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE); | 
 | 321 | 		return -ENOMEM; | 
 | 322 | 	} | 
 | 323 |  | 
 | 324 | 	if (edesc->src_nents > 1) { | 
 | 325 | 		pdb->sgf |= RSA_PDB_SGF_F; | 
 | 326 | 		pdb->f_dma = edesc->sec4_sg_dma; | 
 | 327 | 		sec4_sg_index += edesc->src_nents; | 
 | 328 | 	} else { | 
 | 329 | 		pdb->f_dma = sg_dma_address(req->src); | 
 | 330 | 	} | 
 | 331 |  | 
 | 332 | 	if (edesc->dst_nents > 1) { | 
 | 333 | 		pdb->sgf |= RSA_PDB_SGF_G; | 
 | 334 | 		pdb->g_dma = edesc->sec4_sg_dma + | 
 | 335 | 			     sec4_sg_index * sizeof(struct sec4_sg_entry); | 
 | 336 | 	} else { | 
 | 337 | 		pdb->g_dma = sg_dma_address(req->dst); | 
 | 338 | 	} | 
 | 339 |  | 
 | 340 | 	pdb->sgf |= (key->e_sz << RSA_PDB_E_SHIFT) | key->n_sz; | 
 | 341 | 	pdb->f_len = req->src_len; | 
 | 342 |  | 
 | 343 | 	return 0; | 
 | 344 | } | 
 | 345 |  | 
 | 346 | static int set_rsa_priv_f1_pdb(struct akcipher_request *req, | 
 | 347 | 			       struct rsa_edesc *edesc) | 
 | 348 | { | 
 | 349 | 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); | 
 | 350 | 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); | 
 | 351 | 	struct caam_rsa_key *key = &ctx->key; | 
 | 352 | 	struct device *dev = ctx->dev; | 
 | 353 | 	struct rsa_priv_f1_pdb *pdb = &edesc->pdb.priv_f1; | 
 | 354 | 	int sec4_sg_index = 0; | 
 | 355 |  | 
 | 356 | 	pdb->n_dma = dma_map_single(dev, key->n, key->n_sz, DMA_TO_DEVICE); | 
 | 357 | 	if (dma_mapping_error(dev, pdb->n_dma)) { | 
 | 358 | 		dev_err(dev, "Unable to map modulus memory\n"); | 
 | 359 | 		return -ENOMEM; | 
 | 360 | 	} | 
 | 361 |  | 
 | 362 | 	pdb->d_dma = dma_map_single(dev, key->d, key->d_sz, DMA_TO_DEVICE); | 
 | 363 | 	if (dma_mapping_error(dev, pdb->d_dma)) { | 
 | 364 | 		dev_err(dev, "Unable to map RSA private exponent memory\n"); | 
 | 365 | 		dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE); | 
 | 366 | 		return -ENOMEM; | 
 | 367 | 	} | 
 | 368 |  | 
 | 369 | 	if (edesc->src_nents > 1) { | 
 | 370 | 		pdb->sgf |= RSA_PRIV_PDB_SGF_G; | 
 | 371 | 		pdb->g_dma = edesc->sec4_sg_dma; | 
 | 372 | 		sec4_sg_index += edesc->src_nents; | 
 | 373 | 	} else { | 
 | 374 | 		pdb->g_dma = sg_dma_address(req->src); | 
 | 375 | 	} | 
 | 376 |  | 
 | 377 | 	if (edesc->dst_nents > 1) { | 
 | 378 | 		pdb->sgf |= RSA_PRIV_PDB_SGF_F; | 
 | 379 | 		pdb->f_dma = edesc->sec4_sg_dma + | 
 | 380 | 			     sec4_sg_index * sizeof(struct sec4_sg_entry); | 
 | 381 | 	} else { | 
 | 382 | 		pdb->f_dma = sg_dma_address(req->dst); | 
 | 383 | 	} | 
 | 384 |  | 
 | 385 | 	pdb->sgf |= (key->d_sz << RSA_PDB_D_SHIFT) | key->n_sz; | 
 | 386 |  | 
 | 387 | 	return 0; | 
 | 388 | } | 
 | 389 |  | 
 | 390 | static int set_rsa_priv_f2_pdb(struct akcipher_request *req, | 
 | 391 | 			       struct rsa_edesc *edesc) | 
 | 392 | { | 
 | 393 | 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); | 
 | 394 | 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); | 
 | 395 | 	struct caam_rsa_key *key = &ctx->key; | 
 | 396 | 	struct device *dev = ctx->dev; | 
 | 397 | 	struct rsa_priv_f2_pdb *pdb = &edesc->pdb.priv_f2; | 
 | 398 | 	int sec4_sg_index = 0; | 
 | 399 | 	size_t p_sz = key->p_sz; | 
 | 400 | 	size_t q_sz = key->q_sz; | 
 | 401 |  | 
 | 402 | 	pdb->d_dma = dma_map_single(dev, key->d, key->d_sz, DMA_TO_DEVICE); | 
 | 403 | 	if (dma_mapping_error(dev, pdb->d_dma)) { | 
 | 404 | 		dev_err(dev, "Unable to map RSA private exponent memory\n"); | 
 | 405 | 		return -ENOMEM; | 
 | 406 | 	} | 
 | 407 |  | 
 | 408 | 	pdb->p_dma = dma_map_single(dev, key->p, p_sz, DMA_TO_DEVICE); | 
 | 409 | 	if (dma_mapping_error(dev, pdb->p_dma)) { | 
 | 410 | 		dev_err(dev, "Unable to map RSA prime factor p memory\n"); | 
 | 411 | 		goto unmap_d; | 
 | 412 | 	} | 
 | 413 |  | 
 | 414 | 	pdb->q_dma = dma_map_single(dev, key->q, q_sz, DMA_TO_DEVICE); | 
 | 415 | 	if (dma_mapping_error(dev, pdb->q_dma)) { | 
 | 416 | 		dev_err(dev, "Unable to map RSA prime factor q memory\n"); | 
 | 417 | 		goto unmap_p; | 
 | 418 | 	} | 
 | 419 |  | 
 | 420 | 	pdb->tmp1_dma = dma_map_single(dev, key->tmp1, p_sz, DMA_BIDIRECTIONAL); | 
 | 421 | 	if (dma_mapping_error(dev, pdb->tmp1_dma)) { | 
 | 422 | 		dev_err(dev, "Unable to map RSA tmp1 memory\n"); | 
 | 423 | 		goto unmap_q; | 
 | 424 | 	} | 
 | 425 |  | 
 | 426 | 	pdb->tmp2_dma = dma_map_single(dev, key->tmp2, q_sz, DMA_BIDIRECTIONAL); | 
 | 427 | 	if (dma_mapping_error(dev, pdb->tmp2_dma)) { | 
 | 428 | 		dev_err(dev, "Unable to map RSA tmp2 memory\n"); | 
 | 429 | 		goto unmap_tmp1; | 
 | 430 | 	} | 
 | 431 |  | 
 | 432 | 	if (edesc->src_nents > 1) { | 
 | 433 | 		pdb->sgf |= RSA_PRIV_PDB_SGF_G; | 
 | 434 | 		pdb->g_dma = edesc->sec4_sg_dma; | 
 | 435 | 		sec4_sg_index += edesc->src_nents; | 
 | 436 | 	} else { | 
 | 437 | 		pdb->g_dma = sg_dma_address(req->src); | 
 | 438 | 	} | 
 | 439 |  | 
 | 440 | 	if (edesc->dst_nents > 1) { | 
 | 441 | 		pdb->sgf |= RSA_PRIV_PDB_SGF_F; | 
 | 442 | 		pdb->f_dma = edesc->sec4_sg_dma + | 
 | 443 | 			     sec4_sg_index * sizeof(struct sec4_sg_entry); | 
 | 444 | 	} else { | 
 | 445 | 		pdb->f_dma = sg_dma_address(req->dst); | 
 | 446 | 	} | 
 | 447 |  | 
 | 448 | 	pdb->sgf |= (key->d_sz << RSA_PDB_D_SHIFT) | key->n_sz; | 
 | 449 | 	pdb->p_q_len = (q_sz << RSA_PDB_Q_SHIFT) | p_sz; | 
 | 450 |  | 
 | 451 | 	return 0; | 
 | 452 |  | 
 | 453 | unmap_tmp1: | 
 | 454 | 	dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL); | 
 | 455 | unmap_q: | 
 | 456 | 	dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE); | 
 | 457 | unmap_p: | 
 | 458 | 	dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE); | 
 | 459 | unmap_d: | 
 | 460 | 	dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE); | 
 | 461 |  | 
 | 462 | 	return -ENOMEM; | 
 | 463 | } | 
 | 464 |  | 
 | 465 | static int set_rsa_priv_f3_pdb(struct akcipher_request *req, | 
 | 466 | 			       struct rsa_edesc *edesc) | 
 | 467 | { | 
 | 468 | 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); | 
 | 469 | 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); | 
 | 470 | 	struct caam_rsa_key *key = &ctx->key; | 
 | 471 | 	struct device *dev = ctx->dev; | 
 | 472 | 	struct rsa_priv_f3_pdb *pdb = &edesc->pdb.priv_f3; | 
 | 473 | 	int sec4_sg_index = 0; | 
 | 474 | 	size_t p_sz = key->p_sz; | 
 | 475 | 	size_t q_sz = key->q_sz; | 
 | 476 |  | 
 | 477 | 	pdb->p_dma = dma_map_single(dev, key->p, p_sz, DMA_TO_DEVICE); | 
 | 478 | 	if (dma_mapping_error(dev, pdb->p_dma)) { | 
 | 479 | 		dev_err(dev, "Unable to map RSA prime factor p memory\n"); | 
 | 480 | 		return -ENOMEM; | 
 | 481 | 	} | 
 | 482 |  | 
 | 483 | 	pdb->q_dma = dma_map_single(dev, key->q, q_sz, DMA_TO_DEVICE); | 
 | 484 | 	if (dma_mapping_error(dev, pdb->q_dma)) { | 
 | 485 | 		dev_err(dev, "Unable to map RSA prime factor q memory\n"); | 
 | 486 | 		goto unmap_p; | 
 | 487 | 	} | 
 | 488 |  | 
 | 489 | 	pdb->dp_dma = dma_map_single(dev, key->dp, p_sz, DMA_TO_DEVICE); | 
 | 490 | 	if (dma_mapping_error(dev, pdb->dp_dma)) { | 
 | 491 | 		dev_err(dev, "Unable to map RSA exponent dp memory\n"); | 
 | 492 | 		goto unmap_q; | 
 | 493 | 	} | 
 | 494 |  | 
 | 495 | 	pdb->dq_dma = dma_map_single(dev, key->dq, q_sz, DMA_TO_DEVICE); | 
 | 496 | 	if (dma_mapping_error(dev, pdb->dq_dma)) { | 
 | 497 | 		dev_err(dev, "Unable to map RSA exponent dq memory\n"); | 
 | 498 | 		goto unmap_dp; | 
 | 499 | 	} | 
 | 500 |  | 
 | 501 | 	pdb->c_dma = dma_map_single(dev, key->qinv, p_sz, DMA_TO_DEVICE); | 
 | 502 | 	if (dma_mapping_error(dev, pdb->c_dma)) { | 
 | 503 | 		dev_err(dev, "Unable to map RSA CRT coefficient qinv memory\n"); | 
 | 504 | 		goto unmap_dq; | 
 | 505 | 	} | 
 | 506 |  | 
 | 507 | 	pdb->tmp1_dma = dma_map_single(dev, key->tmp1, p_sz, DMA_BIDIRECTIONAL); | 
 | 508 | 	if (dma_mapping_error(dev, pdb->tmp1_dma)) { | 
 | 509 | 		dev_err(dev, "Unable to map RSA tmp1 memory\n"); | 
 | 510 | 		goto unmap_qinv; | 
 | 511 | 	} | 
 | 512 |  | 
 | 513 | 	pdb->tmp2_dma = dma_map_single(dev, key->tmp2, q_sz, DMA_BIDIRECTIONAL); | 
 | 514 | 	if (dma_mapping_error(dev, pdb->tmp2_dma)) { | 
 | 515 | 		dev_err(dev, "Unable to map RSA tmp2 memory\n"); | 
 | 516 | 		goto unmap_tmp1; | 
 | 517 | 	} | 
 | 518 |  | 
 | 519 | 	if (edesc->src_nents > 1) { | 
 | 520 | 		pdb->sgf |= RSA_PRIV_PDB_SGF_G; | 
 | 521 | 		pdb->g_dma = edesc->sec4_sg_dma; | 
 | 522 | 		sec4_sg_index += edesc->src_nents; | 
 | 523 | 	} else { | 
 | 524 | 		pdb->g_dma = sg_dma_address(req->src); | 
 | 525 | 	} | 
 | 526 |  | 
 | 527 | 	if (edesc->dst_nents > 1) { | 
 | 528 | 		pdb->sgf |= RSA_PRIV_PDB_SGF_F; | 
 | 529 | 		pdb->f_dma = edesc->sec4_sg_dma + | 
 | 530 | 			     sec4_sg_index * sizeof(struct sec4_sg_entry); | 
 | 531 | 	} else { | 
 | 532 | 		pdb->f_dma = sg_dma_address(req->dst); | 
 | 533 | 	} | 
 | 534 |  | 
 | 535 | 	pdb->sgf |= key->n_sz; | 
 | 536 | 	pdb->p_q_len = (q_sz << RSA_PDB_Q_SHIFT) | p_sz; | 
 | 537 |  | 
 | 538 | 	return 0; | 
 | 539 |  | 
 | 540 | unmap_tmp1: | 
 | 541 | 	dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL); | 
 | 542 | unmap_qinv: | 
 | 543 | 	dma_unmap_single(dev, pdb->c_dma, p_sz, DMA_TO_DEVICE); | 
 | 544 | unmap_dq: | 
 | 545 | 	dma_unmap_single(dev, pdb->dq_dma, q_sz, DMA_TO_DEVICE); | 
 | 546 | unmap_dp: | 
 | 547 | 	dma_unmap_single(dev, pdb->dp_dma, p_sz, DMA_TO_DEVICE); | 
 | 548 | unmap_q: | 
 | 549 | 	dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE); | 
 | 550 | unmap_p: | 
 | 551 | 	dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE); | 
 | 552 |  | 
 | 553 | 	return -ENOMEM; | 
 | 554 | } | 
 | 555 |  | 
 | 556 | static int caam_rsa_enc(struct akcipher_request *req) | 
 | 557 | { | 
 | 558 | 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); | 
 | 559 | 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); | 
 | 560 | 	struct caam_rsa_key *key = &ctx->key; | 
 | 561 | 	struct device *jrdev = ctx->dev; | 
 | 562 | 	struct rsa_edesc *edesc; | 
 | 563 | 	int ret; | 
 | 564 |  | 
 | 565 | 	if (unlikely(!key->n || !key->e)) | 
 | 566 | 		return -EINVAL; | 
 | 567 |  | 
 | 568 | 	if (req->dst_len < key->n_sz) { | 
 | 569 | 		req->dst_len = key->n_sz; | 
 | 570 | 		dev_err(jrdev, "Output buffer length less than parameter n\n"); | 
 | 571 | 		return -EOVERFLOW; | 
 | 572 | 	} | 
 | 573 |  | 
 | 574 | 	/* Allocate extended descriptor */ | 
 | 575 | 	edesc = rsa_edesc_alloc(req, DESC_RSA_PUB_LEN); | 
 | 576 | 	if (IS_ERR(edesc)) | 
 | 577 | 		return PTR_ERR(edesc); | 
 | 578 |  | 
 | 579 | 	/* Set RSA Encrypt Protocol Data Block */ | 
 | 580 | 	ret = set_rsa_pub_pdb(req, edesc); | 
 | 581 | 	if (ret) | 
 | 582 | 		goto init_fail; | 
 | 583 |  | 
 | 584 | 	/* Initialize Job Descriptor */ | 
 | 585 | 	init_rsa_pub_desc(edesc->hw_desc, &edesc->pdb.pub); | 
 | 586 |  | 
 | 587 | 	ret = caam_jr_enqueue(jrdev, edesc->hw_desc, rsa_pub_done, req); | 
 | 588 | 	if (!ret) | 
 | 589 | 		return -EINPROGRESS; | 
 | 590 |  | 
 | 591 | 	rsa_pub_unmap(jrdev, edesc, req); | 
 | 592 |  | 
 | 593 | init_fail: | 
 | 594 | 	rsa_io_unmap(jrdev, edesc, req); | 
 | 595 | 	kfree(edesc); | 
 | 596 | 	return ret; | 
 | 597 | } | 
 | 598 |  | 
 | 599 | static int caam_rsa_dec_priv_f1(struct akcipher_request *req) | 
 | 600 | { | 
 | 601 | 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); | 
 | 602 | 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); | 
 | 603 | 	struct device *jrdev = ctx->dev; | 
 | 604 | 	struct rsa_edesc *edesc; | 
 | 605 | 	int ret; | 
 | 606 |  | 
 | 607 | 	/* Allocate extended descriptor */ | 
 | 608 | 	edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F1_LEN); | 
 | 609 | 	if (IS_ERR(edesc)) | 
 | 610 | 		return PTR_ERR(edesc); | 
 | 611 |  | 
 | 612 | 	/* Set RSA Decrypt Protocol Data Block - Private Key Form #1 */ | 
 | 613 | 	ret = set_rsa_priv_f1_pdb(req, edesc); | 
 | 614 | 	if (ret) | 
 | 615 | 		goto init_fail; | 
 | 616 |  | 
 | 617 | 	/* Initialize Job Descriptor */ | 
 | 618 | 	init_rsa_priv_f1_desc(edesc->hw_desc, &edesc->pdb.priv_f1); | 
 | 619 |  | 
 | 620 | 	ret = caam_jr_enqueue(jrdev, edesc->hw_desc, rsa_priv_f1_done, req); | 
 | 621 | 	if (!ret) | 
 | 622 | 		return -EINPROGRESS; | 
 | 623 |  | 
 | 624 | 	rsa_priv_f1_unmap(jrdev, edesc, req); | 
 | 625 |  | 
 | 626 | init_fail: | 
 | 627 | 	rsa_io_unmap(jrdev, edesc, req); | 
 | 628 | 	kfree(edesc); | 
 | 629 | 	return ret; | 
 | 630 | } | 
 | 631 |  | 
 | 632 | static int caam_rsa_dec_priv_f2(struct akcipher_request *req) | 
 | 633 | { | 
 | 634 | 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); | 
 | 635 | 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); | 
 | 636 | 	struct device *jrdev = ctx->dev; | 
 | 637 | 	struct rsa_edesc *edesc; | 
 | 638 | 	int ret; | 
 | 639 |  | 
 | 640 | 	/* Allocate extended descriptor */ | 
 | 641 | 	edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F2_LEN); | 
 | 642 | 	if (IS_ERR(edesc)) | 
 | 643 | 		return PTR_ERR(edesc); | 
 | 644 |  | 
 | 645 | 	/* Set RSA Decrypt Protocol Data Block - Private Key Form #2 */ | 
 | 646 | 	ret = set_rsa_priv_f2_pdb(req, edesc); | 
 | 647 | 	if (ret) | 
 | 648 | 		goto init_fail; | 
 | 649 |  | 
 | 650 | 	/* Initialize Job Descriptor */ | 
 | 651 | 	init_rsa_priv_f2_desc(edesc->hw_desc, &edesc->pdb.priv_f2); | 
 | 652 |  | 
 | 653 | 	ret = caam_jr_enqueue(jrdev, edesc->hw_desc, rsa_priv_f2_done, req); | 
 | 654 | 	if (!ret) | 
 | 655 | 		return -EINPROGRESS; | 
 | 656 |  | 
 | 657 | 	rsa_priv_f2_unmap(jrdev, edesc, req); | 
 | 658 |  | 
 | 659 | init_fail: | 
 | 660 | 	rsa_io_unmap(jrdev, edesc, req); | 
 | 661 | 	kfree(edesc); | 
 | 662 | 	return ret; | 
 | 663 | } | 
 | 664 |  | 
 | 665 | static int caam_rsa_dec_priv_f3(struct akcipher_request *req) | 
 | 666 | { | 
 | 667 | 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); | 
 | 668 | 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); | 
 | 669 | 	struct device *jrdev = ctx->dev; | 
 | 670 | 	struct rsa_edesc *edesc; | 
 | 671 | 	int ret; | 
 | 672 |  | 
 | 673 | 	/* Allocate extended descriptor */ | 
 | 674 | 	edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F3_LEN); | 
 | 675 | 	if (IS_ERR(edesc)) | 
 | 676 | 		return PTR_ERR(edesc); | 
 | 677 |  | 
 | 678 | 	/* Set RSA Decrypt Protocol Data Block - Private Key Form #3 */ | 
 | 679 | 	ret = set_rsa_priv_f3_pdb(req, edesc); | 
 | 680 | 	if (ret) | 
 | 681 | 		goto init_fail; | 
 | 682 |  | 
 | 683 | 	/* Initialize Job Descriptor */ | 
 | 684 | 	init_rsa_priv_f3_desc(edesc->hw_desc, &edesc->pdb.priv_f3); | 
 | 685 |  | 
 | 686 | 	ret = caam_jr_enqueue(jrdev, edesc->hw_desc, rsa_priv_f3_done, req); | 
 | 687 | 	if (!ret) | 
 | 688 | 		return -EINPROGRESS; | 
 | 689 |  | 
 | 690 | 	rsa_priv_f3_unmap(jrdev, edesc, req); | 
 | 691 |  | 
 | 692 | init_fail: | 
 | 693 | 	rsa_io_unmap(jrdev, edesc, req); | 
 | 694 | 	kfree(edesc); | 
 | 695 | 	return ret; | 
 | 696 | } | 
 | 697 |  | 
 | 698 | static int caam_rsa_dec(struct akcipher_request *req) | 
 | 699 | { | 
 | 700 | 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); | 
 | 701 | 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); | 
 | 702 | 	struct caam_rsa_key *key = &ctx->key; | 
 | 703 | 	int ret; | 
 | 704 |  | 
 | 705 | 	if (unlikely(!key->n || !key->d)) | 
 | 706 | 		return -EINVAL; | 
 | 707 |  | 
 | 708 | 	if (req->dst_len < key->n_sz) { | 
 | 709 | 		req->dst_len = key->n_sz; | 
 | 710 | 		dev_err(ctx->dev, "Output buffer length less than parameter n\n"); | 
 | 711 | 		return -EOVERFLOW; | 
 | 712 | 	} | 
 | 713 |  | 
 | 714 | 	if (key->priv_form == FORM3) | 
 | 715 | 		ret = caam_rsa_dec_priv_f3(req); | 
 | 716 | 	else if (key->priv_form == FORM2) | 
 | 717 | 		ret = caam_rsa_dec_priv_f2(req); | 
 | 718 | 	else | 
 | 719 | 		ret = caam_rsa_dec_priv_f1(req); | 
 | 720 |  | 
 | 721 | 	return ret; | 
 | 722 | } | 
 | 723 |  | 
 | 724 | static void caam_rsa_free_key(struct caam_rsa_key *key) | 
 | 725 | { | 
 | 726 | 	kzfree(key->d); | 
 | 727 | 	kzfree(key->p); | 
 | 728 | 	kzfree(key->q); | 
 | 729 | 	kzfree(key->dp); | 
 | 730 | 	kzfree(key->dq); | 
 | 731 | 	kzfree(key->qinv); | 
 | 732 | 	kzfree(key->tmp1); | 
 | 733 | 	kzfree(key->tmp2); | 
 | 734 | 	kfree(key->e); | 
 | 735 | 	kfree(key->n); | 
 | 736 | 	memset(key, 0, sizeof(*key)); | 
 | 737 | } | 
 | 738 |  | 
 | 739 | static void caam_rsa_drop_leading_zeros(const u8 **ptr, size_t *nbytes) | 
 | 740 | { | 
 | 741 | 	while (!**ptr && *nbytes) { | 
 | 742 | 		(*ptr)++; | 
 | 743 | 		(*nbytes)--; | 
 | 744 | 	} | 
 | 745 | } | 
 | 746 |  | 
 | 747 | /** | 
 | 748 |  * caam_read_rsa_crt - Used for reading dP, dQ, qInv CRT members. | 
 | 749 |  * dP, dQ and qInv could decode to less than corresponding p, q length, as the | 
 | 750 |  * BER-encoding requires that the minimum number of bytes be used to encode the | 
 | 751 |  * integer. dP, dQ, qInv decoded values have to be zero-padded to appropriate | 
 | 752 |  * length. | 
 | 753 |  * | 
 | 754 |  * @ptr   : pointer to {dP, dQ, qInv} CRT member | 
 | 755 |  * @nbytes: length in bytes of {dP, dQ, qInv} CRT member | 
 | 756 |  * @dstlen: length in bytes of corresponding p or q prime factor | 
 | 757 |  */ | 
 | 758 | static u8 *caam_read_rsa_crt(const u8 *ptr, size_t nbytes, size_t dstlen) | 
 | 759 | { | 
 | 760 | 	u8 *dst; | 
 | 761 |  | 
 | 762 | 	caam_rsa_drop_leading_zeros(&ptr, &nbytes); | 
 | 763 | 	if (!nbytes) | 
 | 764 | 		return NULL; | 
 | 765 |  | 
 | 766 | 	dst = kzalloc(dstlen, GFP_DMA | GFP_KERNEL); | 
 | 767 | 	if (!dst) | 
 | 768 | 		return NULL; | 
 | 769 |  | 
 | 770 | 	memcpy(dst + (dstlen - nbytes), ptr, nbytes); | 
 | 771 |  | 
 | 772 | 	return dst; | 
 | 773 | } | 
 | 774 |  | 
 | 775 | /** | 
 | 776 |  * caam_read_raw_data - Read a raw byte stream as a positive integer. | 
 | 777 |  * The function skips buffer's leading zeros, copies the remained data | 
 | 778 |  * to a buffer allocated in the GFP_DMA | GFP_KERNEL zone and returns | 
 | 779 |  * the address of the new buffer. | 
 | 780 |  * | 
 | 781 |  * @buf   : The data to read | 
 | 782 |  * @nbytes: The amount of data to read | 
 | 783 |  */ | 
 | 784 | static inline u8 *caam_read_raw_data(const u8 *buf, size_t *nbytes) | 
 | 785 | { | 
 | 786 | 	u8 *val; | 
 | 787 |  | 
 | 788 | 	caam_rsa_drop_leading_zeros(&buf, nbytes); | 
 | 789 | 	if (!*nbytes) | 
 | 790 | 		return NULL; | 
 | 791 |  | 
 | 792 | 	val = kzalloc(*nbytes, GFP_DMA | GFP_KERNEL); | 
 | 793 | 	if (!val) | 
 | 794 | 		return NULL; | 
 | 795 |  | 
 | 796 | 	memcpy(val, buf, *nbytes); | 
 | 797 |  | 
 | 798 | 	return val; | 
 | 799 | } | 
 | 800 |  | 
 | 801 | static int caam_rsa_check_key_length(unsigned int len) | 
 | 802 | { | 
 | 803 | 	if (len > 4096) | 
 | 804 | 		return -EINVAL; | 
 | 805 | 	return 0; | 
 | 806 | } | 
 | 807 |  | 
 | 808 | static int caam_rsa_set_pub_key(struct crypto_akcipher *tfm, const void *key, | 
 | 809 | 				unsigned int keylen) | 
 | 810 | { | 
 | 811 | 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); | 
 | 812 | 	struct rsa_key raw_key = {NULL}; | 
 | 813 | 	struct caam_rsa_key *rsa_key = &ctx->key; | 
 | 814 | 	int ret; | 
 | 815 |  | 
 | 816 | 	/* Free the old RSA key if any */ | 
 | 817 | 	caam_rsa_free_key(rsa_key); | 
 | 818 |  | 
 | 819 | 	ret = rsa_parse_pub_key(&raw_key, key, keylen); | 
 | 820 | 	if (ret) | 
 | 821 | 		return ret; | 
 | 822 |  | 
 | 823 | 	/* Copy key in DMA zone */ | 
 | 824 | 	rsa_key->e = kzalloc(raw_key.e_sz, GFP_DMA | GFP_KERNEL); | 
 | 825 | 	if (!rsa_key->e) | 
 | 826 | 		goto err; | 
 | 827 |  | 
 | 828 | 	/* | 
 | 829 | 	 * Skip leading zeros and copy the positive integer to a buffer | 
 | 830 | 	 * allocated in the GFP_DMA | GFP_KERNEL zone. The decryption descriptor | 
 | 831 | 	 * expects a positive integer for the RSA modulus and uses its length as | 
 | 832 | 	 * decryption output length. | 
 | 833 | 	 */ | 
 | 834 | 	rsa_key->n = caam_read_raw_data(raw_key.n, &raw_key.n_sz); | 
 | 835 | 	if (!rsa_key->n) | 
 | 836 | 		goto err; | 
 | 837 |  | 
 | 838 | 	if (caam_rsa_check_key_length(raw_key.n_sz << 3)) { | 
 | 839 | 		caam_rsa_free_key(rsa_key); | 
 | 840 | 		return -EINVAL; | 
 | 841 | 	} | 
 | 842 |  | 
 | 843 | 	rsa_key->e_sz = raw_key.e_sz; | 
 | 844 | 	rsa_key->n_sz = raw_key.n_sz; | 
 | 845 |  | 
 | 846 | 	memcpy(rsa_key->e, raw_key.e, raw_key.e_sz); | 
 | 847 |  | 
 | 848 | 	return 0; | 
 | 849 | err: | 
 | 850 | 	caam_rsa_free_key(rsa_key); | 
 | 851 | 	return -ENOMEM; | 
 | 852 | } | 
 | 853 |  | 
 | 854 | static void caam_rsa_set_priv_key_form(struct caam_rsa_ctx *ctx, | 
 | 855 | 				       struct rsa_key *raw_key) | 
 | 856 | { | 
 | 857 | 	struct caam_rsa_key *rsa_key = &ctx->key; | 
 | 858 | 	size_t p_sz = raw_key->p_sz; | 
 | 859 | 	size_t q_sz = raw_key->q_sz; | 
 | 860 |  | 
 | 861 | 	rsa_key->p = caam_read_raw_data(raw_key->p, &p_sz); | 
 | 862 | 	if (!rsa_key->p) | 
 | 863 | 		return; | 
 | 864 | 	rsa_key->p_sz = p_sz; | 
 | 865 |  | 
 | 866 | 	rsa_key->q = caam_read_raw_data(raw_key->q, &q_sz); | 
 | 867 | 	if (!rsa_key->q) | 
 | 868 | 		goto free_p; | 
 | 869 | 	rsa_key->q_sz = q_sz; | 
 | 870 |  | 
 | 871 | 	rsa_key->tmp1 = kzalloc(raw_key->p_sz, GFP_DMA | GFP_KERNEL); | 
 | 872 | 	if (!rsa_key->tmp1) | 
 | 873 | 		goto free_q; | 
 | 874 |  | 
 | 875 | 	rsa_key->tmp2 = kzalloc(raw_key->q_sz, GFP_DMA | GFP_KERNEL); | 
 | 876 | 	if (!rsa_key->tmp2) | 
 | 877 | 		goto free_tmp1; | 
 | 878 |  | 
 | 879 | 	rsa_key->priv_form = FORM2; | 
 | 880 |  | 
 | 881 | 	rsa_key->dp = caam_read_rsa_crt(raw_key->dp, raw_key->dp_sz, p_sz); | 
 | 882 | 	if (!rsa_key->dp) | 
 | 883 | 		goto free_tmp2; | 
 | 884 |  | 
 | 885 | 	rsa_key->dq = caam_read_rsa_crt(raw_key->dq, raw_key->dq_sz, q_sz); | 
 | 886 | 	if (!rsa_key->dq) | 
 | 887 | 		goto free_dp; | 
 | 888 |  | 
 | 889 | 	rsa_key->qinv = caam_read_rsa_crt(raw_key->qinv, raw_key->qinv_sz, | 
 | 890 | 					  q_sz); | 
 | 891 | 	if (!rsa_key->qinv) | 
 | 892 | 		goto free_dq; | 
 | 893 |  | 
 | 894 | 	rsa_key->priv_form = FORM3; | 
 | 895 |  | 
 | 896 | 	return; | 
 | 897 |  | 
 | 898 | free_dq: | 
 | 899 | 	kzfree(rsa_key->dq); | 
 | 900 | free_dp: | 
 | 901 | 	kzfree(rsa_key->dp); | 
 | 902 | free_tmp2: | 
 | 903 | 	kzfree(rsa_key->tmp2); | 
 | 904 | free_tmp1: | 
 | 905 | 	kzfree(rsa_key->tmp1); | 
 | 906 | free_q: | 
 | 907 | 	kzfree(rsa_key->q); | 
 | 908 | free_p: | 
 | 909 | 	kzfree(rsa_key->p); | 
 | 910 | } | 
 | 911 |  | 
 | 912 | static int caam_rsa_set_priv_key(struct crypto_akcipher *tfm, const void *key, | 
 | 913 | 				 unsigned int keylen) | 
 | 914 | { | 
 | 915 | 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); | 
 | 916 | 	struct rsa_key raw_key = {NULL}; | 
 | 917 | 	struct caam_rsa_key *rsa_key = &ctx->key; | 
 | 918 | 	int ret; | 
 | 919 |  | 
 | 920 | 	/* Free the old RSA key if any */ | 
 | 921 | 	caam_rsa_free_key(rsa_key); | 
 | 922 |  | 
 | 923 | 	ret = rsa_parse_priv_key(&raw_key, key, keylen); | 
 | 924 | 	if (ret) | 
 | 925 | 		return ret; | 
 | 926 |  | 
 | 927 | 	/* Copy key in DMA zone */ | 
 | 928 | 	rsa_key->d = kzalloc(raw_key.d_sz, GFP_DMA | GFP_KERNEL); | 
 | 929 | 	if (!rsa_key->d) | 
 | 930 | 		goto err; | 
 | 931 |  | 
 | 932 | 	rsa_key->e = kzalloc(raw_key.e_sz, GFP_DMA | GFP_KERNEL); | 
 | 933 | 	if (!rsa_key->e) | 
 | 934 | 		goto err; | 
 | 935 |  | 
 | 936 | 	/* | 
 | 937 | 	 * Skip leading zeros and copy the positive integer to a buffer | 
 | 938 | 	 * allocated in the GFP_DMA | GFP_KERNEL zone. The decryption descriptor | 
 | 939 | 	 * expects a positive integer for the RSA modulus and uses its length as | 
 | 940 | 	 * decryption output length. | 
 | 941 | 	 */ | 
 | 942 | 	rsa_key->n = caam_read_raw_data(raw_key.n, &raw_key.n_sz); | 
 | 943 | 	if (!rsa_key->n) | 
 | 944 | 		goto err; | 
 | 945 |  | 
 | 946 | 	if (caam_rsa_check_key_length(raw_key.n_sz << 3)) { | 
 | 947 | 		caam_rsa_free_key(rsa_key); | 
 | 948 | 		return -EINVAL; | 
 | 949 | 	} | 
 | 950 |  | 
 | 951 | 	rsa_key->d_sz = raw_key.d_sz; | 
 | 952 | 	rsa_key->e_sz = raw_key.e_sz; | 
 | 953 | 	rsa_key->n_sz = raw_key.n_sz; | 
 | 954 |  | 
 | 955 | 	memcpy(rsa_key->d, raw_key.d, raw_key.d_sz); | 
 | 956 | 	memcpy(rsa_key->e, raw_key.e, raw_key.e_sz); | 
 | 957 |  | 
 | 958 | 	caam_rsa_set_priv_key_form(ctx, &raw_key); | 
 | 959 |  | 
 | 960 | 	return 0; | 
 | 961 |  | 
 | 962 | err: | 
 | 963 | 	caam_rsa_free_key(rsa_key); | 
 | 964 | 	return -ENOMEM; | 
 | 965 | } | 
 | 966 |  | 
 | 967 | static unsigned int caam_rsa_max_size(struct crypto_akcipher *tfm) | 
 | 968 | { | 
 | 969 | 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); | 
 | 970 |  | 
 | 971 | 	return ctx->key.n_sz; | 
 | 972 | } | 
 | 973 |  | 
 | 974 | /* Per session pkc's driver context creation function */ | 
 | 975 | static int caam_rsa_init_tfm(struct crypto_akcipher *tfm) | 
 | 976 | { | 
 | 977 | 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); | 
 | 978 |  | 
 | 979 | 	ctx->dev = caam_jr_alloc(); | 
 | 980 |  | 
 | 981 | 	if (IS_ERR(ctx->dev)) { | 
 | 982 | 		pr_err("Job Ring Device allocation for transform failed\n"); | 
 | 983 | 		return PTR_ERR(ctx->dev); | 
 | 984 | 	} | 
 | 985 |  | 
 | 986 | 	return 0; | 
 | 987 | } | 
 | 988 |  | 
 | 989 | /* Per session pkc's driver context cleanup function */ | 
 | 990 | static void caam_rsa_exit_tfm(struct crypto_akcipher *tfm) | 
 | 991 | { | 
 | 992 | 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); | 
 | 993 | 	struct caam_rsa_key *key = &ctx->key; | 
 | 994 |  | 
 | 995 | 	caam_rsa_free_key(key); | 
 | 996 | 	caam_jr_free(ctx->dev); | 
 | 997 | } | 
 | 998 |  | 
 | 999 | static struct akcipher_alg caam_rsa = { | 
 | 1000 | 	.encrypt = caam_rsa_enc, | 
 | 1001 | 	.decrypt = caam_rsa_dec, | 
 | 1002 | 	.sign = caam_rsa_dec, | 
 | 1003 | 	.verify = caam_rsa_enc, | 
 | 1004 | 	.set_pub_key = caam_rsa_set_pub_key, | 
 | 1005 | 	.set_priv_key = caam_rsa_set_priv_key, | 
 | 1006 | 	.max_size = caam_rsa_max_size, | 
 | 1007 | 	.init = caam_rsa_init_tfm, | 
 | 1008 | 	.exit = caam_rsa_exit_tfm, | 
 | 1009 | 	.reqsize = sizeof(struct caam_rsa_req_ctx), | 
 | 1010 | 	.base = { | 
 | 1011 | 		.cra_name = "rsa", | 
 | 1012 | 		.cra_driver_name = "rsa-caam", | 
 | 1013 | 		.cra_priority = 3000, | 
 | 1014 | 		.cra_module = THIS_MODULE, | 
 | 1015 | 		.cra_ctxsize = sizeof(struct caam_rsa_ctx), | 
 | 1016 | 	}, | 
 | 1017 | }; | 
 | 1018 |  | 
 | 1019 | /* Public Key Cryptography module initialization handler */ | 
 | 1020 | static int __init caam_pkc_init(void) | 
 | 1021 | { | 
 | 1022 | 	struct device_node *dev_node; | 
 | 1023 | 	struct platform_device *pdev; | 
 | 1024 | 	struct device *ctrldev; | 
 | 1025 | 	struct caam_drv_private *priv; | 
 | 1026 | 	u32 cha_inst, pk_inst; | 
 | 1027 | 	int err; | 
 | 1028 |  | 
 | 1029 | 	dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0"); | 
 | 1030 | 	if (!dev_node) { | 
 | 1031 | 		dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0"); | 
 | 1032 | 		if (!dev_node) | 
 | 1033 | 			return -ENODEV; | 
 | 1034 | 	} | 
 | 1035 |  | 
 | 1036 | 	pdev = of_find_device_by_node(dev_node); | 
 | 1037 | 	if (!pdev) { | 
 | 1038 | 		of_node_put(dev_node); | 
 | 1039 | 		return -ENODEV; | 
 | 1040 | 	} | 
 | 1041 |  | 
 | 1042 | 	ctrldev = &pdev->dev; | 
 | 1043 | 	priv = dev_get_drvdata(ctrldev); | 
 | 1044 | 	of_node_put(dev_node); | 
 | 1045 |  | 
 | 1046 | 	/* | 
 | 1047 | 	 * If priv is NULL, it's probably because the caam driver wasn't | 
 | 1048 | 	 * properly initialized (e.g. RNG4 init failed). Thus, bail out here. | 
 | 1049 | 	 */ | 
 | 1050 | 	if (!priv) | 
 | 1051 | 		return -ENODEV; | 
 | 1052 |  | 
 | 1053 | 	/* Determine public key hardware accelerator presence. */ | 
 | 1054 | 	cha_inst = rd_reg32(&priv->ctrl->perfmon.cha_num_ls); | 
 | 1055 | 	pk_inst = (cha_inst & CHA_ID_LS_PK_MASK) >> CHA_ID_LS_PK_SHIFT; | 
 | 1056 |  | 
 | 1057 | 	/* Do not register algorithms if PKHA is not present. */ | 
 | 1058 | 	if (!pk_inst) | 
 | 1059 | 		return -ENODEV; | 
 | 1060 |  | 
 | 1061 | 	err = crypto_register_akcipher(&caam_rsa); | 
 | 1062 | 	if (err) | 
 | 1063 | 		dev_warn(ctrldev, "%s alg registration failed\n", | 
 | 1064 | 			 caam_rsa.base.cra_driver_name); | 
 | 1065 | 	else | 
 | 1066 | 		dev_info(ctrldev, "caam pkc algorithms registered in /proc/crypto\n"); | 
 | 1067 |  | 
 | 1068 | 	return err; | 
 | 1069 | } | 
 | 1070 |  | 
 | 1071 | static void __exit caam_pkc_exit(void) | 
 | 1072 | { | 
 | 1073 | 	crypto_unregister_akcipher(&caam_rsa); | 
 | 1074 | } | 
 | 1075 |  | 
 | 1076 | module_init(caam_pkc_init); | 
 | 1077 | module_exit(caam_pkc_exit); | 
 | 1078 |  | 
 | 1079 | MODULE_LICENSE("Dual BSD/GPL"); | 
 | 1080 | MODULE_DESCRIPTION("FSL CAAM support for PKC functions of crypto API"); | 
 | 1081 | MODULE_AUTHOR("Freescale Semiconductor"); |