| rjw | 1f88458 | 2022-01-06 17:20:42 +0800 | [diff] [blame] | 1 | /* | 
 | 2 |  * Squashfs - a compressed read only filesystem for Linux | 
 | 3 |  * | 
 | 4 |  * Copyright (c) 2002, 2003, 2004, 2005, 2006, 2007, 2008 | 
 | 5 |  * Phillip Lougher <phillip@squashfs.org.uk> | 
 | 6 |  * | 
 | 7 |  * This program is free software; you can redistribute it and/or | 
 | 8 |  * modify it under the terms of the GNU General Public License | 
 | 9 |  * as published by the Free Software Foundation; either version 2, | 
 | 10 |  * or (at your option) any later version. | 
 | 11 |  * | 
 | 12 |  * This program is distributed in the hope that it will be useful, | 
 | 13 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 | 14 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 | 15 |  * GNU General Public License for more details. | 
 | 16 |  * | 
 | 17 |  * You should have received a copy of the GNU General Public License | 
 | 18 |  * along with this program; if not, write to the Free Software | 
 | 19 |  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. | 
 | 20 |  * | 
 | 21 |  * cache.c | 
 | 22 |  */ | 
 | 23 |  | 
 | 24 | /* | 
 | 25 |  * Blocks in Squashfs are compressed.  To avoid repeatedly decompressing | 
 | 26 |  * recently accessed data Squashfs uses two small metadata and fragment caches. | 
 | 27 |  * | 
 | 28 |  * This file implements a generic cache implementation used for both caches, | 
 | 29 |  * plus functions layered ontop of the generic cache implementation to | 
 | 30 |  * access the metadata and fragment caches. | 
 | 31 |  * | 
 | 32 |  * To avoid out of memory and fragmentation issues with vmalloc the cache | 
 | 33 |  * uses sequences of kmalloced PAGE_SIZE buffers. | 
 | 34 |  * | 
 | 35 |  * It should be noted that the cache is not used for file datablocks, these | 
 | 36 |  * are decompressed and cached in the page-cache in the normal way.  The | 
 | 37 |  * cache is only used to temporarily cache fragment and metadata blocks | 
 | 38 |  * which have been read as as a result of a metadata (i.e. inode or | 
 | 39 |  * directory) or fragment access.  Because metadata and fragments are packed | 
 | 40 |  * together into blocks (to gain greater compression) the read of a particular | 
 | 41 |  * piece of metadata or fragment will retrieve other metadata/fragments which | 
 | 42 |  * have been packed with it, these because of locality-of-reference may be read | 
 | 43 |  * in the near future. Temporarily caching them ensures they are available for | 
 | 44 |  * near future access without requiring an additional read and decompress. | 
 | 45 |  */ | 
 | 46 |  | 
 | 47 | #include <linux/fs.h> | 
 | 48 | #include <linux/vfs.h> | 
 | 49 | #include <linux/slab.h> | 
 | 50 | #include <linux/vmalloc.h> | 
 | 51 | #include <linux/sched.h> | 
 | 52 | #include <linux/spinlock.h> | 
 | 53 | #include <linux/wait.h> | 
 | 54 | #include <linux/pagemap.h> | 
 | 55 |  | 
 | 56 | #include "squashfs_fs.h" | 
 | 57 | #include "squashfs_fs_sb.h" | 
 | 58 | #include "squashfs.h" | 
 | 59 | #include "page_actor.h" | 
 | 60 |  | 
 | 61 | /* | 
 | 62 |  * Look-up block in cache, and increment usage count.  If not in cache, read | 
 | 63 |  * and decompress it from disk. | 
 | 64 |  */ | 
 | 65 | struct squashfs_cache_entry *squashfs_cache_get(struct super_block *sb, | 
 | 66 | 	struct squashfs_cache *cache, u64 block, int length) | 
 | 67 | { | 
 | 68 | 	int i, n; | 
 | 69 | 	struct squashfs_cache_entry *entry; | 
 | 70 |  | 
 | 71 | 	spin_lock(&cache->lock); | 
 | 72 |  | 
 | 73 | 	while (1) { | 
 | 74 | 		for (i = cache->curr_blk, n = 0; n < cache->entries; n++) { | 
 | 75 | 			if (cache->entry[i].block == block) { | 
 | 76 | 				cache->curr_blk = i; | 
 | 77 | 				break; | 
 | 78 | 			} | 
 | 79 | 			i = (i + 1) % cache->entries; | 
 | 80 | 		} | 
 | 81 |  | 
 | 82 | 		if (n == cache->entries) { | 
 | 83 | 			/* | 
 | 84 | 			 * Block not in cache, if all cache entries are used | 
 | 85 | 			 * go to sleep waiting for one to become available. | 
 | 86 | 			 */ | 
 | 87 | 			if (cache->unused == 0) { | 
 | 88 | 				cache->num_waiters++; | 
 | 89 | 				spin_unlock(&cache->lock); | 
 | 90 | 				wait_event(cache->wait_queue, cache->unused); | 
 | 91 | 				spin_lock(&cache->lock); | 
 | 92 | 				cache->num_waiters--; | 
 | 93 | 				continue; | 
 | 94 | 			} | 
 | 95 |  | 
 | 96 | 			/* | 
 | 97 | 			 * At least one unused cache entry.  A simple | 
 | 98 | 			 * round-robin strategy is used to choose the entry to | 
 | 99 | 			 * be evicted from the cache. | 
 | 100 | 			 */ | 
 | 101 | 			i = cache->next_blk; | 
 | 102 | 			for (n = 0; n < cache->entries; n++) { | 
 | 103 | 				if (cache->entry[i].refcount == 0) | 
 | 104 | 					break; | 
 | 105 | 				i = (i + 1) % cache->entries; | 
 | 106 | 			} | 
 | 107 |  | 
 | 108 | 			cache->next_blk = (i + 1) % cache->entries; | 
 | 109 | 			entry = &cache->entry[i]; | 
 | 110 |  | 
 | 111 | 			/* | 
 | 112 | 			 * Initialise chosen cache entry, and fill it in from | 
 | 113 | 			 * disk. | 
 | 114 | 			 */ | 
 | 115 | 			cache->unused--; | 
 | 116 | 			entry->block = block; | 
 | 117 | 			entry->refcount = 1; | 
 | 118 | 			entry->pending = 1; | 
 | 119 | 			entry->num_waiters = 0; | 
 | 120 | 			entry->error = 0; | 
 | 121 | 			spin_unlock(&cache->lock); | 
 | 122 |  | 
 | 123 | 			entry->length = squashfs_read_data(sb, block, length, | 
 | 124 | 				&entry->next_index, entry->actor); | 
 | 125 |  | 
 | 126 | 			spin_lock(&cache->lock); | 
 | 127 |  | 
 | 128 | 			if (entry->length < 0) | 
 | 129 | 				entry->error = entry->length; | 
 | 130 |  | 
 | 131 | 			entry->pending = 0; | 
 | 132 |  | 
 | 133 | 			/* | 
 | 134 | 			 * While filling this entry one or more other processes | 
 | 135 | 			 * have looked it up in the cache, and have slept | 
 | 136 | 			 * waiting for it to become available. | 
 | 137 | 			 */ | 
 | 138 | 			if (entry->num_waiters) { | 
 | 139 | 				spin_unlock(&cache->lock); | 
 | 140 | 				wake_up_all(&entry->wait_queue); | 
 | 141 | 			} else | 
 | 142 | 				spin_unlock(&cache->lock); | 
 | 143 |  | 
 | 144 | 			goto out; | 
 | 145 | 		} | 
 | 146 |  | 
 | 147 | 		/* | 
 | 148 | 		 * Block already in cache.  Increment refcount so it doesn't | 
 | 149 | 		 * get reused until we're finished with it, if it was | 
 | 150 | 		 * previously unused there's one less cache entry available | 
 | 151 | 		 * for reuse. | 
 | 152 | 		 */ | 
 | 153 | 		entry = &cache->entry[i]; | 
 | 154 | 		if (entry->refcount == 0) | 
 | 155 | 			cache->unused--; | 
 | 156 | 		entry->refcount++; | 
 | 157 |  | 
 | 158 | 		/* | 
 | 159 | 		 * If the entry is currently being filled in by another process | 
 | 160 | 		 * go to sleep waiting for it to become available. | 
 | 161 | 		 */ | 
 | 162 | 		if (entry->pending) { | 
 | 163 | 			entry->num_waiters++; | 
 | 164 | 			spin_unlock(&cache->lock); | 
 | 165 | 			wait_event(entry->wait_queue, !entry->pending); | 
 | 166 | 		} else | 
 | 167 | 			spin_unlock(&cache->lock); | 
 | 168 |  | 
 | 169 | 		goto out; | 
 | 170 | 	} | 
 | 171 |  | 
 | 172 | out: | 
 | 173 | 	TRACE("Got %s %d, start block %lld, refcount %d, error %d\n", | 
 | 174 | 		cache->name, i, entry->block, entry->refcount, entry->error); | 
 | 175 |  | 
 | 176 | 	if (entry->error) | 
 | 177 | 		ERROR("Unable to read %s cache entry [%llx]\n", cache->name, | 
 | 178 | 							block); | 
 | 179 | 	return entry; | 
 | 180 | } | 
 | 181 |  | 
 | 182 |  | 
 | 183 | /* | 
 | 184 |  * Release cache entry, once usage count is zero it can be reused. | 
 | 185 |  */ | 
 | 186 | void squashfs_cache_put(struct squashfs_cache_entry *entry) | 
 | 187 | { | 
 | 188 | 	struct squashfs_cache *cache = entry->cache; | 
 | 189 |  | 
 | 190 | 	spin_lock(&cache->lock); | 
 | 191 | 	entry->refcount--; | 
 | 192 | 	if (entry->refcount == 0) { | 
 | 193 | 		cache->unused++; | 
 | 194 | 		/* | 
 | 195 | 		 * If there's any processes waiting for a block to become | 
 | 196 | 		 * available, wake one up. | 
 | 197 | 		 */ | 
 | 198 | 		if (cache->num_waiters) { | 
 | 199 | 			spin_unlock(&cache->lock); | 
 | 200 | 			wake_up(&cache->wait_queue); | 
 | 201 | 			return; | 
 | 202 | 		} | 
 | 203 | 	} | 
 | 204 | 	spin_unlock(&cache->lock); | 
 | 205 | } | 
 | 206 |  | 
 | 207 | /* | 
 | 208 |  * Delete cache reclaiming all kmalloced buffers. | 
 | 209 |  */ | 
 | 210 | void squashfs_cache_delete(struct squashfs_cache *cache) | 
 | 211 | { | 
 | 212 | 	int i; | 
 | 213 |  | 
 | 214 | 	if (cache == NULL) | 
 | 215 | 		return; | 
 | 216 |  | 
 | 217 | 	for (i = 0; i < cache->entries; i++) { | 
 | 218 | 		if (cache->entry[i].page) | 
 | 219 | 			free_page_array(cache->entry[i].page, cache->pages); | 
 | 220 | 		kfree(cache->entry[i].actor); | 
 | 221 | 	} | 
 | 222 |  | 
 | 223 | 	kfree(cache->entry); | 
 | 224 | 	kfree(cache); | 
 | 225 | } | 
 | 226 |  | 
 | 227 |  | 
 | 228 | /* | 
 | 229 |  * Initialise cache allocating the specified number of entries, each of | 
 | 230 |  * size block_size.  To avoid vmalloc fragmentation issues each entry | 
 | 231 |  * is allocated as a sequence of kmalloced PAGE_SIZE buffers. | 
 | 232 |  */ | 
 | 233 | struct squashfs_cache *squashfs_cache_init(char *name, int entries, | 
 | 234 | 	int block_size) | 
 | 235 | { | 
 | 236 | 	int i; | 
 | 237 | 	struct squashfs_cache *cache = kzalloc(sizeof(*cache), GFP_KERNEL); | 
 | 238 |  | 
 | 239 | 	if (cache == NULL) { | 
 | 240 | 		ERROR("Failed to allocate %s cache\n", name); | 
 | 241 | 		return NULL; | 
 | 242 | 	} | 
 | 243 |  | 
 | 244 | 	cache->entry = kcalloc(entries, sizeof(*(cache->entry)), GFP_KERNEL); | 
 | 245 | 	if (cache->entry == NULL) { | 
 | 246 | 		ERROR("Failed to allocate %s cache\n", name); | 
 | 247 | 		goto cleanup; | 
 | 248 | 	} | 
 | 249 |  | 
 | 250 | 	cache->curr_blk = 0; | 
 | 251 | 	cache->next_blk = 0; | 
 | 252 | 	cache->unused = entries; | 
 | 253 | 	cache->entries = entries; | 
 | 254 | 	cache->block_size = block_size; | 
 | 255 | 	cache->pages = block_size >> PAGE_SHIFT; | 
 | 256 | 	cache->pages = cache->pages ? cache->pages : 1; | 
 | 257 | 	cache->name = name; | 
 | 258 | 	cache->num_waiters = 0; | 
 | 259 | 	spin_lock_init(&cache->lock); | 
 | 260 | 	init_waitqueue_head(&cache->wait_queue); | 
 | 261 |  | 
 | 262 | 	for (i = 0; i < entries; i++) { | 
 | 263 | 		struct squashfs_cache_entry *entry = &cache->entry[i]; | 
 | 264 |  | 
 | 265 | 		init_waitqueue_head(&cache->entry[i].wait_queue); | 
 | 266 | 		entry->cache = cache; | 
 | 267 | 		entry->block = SQUASHFS_INVALID_BLK; | 
 | 268 | 		entry->page = alloc_page_array(cache->pages, GFP_KERNEL); | 
 | 269 | 		if (!entry->page) { | 
 | 270 | 			ERROR("Failed to allocate %s cache entry\n", name); | 
 | 271 | 			goto cleanup; | 
 | 272 | 		} | 
 | 273 | 		entry->actor = squashfs_page_actor_init(entry->page, | 
 | 274 | 			cache->pages, 0, NULL); | 
 | 275 | 		if (entry->actor == NULL) { | 
 | 276 | 			ERROR("Failed to allocate %s cache entry\n", name); | 
 | 277 | 			goto cleanup; | 
 | 278 | 		} | 
 | 279 | 	} | 
 | 280 |  | 
 | 281 | 	return cache; | 
 | 282 |  | 
 | 283 | cleanup: | 
 | 284 | 	squashfs_cache_delete(cache); | 
 | 285 | 	return NULL; | 
 | 286 | } | 
 | 287 |  | 
 | 288 |  | 
 | 289 | /* | 
 | 290 |  * Copy up to length bytes from cache entry to buffer starting at offset bytes | 
 | 291 |  * into the cache entry.  If there's not length bytes then copy the number of | 
 | 292 |  * bytes available.  In all cases return the number of bytes copied. | 
 | 293 |  */ | 
 | 294 | int squashfs_copy_data(void *buffer, struct squashfs_cache_entry *entry, | 
 | 295 | 		int offset, int length) | 
 | 296 | { | 
 | 297 | 	int remaining = length; | 
 | 298 |  | 
 | 299 | 	if (length == 0) | 
 | 300 | 		return 0; | 
 | 301 | 	else if (buffer == NULL) | 
 | 302 | 		return min(length, entry->length - offset); | 
 | 303 |  | 
 | 304 | 	while (offset < entry->length) { | 
 | 305 | 		void *buff = kmap_atomic(entry->page[offset / PAGE_SIZE]) | 
 | 306 | 			     + (offset % PAGE_SIZE); | 
 | 307 | 		int bytes = min_t(int, entry->length - offset, | 
 | 308 | 				PAGE_SIZE - (offset % PAGE_SIZE)); | 
 | 309 |  | 
 | 310 | 		if (bytes >= remaining) { | 
 | 311 | 			memcpy(buffer, buff, remaining); | 
 | 312 | 			kunmap_atomic(buff); | 
 | 313 | 			remaining = 0; | 
 | 314 | 			break; | 
 | 315 | 		} | 
 | 316 |  | 
 | 317 | 		memcpy(buffer, buff, bytes); | 
 | 318 | 		kunmap_atomic(buff); | 
 | 319 | 		buffer += bytes; | 
 | 320 | 		remaining -= bytes; | 
 | 321 | 		offset += bytes; | 
 | 322 | 	} | 
 | 323 |  | 
 | 324 | 	return length - remaining; | 
 | 325 | } | 
 | 326 |  | 
 | 327 |  | 
 | 328 | /* | 
 | 329 |  * Read length bytes from metadata position <block, offset> (block is the | 
 | 330 |  * start of the compressed block on disk, and offset is the offset into | 
 | 331 |  * the block once decompressed).  Data is packed into consecutive blocks, | 
 | 332 |  * and length bytes may require reading more than one block. | 
 | 333 |  */ | 
 | 334 | int squashfs_read_metadata(struct super_block *sb, void *buffer, | 
 | 335 | 		u64 *block, int *offset, int length) | 
 | 336 | { | 
 | 337 | 	struct squashfs_sb_info *msblk = sb->s_fs_info; | 
 | 338 | 	int bytes, res = length; | 
 | 339 | 	struct squashfs_cache_entry *entry; | 
 | 340 |  | 
 | 341 | 	TRACE("Entered squashfs_read_metadata [%llx:%x]\n", *block, *offset); | 
 | 342 |  | 
 | 343 | 	if (unlikely(length < 0)) | 
 | 344 | 		return -EIO; | 
 | 345 |  | 
 | 346 | 	while (length) { | 
 | 347 | 		entry = squashfs_cache_get(sb, msblk->block_cache, *block, 0); | 
 | 348 | 		if (entry->error) { | 
 | 349 | 			res = entry->error; | 
 | 350 | 			goto error; | 
 | 351 | 		} else if (*offset >= entry->length) { | 
 | 352 | 			res = -EIO; | 
 | 353 | 			goto error; | 
 | 354 | 		} | 
 | 355 |  | 
 | 356 | 		bytes = squashfs_copy_data(buffer, entry, *offset, length); | 
 | 357 | 		if (buffer) | 
 | 358 | 			buffer += bytes; | 
 | 359 | 		length -= bytes; | 
 | 360 | 		*offset += bytes; | 
 | 361 |  | 
 | 362 | 		if (*offset == entry->length) { | 
 | 363 | 			*block = entry->next_index; | 
 | 364 | 			*offset = 0; | 
 | 365 | 		} | 
 | 366 |  | 
 | 367 | 		squashfs_cache_put(entry); | 
 | 368 | 	} | 
 | 369 |  | 
 | 370 | 	return res; | 
 | 371 |  | 
 | 372 | error: | 
 | 373 | 	squashfs_cache_put(entry); | 
 | 374 | 	return res; | 
 | 375 | } | 
 | 376 |  | 
 | 377 |  | 
 | 378 | /* | 
 | 379 |  * Look-up in the fragmment cache the fragment located at <start_block> in the | 
 | 380 |  * filesystem.  If necessary read and decompress it from disk. | 
 | 381 |  */ | 
 | 382 | struct squashfs_cache_entry *squashfs_get_fragment(struct super_block *sb, | 
 | 383 | 				u64 start_block, int length) | 
 | 384 | { | 
 | 385 | 	struct squashfs_sb_info *msblk = sb->s_fs_info; | 
 | 386 |  | 
 | 387 | 	return squashfs_cache_get(sb, msblk->fragment_cache, start_block, | 
 | 388 | 		length); | 
 | 389 | } | 
 | 390 |  | 
 | 391 |  | 
 | 392 | /* | 
 | 393 |  * Read and decompress the datablock located at <start_block> in the | 
 | 394 |  * filesystem.  The cache is used here to avoid duplicating locking and | 
 | 395 |  * read/decompress code. | 
 | 396 |  */ | 
 | 397 | struct squashfs_cache_entry *squashfs_get_datablock(struct super_block *sb, | 
 | 398 | 				u64 start_block, int length) | 
 | 399 | { | 
 | 400 | 	struct squashfs_sb_info *msblk = sb->s_fs_info; | 
 | 401 |  | 
 | 402 | 	return squashfs_cache_get(sb, msblk->read_page, start_block, length); | 
 | 403 | } | 
 | 404 |  | 
 | 405 |  | 
 | 406 | /* | 
 | 407 |  * Read a filesystem table (uncompressed sequence of bytes) from disk | 
 | 408 |  */ | 
 | 409 | void *squashfs_read_table(struct super_block *sb, u64 block, int length) | 
 | 410 | { | 
 | 411 | 	int pages = (length + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
 | 412 | 	struct page **page; | 
 | 413 | 	void *buff; | 
 | 414 | 	int res; | 
 | 415 | 	struct squashfs_page_actor *actor; | 
 | 416 |  | 
 | 417 | 	page = alloc_page_array(pages, GFP_KERNEL); | 
 | 418 | 	if (!page) | 
 | 419 | 		return ERR_PTR(-ENOMEM); | 
 | 420 |  | 
 | 421 | 	actor = squashfs_page_actor_init(page, pages, length, NULL); | 
 | 422 | 	if (actor == NULL) { | 
 | 423 | 		res = -ENOMEM; | 
 | 424 | 		goto failed; | 
 | 425 | 	} | 
 | 426 |  | 
 | 427 | 	res = squashfs_read_data(sb, block, length | | 
 | 428 | 		SQUASHFS_COMPRESSED_BIT_BLOCK, NULL, actor); | 
 | 429 |  | 
 | 430 | 	if (res < 0) | 
 | 431 | 		goto failed2; | 
 | 432 |  | 
 | 433 | 	buff = kmalloc(length, GFP_KERNEL); | 
 | 434 | 	if (!buff) | 
 | 435 | 		goto failed2; | 
 | 436 | 	squashfs_actor_to_buf(actor, buff, length); | 
 | 437 | 	squashfs_page_actor_free(actor, 0); | 
 | 438 | 	free_page_array(page, pages); | 
 | 439 | 	return buff; | 
 | 440 |  | 
 | 441 | failed2: | 
 | 442 | 	squashfs_page_actor_free(actor, 0); | 
 | 443 | failed: | 
 | 444 | 	free_page_array(page, pages); | 
 | 445 | 	return ERR_PTR(res); | 
 | 446 | } |