blob: 3b593d1bafaf0bcba433ebd69d72f79811e9b551 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/proc/base.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * proc base directory handling functions
8 *
9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10 * Instead of using magical inumbers to determine the kind of object
11 * we allocate and fill in-core inodes upon lookup. They don't even
12 * go into icache. We cache the reference to task_struct upon lookup too.
13 * Eventually it should become a filesystem in its own. We don't use the
14 * rest of procfs anymore.
15 *
16 *
17 * Changelog:
18 * 17-Jan-2005
19 * Allan Bezerra
20 * Bruna Moreira <bruna.moreira@indt.org.br>
21 * Edjard Mota <edjard.mota@indt.org.br>
22 * Ilias Biris <ilias.biris@indt.org.br>
23 * Mauricio Lin <mauricio.lin@indt.org.br>
24 *
25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26 *
27 * A new process specific entry (smaps) included in /proc. It shows the
28 * size of rss for each memory area. The maps entry lacks information
29 * about physical memory size (rss) for each mapped file, i.e.,
30 * rss information for executables and library files.
31 * This additional information is useful for any tools that need to know
32 * about physical memory consumption for a process specific library.
33 *
34 * Changelog:
35 * 21-Feb-2005
36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37 * Pud inclusion in the page table walking.
38 *
39 * ChangeLog:
40 * 10-Mar-2005
41 * 10LE Instituto Nokia de Tecnologia - INdT:
42 * A better way to walks through the page table as suggested by Hugh Dickins.
43 *
44 * Simo Piiroinen <simo.piiroinen@nokia.com>:
45 * Smaps information related to shared, private, clean and dirty pages.
46 *
47 * Paul Mundt <paul.mundt@nokia.com>:
48 * Overall revision about smaps.
49 */
50
51#include <linux/uaccess.h>
52
53#include <linux/errno.h>
54#include <linux/time.h>
55#include <linux/proc_fs.h>
56#include <linux/stat.h>
57#include <linux/task_io_accounting_ops.h>
58#include <linux/init.h>
59#include <linux/capability.h>
60#include <linux/file.h>
61#include <linux/fdtable.h>
62#include <linux/string.h>
63#include <linux/seq_file.h>
64#include <linux/namei.h>
65#include <linux/mnt_namespace.h>
66#include <linux/mm.h>
67#include <linux/swap.h>
68#include <linux/rcupdate.h>
69#include <linux/kallsyms.h>
70#include <linux/stacktrace.h>
71#include <linux/resource.h>
72#include <linux/module.h>
73#include <linux/mount.h>
74#include <linux/security.h>
75#include <linux/ptrace.h>
76#include <linux/tracehook.h>
77#include <linux/printk.h>
78#include <linux/cgroup.h>
79#include <linux/cpuset.h>
80#include <linux/audit.h>
81#include <linux/poll.h>
82#include <linux/nsproxy.h>
83#include <linux/oom.h>
84#include <linux/elf.h>
85#include <linux/pid_namespace.h>
86#include <linux/user_namespace.h>
87#include <linux/fs_struct.h>
88#include <linux/slab.h>
89#include <linux/sched/autogroup.h>
90#include <linux/sched/mm.h>
91#include <linux/sched/coredump.h>
92#include <linux/sched/debug.h>
93#include <linux/sched/stat.h>
94#include <linux/flex_array.h>
95#include <linux/posix-timers.h>
96#include <linux/cpufreq_times.h>
97#ifdef CONFIG_HARDWALL
98#include <asm/hardwall.h>
99#endif
100#include <trace/events/oom.h>
101#include "internal.h"
102#include "fd.h"
103
104#include "../../lib/kstrtox.h"
105
106/* NOTE:
107 * Implementing inode permission operations in /proc is almost
108 * certainly an error. Permission checks need to happen during
109 * each system call not at open time. The reason is that most of
110 * what we wish to check for permissions in /proc varies at runtime.
111 *
112 * The classic example of a problem is opening file descriptors
113 * in /proc for a task before it execs a suid executable.
114 */
115
116static u8 nlink_tid;
117static u8 nlink_tgid;
118
119struct pid_entry {
120 const char *name;
121 unsigned int len;
122 umode_t mode;
123 const struct inode_operations *iop;
124 const struct file_operations *fop;
125 union proc_op op;
126};
127
128#define NOD(NAME, MODE, IOP, FOP, OP) { \
129 .name = (NAME), \
130 .len = sizeof(NAME) - 1, \
131 .mode = MODE, \
132 .iop = IOP, \
133 .fop = FOP, \
134 .op = OP, \
135}
136
137#define DIR(NAME, MODE, iops, fops) \
138 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
139#define LNK(NAME, get_link) \
140 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
141 &proc_pid_link_inode_operations, NULL, \
142 { .proc_get_link = get_link } )
143#define REG(NAME, MODE, fops) \
144 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
145#define ONE(NAME, MODE, show) \
146 NOD(NAME, (S_IFREG|(MODE)), \
147 NULL, &proc_single_file_operations, \
148 { .proc_show = show } )
149
150/*
151 * Count the number of hardlinks for the pid_entry table, excluding the .
152 * and .. links.
153 */
154static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
155 unsigned int n)
156{
157 unsigned int i;
158 unsigned int count;
159
160 count = 2;
161 for (i = 0; i < n; ++i) {
162 if (S_ISDIR(entries[i].mode))
163 ++count;
164 }
165
166 return count;
167}
168
169static int get_task_root(struct task_struct *task, struct path *root)
170{
171 int result = -ENOENT;
172
173 task_lock(task);
174 if (task->fs) {
175 get_fs_root(task->fs, root);
176 result = 0;
177 }
178 task_unlock(task);
179 return result;
180}
181
182static int proc_cwd_link(struct dentry *dentry, struct path *path)
183{
184 struct task_struct *task = get_proc_task(d_inode(dentry));
185 int result = -ENOENT;
186
187 if (task) {
188 task_lock(task);
189 if (task->fs) {
190 get_fs_pwd(task->fs, path);
191 result = 0;
192 }
193 task_unlock(task);
194 put_task_struct(task);
195 }
196 return result;
197}
198
199static int proc_root_link(struct dentry *dentry, struct path *path)
200{
201 struct task_struct *task = get_proc_task(d_inode(dentry));
202 int result = -ENOENT;
203
204 if (task) {
205 result = get_task_root(task, path);
206 put_task_struct(task);
207 }
208 return result;
209}
210
211static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
212 size_t _count, loff_t *pos)
213{
214 struct task_struct *tsk;
215 struct mm_struct *mm;
216 char *page;
217 unsigned long count = _count;
218 unsigned long arg_start, arg_end, env_start, env_end;
219 unsigned long len1, len2, len;
220 unsigned long p;
221 char c;
222 ssize_t rv;
223
224 BUG_ON(*pos < 0);
225
226 tsk = get_proc_task(file_inode(file));
227 if (!tsk)
228 return -ESRCH;
229 mm = get_task_mm(tsk);
230 put_task_struct(tsk);
231 if (!mm)
232 return 0;
233 /* Check if process spawned far enough to have cmdline. */
234 if (!mm->env_end) {
235 rv = 0;
236 goto out_mmput;
237 }
238
239 page = (char *)__get_free_page(GFP_KERNEL);
240 if (!page) {
241 rv = -ENOMEM;
242 goto out_mmput;
243 }
244
245 down_read(&mm->mmap_sem);
246 arg_start = mm->arg_start;
247 arg_end = mm->arg_end;
248 env_start = mm->env_start;
249 env_end = mm->env_end;
250 up_read(&mm->mmap_sem);
251
252 BUG_ON(arg_start > arg_end);
253 BUG_ON(env_start > env_end);
254
255 len1 = arg_end - arg_start;
256 len2 = env_end - env_start;
257
258 /* Empty ARGV. */
259 if (len1 == 0) {
260 rv = 0;
261 goto out_free_page;
262 }
263 /*
264 * Inherently racy -- command line shares address space
265 * with code and data.
266 */
267 rv = access_remote_vm(mm, arg_end - 1, &c, 1, FOLL_ANON);
268 if (rv <= 0)
269 goto out_free_page;
270
271 rv = 0;
272
273 if (c == '\0') {
274 /* Command line (set of strings) occupies whole ARGV. */
275 if (len1 <= *pos)
276 goto out_free_page;
277
278 p = arg_start + *pos;
279 len = len1 - *pos;
280 while (count > 0 && len > 0) {
281 unsigned int _count;
282 int nr_read;
283
284 _count = min3(count, len, PAGE_SIZE);
285 nr_read = access_remote_vm(mm, p, page, _count, FOLL_ANON);
286 if (nr_read < 0)
287 rv = nr_read;
288 if (nr_read <= 0)
289 goto out_free_page;
290
291 if (copy_to_user(buf, page, nr_read)) {
292 rv = -EFAULT;
293 goto out_free_page;
294 }
295
296 p += nr_read;
297 len -= nr_read;
298 buf += nr_read;
299 count -= nr_read;
300 rv += nr_read;
301 }
302 } else {
303 /*
304 * Command line (1 string) occupies ARGV and
305 * extends into ENVP.
306 */
307 struct {
308 unsigned long p;
309 unsigned long len;
310 } cmdline[2] = {
311 { .p = arg_start, .len = len1 },
312 { .p = env_start, .len = len2 },
313 };
314 loff_t pos1 = *pos;
315 unsigned int i;
316
317 i = 0;
318 while (i < 2 && pos1 >= cmdline[i].len) {
319 pos1 -= cmdline[i].len;
320 i++;
321 }
322 while (i < 2) {
323 p = cmdline[i].p + pos1;
324 len = cmdline[i].len - pos1;
325 while (count > 0 && len > 0) {
326 unsigned int _count, l;
327 int nr_read;
328 bool final;
329
330 _count = min3(count, len, PAGE_SIZE);
331 nr_read = access_remote_vm(mm, p, page, _count, FOLL_ANON);
332 if (nr_read < 0)
333 rv = nr_read;
334 if (nr_read <= 0)
335 goto out_free_page;
336
337 /*
338 * Command line can be shorter than whole ARGV
339 * even if last "marker" byte says it is not.
340 */
341 final = false;
342 l = strnlen(page, nr_read);
343 if (l < nr_read) {
344 nr_read = l;
345 final = true;
346 }
347
348 if (copy_to_user(buf, page, nr_read)) {
349 rv = -EFAULT;
350 goto out_free_page;
351 }
352
353 p += nr_read;
354 len -= nr_read;
355 buf += nr_read;
356 count -= nr_read;
357 rv += nr_read;
358
359 if (final)
360 goto out_free_page;
361 }
362
363 /* Only first chunk can be read partially. */
364 pos1 = 0;
365 i++;
366 }
367 }
368
369out_free_page:
370 free_page((unsigned long)page);
371out_mmput:
372 mmput(mm);
373 if (rv > 0)
374 *pos += rv;
375 return rv;
376}
377
378static const struct file_operations proc_pid_cmdline_ops = {
379 .read = proc_pid_cmdline_read,
380 .llseek = generic_file_llseek,
381};
382
383#ifdef CONFIG_KALLSYMS
384/*
385 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
386 * Returns the resolved symbol. If that fails, simply return the address.
387 */
388static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
389 struct pid *pid, struct task_struct *task)
390{
391 unsigned long wchan;
392 char symname[KSYM_NAME_LEN];
393
394 wchan = get_wchan(task);
395
396 if (wchan && ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)
397 && !lookup_symbol_name(wchan, symname))
398 seq_printf(m, "%s", symname);
399 else
400 seq_putc(m, '0');
401
402 return 0;
403}
404#endif /* CONFIG_KALLSYMS */
405
406static int lock_trace(struct task_struct *task)
407{
408 int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
409 if (err)
410 return err;
411 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
412 mutex_unlock(&task->signal->cred_guard_mutex);
413 return -EPERM;
414 }
415 return 0;
416}
417
418static void unlock_trace(struct task_struct *task)
419{
420 mutex_unlock(&task->signal->cred_guard_mutex);
421}
422
423#ifdef CONFIG_STACKTRACE
424
425#define MAX_STACK_TRACE_DEPTH 64
426
427static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
428 struct pid *pid, struct task_struct *task)
429{
430 struct stack_trace trace;
431 unsigned long *entries;
432 int err;
433 int i;
434
435 /*
436 * The ability to racily run the kernel stack unwinder on a running task
437 * and then observe the unwinder output is scary; while it is useful for
438 * debugging kernel issues, it can also allow an attacker to leak kernel
439 * stack contents.
440 * Doing this in a manner that is at least safe from races would require
441 * some work to ensure that the remote task can not be scheduled; and
442 * even then, this would still expose the unwinder as local attack
443 * surface.
444 * Therefore, this interface is restricted to root.
445 */
446 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
447 return -EACCES;
448
449 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
450 if (!entries)
451 return -ENOMEM;
452
453 trace.nr_entries = 0;
454 trace.max_entries = MAX_STACK_TRACE_DEPTH;
455 trace.entries = entries;
456 trace.skip = 0;
457
458 err = lock_trace(task);
459 if (!err) {
460 save_stack_trace_tsk(task, &trace);
461
462 for (i = 0; i < trace.nr_entries; i++) {
463 seq_printf(m, "[<%pK>] %pB\n",
464 (void *)entries[i], (void *)entries[i]);
465 }
466 unlock_trace(task);
467 }
468 kfree(entries);
469
470 return err;
471}
472#endif
473
474#ifdef CONFIG_SCHED_INFO
475/*
476 * Provides /proc/PID/schedstat
477 */
478static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
479 struct pid *pid, struct task_struct *task)
480{
481 if (unlikely(!sched_info_on()))
482 seq_printf(m, "0 0 0\n");
483 else
484 seq_printf(m, "%llu %llu %lu\n",
485 (unsigned long long)task->se.sum_exec_runtime,
486 (unsigned long long)task->sched_info.run_delay,
487 task->sched_info.pcount);
488
489 return 0;
490}
491#endif
492
493#ifdef CONFIG_LATENCYTOP
494static int lstats_show_proc(struct seq_file *m, void *v)
495{
496 int i;
497 struct inode *inode = m->private;
498 struct task_struct *task = get_proc_task(inode);
499
500 if (!task)
501 return -ESRCH;
502 seq_puts(m, "Latency Top version : v0.1\n");
503 for (i = 0; i < 32; i++) {
504 struct latency_record *lr = &task->latency_record[i];
505 if (lr->backtrace[0]) {
506 int q;
507 seq_printf(m, "%i %li %li",
508 lr->count, lr->time, lr->max);
509 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
510 unsigned long bt = lr->backtrace[q];
511 if (!bt)
512 break;
513 if (bt == ULONG_MAX)
514 break;
515 seq_printf(m, " %ps", (void *)bt);
516 }
517 seq_putc(m, '\n');
518 }
519
520 }
521 put_task_struct(task);
522 return 0;
523}
524
525static int lstats_open(struct inode *inode, struct file *file)
526{
527 return single_open(file, lstats_show_proc, inode);
528}
529
530static ssize_t lstats_write(struct file *file, const char __user *buf,
531 size_t count, loff_t *offs)
532{
533 struct task_struct *task = get_proc_task(file_inode(file));
534
535 if (!task)
536 return -ESRCH;
537 clear_all_latency_tracing(task);
538 put_task_struct(task);
539
540 return count;
541}
542
543static const struct file_operations proc_lstats_operations = {
544 .open = lstats_open,
545 .read = seq_read,
546 .write = lstats_write,
547 .llseek = seq_lseek,
548 .release = single_release,
549};
550
551#endif
552
553static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
554 struct pid *pid, struct task_struct *task)
555{
556 unsigned long totalpages = totalram_pages + total_swap_pages;
557 unsigned long points = 0;
558
559 points = oom_badness(task, NULL, NULL, totalpages) *
560 1000 / totalpages;
561 seq_printf(m, "%lu\n", points);
562
563 return 0;
564}
565
566struct limit_names {
567 const char *name;
568 const char *unit;
569};
570
571static const struct limit_names lnames[RLIM_NLIMITS] = {
572 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
573 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
574 [RLIMIT_DATA] = {"Max data size", "bytes"},
575 [RLIMIT_STACK] = {"Max stack size", "bytes"},
576 [RLIMIT_CORE] = {"Max core file size", "bytes"},
577 [RLIMIT_RSS] = {"Max resident set", "bytes"},
578 [RLIMIT_NPROC] = {"Max processes", "processes"},
579 [RLIMIT_NOFILE] = {"Max open files", "files"},
580 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
581 [RLIMIT_AS] = {"Max address space", "bytes"},
582 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
583 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
584 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
585 [RLIMIT_NICE] = {"Max nice priority", NULL},
586 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
587 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
588};
589
590/* Display limits for a process */
591static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
592 struct pid *pid, struct task_struct *task)
593{
594 unsigned int i;
595 unsigned long flags;
596
597 struct rlimit rlim[RLIM_NLIMITS];
598
599 if (!lock_task_sighand(task, &flags))
600 return 0;
601 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
602 unlock_task_sighand(task, &flags);
603
604 /*
605 * print the file header
606 */
607 seq_printf(m, "%-25s %-20s %-20s %-10s\n",
608 "Limit", "Soft Limit", "Hard Limit", "Units");
609
610 for (i = 0; i < RLIM_NLIMITS; i++) {
611 if (rlim[i].rlim_cur == RLIM_INFINITY)
612 seq_printf(m, "%-25s %-20s ",
613 lnames[i].name, "unlimited");
614 else
615 seq_printf(m, "%-25s %-20lu ",
616 lnames[i].name, rlim[i].rlim_cur);
617
618 if (rlim[i].rlim_max == RLIM_INFINITY)
619 seq_printf(m, "%-20s ", "unlimited");
620 else
621 seq_printf(m, "%-20lu ", rlim[i].rlim_max);
622
623 if (lnames[i].unit)
624 seq_printf(m, "%-10s\n", lnames[i].unit);
625 else
626 seq_putc(m, '\n');
627 }
628
629 return 0;
630}
631
632#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
633static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
634 struct pid *pid, struct task_struct *task)
635{
636 long nr;
637 unsigned long args[6], sp, pc;
638 int res;
639
640 res = lock_trace(task);
641 if (res)
642 return res;
643
644 if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
645 seq_puts(m, "running\n");
646 else if (nr < 0)
647 seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
648 else
649 seq_printf(m,
650 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
651 nr,
652 args[0], args[1], args[2], args[3], args[4], args[5],
653 sp, pc);
654 unlock_trace(task);
655
656 return 0;
657}
658#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
659
660/************************************************************************/
661/* Here the fs part begins */
662/************************************************************************/
663
664/* permission checks */
665static int proc_fd_access_allowed(struct inode *inode)
666{
667 struct task_struct *task;
668 int allowed = 0;
669 /* Allow access to a task's file descriptors if it is us or we
670 * may use ptrace attach to the process and find out that
671 * information.
672 */
673 task = get_proc_task(inode);
674 if (task) {
675 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
676 put_task_struct(task);
677 }
678 return allowed;
679}
680
681int proc_setattr(struct dentry *dentry, struct iattr *attr)
682{
683 int error;
684 struct inode *inode = d_inode(dentry);
685
686 if (attr->ia_valid & ATTR_MODE)
687 return -EPERM;
688
689 error = setattr_prepare(dentry, attr);
690 if (error)
691 return error;
692
693 setattr_copy(inode, attr);
694 mark_inode_dirty(inode);
695 return 0;
696}
697
698/*
699 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
700 * or euid/egid (for hide_pid_min=2)?
701 */
702static bool has_pid_permissions(struct pid_namespace *pid,
703 struct task_struct *task,
704 int hide_pid_min)
705{
706 if (pid->hide_pid < hide_pid_min)
707 return true;
708 if (in_group_p(pid->pid_gid))
709 return true;
710 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
711}
712
713
714static int proc_pid_permission(struct inode *inode, int mask)
715{
716 struct pid_namespace *pid = inode->i_sb->s_fs_info;
717 struct task_struct *task;
718 bool has_perms;
719
720 task = get_proc_task(inode);
721 if (!task)
722 return -ESRCH;
723 has_perms = has_pid_permissions(pid, task, HIDEPID_NO_ACCESS);
724 put_task_struct(task);
725
726 if (!has_perms) {
727 if (pid->hide_pid == HIDEPID_INVISIBLE) {
728 /*
729 * Let's make getdents(), stat(), and open()
730 * consistent with each other. If a process
731 * may not stat() a file, it shouldn't be seen
732 * in procfs at all.
733 */
734 return -ENOENT;
735 }
736
737 return -EPERM;
738 }
739 return generic_permission(inode, mask);
740}
741
742
743
744static const struct inode_operations proc_def_inode_operations = {
745 .setattr = proc_setattr,
746};
747
748static int proc_single_show(struct seq_file *m, void *v)
749{
750 struct inode *inode = m->private;
751 struct pid_namespace *ns;
752 struct pid *pid;
753 struct task_struct *task;
754 int ret;
755
756 ns = inode->i_sb->s_fs_info;
757 pid = proc_pid(inode);
758 task = get_pid_task(pid, PIDTYPE_PID);
759 if (!task)
760 return -ESRCH;
761
762 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
763
764 put_task_struct(task);
765 return ret;
766}
767
768static int proc_single_open(struct inode *inode, struct file *filp)
769{
770 return single_open(filp, proc_single_show, inode);
771}
772
773static const struct file_operations proc_single_file_operations = {
774 .open = proc_single_open,
775 .read = seq_read,
776 .llseek = seq_lseek,
777 .release = single_release,
778};
779
780
781struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
782{
783 struct task_struct *task = get_proc_task(inode);
784 struct mm_struct *mm = ERR_PTR(-ESRCH);
785
786 if (task) {
787 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
788 put_task_struct(task);
789
790 if (!IS_ERR_OR_NULL(mm)) {
791 /* ensure this mm_struct can't be freed */
792 mmgrab(mm);
793 /* but do not pin its memory */
794 mmput(mm);
795 }
796 }
797
798 return mm;
799}
800
801static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
802{
803 struct mm_struct *mm = proc_mem_open(inode, mode);
804
805 if (IS_ERR(mm))
806 return PTR_ERR(mm);
807
808 file->private_data = mm;
809 return 0;
810}
811
812static int mem_open(struct inode *inode, struct file *file)
813{
814 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
815
816 /* OK to pass negative loff_t, we can catch out-of-range */
817 file->f_mode |= FMODE_UNSIGNED_OFFSET;
818
819 return ret;
820}
821
822static ssize_t mem_rw(struct file *file, char __user *buf,
823 size_t count, loff_t *ppos, int write)
824{
825 struct mm_struct *mm = file->private_data;
826 unsigned long addr = *ppos;
827 ssize_t copied;
828 char *page;
829 unsigned int flags;
830
831 if (!mm)
832 return 0;
833
834 page = (char *)__get_free_page(GFP_KERNEL);
835 if (!page)
836 return -ENOMEM;
837
838 copied = 0;
839 if (!mmget_not_zero(mm))
840 goto free;
841
842 flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
843
844 while (count > 0) {
845 int this_len = min_t(int, count, PAGE_SIZE);
846
847 if (write && copy_from_user(page, buf, this_len)) {
848 copied = -EFAULT;
849 break;
850 }
851
852 this_len = access_remote_vm(mm, addr, page, this_len, flags);
853 if (!this_len) {
854 if (!copied)
855 copied = -EIO;
856 break;
857 }
858
859 if (!write && copy_to_user(buf, page, this_len)) {
860 copied = -EFAULT;
861 break;
862 }
863
864 buf += this_len;
865 addr += this_len;
866 copied += this_len;
867 count -= this_len;
868 }
869 *ppos = addr;
870
871 mmput(mm);
872free:
873 free_page((unsigned long) page);
874 return copied;
875}
876
877static ssize_t mem_read(struct file *file, char __user *buf,
878 size_t count, loff_t *ppos)
879{
880 return mem_rw(file, buf, count, ppos, 0);
881}
882
883static ssize_t mem_write(struct file *file, const char __user *buf,
884 size_t count, loff_t *ppos)
885{
886 return mem_rw(file, (char __user*)buf, count, ppos, 1);
887}
888
889loff_t mem_lseek(struct file *file, loff_t offset, int orig)
890{
891 switch (orig) {
892 case 0:
893 file->f_pos = offset;
894 break;
895 case 1:
896 file->f_pos += offset;
897 break;
898 default:
899 return -EINVAL;
900 }
901 force_successful_syscall_return();
902 return file->f_pos;
903}
904
905static int mem_release(struct inode *inode, struct file *file)
906{
907 struct mm_struct *mm = file->private_data;
908 if (mm)
909 mmdrop(mm);
910 return 0;
911}
912
913static const struct file_operations proc_mem_operations = {
914 .llseek = mem_lseek,
915 .read = mem_read,
916 .write = mem_write,
917 .open = mem_open,
918 .release = mem_release,
919};
920
921static int environ_open(struct inode *inode, struct file *file)
922{
923 return __mem_open(inode, file, PTRACE_MODE_READ);
924}
925
926static ssize_t environ_read(struct file *file, char __user *buf,
927 size_t count, loff_t *ppos)
928{
929 char *page;
930 unsigned long src = *ppos;
931 int ret = 0;
932 struct mm_struct *mm = file->private_data;
933 unsigned long env_start, env_end;
934
935 /* Ensure the process spawned far enough to have an environment. */
936 if (!mm || !mm->env_end)
937 return 0;
938
939 page = (char *)__get_free_page(GFP_KERNEL);
940 if (!page)
941 return -ENOMEM;
942
943 ret = 0;
944 if (!mmget_not_zero(mm))
945 goto free;
946
947 down_read(&mm->mmap_sem);
948 env_start = mm->env_start;
949 env_end = mm->env_end;
950 up_read(&mm->mmap_sem);
951
952 while (count > 0) {
953 size_t this_len, max_len;
954 int retval;
955
956 if (src >= (env_end - env_start))
957 break;
958
959 this_len = env_end - (env_start + src);
960
961 max_len = min_t(size_t, PAGE_SIZE, count);
962 this_len = min(max_len, this_len);
963
964 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
965
966 if (retval <= 0) {
967 ret = retval;
968 break;
969 }
970
971 if (copy_to_user(buf, page, retval)) {
972 ret = -EFAULT;
973 break;
974 }
975
976 ret += retval;
977 src += retval;
978 buf += retval;
979 count -= retval;
980 }
981 *ppos = src;
982 mmput(mm);
983
984free:
985 free_page((unsigned long) page);
986 return ret;
987}
988
989static const struct file_operations proc_environ_operations = {
990 .open = environ_open,
991 .read = environ_read,
992 .llseek = generic_file_llseek,
993 .release = mem_release,
994};
995
996static int auxv_open(struct inode *inode, struct file *file)
997{
998 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
999}
1000
1001static ssize_t auxv_read(struct file *file, char __user *buf,
1002 size_t count, loff_t *ppos)
1003{
1004 struct mm_struct *mm = file->private_data;
1005 unsigned int nwords = 0;
1006
1007 if (!mm)
1008 return 0;
1009 do {
1010 nwords += 2;
1011 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1012 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1013 nwords * sizeof(mm->saved_auxv[0]));
1014}
1015
1016static const struct file_operations proc_auxv_operations = {
1017 .open = auxv_open,
1018 .read = auxv_read,
1019 .llseek = generic_file_llseek,
1020 .release = mem_release,
1021};
1022
1023static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1024 loff_t *ppos)
1025{
1026 struct task_struct *task = get_proc_task(file_inode(file));
1027 char buffer[PROC_NUMBUF];
1028 int oom_adj = OOM_ADJUST_MIN;
1029 size_t len;
1030
1031 if (!task)
1032 return -ESRCH;
1033 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1034 oom_adj = OOM_ADJUST_MAX;
1035 else
1036 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1037 OOM_SCORE_ADJ_MAX;
1038 put_task_struct(task);
1039 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1040 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1041}
1042
1043static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1044{
1045 static DEFINE_MUTEX(oom_adj_mutex);
1046 struct mm_struct *mm = NULL;
1047 struct task_struct *task;
1048 int err = 0;
1049
1050 task = get_proc_task(file_inode(file));
1051 if (!task)
1052 return -ESRCH;
1053
1054 mutex_lock(&oom_adj_mutex);
1055 if (legacy) {
1056 if (oom_adj < task->signal->oom_score_adj &&
1057 !capable(CAP_SYS_RESOURCE)) {
1058 err = -EACCES;
1059 goto err_unlock;
1060 }
1061 /*
1062 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1063 * /proc/pid/oom_score_adj instead.
1064 */
1065 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1066 current->comm, task_pid_nr(current), task_pid_nr(task),
1067 task_pid_nr(task));
1068 } else {
1069 if ((short)oom_adj < task->signal->oom_score_adj_min &&
1070 !capable(CAP_SYS_RESOURCE)) {
1071 err = -EACCES;
1072 goto err_unlock;
1073 }
1074 }
1075
1076 /*
1077 * Make sure we will check other processes sharing the mm if this is
1078 * not vfrok which wants its own oom_score_adj.
1079 * pin the mm so it doesn't go away and get reused after task_unlock
1080 */
1081 if (!task->vfork_done) {
1082 struct task_struct *p = find_lock_task_mm(task);
1083
1084 if (p) {
1085 if (atomic_read(&p->mm->mm_users) > 1) {
1086 mm = p->mm;
1087 mmgrab(mm);
1088 }
1089 task_unlock(p);
1090 }
1091 }
1092
1093 task->signal->oom_score_adj = oom_adj;
1094 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1095 task->signal->oom_score_adj_min = (short)oom_adj;
1096 trace_oom_score_adj_update(task);
1097
1098 if (mm) {
1099 struct task_struct *p;
1100
1101 rcu_read_lock();
1102 for_each_process(p) {
1103 if (same_thread_group(task, p))
1104 continue;
1105
1106 /* do not touch kernel threads or the global init */
1107 if (p->flags & PF_KTHREAD || is_global_init(p))
1108 continue;
1109
1110 task_lock(p);
1111 if (!p->vfork_done && process_shares_mm(p, mm)) {
1112 p->signal->oom_score_adj = oom_adj;
1113 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1114 p->signal->oom_score_adj_min = (short)oom_adj;
1115 }
1116 task_unlock(p);
1117 }
1118 rcu_read_unlock();
1119 mmdrop(mm);
1120 }
1121err_unlock:
1122 mutex_unlock(&oom_adj_mutex);
1123 put_task_struct(task);
1124 return err;
1125}
1126
1127/*
1128 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1129 * kernels. The effective policy is defined by oom_score_adj, which has a
1130 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1131 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1132 * Processes that become oom disabled via oom_adj will still be oom disabled
1133 * with this implementation.
1134 *
1135 * oom_adj cannot be removed since existing userspace binaries use it.
1136 */
1137static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1138 size_t count, loff_t *ppos)
1139{
1140 char buffer[PROC_NUMBUF];
1141 int oom_adj;
1142 int err;
1143
1144 memset(buffer, 0, sizeof(buffer));
1145 if (count > sizeof(buffer) - 1)
1146 count = sizeof(buffer) - 1;
1147 if (copy_from_user(buffer, buf, count)) {
1148 err = -EFAULT;
1149 goto out;
1150 }
1151
1152 err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1153 if (err)
1154 goto out;
1155 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1156 oom_adj != OOM_DISABLE) {
1157 err = -EINVAL;
1158 goto out;
1159 }
1160
1161 /*
1162 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1163 * value is always attainable.
1164 */
1165 if (oom_adj == OOM_ADJUST_MAX)
1166 oom_adj = OOM_SCORE_ADJ_MAX;
1167 else
1168 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1169
1170 err = __set_oom_adj(file, oom_adj, true);
1171out:
1172 return err < 0 ? err : count;
1173}
1174
1175static const struct file_operations proc_oom_adj_operations = {
1176 .read = oom_adj_read,
1177 .write = oom_adj_write,
1178 .llseek = generic_file_llseek,
1179};
1180
1181static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1182 size_t count, loff_t *ppos)
1183{
1184 struct task_struct *task = get_proc_task(file_inode(file));
1185 char buffer[PROC_NUMBUF];
1186 short oom_score_adj = OOM_SCORE_ADJ_MIN;
1187 size_t len;
1188
1189 if (!task)
1190 return -ESRCH;
1191 oom_score_adj = task->signal->oom_score_adj;
1192 put_task_struct(task);
1193 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1194 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1195}
1196
1197static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1198 size_t count, loff_t *ppos)
1199{
1200 char buffer[PROC_NUMBUF];
1201 int oom_score_adj;
1202 int err;
1203
1204 memset(buffer, 0, sizeof(buffer));
1205 if (count > sizeof(buffer) - 1)
1206 count = sizeof(buffer) - 1;
1207 if (copy_from_user(buffer, buf, count)) {
1208 err = -EFAULT;
1209 goto out;
1210 }
1211
1212 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1213 if (err)
1214 goto out;
1215 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1216 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1217 err = -EINVAL;
1218 goto out;
1219 }
1220
1221 err = __set_oom_adj(file, oom_score_adj, false);
1222out:
1223 return err < 0 ? err : count;
1224}
1225
1226static const struct file_operations proc_oom_score_adj_operations = {
1227 .read = oom_score_adj_read,
1228 .write = oom_score_adj_write,
1229 .llseek = default_llseek,
1230};
1231
1232#ifdef CONFIG_AUDITSYSCALL
1233#define TMPBUFLEN 11
1234static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1235 size_t count, loff_t *ppos)
1236{
1237 struct inode * inode = file_inode(file);
1238 struct task_struct *task = get_proc_task(inode);
1239 ssize_t length;
1240 char tmpbuf[TMPBUFLEN];
1241
1242 if (!task)
1243 return -ESRCH;
1244 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1245 from_kuid(file->f_cred->user_ns,
1246 audit_get_loginuid(task)));
1247 put_task_struct(task);
1248 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1249}
1250
1251static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1252 size_t count, loff_t *ppos)
1253{
1254 struct inode * inode = file_inode(file);
1255 uid_t loginuid;
1256 kuid_t kloginuid;
1257 int rv;
1258
1259 rcu_read_lock();
1260 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1261 rcu_read_unlock();
1262 return -EPERM;
1263 }
1264 rcu_read_unlock();
1265
1266 if (*ppos != 0) {
1267 /* No partial writes. */
1268 return -EINVAL;
1269 }
1270
1271 rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1272 if (rv < 0)
1273 return rv;
1274
1275 /* is userspace tring to explicitly UNSET the loginuid? */
1276 if (loginuid == AUDIT_UID_UNSET) {
1277 kloginuid = INVALID_UID;
1278 } else {
1279 kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1280 if (!uid_valid(kloginuid))
1281 return -EINVAL;
1282 }
1283
1284 rv = audit_set_loginuid(kloginuid);
1285 if (rv < 0)
1286 return rv;
1287 return count;
1288}
1289
1290static const struct file_operations proc_loginuid_operations = {
1291 .read = proc_loginuid_read,
1292 .write = proc_loginuid_write,
1293 .llseek = generic_file_llseek,
1294};
1295
1296static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1297 size_t count, loff_t *ppos)
1298{
1299 struct inode * inode = file_inode(file);
1300 struct task_struct *task = get_proc_task(inode);
1301 ssize_t length;
1302 char tmpbuf[TMPBUFLEN];
1303
1304 if (!task)
1305 return -ESRCH;
1306 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1307 audit_get_sessionid(task));
1308 put_task_struct(task);
1309 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1310}
1311
1312static const struct file_operations proc_sessionid_operations = {
1313 .read = proc_sessionid_read,
1314 .llseek = generic_file_llseek,
1315};
1316#endif
1317
1318#ifdef CONFIG_FAULT_INJECTION
1319static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1320 size_t count, loff_t *ppos)
1321{
1322 struct task_struct *task = get_proc_task(file_inode(file));
1323 char buffer[PROC_NUMBUF];
1324 size_t len;
1325 int make_it_fail;
1326
1327 if (!task)
1328 return -ESRCH;
1329 make_it_fail = task->make_it_fail;
1330 put_task_struct(task);
1331
1332 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1333
1334 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1335}
1336
1337static ssize_t proc_fault_inject_write(struct file * file,
1338 const char __user * buf, size_t count, loff_t *ppos)
1339{
1340 struct task_struct *task;
1341 char buffer[PROC_NUMBUF];
1342 int make_it_fail;
1343 int rv;
1344
1345 if (!capable(CAP_SYS_RESOURCE))
1346 return -EPERM;
1347 memset(buffer, 0, sizeof(buffer));
1348 if (count > sizeof(buffer) - 1)
1349 count = sizeof(buffer) - 1;
1350 if (copy_from_user(buffer, buf, count))
1351 return -EFAULT;
1352 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1353 if (rv < 0)
1354 return rv;
1355 if (make_it_fail < 0 || make_it_fail > 1)
1356 return -EINVAL;
1357
1358 task = get_proc_task(file_inode(file));
1359 if (!task)
1360 return -ESRCH;
1361 task->make_it_fail = make_it_fail;
1362 put_task_struct(task);
1363
1364 return count;
1365}
1366
1367static const struct file_operations proc_fault_inject_operations = {
1368 .read = proc_fault_inject_read,
1369 .write = proc_fault_inject_write,
1370 .llseek = generic_file_llseek,
1371};
1372
1373static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1374 size_t count, loff_t *ppos)
1375{
1376 struct task_struct *task;
1377 int err;
1378 unsigned int n;
1379
1380 err = kstrtouint_from_user(buf, count, 0, &n);
1381 if (err)
1382 return err;
1383
1384 task = get_proc_task(file_inode(file));
1385 if (!task)
1386 return -ESRCH;
1387 WRITE_ONCE(task->fail_nth, n);
1388 put_task_struct(task);
1389
1390 return count;
1391}
1392
1393static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1394 size_t count, loff_t *ppos)
1395{
1396 struct task_struct *task;
1397 char numbuf[PROC_NUMBUF];
1398 ssize_t len;
1399
1400 task = get_proc_task(file_inode(file));
1401 if (!task)
1402 return -ESRCH;
1403 len = snprintf(numbuf, sizeof(numbuf), "%u\n",
1404 READ_ONCE(task->fail_nth));
1405 len = simple_read_from_buffer(buf, count, ppos, numbuf, len);
1406 put_task_struct(task);
1407
1408 return len;
1409}
1410
1411static const struct file_operations proc_fail_nth_operations = {
1412 .read = proc_fail_nth_read,
1413 .write = proc_fail_nth_write,
1414};
1415#endif
1416
1417
1418#ifdef CONFIG_SCHED_DEBUG
1419/*
1420 * Print out various scheduling related per-task fields:
1421 */
1422static int sched_show(struct seq_file *m, void *v)
1423{
1424 struct inode *inode = m->private;
1425 struct pid_namespace *ns = inode->i_sb->s_fs_info;
1426 struct task_struct *p;
1427
1428 p = get_proc_task(inode);
1429 if (!p)
1430 return -ESRCH;
1431 proc_sched_show_task(p, ns, m);
1432
1433 put_task_struct(p);
1434
1435 return 0;
1436}
1437
1438static ssize_t
1439sched_write(struct file *file, const char __user *buf,
1440 size_t count, loff_t *offset)
1441{
1442 struct inode *inode = file_inode(file);
1443 struct task_struct *p;
1444
1445 p = get_proc_task(inode);
1446 if (!p)
1447 return -ESRCH;
1448 proc_sched_set_task(p);
1449
1450 put_task_struct(p);
1451
1452 return count;
1453}
1454
1455static int sched_open(struct inode *inode, struct file *filp)
1456{
1457 return single_open(filp, sched_show, inode);
1458}
1459
1460static const struct file_operations proc_pid_sched_operations = {
1461 .open = sched_open,
1462 .read = seq_read,
1463 .write = sched_write,
1464 .llseek = seq_lseek,
1465 .release = single_release,
1466};
1467
1468#endif
1469
1470#ifdef CONFIG_SCHED_AUTOGROUP
1471/*
1472 * Print out autogroup related information:
1473 */
1474static int sched_autogroup_show(struct seq_file *m, void *v)
1475{
1476 struct inode *inode = m->private;
1477 struct task_struct *p;
1478
1479 p = get_proc_task(inode);
1480 if (!p)
1481 return -ESRCH;
1482 proc_sched_autogroup_show_task(p, m);
1483
1484 put_task_struct(p);
1485
1486 return 0;
1487}
1488
1489static ssize_t
1490sched_autogroup_write(struct file *file, const char __user *buf,
1491 size_t count, loff_t *offset)
1492{
1493 struct inode *inode = file_inode(file);
1494 struct task_struct *p;
1495 char buffer[PROC_NUMBUF];
1496 int nice;
1497 int err;
1498
1499 memset(buffer, 0, sizeof(buffer));
1500 if (count > sizeof(buffer) - 1)
1501 count = sizeof(buffer) - 1;
1502 if (copy_from_user(buffer, buf, count))
1503 return -EFAULT;
1504
1505 err = kstrtoint(strstrip(buffer), 0, &nice);
1506 if (err < 0)
1507 return err;
1508
1509 p = get_proc_task(inode);
1510 if (!p)
1511 return -ESRCH;
1512
1513 err = proc_sched_autogroup_set_nice(p, nice);
1514 if (err)
1515 count = err;
1516
1517 put_task_struct(p);
1518
1519 return count;
1520}
1521
1522static int sched_autogroup_open(struct inode *inode, struct file *filp)
1523{
1524 int ret;
1525
1526 ret = single_open(filp, sched_autogroup_show, NULL);
1527 if (!ret) {
1528 struct seq_file *m = filp->private_data;
1529
1530 m->private = inode;
1531 }
1532 return ret;
1533}
1534
1535static const struct file_operations proc_pid_sched_autogroup_operations = {
1536 .open = sched_autogroup_open,
1537 .read = seq_read,
1538 .write = sched_autogroup_write,
1539 .llseek = seq_lseek,
1540 .release = single_release,
1541};
1542
1543#endif /* CONFIG_SCHED_AUTOGROUP */
1544
1545static ssize_t comm_write(struct file *file, const char __user *buf,
1546 size_t count, loff_t *offset)
1547{
1548 struct inode *inode = file_inode(file);
1549 struct task_struct *p;
1550 char buffer[TASK_COMM_LEN];
1551 const size_t maxlen = sizeof(buffer) - 1;
1552
1553 memset(buffer, 0, sizeof(buffer));
1554 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1555 return -EFAULT;
1556
1557 p = get_proc_task(inode);
1558 if (!p)
1559 return -ESRCH;
1560
1561 if (same_thread_group(current, p))
1562 set_task_comm(p, buffer);
1563 else
1564 count = -EINVAL;
1565
1566 put_task_struct(p);
1567
1568 return count;
1569}
1570
1571static int comm_show(struct seq_file *m, void *v)
1572{
1573 struct inode *inode = m->private;
1574 struct task_struct *p;
1575
1576 p = get_proc_task(inode);
1577 if (!p)
1578 return -ESRCH;
1579
1580 task_lock(p);
1581 seq_printf(m, "%s\n", p->comm);
1582 task_unlock(p);
1583
1584 put_task_struct(p);
1585
1586 return 0;
1587}
1588
1589static int comm_open(struct inode *inode, struct file *filp)
1590{
1591 return single_open(filp, comm_show, inode);
1592}
1593
1594static const struct file_operations proc_pid_set_comm_operations = {
1595 .open = comm_open,
1596 .read = seq_read,
1597 .write = comm_write,
1598 .llseek = seq_lseek,
1599 .release = single_release,
1600};
1601
1602static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1603{
1604 struct task_struct *task;
1605 struct file *exe_file;
1606
1607 task = get_proc_task(d_inode(dentry));
1608 if (!task)
1609 return -ENOENT;
1610 exe_file = get_task_exe_file(task);
1611 put_task_struct(task);
1612 if (exe_file) {
1613 *exe_path = exe_file->f_path;
1614 path_get(&exe_file->f_path);
1615 fput(exe_file);
1616 return 0;
1617 } else
1618 return -ENOENT;
1619}
1620
1621static const char *proc_pid_get_link(struct dentry *dentry,
1622 struct inode *inode,
1623 struct delayed_call *done)
1624{
1625 struct path path;
1626 int error = -EACCES;
1627
1628 if (!dentry)
1629 return ERR_PTR(-ECHILD);
1630
1631 /* Are we allowed to snoop on the tasks file descriptors? */
1632 if (!proc_fd_access_allowed(inode))
1633 goto out;
1634
1635 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1636 if (error)
1637 goto out;
1638
1639 nd_jump_link(&path);
1640 return NULL;
1641out:
1642 return ERR_PTR(error);
1643}
1644
1645static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1646{
1647 char *tmp = (char *)__get_free_page(GFP_KERNEL);
1648 char *pathname;
1649 int len;
1650
1651 if (!tmp)
1652 return -ENOMEM;
1653
1654 pathname = d_path(path, tmp, PAGE_SIZE);
1655 len = PTR_ERR(pathname);
1656 if (IS_ERR(pathname))
1657 goto out;
1658 len = tmp + PAGE_SIZE - 1 - pathname;
1659
1660 if (len > buflen)
1661 len = buflen;
1662 if (copy_to_user(buffer, pathname, len))
1663 len = -EFAULT;
1664 out:
1665 free_page((unsigned long)tmp);
1666 return len;
1667}
1668
1669static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1670{
1671 int error = -EACCES;
1672 struct inode *inode = d_inode(dentry);
1673 struct path path;
1674
1675 /* Are we allowed to snoop on the tasks file descriptors? */
1676 if (!proc_fd_access_allowed(inode))
1677 goto out;
1678
1679 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1680 if (error)
1681 goto out;
1682
1683 error = do_proc_readlink(&path, buffer, buflen);
1684 path_put(&path);
1685out:
1686 return error;
1687}
1688
1689const struct inode_operations proc_pid_link_inode_operations = {
1690 .readlink = proc_pid_readlink,
1691 .get_link = proc_pid_get_link,
1692 .setattr = proc_setattr,
1693};
1694
1695
1696/* building an inode */
1697
1698void task_dump_owner(struct task_struct *task, mode_t mode,
1699 kuid_t *ruid, kgid_t *rgid)
1700{
1701 /* Depending on the state of dumpable compute who should own a
1702 * proc file for a task.
1703 */
1704 const struct cred *cred;
1705 kuid_t uid;
1706 kgid_t gid;
1707
1708 if (unlikely(task->flags & PF_KTHREAD)) {
1709 *ruid = GLOBAL_ROOT_UID;
1710 *rgid = GLOBAL_ROOT_GID;
1711 return;
1712 }
1713
1714 /* Default to the tasks effective ownership */
1715 rcu_read_lock();
1716 cred = __task_cred(task);
1717 uid = cred->euid;
1718 gid = cred->egid;
1719 rcu_read_unlock();
1720
1721 /*
1722 * Before the /proc/pid/status file was created the only way to read
1723 * the effective uid of a /process was to stat /proc/pid. Reading
1724 * /proc/pid/status is slow enough that procps and other packages
1725 * kept stating /proc/pid. To keep the rules in /proc simple I have
1726 * made this apply to all per process world readable and executable
1727 * directories.
1728 */
1729 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1730 struct mm_struct *mm;
1731 task_lock(task);
1732 mm = task->mm;
1733 /* Make non-dumpable tasks owned by some root */
1734 if (mm) {
1735 if (get_dumpable(mm) != SUID_DUMP_USER) {
1736 struct user_namespace *user_ns = mm->user_ns;
1737
1738 uid = make_kuid(user_ns, 0);
1739 if (!uid_valid(uid))
1740 uid = GLOBAL_ROOT_UID;
1741
1742 gid = make_kgid(user_ns, 0);
1743 if (!gid_valid(gid))
1744 gid = GLOBAL_ROOT_GID;
1745 }
1746 } else {
1747 uid = GLOBAL_ROOT_UID;
1748 gid = GLOBAL_ROOT_GID;
1749 }
1750 task_unlock(task);
1751 }
1752 *ruid = uid;
1753 *rgid = gid;
1754}
1755
1756struct inode *proc_pid_make_inode(struct super_block * sb,
1757 struct task_struct *task, umode_t mode)
1758{
1759 struct inode * inode;
1760 struct proc_inode *ei;
1761
1762 /* We need a new inode */
1763
1764 inode = new_inode(sb);
1765 if (!inode)
1766 goto out;
1767
1768 /* Common stuff */
1769 ei = PROC_I(inode);
1770 inode->i_mode = mode;
1771 inode->i_ino = get_next_ino();
1772 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1773 inode->i_op = &proc_def_inode_operations;
1774
1775 /*
1776 * grab the reference to task.
1777 */
1778 ei->pid = get_task_pid(task, PIDTYPE_PID);
1779 if (!ei->pid)
1780 goto out_unlock;
1781
1782 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1783 security_task_to_inode(task, inode);
1784
1785out:
1786 return inode;
1787
1788out_unlock:
1789 iput(inode);
1790 return NULL;
1791}
1792
1793int pid_getattr(const struct path *path, struct kstat *stat,
1794 u32 request_mask, unsigned int query_flags)
1795{
1796 struct inode *inode = d_inode(path->dentry);
1797 struct task_struct *task;
1798 struct pid_namespace *pid = path->dentry->d_sb->s_fs_info;
1799
1800 generic_fillattr(inode, stat);
1801
1802 rcu_read_lock();
1803 stat->uid = GLOBAL_ROOT_UID;
1804 stat->gid = GLOBAL_ROOT_GID;
1805 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1806 if (task) {
1807 if (!has_pid_permissions(pid, task, HIDEPID_INVISIBLE)) {
1808 rcu_read_unlock();
1809 /*
1810 * This doesn't prevent learning whether PID exists,
1811 * it only makes getattr() consistent with readdir().
1812 */
1813 return -ENOENT;
1814 }
1815 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1816 }
1817 rcu_read_unlock();
1818 return 0;
1819}
1820
1821/* dentry stuff */
1822
1823/*
1824 * Exceptional case: normally we are not allowed to unhash a busy
1825 * directory. In this case, however, we can do it - no aliasing problems
1826 * due to the way we treat inodes.
1827 *
1828 * Rewrite the inode's ownerships here because the owning task may have
1829 * performed a setuid(), etc.
1830 *
1831 */
1832int pid_revalidate(struct dentry *dentry, unsigned int flags)
1833{
1834 struct inode *inode;
1835 struct task_struct *task;
1836
1837 if (flags & LOOKUP_RCU)
1838 return -ECHILD;
1839
1840 inode = d_inode(dentry);
1841 task = get_proc_task(inode);
1842
1843 if (task) {
1844 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1845
1846 inode->i_mode &= ~(S_ISUID | S_ISGID);
1847 security_task_to_inode(task, inode);
1848 put_task_struct(task);
1849 return 1;
1850 }
1851 return 0;
1852}
1853
1854static inline bool proc_inode_is_dead(struct inode *inode)
1855{
1856 return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1857}
1858
1859int pid_delete_dentry(const struct dentry *dentry)
1860{
1861 /* Is the task we represent dead?
1862 * If so, then don't put the dentry on the lru list,
1863 * kill it immediately.
1864 */
1865 return proc_inode_is_dead(d_inode(dentry));
1866}
1867
1868const struct dentry_operations pid_dentry_operations =
1869{
1870 .d_revalidate = pid_revalidate,
1871 .d_delete = pid_delete_dentry,
1872};
1873
1874/* Lookups */
1875
1876/*
1877 * Fill a directory entry.
1878 *
1879 * If possible create the dcache entry and derive our inode number and
1880 * file type from dcache entry.
1881 *
1882 * Since all of the proc inode numbers are dynamically generated, the inode
1883 * numbers do not exist until the inode is cache. This means creating the
1884 * the dcache entry in readdir is necessary to keep the inode numbers
1885 * reported by readdir in sync with the inode numbers reported
1886 * by stat.
1887 */
1888bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1889 const char *name, int len,
1890 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1891{
1892 struct dentry *child, *dir = file->f_path.dentry;
1893 struct qstr qname = QSTR_INIT(name, len);
1894 struct inode *inode;
1895 unsigned type;
1896 ino_t ino;
1897
1898 child = d_hash_and_lookup(dir, &qname);
1899 if (!child) {
1900 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1901 child = d_alloc_parallel(dir, &qname, &wq);
1902 if (IS_ERR(child))
1903 goto end_instantiate;
1904 if (d_in_lookup(child)) {
1905 int err = instantiate(d_inode(dir), child, task, ptr);
1906 d_lookup_done(child);
1907 if (err < 0) {
1908 dput(child);
1909 goto end_instantiate;
1910 }
1911 }
1912 }
1913 inode = d_inode(child);
1914 ino = inode->i_ino;
1915 type = inode->i_mode >> 12;
1916 dput(child);
1917 return dir_emit(ctx, name, len, ino, type);
1918
1919end_instantiate:
1920 return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
1921}
1922
1923/*
1924 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1925 * which represent vma start and end addresses.
1926 */
1927static int dname_to_vma_addr(struct dentry *dentry,
1928 unsigned long *start, unsigned long *end)
1929{
1930 const char *str = dentry->d_name.name;
1931 unsigned long long sval, eval;
1932 unsigned int len;
1933
1934 len = _parse_integer(str, 16, &sval);
1935 if (len & KSTRTOX_OVERFLOW)
1936 return -EINVAL;
1937 if (sval != (unsigned long)sval)
1938 return -EINVAL;
1939 str += len;
1940
1941 if (*str != '-')
1942 return -EINVAL;
1943 str++;
1944
1945 len = _parse_integer(str, 16, &eval);
1946 if (len & KSTRTOX_OVERFLOW)
1947 return -EINVAL;
1948 if (eval != (unsigned long)eval)
1949 return -EINVAL;
1950 str += len;
1951
1952 if (*str != '\0')
1953 return -EINVAL;
1954
1955 *start = sval;
1956 *end = eval;
1957
1958 return 0;
1959}
1960
1961static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1962{
1963 unsigned long vm_start, vm_end;
1964 bool exact_vma_exists = false;
1965 struct mm_struct *mm = NULL;
1966 struct task_struct *task;
1967 struct inode *inode;
1968 int status = 0;
1969
1970 if (flags & LOOKUP_RCU)
1971 return -ECHILD;
1972
1973 inode = d_inode(dentry);
1974 task = get_proc_task(inode);
1975 if (!task)
1976 goto out_notask;
1977
1978 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1979 if (IS_ERR_OR_NULL(mm))
1980 goto out;
1981
1982 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1983 down_read(&mm->mmap_sem);
1984 exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1985 up_read(&mm->mmap_sem);
1986 }
1987
1988 mmput(mm);
1989
1990 if (exact_vma_exists) {
1991 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1992
1993 security_task_to_inode(task, inode);
1994 status = 1;
1995 }
1996
1997out:
1998 put_task_struct(task);
1999
2000out_notask:
2001 return status;
2002}
2003
2004static const struct dentry_operations tid_map_files_dentry_operations = {
2005 .d_revalidate = map_files_d_revalidate,
2006 .d_delete = pid_delete_dentry,
2007};
2008
2009static int map_files_get_link(struct dentry *dentry, struct path *path)
2010{
2011 unsigned long vm_start, vm_end;
2012 struct vm_area_struct *vma;
2013 struct task_struct *task;
2014 struct mm_struct *mm;
2015 int rc;
2016
2017 rc = -ENOENT;
2018 task = get_proc_task(d_inode(dentry));
2019 if (!task)
2020 goto out;
2021
2022 mm = get_task_mm(task);
2023 put_task_struct(task);
2024 if (!mm)
2025 goto out;
2026
2027 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2028 if (rc)
2029 goto out_mmput;
2030
2031 rc = -ENOENT;
2032 down_read(&mm->mmap_sem);
2033 vma = find_exact_vma(mm, vm_start, vm_end);
2034 if (vma && vma->vm_file) {
2035 *path = vma->vm_file->f_path;
2036 path_get(path);
2037 rc = 0;
2038 }
2039 up_read(&mm->mmap_sem);
2040
2041out_mmput:
2042 mmput(mm);
2043out:
2044 return rc;
2045}
2046
2047struct map_files_info {
2048 fmode_t mode;
2049 unsigned int len;
2050 unsigned char name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
2051};
2052
2053/*
2054 * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
2055 * symlinks may be used to bypass permissions on ancestor directories in the
2056 * path to the file in question.
2057 */
2058static const char *
2059proc_map_files_get_link(struct dentry *dentry,
2060 struct inode *inode,
2061 struct delayed_call *done)
2062{
2063 if (!capable(CAP_SYS_ADMIN))
2064 return ERR_PTR(-EPERM);
2065
2066 return proc_pid_get_link(dentry, inode, done);
2067}
2068
2069/*
2070 * Identical to proc_pid_link_inode_operations except for get_link()
2071 */
2072static const struct inode_operations proc_map_files_link_inode_operations = {
2073 .readlink = proc_pid_readlink,
2074 .get_link = proc_map_files_get_link,
2075 .setattr = proc_setattr,
2076};
2077
2078static int
2079proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
2080 struct task_struct *task, const void *ptr)
2081{
2082 fmode_t mode = (fmode_t)(unsigned long)ptr;
2083 struct proc_inode *ei;
2084 struct inode *inode;
2085
2086 inode = proc_pid_make_inode(dir->i_sb, task, S_IFLNK |
2087 ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2088 ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2089 if (!inode)
2090 return -ENOENT;
2091
2092 ei = PROC_I(inode);
2093 ei->op.proc_get_link = map_files_get_link;
2094
2095 inode->i_op = &proc_map_files_link_inode_operations;
2096 inode->i_size = 64;
2097
2098 d_set_d_op(dentry, &tid_map_files_dentry_operations);
2099 d_add(dentry, inode);
2100
2101 return 0;
2102}
2103
2104static struct dentry *proc_map_files_lookup(struct inode *dir,
2105 struct dentry *dentry, unsigned int flags)
2106{
2107 unsigned long vm_start, vm_end;
2108 struct vm_area_struct *vma;
2109 struct task_struct *task;
2110 int result;
2111 struct mm_struct *mm;
2112
2113 result = -ENOENT;
2114 task = get_proc_task(dir);
2115 if (!task)
2116 goto out;
2117
2118 result = -EACCES;
2119 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2120 goto out_put_task;
2121
2122 result = -ENOENT;
2123 if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2124 goto out_put_task;
2125
2126 mm = get_task_mm(task);
2127 if (!mm)
2128 goto out_put_task;
2129
2130 down_read(&mm->mmap_sem);
2131 vma = find_exact_vma(mm, vm_start, vm_end);
2132 if (!vma)
2133 goto out_no_vma;
2134
2135 if (vma->vm_file)
2136 result = proc_map_files_instantiate(dir, dentry, task,
2137 (void *)(unsigned long)vma->vm_file->f_mode);
2138
2139out_no_vma:
2140 up_read(&mm->mmap_sem);
2141 mmput(mm);
2142out_put_task:
2143 put_task_struct(task);
2144out:
2145 return ERR_PTR(result);
2146}
2147
2148static const struct inode_operations proc_map_files_inode_operations = {
2149 .lookup = proc_map_files_lookup,
2150 .permission = proc_fd_permission,
2151 .setattr = proc_setattr,
2152};
2153
2154static int
2155proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2156{
2157 struct vm_area_struct *vma;
2158 struct task_struct *task;
2159 struct mm_struct *mm;
2160 unsigned long nr_files, pos, i;
2161 struct flex_array *fa = NULL;
2162 struct map_files_info info;
2163 struct map_files_info *p;
2164 int ret;
2165
2166 ret = -ENOENT;
2167 task = get_proc_task(file_inode(file));
2168 if (!task)
2169 goto out;
2170
2171 ret = -EACCES;
2172 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2173 goto out_put_task;
2174
2175 ret = 0;
2176 if (!dir_emit_dots(file, ctx))
2177 goto out_put_task;
2178
2179 mm = get_task_mm(task);
2180 if (!mm)
2181 goto out_put_task;
2182 down_read(&mm->mmap_sem);
2183
2184 nr_files = 0;
2185
2186 /*
2187 * We need two passes here:
2188 *
2189 * 1) Collect vmas of mapped files with mmap_sem taken
2190 * 2) Release mmap_sem and instantiate entries
2191 *
2192 * otherwise we get lockdep complained, since filldir()
2193 * routine might require mmap_sem taken in might_fault().
2194 */
2195
2196 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2197 if (vma->vm_file && ++pos > ctx->pos)
2198 nr_files++;
2199 }
2200
2201 if (nr_files) {
2202 fa = flex_array_alloc(sizeof(info), nr_files,
2203 GFP_KERNEL);
2204 if (!fa || flex_array_prealloc(fa, 0, nr_files,
2205 GFP_KERNEL)) {
2206 ret = -ENOMEM;
2207 if (fa)
2208 flex_array_free(fa);
2209 up_read(&mm->mmap_sem);
2210 mmput(mm);
2211 goto out_put_task;
2212 }
2213 for (i = 0, vma = mm->mmap, pos = 2; vma;
2214 vma = vma->vm_next) {
2215 if (!vma->vm_file)
2216 continue;
2217 if (++pos <= ctx->pos)
2218 continue;
2219
2220 info.mode = vma->vm_file->f_mode;
2221 info.len = snprintf(info.name,
2222 sizeof(info.name), "%lx-%lx",
2223 vma->vm_start, vma->vm_end);
2224 if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2225 BUG();
2226 }
2227 }
2228 up_read(&mm->mmap_sem);
2229
2230 for (i = 0; i < nr_files; i++) {
2231 p = flex_array_get(fa, i);
2232 if (!proc_fill_cache(file, ctx,
2233 p->name, p->len,
2234 proc_map_files_instantiate,
2235 task,
2236 (void *)(unsigned long)p->mode))
2237 break;
2238 ctx->pos++;
2239 }
2240 if (fa)
2241 flex_array_free(fa);
2242 mmput(mm);
2243
2244out_put_task:
2245 put_task_struct(task);
2246out:
2247 return ret;
2248}
2249
2250static const struct file_operations proc_map_files_operations = {
2251 .read = generic_read_dir,
2252 .iterate_shared = proc_map_files_readdir,
2253 .llseek = generic_file_llseek,
2254};
2255
2256#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2257struct timers_private {
2258 struct pid *pid;
2259 struct task_struct *task;
2260 struct sighand_struct *sighand;
2261 struct pid_namespace *ns;
2262 unsigned long flags;
2263};
2264
2265static void *timers_start(struct seq_file *m, loff_t *pos)
2266{
2267 struct timers_private *tp = m->private;
2268
2269 tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2270 if (!tp->task)
2271 return ERR_PTR(-ESRCH);
2272
2273 tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2274 if (!tp->sighand)
2275 return ERR_PTR(-ESRCH);
2276
2277 return seq_list_start(&tp->task->signal->posix_timers, *pos);
2278}
2279
2280static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2281{
2282 struct timers_private *tp = m->private;
2283 return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2284}
2285
2286static void timers_stop(struct seq_file *m, void *v)
2287{
2288 struct timers_private *tp = m->private;
2289
2290 if (tp->sighand) {
2291 unlock_task_sighand(tp->task, &tp->flags);
2292 tp->sighand = NULL;
2293 }
2294
2295 if (tp->task) {
2296 put_task_struct(tp->task);
2297 tp->task = NULL;
2298 }
2299}
2300
2301static int show_timer(struct seq_file *m, void *v)
2302{
2303 struct k_itimer *timer;
2304 struct timers_private *tp = m->private;
2305 int notify;
2306 static const char * const nstr[] = {
2307 [SIGEV_SIGNAL] = "signal",
2308 [SIGEV_NONE] = "none",
2309 [SIGEV_THREAD] = "thread",
2310 };
2311
2312 timer = list_entry((struct list_head *)v, struct k_itimer, list);
2313 notify = timer->it_sigev_notify;
2314
2315 seq_printf(m, "ID: %d\n", timer->it_id);
2316 seq_printf(m, "signal: %d/%p\n",
2317 timer->sigq->info.si_signo,
2318 timer->sigq->info.si_value.sival_ptr);
2319 seq_printf(m, "notify: %s/%s.%d\n",
2320 nstr[notify & ~SIGEV_THREAD_ID],
2321 (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2322 pid_nr_ns(timer->it_pid, tp->ns));
2323 seq_printf(m, "ClockID: %d\n", timer->it_clock);
2324
2325 return 0;
2326}
2327
2328static const struct seq_operations proc_timers_seq_ops = {
2329 .start = timers_start,
2330 .next = timers_next,
2331 .stop = timers_stop,
2332 .show = show_timer,
2333};
2334
2335static int proc_timers_open(struct inode *inode, struct file *file)
2336{
2337 struct timers_private *tp;
2338
2339 tp = __seq_open_private(file, &proc_timers_seq_ops,
2340 sizeof(struct timers_private));
2341 if (!tp)
2342 return -ENOMEM;
2343
2344 tp->pid = proc_pid(inode);
2345 tp->ns = inode->i_sb->s_fs_info;
2346 return 0;
2347}
2348
2349static const struct file_operations proc_timers_operations = {
2350 .open = proc_timers_open,
2351 .read = seq_read,
2352 .llseek = seq_lseek,
2353 .release = seq_release_private,
2354};
2355#endif
2356
2357static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2358 size_t count, loff_t *offset)
2359{
2360 struct inode *inode = file_inode(file);
2361 struct task_struct *p;
2362 u64 slack_ns;
2363 int err;
2364
2365 err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2366 if (err < 0)
2367 return err;
2368
2369 p = get_proc_task(inode);
2370 if (!p)
2371 return -ESRCH;
2372
2373 if (p != current) {
2374 if (!capable(CAP_SYS_NICE)) {
2375 count = -EPERM;
2376 goto out;
2377 }
2378
2379 err = security_task_setscheduler(p);
2380 if (err) {
2381 count = err;
2382 goto out;
2383 }
2384 }
2385
2386 task_lock(p);
2387 if (slack_ns == 0)
2388 p->timer_slack_ns = p->default_timer_slack_ns;
2389 else
2390 p->timer_slack_ns = slack_ns;
2391 task_unlock(p);
2392
2393out:
2394 put_task_struct(p);
2395
2396 return count;
2397}
2398
2399static int timerslack_ns_show(struct seq_file *m, void *v)
2400{
2401 struct inode *inode = m->private;
2402 struct task_struct *p;
2403 int err = 0;
2404
2405 p = get_proc_task(inode);
2406 if (!p)
2407 return -ESRCH;
2408
2409 if (p != current) {
2410
2411 if (!capable(CAP_SYS_NICE)) {
2412 err = -EPERM;
2413 goto out;
2414 }
2415 err = security_task_getscheduler(p);
2416 if (err)
2417 goto out;
2418 }
2419
2420 task_lock(p);
2421 seq_printf(m, "%llu\n", p->timer_slack_ns);
2422 task_unlock(p);
2423
2424out:
2425 put_task_struct(p);
2426
2427 return err;
2428}
2429
2430static int timerslack_ns_open(struct inode *inode, struct file *filp)
2431{
2432 return single_open(filp, timerslack_ns_show, inode);
2433}
2434
2435static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2436 .open = timerslack_ns_open,
2437 .read = seq_read,
2438 .write = timerslack_ns_write,
2439 .llseek = seq_lseek,
2440 .release = single_release,
2441};
2442
2443static int proc_pident_instantiate(struct inode *dir,
2444 struct dentry *dentry, struct task_struct *task, const void *ptr)
2445{
2446 const struct pid_entry *p = ptr;
2447 struct inode *inode;
2448 struct proc_inode *ei;
2449
2450 inode = proc_pid_make_inode(dir->i_sb, task, p->mode);
2451 if (!inode)
2452 goto out;
2453
2454 ei = PROC_I(inode);
2455 if (S_ISDIR(inode->i_mode))
2456 set_nlink(inode, 2); /* Use getattr to fix if necessary */
2457 if (p->iop)
2458 inode->i_op = p->iop;
2459 if (p->fop)
2460 inode->i_fop = p->fop;
2461 ei->op = p->op;
2462 d_set_d_op(dentry, &pid_dentry_operations);
2463 d_add(dentry, inode);
2464 /* Close the race of the process dying before we return the dentry */
2465 if (pid_revalidate(dentry, 0))
2466 return 0;
2467out:
2468 return -ENOENT;
2469}
2470
2471static struct dentry *proc_pident_lookup(struct inode *dir,
2472 struct dentry *dentry,
2473 const struct pid_entry *ents,
2474 unsigned int nents)
2475{
2476 int error;
2477 struct task_struct *task = get_proc_task(dir);
2478 const struct pid_entry *p, *last;
2479
2480 error = -ENOENT;
2481
2482 if (!task)
2483 goto out_no_task;
2484
2485 /*
2486 * Yes, it does not scale. And it should not. Don't add
2487 * new entries into /proc/<tgid>/ without very good reasons.
2488 */
2489 last = &ents[nents];
2490 for (p = ents; p < last; p++) {
2491 if (p->len != dentry->d_name.len)
2492 continue;
2493 if (!memcmp(dentry->d_name.name, p->name, p->len))
2494 break;
2495 }
2496 if (p >= last)
2497 goto out;
2498
2499 error = proc_pident_instantiate(dir, dentry, task, p);
2500out:
2501 put_task_struct(task);
2502out_no_task:
2503 return ERR_PTR(error);
2504}
2505
2506static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2507 const struct pid_entry *ents, unsigned int nents)
2508{
2509 struct task_struct *task = get_proc_task(file_inode(file));
2510 const struct pid_entry *p;
2511
2512 if (!task)
2513 return -ENOENT;
2514
2515 if (!dir_emit_dots(file, ctx))
2516 goto out;
2517
2518 if (ctx->pos >= nents + 2)
2519 goto out;
2520
2521 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2522 if (!proc_fill_cache(file, ctx, p->name, p->len,
2523 proc_pident_instantiate, task, p))
2524 break;
2525 ctx->pos++;
2526 }
2527out:
2528 put_task_struct(task);
2529 return 0;
2530}
2531
2532#ifdef CONFIG_SECURITY
2533static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2534 size_t count, loff_t *ppos)
2535{
2536 struct inode * inode = file_inode(file);
2537 char *p = NULL;
2538 ssize_t length;
2539 struct task_struct *task = get_proc_task(inode);
2540
2541 if (!task)
2542 return -ESRCH;
2543
2544 length = security_getprocattr(task,
2545 (char*)file->f_path.dentry->d_name.name,
2546 &p);
2547 put_task_struct(task);
2548 if (length > 0)
2549 length = simple_read_from_buffer(buf, count, ppos, p, length);
2550 kfree(p);
2551 return length;
2552}
2553
2554static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2555 size_t count, loff_t *ppos)
2556{
2557 struct inode * inode = file_inode(file);
2558 void *page;
2559 ssize_t length;
2560 struct task_struct *task = get_proc_task(inode);
2561
2562 length = -ESRCH;
2563 if (!task)
2564 goto out_no_task;
2565
2566 /* A task may only write its own attributes. */
2567 length = -EACCES;
2568 if (current != task)
2569 goto out;
2570
2571 if (count > PAGE_SIZE)
2572 count = PAGE_SIZE;
2573
2574 /* No partial writes. */
2575 length = -EINVAL;
2576 if (*ppos != 0)
2577 goto out;
2578
2579 page = memdup_user(buf, count);
2580 if (IS_ERR(page)) {
2581 length = PTR_ERR(page);
2582 goto out;
2583 }
2584
2585 /* Guard against adverse ptrace interaction */
2586 length = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2587 if (length < 0)
2588 goto out_free;
2589
2590 length = security_setprocattr(file->f_path.dentry->d_name.name,
2591 page, count);
2592 mutex_unlock(&current->signal->cred_guard_mutex);
2593out_free:
2594 kfree(page);
2595out:
2596 put_task_struct(task);
2597out_no_task:
2598 return length;
2599}
2600
2601static const struct file_operations proc_pid_attr_operations = {
2602 .read = proc_pid_attr_read,
2603 .write = proc_pid_attr_write,
2604 .llseek = generic_file_llseek,
2605};
2606
2607static const struct pid_entry attr_dir_stuff[] = {
2608 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2609 REG("prev", S_IRUGO, proc_pid_attr_operations),
2610 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2611 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2612 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2613 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2614};
2615
2616static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2617{
2618 return proc_pident_readdir(file, ctx,
2619 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2620}
2621
2622static const struct file_operations proc_attr_dir_operations = {
2623 .read = generic_read_dir,
2624 .iterate_shared = proc_attr_dir_readdir,
2625 .llseek = generic_file_llseek,
2626};
2627
2628static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2629 struct dentry *dentry, unsigned int flags)
2630{
2631 return proc_pident_lookup(dir, dentry,
2632 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2633}
2634
2635static const struct inode_operations proc_attr_dir_inode_operations = {
2636 .lookup = proc_attr_dir_lookup,
2637 .getattr = pid_getattr,
2638 .setattr = proc_setattr,
2639};
2640
2641#endif
2642
2643#ifdef CONFIG_ELF_CORE
2644static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2645 size_t count, loff_t *ppos)
2646{
2647 struct task_struct *task = get_proc_task(file_inode(file));
2648 struct mm_struct *mm;
2649 char buffer[PROC_NUMBUF];
2650 size_t len;
2651 int ret;
2652
2653 if (!task)
2654 return -ESRCH;
2655
2656 ret = 0;
2657 mm = get_task_mm(task);
2658 if (mm) {
2659 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2660 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2661 MMF_DUMP_FILTER_SHIFT));
2662 mmput(mm);
2663 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2664 }
2665
2666 put_task_struct(task);
2667
2668 return ret;
2669}
2670
2671static ssize_t proc_coredump_filter_write(struct file *file,
2672 const char __user *buf,
2673 size_t count,
2674 loff_t *ppos)
2675{
2676 struct task_struct *task;
2677 struct mm_struct *mm;
2678 unsigned int val;
2679 int ret;
2680 int i;
2681 unsigned long mask;
2682
2683 ret = kstrtouint_from_user(buf, count, 0, &val);
2684 if (ret < 0)
2685 return ret;
2686
2687 ret = -ESRCH;
2688 task = get_proc_task(file_inode(file));
2689 if (!task)
2690 goto out_no_task;
2691
2692 mm = get_task_mm(task);
2693 if (!mm)
2694 goto out_no_mm;
2695 ret = 0;
2696
2697 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2698 if (val & mask)
2699 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2700 else
2701 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2702 }
2703
2704 mmput(mm);
2705 out_no_mm:
2706 put_task_struct(task);
2707 out_no_task:
2708 if (ret < 0)
2709 return ret;
2710 return count;
2711}
2712
2713static const struct file_operations proc_coredump_filter_operations = {
2714 .read = proc_coredump_filter_read,
2715 .write = proc_coredump_filter_write,
2716 .llseek = generic_file_llseek,
2717};
2718#endif
2719
2720#ifdef CONFIG_TASK_IO_ACCOUNTING
2721static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2722{
2723 struct task_io_accounting acct = task->ioac;
2724 unsigned long flags;
2725 int result;
2726
2727 result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2728 if (result)
2729 return result;
2730
2731 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2732 result = -EACCES;
2733 goto out_unlock;
2734 }
2735
2736 if (whole && lock_task_sighand(task, &flags)) {
2737 struct task_struct *t = task;
2738
2739 task_io_accounting_add(&acct, &task->signal->ioac);
2740 while_each_thread(task, t)
2741 task_io_accounting_add(&acct, &t->ioac);
2742
2743 unlock_task_sighand(task, &flags);
2744 }
2745 seq_printf(m,
2746 "rchar: %llu\n"
2747 "wchar: %llu\n"
2748 "syscr: %llu\n"
2749 "syscw: %llu\n"
2750 "read_bytes: %llu\n"
2751 "write_bytes: %llu\n"
2752 "cancelled_write_bytes: %llu\n",
2753 (unsigned long long)acct.rchar,
2754 (unsigned long long)acct.wchar,
2755 (unsigned long long)acct.syscr,
2756 (unsigned long long)acct.syscw,
2757 (unsigned long long)acct.read_bytes,
2758 (unsigned long long)acct.write_bytes,
2759 (unsigned long long)acct.cancelled_write_bytes);
2760 result = 0;
2761
2762out_unlock:
2763 mutex_unlock(&task->signal->cred_guard_mutex);
2764 return result;
2765}
2766
2767static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2768 struct pid *pid, struct task_struct *task)
2769{
2770 return do_io_accounting(task, m, 0);
2771}
2772
2773static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2774 struct pid *pid, struct task_struct *task)
2775{
2776 return do_io_accounting(task, m, 1);
2777}
2778#endif /* CONFIG_TASK_IO_ACCOUNTING */
2779
2780#ifdef CONFIG_USER_NS
2781static int proc_id_map_open(struct inode *inode, struct file *file,
2782 const struct seq_operations *seq_ops)
2783{
2784 struct user_namespace *ns = NULL;
2785 struct task_struct *task;
2786 struct seq_file *seq;
2787 int ret = -EINVAL;
2788
2789 task = get_proc_task(inode);
2790 if (task) {
2791 rcu_read_lock();
2792 ns = get_user_ns(task_cred_xxx(task, user_ns));
2793 rcu_read_unlock();
2794 put_task_struct(task);
2795 }
2796 if (!ns)
2797 goto err;
2798
2799 ret = seq_open(file, seq_ops);
2800 if (ret)
2801 goto err_put_ns;
2802
2803 seq = file->private_data;
2804 seq->private = ns;
2805
2806 return 0;
2807err_put_ns:
2808 put_user_ns(ns);
2809err:
2810 return ret;
2811}
2812
2813static int proc_id_map_release(struct inode *inode, struct file *file)
2814{
2815 struct seq_file *seq = file->private_data;
2816 struct user_namespace *ns = seq->private;
2817 put_user_ns(ns);
2818 return seq_release(inode, file);
2819}
2820
2821static int proc_uid_map_open(struct inode *inode, struct file *file)
2822{
2823 return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2824}
2825
2826static int proc_gid_map_open(struct inode *inode, struct file *file)
2827{
2828 return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2829}
2830
2831static int proc_projid_map_open(struct inode *inode, struct file *file)
2832{
2833 return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2834}
2835
2836static const struct file_operations proc_uid_map_operations = {
2837 .open = proc_uid_map_open,
2838 .write = proc_uid_map_write,
2839 .read = seq_read,
2840 .llseek = seq_lseek,
2841 .release = proc_id_map_release,
2842};
2843
2844static const struct file_operations proc_gid_map_operations = {
2845 .open = proc_gid_map_open,
2846 .write = proc_gid_map_write,
2847 .read = seq_read,
2848 .llseek = seq_lseek,
2849 .release = proc_id_map_release,
2850};
2851
2852static const struct file_operations proc_projid_map_operations = {
2853 .open = proc_projid_map_open,
2854 .write = proc_projid_map_write,
2855 .read = seq_read,
2856 .llseek = seq_lseek,
2857 .release = proc_id_map_release,
2858};
2859
2860static int proc_setgroups_open(struct inode *inode, struct file *file)
2861{
2862 struct user_namespace *ns = NULL;
2863 struct task_struct *task;
2864 int ret;
2865
2866 ret = -ESRCH;
2867 task = get_proc_task(inode);
2868 if (task) {
2869 rcu_read_lock();
2870 ns = get_user_ns(task_cred_xxx(task, user_ns));
2871 rcu_read_unlock();
2872 put_task_struct(task);
2873 }
2874 if (!ns)
2875 goto err;
2876
2877 if (file->f_mode & FMODE_WRITE) {
2878 ret = -EACCES;
2879 if (!ns_capable(ns, CAP_SYS_ADMIN))
2880 goto err_put_ns;
2881 }
2882
2883 ret = single_open(file, &proc_setgroups_show, ns);
2884 if (ret)
2885 goto err_put_ns;
2886
2887 return 0;
2888err_put_ns:
2889 put_user_ns(ns);
2890err:
2891 return ret;
2892}
2893
2894static int proc_setgroups_release(struct inode *inode, struct file *file)
2895{
2896 struct seq_file *seq = file->private_data;
2897 struct user_namespace *ns = seq->private;
2898 int ret = single_release(inode, file);
2899 put_user_ns(ns);
2900 return ret;
2901}
2902
2903static const struct file_operations proc_setgroups_operations = {
2904 .open = proc_setgroups_open,
2905 .write = proc_setgroups_write,
2906 .read = seq_read,
2907 .llseek = seq_lseek,
2908 .release = proc_setgroups_release,
2909};
2910#endif /* CONFIG_USER_NS */
2911
2912static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2913 struct pid *pid, struct task_struct *task)
2914{
2915 int err = lock_trace(task);
2916 if (!err) {
2917 seq_printf(m, "%08x\n", task->personality);
2918 unlock_trace(task);
2919 }
2920 return err;
2921}
2922
2923#ifdef CONFIG_LIVEPATCH
2924static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
2925 struct pid *pid, struct task_struct *task)
2926{
2927 seq_printf(m, "%d\n", task->patch_state);
2928 return 0;
2929}
2930#endif /* CONFIG_LIVEPATCH */
2931
2932/*
2933 * Thread groups
2934 */
2935static const struct file_operations proc_task_operations;
2936static const struct inode_operations proc_task_inode_operations;
2937
2938static const struct pid_entry tgid_base_stuff[] = {
2939 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2940 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2941 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2942 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2943 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2944#ifdef CONFIG_NET
2945 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2946#endif
2947 REG("environ", S_IRUSR, proc_environ_operations),
2948 REG("auxv", S_IRUSR, proc_auxv_operations),
2949 ONE("status", S_IRUGO, proc_pid_status),
2950 ONE("personality", S_IRUSR, proc_pid_personality),
2951 ONE("limits", S_IRUGO, proc_pid_limits),
2952#ifdef CONFIG_SCHED_DEBUG
2953 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2954#endif
2955#ifdef CONFIG_SCHED_AUTOGROUP
2956 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2957#endif
2958 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2959#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2960 ONE("syscall", S_IRUSR, proc_pid_syscall),
2961#endif
2962 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
2963 ONE("stat", S_IRUGO, proc_tgid_stat),
2964 ONE("statm", S_IRUGO, proc_pid_statm),
2965 REG("maps", S_IRUGO, proc_pid_maps_operations),
2966#ifdef CONFIG_NUMA
2967 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
2968#endif
2969 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2970 LNK("cwd", proc_cwd_link),
2971 LNK("root", proc_root_link),
2972 LNK("exe", proc_exe_link),
2973 REG("mounts", S_IRUGO, proc_mounts_operations),
2974 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2975 REG("mountstats", S_IRUSR, proc_mountstats_operations),
2976#ifdef CONFIG_PROC_PAGE_MONITOR
2977 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2978 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
2979 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
2980 REG("pagemap", S_IRUSR, proc_pagemap_operations),
2981#endif
2982#ifdef CONFIG_SECURITY
2983 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2984#endif
2985#ifdef CONFIG_KALLSYMS
2986 ONE("wchan", S_IRUGO, proc_pid_wchan),
2987#endif
2988#ifdef CONFIG_STACKTRACE
2989 ONE("stack", S_IRUSR, proc_pid_stack),
2990#endif
2991#ifdef CONFIG_SCHED_INFO
2992 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
2993#endif
2994#ifdef CONFIG_LATENCYTOP
2995 REG("latency", S_IRUGO, proc_lstats_operations),
2996#endif
2997#ifdef CONFIG_PROC_PID_CPUSET
2998 ONE("cpuset", S_IRUGO, proc_cpuset_show),
2999#endif
3000#ifdef CONFIG_CGROUPS
3001 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3002#endif
3003 ONE("oom_score", S_IRUGO, proc_oom_score),
3004 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3005 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3006#ifdef CONFIG_AUDITSYSCALL
3007 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3008 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3009#endif
3010#ifdef CONFIG_FAULT_INJECTION
3011 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3012 REG("fail-nth", 0644, proc_fail_nth_operations),
3013#endif
3014#ifdef CONFIG_ELF_CORE
3015 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3016#endif
3017#ifdef CONFIG_TASK_IO_ACCOUNTING
3018 ONE("io", S_IRUSR, proc_tgid_io_accounting),
3019#endif
3020#ifdef CONFIG_HARDWALL
3021 ONE("hardwall", S_IRUGO, proc_pid_hardwall),
3022#endif
3023#ifdef CONFIG_USER_NS
3024 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3025 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3026 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3027 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3028#endif
3029#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3030 REG("timers", S_IRUGO, proc_timers_operations),
3031#endif
3032 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3033#ifdef CONFIG_LIVEPATCH
3034 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3035#endif
3036#ifdef CONFIG_CPU_FREQ_TIMES
3037 ONE("time_in_state", 0444, proc_time_in_state_show),
3038#endif
3039};
3040
3041static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3042{
3043 return proc_pident_readdir(file, ctx,
3044 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3045}
3046
3047static const struct file_operations proc_tgid_base_operations = {
3048 .read = generic_read_dir,
3049 .iterate_shared = proc_tgid_base_readdir,
3050 .llseek = generic_file_llseek,
3051};
3052
3053static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3054{
3055 return proc_pident_lookup(dir, dentry,
3056 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3057}
3058
3059static const struct inode_operations proc_tgid_base_inode_operations = {
3060 .lookup = proc_tgid_base_lookup,
3061 .getattr = pid_getattr,
3062 .setattr = proc_setattr,
3063 .permission = proc_pid_permission,
3064};
3065
3066static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
3067{
3068 struct dentry *dentry, *leader, *dir;
3069 char buf[PROC_NUMBUF];
3070 struct qstr name;
3071
3072 name.name = buf;
3073 name.len = snprintf(buf, sizeof(buf), "%d", pid);
3074 /* no ->d_hash() rejects on procfs */
3075 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
3076 if (dentry) {
3077 d_invalidate(dentry);
3078 dput(dentry);
3079 }
3080
3081 if (pid == tgid)
3082 return;
3083
3084 name.name = buf;
3085 name.len = snprintf(buf, sizeof(buf), "%d", tgid);
3086 leader = d_hash_and_lookup(mnt->mnt_root, &name);
3087 if (!leader)
3088 goto out;
3089
3090 name.name = "task";
3091 name.len = strlen(name.name);
3092 dir = d_hash_and_lookup(leader, &name);
3093 if (!dir)
3094 goto out_put_leader;
3095
3096 name.name = buf;
3097 name.len = snprintf(buf, sizeof(buf), "%d", pid);
3098 dentry = d_hash_and_lookup(dir, &name);
3099 if (dentry) {
3100 d_invalidate(dentry);
3101 dput(dentry);
3102 }
3103
3104 dput(dir);
3105out_put_leader:
3106 dput(leader);
3107out:
3108 return;
3109}
3110
3111/**
3112 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
3113 * @task: task that should be flushed.
3114 *
3115 * When flushing dentries from proc, one needs to flush them from global
3116 * proc (proc_mnt) and from all the namespaces' procs this task was seen
3117 * in. This call is supposed to do all of this job.
3118 *
3119 * Looks in the dcache for
3120 * /proc/@pid
3121 * /proc/@tgid/task/@pid
3122 * if either directory is present flushes it and all of it'ts children
3123 * from the dcache.
3124 *
3125 * It is safe and reasonable to cache /proc entries for a task until
3126 * that task exits. After that they just clog up the dcache with
3127 * useless entries, possibly causing useful dcache entries to be
3128 * flushed instead. This routine is proved to flush those useless
3129 * dcache entries at process exit time.
3130 *
3131 * NOTE: This routine is just an optimization so it does not guarantee
3132 * that no dcache entries will exist at process exit time it
3133 * just makes it very unlikely that any will persist.
3134 */
3135
3136void proc_flush_task(struct task_struct *task)
3137{
3138 int i;
3139 struct pid *pid, *tgid;
3140 struct upid *upid;
3141
3142 pid = task_pid(task);
3143 tgid = task_tgid(task);
3144
3145 for (i = 0; i <= pid->level; i++) {
3146 upid = &pid->numbers[i];
3147 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3148 tgid->numbers[i].nr);
3149 }
3150}
3151
3152static int proc_pid_instantiate(struct inode *dir,
3153 struct dentry * dentry,
3154 struct task_struct *task, const void *ptr)
3155{
3156 struct inode *inode;
3157
3158 inode = proc_pid_make_inode(dir->i_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3159 if (!inode)
3160 goto out;
3161
3162 inode->i_op = &proc_tgid_base_inode_operations;
3163 inode->i_fop = &proc_tgid_base_operations;
3164 inode->i_flags|=S_IMMUTABLE;
3165
3166 set_nlink(inode, nlink_tgid);
3167
3168 d_set_d_op(dentry, &pid_dentry_operations);
3169
3170 d_add(dentry, inode);
3171 /* Close the race of the process dying before we return the dentry */
3172 if (pid_revalidate(dentry, 0))
3173 return 0;
3174out:
3175 return -ENOENT;
3176}
3177
3178struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3179{
3180 int result = -ENOENT;
3181 struct task_struct *task;
3182 unsigned tgid;
3183 struct pid_namespace *ns;
3184
3185 tgid = name_to_int(&dentry->d_name);
3186 if (tgid == ~0U)
3187 goto out;
3188
3189 ns = dentry->d_sb->s_fs_info;
3190 rcu_read_lock();
3191 task = find_task_by_pid_ns(tgid, ns);
3192 if (task)
3193 get_task_struct(task);
3194 rcu_read_unlock();
3195 if (!task)
3196 goto out;
3197
3198 result = proc_pid_instantiate(dir, dentry, task, NULL);
3199 put_task_struct(task);
3200out:
3201 return ERR_PTR(result);
3202}
3203
3204/*
3205 * Find the first task with tgid >= tgid
3206 *
3207 */
3208struct tgid_iter {
3209 unsigned int tgid;
3210 struct task_struct *task;
3211};
3212static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3213{
3214 struct pid *pid;
3215
3216 if (iter.task)
3217 put_task_struct(iter.task);
3218 rcu_read_lock();
3219retry:
3220 iter.task = NULL;
3221 pid = find_ge_pid(iter.tgid, ns);
3222 if (pid) {
3223 iter.tgid = pid_nr_ns(pid, ns);
3224 iter.task = pid_task(pid, PIDTYPE_PID);
3225 /* What we to know is if the pid we have find is the
3226 * pid of a thread_group_leader. Testing for task
3227 * being a thread_group_leader is the obvious thing
3228 * todo but there is a window when it fails, due to
3229 * the pid transfer logic in de_thread.
3230 *
3231 * So we perform the straight forward test of seeing
3232 * if the pid we have found is the pid of a thread
3233 * group leader, and don't worry if the task we have
3234 * found doesn't happen to be a thread group leader.
3235 * As we don't care in the case of readdir.
3236 */
3237 if (!iter.task || !has_group_leader_pid(iter.task)) {
3238 iter.tgid += 1;
3239 goto retry;
3240 }
3241 get_task_struct(iter.task);
3242 }
3243 rcu_read_unlock();
3244 return iter;
3245}
3246
3247#define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3248
3249/* for the /proc/ directory itself, after non-process stuff has been done */
3250int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3251{
3252 struct tgid_iter iter;
3253 struct pid_namespace *ns = file_inode(file)->i_sb->s_fs_info;
3254 loff_t pos = ctx->pos;
3255
3256 if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3257 return 0;
3258
3259 if (pos == TGID_OFFSET - 2) {
3260 struct inode *inode = d_inode(ns->proc_self);
3261 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3262 return 0;
3263 ctx->pos = pos = pos + 1;
3264 }
3265 if (pos == TGID_OFFSET - 1) {
3266 struct inode *inode = d_inode(ns->proc_thread_self);
3267 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3268 return 0;
3269 ctx->pos = pos = pos + 1;
3270 }
3271 iter.tgid = pos - TGID_OFFSET;
3272 iter.task = NULL;
3273 for (iter = next_tgid(ns, iter);
3274 iter.task;
3275 iter.tgid += 1, iter = next_tgid(ns, iter)) {
3276 char name[PROC_NUMBUF];
3277 int len;
3278
3279 cond_resched();
3280 if (!has_pid_permissions(ns, iter.task, HIDEPID_INVISIBLE))
3281 continue;
3282
3283 len = snprintf(name, sizeof(name), "%d", iter.tgid);
3284 ctx->pos = iter.tgid + TGID_OFFSET;
3285 if (!proc_fill_cache(file, ctx, name, len,
3286 proc_pid_instantiate, iter.task, NULL)) {
3287 put_task_struct(iter.task);
3288 return 0;
3289 }
3290 }
3291 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3292 return 0;
3293}
3294
3295/*
3296 * proc_tid_comm_permission is a special permission function exclusively
3297 * used for the node /proc/<pid>/task/<tid>/comm.
3298 * It bypasses generic permission checks in the case where a task of the same
3299 * task group attempts to access the node.
3300 * The rationale behind this is that glibc and bionic access this node for
3301 * cross thread naming (pthread_set/getname_np(!self)). However, if
3302 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3303 * which locks out the cross thread naming implementation.
3304 * This function makes sure that the node is always accessible for members of
3305 * same thread group.
3306 */
3307static int proc_tid_comm_permission(struct inode *inode, int mask)
3308{
3309 bool is_same_tgroup;
3310 struct task_struct *task;
3311
3312 task = get_proc_task(inode);
3313 if (!task)
3314 return -ESRCH;
3315 is_same_tgroup = same_thread_group(current, task);
3316 put_task_struct(task);
3317
3318 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3319 /* This file (/proc/<pid>/task/<tid>/comm) can always be
3320 * read or written by the members of the corresponding
3321 * thread group.
3322 */
3323 return 0;
3324 }
3325
3326 return generic_permission(inode, mask);
3327}
3328
3329static const struct inode_operations proc_tid_comm_inode_operations = {
3330 .permission = proc_tid_comm_permission,
3331};
3332
3333/*
3334 * Tasks
3335 */
3336static const struct pid_entry tid_base_stuff[] = {
3337 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3338 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3339 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3340#ifdef CONFIG_NET
3341 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3342#endif
3343 REG("environ", S_IRUSR, proc_environ_operations),
3344 REG("auxv", S_IRUSR, proc_auxv_operations),
3345 ONE("status", S_IRUGO, proc_pid_status),
3346 ONE("personality", S_IRUSR, proc_pid_personality),
3347 ONE("limits", S_IRUGO, proc_pid_limits),
3348#ifdef CONFIG_SCHED_DEBUG
3349 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3350#endif
3351 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR,
3352 &proc_tid_comm_inode_operations,
3353 &proc_pid_set_comm_operations, {}),
3354#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3355 ONE("syscall", S_IRUSR, proc_pid_syscall),
3356#endif
3357 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3358 ONE("stat", S_IRUGO, proc_tid_stat),
3359 ONE("statm", S_IRUGO, proc_pid_statm),
3360 REG("maps", S_IRUGO, proc_tid_maps_operations),
3361#ifdef CONFIG_PROC_CHILDREN
3362 REG("children", S_IRUGO, proc_tid_children_operations),
3363#endif
3364#ifdef CONFIG_NUMA
3365 REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3366#endif
3367 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3368 LNK("cwd", proc_cwd_link),
3369 LNK("root", proc_root_link),
3370 LNK("exe", proc_exe_link),
3371 REG("mounts", S_IRUGO, proc_mounts_operations),
3372 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3373#ifdef CONFIG_PROC_PAGE_MONITOR
3374 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3375 REG("smaps", S_IRUGO, proc_tid_smaps_operations),
3376 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3377 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3378#endif
3379#ifdef CONFIG_SECURITY
3380 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3381#endif
3382#ifdef CONFIG_KALLSYMS
3383 ONE("wchan", S_IRUGO, proc_pid_wchan),
3384#endif
3385#ifdef CONFIG_STACKTRACE
3386 ONE("stack", S_IRUSR, proc_pid_stack),
3387#endif
3388#ifdef CONFIG_SCHED_INFO
3389 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3390#endif
3391#ifdef CONFIG_LATENCYTOP
3392 REG("latency", S_IRUGO, proc_lstats_operations),
3393#endif
3394#ifdef CONFIG_PROC_PID_CPUSET
3395 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3396#endif
3397#ifdef CONFIG_CGROUPS
3398 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3399#endif
3400 ONE("oom_score", S_IRUGO, proc_oom_score),
3401 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3402 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3403#ifdef CONFIG_AUDITSYSCALL
3404 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3405 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3406#endif
3407#ifdef CONFIG_FAULT_INJECTION
3408 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3409 REG("fail-nth", 0644, proc_fail_nth_operations),
3410#endif
3411#ifdef CONFIG_TASK_IO_ACCOUNTING
3412 ONE("io", S_IRUSR, proc_tid_io_accounting),
3413#endif
3414#ifdef CONFIG_HARDWALL
3415 ONE("hardwall", S_IRUGO, proc_pid_hardwall),
3416#endif
3417#ifdef CONFIG_USER_NS
3418 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3419 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3420 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3421 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3422#endif
3423#ifdef CONFIG_LIVEPATCH
3424 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3425#endif
3426#ifdef CONFIG_CPU_FREQ_TIMES
3427 ONE("time_in_state", 0444, proc_time_in_state_show),
3428#endif
3429};
3430
3431static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3432{
3433 return proc_pident_readdir(file, ctx,
3434 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3435}
3436
3437static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3438{
3439 return proc_pident_lookup(dir, dentry,
3440 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3441}
3442
3443static const struct file_operations proc_tid_base_operations = {
3444 .read = generic_read_dir,
3445 .iterate_shared = proc_tid_base_readdir,
3446 .llseek = generic_file_llseek,
3447};
3448
3449static const struct inode_operations proc_tid_base_inode_operations = {
3450 .lookup = proc_tid_base_lookup,
3451 .getattr = pid_getattr,
3452 .setattr = proc_setattr,
3453};
3454
3455static int proc_task_instantiate(struct inode *dir,
3456 struct dentry *dentry, struct task_struct *task, const void *ptr)
3457{
3458 struct inode *inode;
3459 inode = proc_pid_make_inode(dir->i_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3460
3461 if (!inode)
3462 goto out;
3463 inode->i_op = &proc_tid_base_inode_operations;
3464 inode->i_fop = &proc_tid_base_operations;
3465 inode->i_flags|=S_IMMUTABLE;
3466
3467 set_nlink(inode, nlink_tid);
3468
3469 d_set_d_op(dentry, &pid_dentry_operations);
3470
3471 d_add(dentry, inode);
3472 /* Close the race of the process dying before we return the dentry */
3473 if (pid_revalidate(dentry, 0))
3474 return 0;
3475out:
3476 return -ENOENT;
3477}
3478
3479static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3480{
3481 int result = -ENOENT;
3482 struct task_struct *task;
3483 struct task_struct *leader = get_proc_task(dir);
3484 unsigned tid;
3485 struct pid_namespace *ns;
3486
3487 if (!leader)
3488 goto out_no_task;
3489
3490 tid = name_to_int(&dentry->d_name);
3491 if (tid == ~0U)
3492 goto out;
3493
3494 ns = dentry->d_sb->s_fs_info;
3495 rcu_read_lock();
3496 task = find_task_by_pid_ns(tid, ns);
3497 if (task)
3498 get_task_struct(task);
3499 rcu_read_unlock();
3500 if (!task)
3501 goto out;
3502 if (!same_thread_group(leader, task))
3503 goto out_drop_task;
3504
3505 result = proc_task_instantiate(dir, dentry, task, NULL);
3506out_drop_task:
3507 put_task_struct(task);
3508out:
3509 put_task_struct(leader);
3510out_no_task:
3511 return ERR_PTR(result);
3512}
3513
3514/*
3515 * Find the first tid of a thread group to return to user space.
3516 *
3517 * Usually this is just the thread group leader, but if the users
3518 * buffer was too small or there was a seek into the middle of the
3519 * directory we have more work todo.
3520 *
3521 * In the case of a short read we start with find_task_by_pid.
3522 *
3523 * In the case of a seek we start with the leader and walk nr
3524 * threads past it.
3525 */
3526static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3527 struct pid_namespace *ns)
3528{
3529 struct task_struct *pos, *task;
3530 unsigned long nr = f_pos;
3531
3532 if (nr != f_pos) /* 32bit overflow? */
3533 return NULL;
3534
3535 rcu_read_lock();
3536 task = pid_task(pid, PIDTYPE_PID);
3537 if (!task)
3538 goto fail;
3539
3540 /* Attempt to start with the tid of a thread */
3541 if (tid && nr) {
3542 pos = find_task_by_pid_ns(tid, ns);
3543 if (pos && same_thread_group(pos, task))
3544 goto found;
3545 }
3546
3547 /* If nr exceeds the number of threads there is nothing todo */
3548 if (nr >= get_nr_threads(task))
3549 goto fail;
3550
3551 /* If we haven't found our starting place yet start
3552 * with the leader and walk nr threads forward.
3553 */
3554 pos = task = task->group_leader;
3555 do {
3556 if (!nr--)
3557 goto found;
3558 } while_each_thread(task, pos);
3559fail:
3560 pos = NULL;
3561 goto out;
3562found:
3563 get_task_struct(pos);
3564out:
3565 rcu_read_unlock();
3566 return pos;
3567}
3568
3569/*
3570 * Find the next thread in the thread list.
3571 * Return NULL if there is an error or no next thread.
3572 *
3573 * The reference to the input task_struct is released.
3574 */
3575static struct task_struct *next_tid(struct task_struct *start)
3576{
3577 struct task_struct *pos = NULL;
3578 rcu_read_lock();
3579 if (pid_alive(start)) {
3580 pos = next_thread(start);
3581 if (thread_group_leader(pos))
3582 pos = NULL;
3583 else
3584 get_task_struct(pos);
3585 }
3586 rcu_read_unlock();
3587 put_task_struct(start);
3588 return pos;
3589}
3590
3591/* for the /proc/TGID/task/ directories */
3592static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3593{
3594 struct inode *inode = file_inode(file);
3595 struct task_struct *task;
3596 struct pid_namespace *ns;
3597 int tid;
3598
3599 if (proc_inode_is_dead(inode))
3600 return -ENOENT;
3601
3602 if (!dir_emit_dots(file, ctx))
3603 return 0;
3604
3605 /* f_version caches the tgid value that the last readdir call couldn't
3606 * return. lseek aka telldir automagically resets f_version to 0.
3607 */
3608 ns = inode->i_sb->s_fs_info;
3609 tid = (int)file->f_version;
3610 file->f_version = 0;
3611 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3612 task;
3613 task = next_tid(task), ctx->pos++) {
3614 char name[PROC_NUMBUF];
3615 int len;
3616 tid = task_pid_nr_ns(task, ns);
3617 len = snprintf(name, sizeof(name), "%d", tid);
3618 if (!proc_fill_cache(file, ctx, name, len,
3619 proc_task_instantiate, task, NULL)) {
3620 /* returning this tgid failed, save it as the first
3621 * pid for the next readir call */
3622 file->f_version = (u64)tid;
3623 put_task_struct(task);
3624 break;
3625 }
3626 }
3627
3628 return 0;
3629}
3630
3631static int proc_task_getattr(const struct path *path, struct kstat *stat,
3632 u32 request_mask, unsigned int query_flags)
3633{
3634 struct inode *inode = d_inode(path->dentry);
3635 struct task_struct *p = get_proc_task(inode);
3636 generic_fillattr(inode, stat);
3637
3638 if (p) {
3639 stat->nlink += get_nr_threads(p);
3640 put_task_struct(p);
3641 }
3642
3643 return 0;
3644}
3645
3646static const struct inode_operations proc_task_inode_operations = {
3647 .lookup = proc_task_lookup,
3648 .getattr = proc_task_getattr,
3649 .setattr = proc_setattr,
3650 .permission = proc_pid_permission,
3651};
3652
3653static const struct file_operations proc_task_operations = {
3654 .read = generic_read_dir,
3655 .iterate_shared = proc_task_readdir,
3656 .llseek = generic_file_llseek,
3657};
3658
3659void __init set_proc_pid_nlink(void)
3660{
3661 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3662 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3663}