| rjw | 1f88458 | 2022-01-06 17:20:42 +0800 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 | 
|  | 2 | /* | 
|  | 3 | * linux/ipc/sem.c | 
|  | 4 | * Copyright (C) 1992 Krishna Balasubramanian | 
|  | 5 | * Copyright (C) 1995 Eric Schenk, Bruno Haible | 
|  | 6 | * | 
|  | 7 | * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com> | 
|  | 8 | * | 
|  | 9 | * SMP-threaded, sysctl's added | 
|  | 10 | * (c) 1999 Manfred Spraul <manfred@colorfullife.com> | 
|  | 11 | * Enforced range limit on SEM_UNDO | 
|  | 12 | * (c) 2001 Red Hat Inc | 
|  | 13 | * Lockless wakeup | 
|  | 14 | * (c) 2003 Manfred Spraul <manfred@colorfullife.com> | 
|  | 15 | * (c) 2016 Davidlohr Bueso <dave@stgolabs.net> | 
|  | 16 | * Further wakeup optimizations, documentation | 
|  | 17 | * (c) 2010 Manfred Spraul <manfred@colorfullife.com> | 
|  | 18 | * | 
|  | 19 | * support for audit of ipc object properties and permission changes | 
|  | 20 | * Dustin Kirkland <dustin.kirkland@us.ibm.com> | 
|  | 21 | * | 
|  | 22 | * namespaces support | 
|  | 23 | * OpenVZ, SWsoft Inc. | 
|  | 24 | * Pavel Emelianov <xemul@openvz.org> | 
|  | 25 | * | 
|  | 26 | * Implementation notes: (May 2010) | 
|  | 27 | * This file implements System V semaphores. | 
|  | 28 | * | 
|  | 29 | * User space visible behavior: | 
|  | 30 | * - FIFO ordering for semop() operations (just FIFO, not starvation | 
|  | 31 | *   protection) | 
|  | 32 | * - multiple semaphore operations that alter the same semaphore in | 
|  | 33 | *   one semop() are handled. | 
|  | 34 | * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and | 
|  | 35 | *   SETALL calls. | 
|  | 36 | * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO. | 
|  | 37 | * - undo adjustments at process exit are limited to 0..SEMVMX. | 
|  | 38 | * - namespace are supported. | 
|  | 39 | * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing | 
|  | 40 | *   to /proc/sys/kernel/sem. | 
|  | 41 | * - statistics about the usage are reported in /proc/sysvipc/sem. | 
|  | 42 | * | 
|  | 43 | * Internals: | 
|  | 44 | * - scalability: | 
|  | 45 | *   - all global variables are read-mostly. | 
|  | 46 | *   - semop() calls and semctl(RMID) are synchronized by RCU. | 
|  | 47 | *   - most operations do write operations (actually: spin_lock calls) to | 
|  | 48 | *     the per-semaphore array structure. | 
|  | 49 | *   Thus: Perfect SMP scaling between independent semaphore arrays. | 
|  | 50 | *         If multiple semaphores in one array are used, then cache line | 
|  | 51 | *         trashing on the semaphore array spinlock will limit the scaling. | 
|  | 52 | * - semncnt and semzcnt are calculated on demand in count_semcnt() | 
|  | 53 | * - the task that performs a successful semop() scans the list of all | 
|  | 54 | *   sleeping tasks and completes any pending operations that can be fulfilled. | 
|  | 55 | *   Semaphores are actively given to waiting tasks (necessary for FIFO). | 
|  | 56 | *   (see update_queue()) | 
|  | 57 | * - To improve the scalability, the actual wake-up calls are performed after | 
|  | 58 | *   dropping all locks. (see wake_up_sem_queue_prepare()) | 
|  | 59 | * - All work is done by the waker, the woken up task does not have to do | 
|  | 60 | *   anything - not even acquiring a lock or dropping a refcount. | 
|  | 61 | * - A woken up task may not even touch the semaphore array anymore, it may | 
|  | 62 | *   have been destroyed already by a semctl(RMID). | 
|  | 63 | * - UNDO values are stored in an array (one per process and per | 
|  | 64 | *   semaphore array, lazily allocated). For backwards compatibility, multiple | 
|  | 65 | *   modes for the UNDO variables are supported (per process, per thread) | 
|  | 66 | *   (see copy_semundo, CLONE_SYSVSEM) | 
|  | 67 | * - There are two lists of the pending operations: a per-array list | 
|  | 68 | *   and per-semaphore list (stored in the array). This allows to achieve FIFO | 
|  | 69 | *   ordering without always scanning all pending operations. | 
|  | 70 | *   The worst-case behavior is nevertheless O(N^2) for N wakeups. | 
|  | 71 | */ | 
|  | 72 |  | 
|  | 73 | #include <linux/slab.h> | 
|  | 74 | #include <linux/spinlock.h> | 
|  | 75 | #include <linux/init.h> | 
|  | 76 | #include <linux/proc_fs.h> | 
|  | 77 | #include <linux/time.h> | 
|  | 78 | #include <linux/security.h> | 
|  | 79 | #include <linux/syscalls.h> | 
|  | 80 | #include <linux/audit.h> | 
|  | 81 | #include <linux/capability.h> | 
|  | 82 | #include <linux/seq_file.h> | 
|  | 83 | #include <linux/rwsem.h> | 
|  | 84 | #include <linux/nsproxy.h> | 
|  | 85 | #include <linux/ipc_namespace.h> | 
|  | 86 | #include <linux/sched/wake_q.h> | 
|  | 87 |  | 
|  | 88 | #include <linux/uaccess.h> | 
|  | 89 | #include "util.h" | 
|  | 90 |  | 
|  | 91 |  | 
|  | 92 | /* One queue for each sleeping process in the system. */ | 
|  | 93 | struct sem_queue { | 
|  | 94 | struct list_head	list;	 /* queue of pending operations */ | 
|  | 95 | struct task_struct	*sleeper; /* this process */ | 
|  | 96 | struct sem_undo		*undo;	 /* undo structure */ | 
|  | 97 | int			pid;	 /* process id of requesting process */ | 
|  | 98 | int			status;	 /* completion status of operation */ | 
|  | 99 | struct sembuf		*sops;	 /* array of pending operations */ | 
|  | 100 | struct sembuf		*blocking; /* the operation that blocked */ | 
|  | 101 | int			nsops;	 /* number of operations */ | 
|  | 102 | bool			alter;	 /* does *sops alter the array? */ | 
|  | 103 | bool                    dupsop;	 /* sops on more than one sem_num */ | 
|  | 104 | }; | 
|  | 105 |  | 
|  | 106 | /* Each task has a list of undo requests. They are executed automatically | 
|  | 107 | * when the process exits. | 
|  | 108 | */ | 
|  | 109 | struct sem_undo { | 
|  | 110 | struct list_head	list_proc;	/* per-process list: * | 
|  | 111 | * all undos from one process | 
|  | 112 | * rcu protected */ | 
|  | 113 | struct rcu_head		rcu;		/* rcu struct for sem_undo */ | 
|  | 114 | struct sem_undo_list	*ulp;		/* back ptr to sem_undo_list */ | 
|  | 115 | struct list_head	list_id;	/* per semaphore array list: | 
|  | 116 | * all undos for one array */ | 
|  | 117 | int			semid;		/* semaphore set identifier */ | 
|  | 118 | short			*semadj;	/* array of adjustments */ | 
|  | 119 | /* one per semaphore */ | 
|  | 120 | }; | 
|  | 121 |  | 
|  | 122 | /* sem_undo_list controls shared access to the list of sem_undo structures | 
|  | 123 | * that may be shared among all a CLONE_SYSVSEM task group. | 
|  | 124 | */ | 
|  | 125 | struct sem_undo_list { | 
|  | 126 | refcount_t		refcnt; | 
|  | 127 | spinlock_t		lock; | 
|  | 128 | struct list_head	list_proc; | 
|  | 129 | }; | 
|  | 130 |  | 
|  | 131 |  | 
|  | 132 | #define sem_ids(ns)	((ns)->ids[IPC_SEM_IDS]) | 
|  | 133 |  | 
|  | 134 | static int newary(struct ipc_namespace *, struct ipc_params *); | 
|  | 135 | static void freeary(struct ipc_namespace *, struct kern_ipc_perm *); | 
|  | 136 | #ifdef CONFIG_PROC_FS | 
|  | 137 | static int sysvipc_sem_proc_show(struct seq_file *s, void *it); | 
|  | 138 | #endif | 
|  | 139 |  | 
|  | 140 | #define SEMMSL_FAST	256 /* 512 bytes on stack */ | 
|  | 141 | #define SEMOPM_FAST	64  /* ~ 372 bytes on stack */ | 
|  | 142 |  | 
|  | 143 | /* | 
|  | 144 | * Switching from the mode suitable for simple ops | 
|  | 145 | * to the mode for complex ops is costly. Therefore: | 
|  | 146 | * use some hysteresis | 
|  | 147 | */ | 
|  | 148 | #define USE_GLOBAL_LOCK_HYSTERESIS	10 | 
|  | 149 |  | 
|  | 150 | /* | 
|  | 151 | * Locking: | 
|  | 152 | * a) global sem_lock() for read/write | 
|  | 153 | *	sem_undo.id_next, | 
|  | 154 | *	sem_array.complex_count, | 
|  | 155 | *	sem_array.pending{_alter,_const}, | 
|  | 156 | *	sem_array.sem_undo | 
|  | 157 | * | 
|  | 158 | * b) global or semaphore sem_lock() for read/write: | 
|  | 159 | *	sem_array.sems[i].pending_{const,alter}: | 
|  | 160 | * | 
|  | 161 | * c) special: | 
|  | 162 | *	sem_undo_list.list_proc: | 
|  | 163 | *	* undo_list->lock for write | 
|  | 164 | *	* rcu for read | 
|  | 165 | *	use_global_lock: | 
|  | 166 | *	* global sem_lock() for write | 
|  | 167 | *	* either local or global sem_lock() for read. | 
|  | 168 | * | 
|  | 169 | * Memory ordering: | 
|  | 170 | * Most ordering is enforced by using spin_lock() and spin_unlock(). | 
|  | 171 | * The special case is use_global_lock: | 
|  | 172 | * Setting it from non-zero to 0 is a RELEASE, this is ensured by | 
|  | 173 | * using smp_store_release(). | 
|  | 174 | * Testing if it is non-zero is an ACQUIRE, this is ensured by using | 
|  | 175 | * smp_load_acquire(). | 
|  | 176 | * Setting it from 0 to non-zero must be ordered with regards to | 
|  | 177 | * this smp_load_acquire(), this is guaranteed because the smp_load_acquire() | 
|  | 178 | * is inside a spin_lock() and after a write from 0 to non-zero a | 
|  | 179 | * spin_lock()+spin_unlock() is done. | 
|  | 180 | */ | 
|  | 181 |  | 
|  | 182 | #define sc_semmsl	sem_ctls[0] | 
|  | 183 | #define sc_semmns	sem_ctls[1] | 
|  | 184 | #define sc_semopm	sem_ctls[2] | 
|  | 185 | #define sc_semmni	sem_ctls[3] | 
|  | 186 |  | 
|  | 187 | int sem_init_ns(struct ipc_namespace *ns) | 
|  | 188 | { | 
|  | 189 | ns->sc_semmsl = SEMMSL; | 
|  | 190 | ns->sc_semmns = SEMMNS; | 
|  | 191 | ns->sc_semopm = SEMOPM; | 
|  | 192 | ns->sc_semmni = SEMMNI; | 
|  | 193 | ns->used_sems = 0; | 
|  | 194 | return ipc_init_ids(&ns->ids[IPC_SEM_IDS]); | 
|  | 195 | } | 
|  | 196 |  | 
|  | 197 | #ifdef CONFIG_IPC_NS | 
|  | 198 | void sem_exit_ns(struct ipc_namespace *ns) | 
|  | 199 | { | 
|  | 200 | free_ipcs(ns, &sem_ids(ns), freeary); | 
|  | 201 | idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr); | 
|  | 202 | rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht); | 
|  | 203 | } | 
|  | 204 | #endif | 
|  | 205 |  | 
|  | 206 | int __init sem_init(void) | 
|  | 207 | { | 
|  | 208 | const int err = sem_init_ns(&init_ipc_ns); | 
|  | 209 |  | 
|  | 210 | ipc_init_proc_interface("sysvipc/sem", | 
|  | 211 | "       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n", | 
|  | 212 | IPC_SEM_IDS, sysvipc_sem_proc_show); | 
|  | 213 | return err; | 
|  | 214 | } | 
|  | 215 |  | 
|  | 216 | /** | 
|  | 217 | * unmerge_queues - unmerge queues, if possible. | 
|  | 218 | * @sma: semaphore array | 
|  | 219 | * | 
|  | 220 | * The function unmerges the wait queues if complex_count is 0. | 
|  | 221 | * It must be called prior to dropping the global semaphore array lock. | 
|  | 222 | */ | 
|  | 223 | static void unmerge_queues(struct sem_array *sma) | 
|  | 224 | { | 
|  | 225 | struct sem_queue *q, *tq; | 
|  | 226 |  | 
|  | 227 | /* complex operations still around? */ | 
|  | 228 | if (sma->complex_count) | 
|  | 229 | return; | 
|  | 230 | /* | 
|  | 231 | * We will switch back to simple mode. | 
|  | 232 | * Move all pending operation back into the per-semaphore | 
|  | 233 | * queues. | 
|  | 234 | */ | 
|  | 235 | list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { | 
|  | 236 | struct sem *curr; | 
|  | 237 | curr = &sma->sems[q->sops[0].sem_num]; | 
|  | 238 |  | 
|  | 239 | list_add_tail(&q->list, &curr->pending_alter); | 
|  | 240 | } | 
|  | 241 | INIT_LIST_HEAD(&sma->pending_alter); | 
|  | 242 | } | 
|  | 243 |  | 
|  | 244 | /** | 
|  | 245 | * merge_queues - merge single semop queues into global queue | 
|  | 246 | * @sma: semaphore array | 
|  | 247 | * | 
|  | 248 | * This function merges all per-semaphore queues into the global queue. | 
|  | 249 | * It is necessary to achieve FIFO ordering for the pending single-sop | 
|  | 250 | * operations when a multi-semop operation must sleep. | 
|  | 251 | * Only the alter operations must be moved, the const operations can stay. | 
|  | 252 | */ | 
|  | 253 | static void merge_queues(struct sem_array *sma) | 
|  | 254 | { | 
|  | 255 | int i; | 
|  | 256 | for (i = 0; i < sma->sem_nsems; i++) { | 
|  | 257 | struct sem *sem = &sma->sems[i]; | 
|  | 258 |  | 
|  | 259 | list_splice_init(&sem->pending_alter, &sma->pending_alter); | 
|  | 260 | } | 
|  | 261 | } | 
|  | 262 |  | 
|  | 263 | static void sem_rcu_free(struct rcu_head *head) | 
|  | 264 | { | 
|  | 265 | struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu); | 
|  | 266 | struct sem_array *sma = container_of(p, struct sem_array, sem_perm); | 
|  | 267 |  | 
|  | 268 | security_sem_free(sma); | 
|  | 269 | kvfree(sma); | 
|  | 270 | } | 
|  | 271 |  | 
|  | 272 | /* | 
|  | 273 | * Enter the mode suitable for non-simple operations: | 
|  | 274 | * Caller must own sem_perm.lock. | 
|  | 275 | */ | 
|  | 276 | static void complexmode_enter(struct sem_array *sma) | 
|  | 277 | { | 
|  | 278 | int i; | 
|  | 279 | struct sem *sem; | 
|  | 280 |  | 
|  | 281 | if (sma->use_global_lock > 0)  { | 
|  | 282 | /* | 
|  | 283 | * We are already in global lock mode. | 
|  | 284 | * Nothing to do, just reset the | 
|  | 285 | * counter until we return to simple mode. | 
|  | 286 | */ | 
|  | 287 | sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS; | 
|  | 288 | return; | 
|  | 289 | } | 
|  | 290 | sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS; | 
|  | 291 |  | 
|  | 292 | for (i = 0; i < sma->sem_nsems; i++) { | 
|  | 293 | sem = &sma->sems[i]; | 
|  | 294 | spin_lock(&sem->lock); | 
|  | 295 | spin_unlock(&sem->lock); | 
|  | 296 | } | 
|  | 297 | } | 
|  | 298 |  | 
|  | 299 | /* | 
|  | 300 | * Try to leave the mode that disallows simple operations: | 
|  | 301 | * Caller must own sem_perm.lock. | 
|  | 302 | */ | 
|  | 303 | static void complexmode_tryleave(struct sem_array *sma) | 
|  | 304 | { | 
|  | 305 | if (sma->complex_count)  { | 
|  | 306 | /* Complex ops are sleeping. | 
|  | 307 | * We must stay in complex mode | 
|  | 308 | */ | 
|  | 309 | return; | 
|  | 310 | } | 
|  | 311 | if (sma->use_global_lock == 1) { | 
|  | 312 | /* | 
|  | 313 | * Immediately after setting use_global_lock to 0, | 
|  | 314 | * a simple op can start. Thus: all memory writes | 
|  | 315 | * performed by the current operation must be visible | 
|  | 316 | * before we set use_global_lock to 0. | 
|  | 317 | */ | 
|  | 318 | smp_store_release(&sma->use_global_lock, 0); | 
|  | 319 | } else { | 
|  | 320 | sma->use_global_lock--; | 
|  | 321 | } | 
|  | 322 | } | 
|  | 323 |  | 
|  | 324 | #define SEM_GLOBAL_LOCK	(-1) | 
|  | 325 | /* | 
|  | 326 | * If the request contains only one semaphore operation, and there are | 
|  | 327 | * no complex transactions pending, lock only the semaphore involved. | 
|  | 328 | * Otherwise, lock the entire semaphore array, since we either have | 
|  | 329 | * multiple semaphores in our own semops, or we need to look at | 
|  | 330 | * semaphores from other pending complex operations. | 
|  | 331 | */ | 
|  | 332 | static inline int sem_lock(struct sem_array *sma, struct sembuf *sops, | 
|  | 333 | int nsops) | 
|  | 334 | { | 
|  | 335 | struct sem *sem; | 
|  | 336 |  | 
|  | 337 | if (nsops != 1) { | 
|  | 338 | /* Complex operation - acquire a full lock */ | 
|  | 339 | ipc_lock_object(&sma->sem_perm); | 
|  | 340 |  | 
|  | 341 | /* Prevent parallel simple ops */ | 
|  | 342 | complexmode_enter(sma); | 
|  | 343 | return SEM_GLOBAL_LOCK; | 
|  | 344 | } | 
|  | 345 |  | 
|  | 346 | /* | 
|  | 347 | * Only one semaphore affected - try to optimize locking. | 
|  | 348 | * Optimized locking is possible if no complex operation | 
|  | 349 | * is either enqueued or processed right now. | 
|  | 350 | * | 
|  | 351 | * Both facts are tracked by use_global_mode. | 
|  | 352 | */ | 
|  | 353 | sem = &sma->sems[sops->sem_num]; | 
|  | 354 |  | 
|  | 355 | /* | 
|  | 356 | * Initial check for use_global_lock. Just an optimization, | 
|  | 357 | * no locking, no memory barrier. | 
|  | 358 | */ | 
|  | 359 | if (!sma->use_global_lock) { | 
|  | 360 | /* | 
|  | 361 | * It appears that no complex operation is around. | 
|  | 362 | * Acquire the per-semaphore lock. | 
|  | 363 | */ | 
|  | 364 | spin_lock(&sem->lock); | 
|  | 365 |  | 
|  | 366 | /* pairs with smp_store_release() */ | 
|  | 367 | if (!smp_load_acquire(&sma->use_global_lock)) { | 
|  | 368 | /* fast path successful! */ | 
|  | 369 | return sops->sem_num; | 
|  | 370 | } | 
|  | 371 | spin_unlock(&sem->lock); | 
|  | 372 | } | 
|  | 373 |  | 
|  | 374 | /* slow path: acquire the full lock */ | 
|  | 375 | ipc_lock_object(&sma->sem_perm); | 
|  | 376 |  | 
|  | 377 | if (sma->use_global_lock == 0) { | 
|  | 378 | /* | 
|  | 379 | * The use_global_lock mode ended while we waited for | 
|  | 380 | * sma->sem_perm.lock. Thus we must switch to locking | 
|  | 381 | * with sem->lock. | 
|  | 382 | * Unlike in the fast path, there is no need to recheck | 
|  | 383 | * sma->use_global_lock after we have acquired sem->lock: | 
|  | 384 | * We own sma->sem_perm.lock, thus use_global_lock cannot | 
|  | 385 | * change. | 
|  | 386 | */ | 
|  | 387 | spin_lock(&sem->lock); | 
|  | 388 |  | 
|  | 389 | ipc_unlock_object(&sma->sem_perm); | 
|  | 390 | return sops->sem_num; | 
|  | 391 | } else { | 
|  | 392 | /* | 
|  | 393 | * Not a false alarm, thus continue to use the global lock | 
|  | 394 | * mode. No need for complexmode_enter(), this was done by | 
|  | 395 | * the caller that has set use_global_mode to non-zero. | 
|  | 396 | */ | 
|  | 397 | return SEM_GLOBAL_LOCK; | 
|  | 398 | } | 
|  | 399 | } | 
|  | 400 |  | 
|  | 401 | static inline void sem_unlock(struct sem_array *sma, int locknum) | 
|  | 402 | { | 
|  | 403 | if (locknum == SEM_GLOBAL_LOCK) { | 
|  | 404 | unmerge_queues(sma); | 
|  | 405 | complexmode_tryleave(sma); | 
|  | 406 | ipc_unlock_object(&sma->sem_perm); | 
|  | 407 | } else { | 
|  | 408 | struct sem *sem = &sma->sems[locknum]; | 
|  | 409 | spin_unlock(&sem->lock); | 
|  | 410 | } | 
|  | 411 | } | 
|  | 412 |  | 
|  | 413 | /* | 
|  | 414 | * sem_lock_(check_) routines are called in the paths where the rwsem | 
|  | 415 | * is not held. | 
|  | 416 | * | 
|  | 417 | * The caller holds the RCU read lock. | 
|  | 418 | */ | 
|  | 419 | static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id) | 
|  | 420 | { | 
|  | 421 | struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id); | 
|  | 422 |  | 
|  | 423 | if (IS_ERR(ipcp)) | 
|  | 424 | return ERR_CAST(ipcp); | 
|  | 425 |  | 
|  | 426 | return container_of(ipcp, struct sem_array, sem_perm); | 
|  | 427 | } | 
|  | 428 |  | 
|  | 429 | static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns, | 
|  | 430 | int id) | 
|  | 431 | { | 
|  | 432 | struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id); | 
|  | 433 |  | 
|  | 434 | if (IS_ERR(ipcp)) | 
|  | 435 | return ERR_CAST(ipcp); | 
|  | 436 |  | 
|  | 437 | return container_of(ipcp, struct sem_array, sem_perm); | 
|  | 438 | } | 
|  | 439 |  | 
|  | 440 | static inline void sem_lock_and_putref(struct sem_array *sma) | 
|  | 441 | { | 
|  | 442 | sem_lock(sma, NULL, -1); | 
|  | 443 | ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); | 
|  | 444 | } | 
|  | 445 |  | 
|  | 446 | static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s) | 
|  | 447 | { | 
|  | 448 | ipc_rmid(&sem_ids(ns), &s->sem_perm); | 
|  | 449 | } | 
|  | 450 |  | 
|  | 451 | static struct sem_array *sem_alloc(size_t nsems) | 
|  | 452 | { | 
|  | 453 | struct sem_array *sma; | 
|  | 454 | size_t size; | 
|  | 455 |  | 
|  | 456 | if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0])) | 
|  | 457 | return NULL; | 
|  | 458 |  | 
|  | 459 | size = sizeof(*sma) + nsems * sizeof(sma->sems[0]); | 
|  | 460 | sma = kvmalloc(size, GFP_KERNEL); | 
|  | 461 | if (unlikely(!sma)) | 
|  | 462 | return NULL; | 
|  | 463 |  | 
|  | 464 | memset(sma, 0, size); | 
|  | 465 |  | 
|  | 466 | return sma; | 
|  | 467 | } | 
|  | 468 |  | 
|  | 469 | /** | 
|  | 470 | * newary - Create a new semaphore set | 
|  | 471 | * @ns: namespace | 
|  | 472 | * @params: ptr to the structure that contains key, semflg and nsems | 
|  | 473 | * | 
|  | 474 | * Called with sem_ids.rwsem held (as a writer) | 
|  | 475 | */ | 
|  | 476 | static int newary(struct ipc_namespace *ns, struct ipc_params *params) | 
|  | 477 | { | 
|  | 478 | int retval; | 
|  | 479 | struct sem_array *sma; | 
|  | 480 | key_t key = params->key; | 
|  | 481 | int nsems = params->u.nsems; | 
|  | 482 | int semflg = params->flg; | 
|  | 483 | int i; | 
|  | 484 |  | 
|  | 485 | if (!nsems) | 
|  | 486 | return -EINVAL; | 
|  | 487 | if (ns->used_sems + nsems > ns->sc_semmns) | 
|  | 488 | return -ENOSPC; | 
|  | 489 |  | 
|  | 490 | sma = sem_alloc(nsems); | 
|  | 491 | if (!sma) | 
|  | 492 | return -ENOMEM; | 
|  | 493 |  | 
|  | 494 | sma->sem_perm.mode = (semflg & S_IRWXUGO); | 
|  | 495 | sma->sem_perm.key = key; | 
|  | 496 |  | 
|  | 497 | sma->sem_perm.security = NULL; | 
|  | 498 | retval = security_sem_alloc(sma); | 
|  | 499 | if (retval) { | 
|  | 500 | kvfree(sma); | 
|  | 501 | return retval; | 
|  | 502 | } | 
|  | 503 |  | 
|  | 504 | for (i = 0; i < nsems; i++) { | 
|  | 505 | INIT_LIST_HEAD(&sma->sems[i].pending_alter); | 
|  | 506 | INIT_LIST_HEAD(&sma->sems[i].pending_const); | 
|  | 507 | spin_lock_init(&sma->sems[i].lock); | 
|  | 508 | } | 
|  | 509 |  | 
|  | 510 | sma->complex_count = 0; | 
|  | 511 | sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS; | 
|  | 512 | INIT_LIST_HEAD(&sma->pending_alter); | 
|  | 513 | INIT_LIST_HEAD(&sma->pending_const); | 
|  | 514 | INIT_LIST_HEAD(&sma->list_id); | 
|  | 515 | sma->sem_nsems = nsems; | 
|  | 516 | sma->sem_ctime = ktime_get_real_seconds(); | 
|  | 517 |  | 
|  | 518 | retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni); | 
|  | 519 | if (retval < 0) { | 
|  | 520 | call_rcu(&sma->sem_perm.rcu, sem_rcu_free); | 
|  | 521 | return retval; | 
|  | 522 | } | 
|  | 523 | ns->used_sems += nsems; | 
|  | 524 |  | 
|  | 525 | sem_unlock(sma, -1); | 
|  | 526 | rcu_read_unlock(); | 
|  | 527 |  | 
|  | 528 | return sma->sem_perm.id; | 
|  | 529 | } | 
|  | 530 |  | 
|  | 531 |  | 
|  | 532 | /* | 
|  | 533 | * Called with sem_ids.rwsem and ipcp locked. | 
|  | 534 | */ | 
|  | 535 | static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg) | 
|  | 536 | { | 
|  | 537 | struct sem_array *sma; | 
|  | 538 |  | 
|  | 539 | sma = container_of(ipcp, struct sem_array, sem_perm); | 
|  | 540 | return security_sem_associate(sma, semflg); | 
|  | 541 | } | 
|  | 542 |  | 
|  | 543 | /* | 
|  | 544 | * Called with sem_ids.rwsem and ipcp locked. | 
|  | 545 | */ | 
|  | 546 | static inline int sem_more_checks(struct kern_ipc_perm *ipcp, | 
|  | 547 | struct ipc_params *params) | 
|  | 548 | { | 
|  | 549 | struct sem_array *sma; | 
|  | 550 |  | 
|  | 551 | sma = container_of(ipcp, struct sem_array, sem_perm); | 
|  | 552 | if (params->u.nsems > sma->sem_nsems) | 
|  | 553 | return -EINVAL; | 
|  | 554 |  | 
|  | 555 | return 0; | 
|  | 556 | } | 
|  | 557 |  | 
|  | 558 | SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg) | 
|  | 559 | { | 
|  | 560 | struct ipc_namespace *ns; | 
|  | 561 | static const struct ipc_ops sem_ops = { | 
|  | 562 | .getnew = newary, | 
|  | 563 | .associate = sem_security, | 
|  | 564 | .more_checks = sem_more_checks, | 
|  | 565 | }; | 
|  | 566 | struct ipc_params sem_params; | 
|  | 567 |  | 
|  | 568 | ns = current->nsproxy->ipc_ns; | 
|  | 569 |  | 
|  | 570 | if (nsems < 0 || nsems > ns->sc_semmsl) | 
|  | 571 | return -EINVAL; | 
|  | 572 |  | 
|  | 573 | sem_params.key = key; | 
|  | 574 | sem_params.flg = semflg; | 
|  | 575 | sem_params.u.nsems = nsems; | 
|  | 576 |  | 
|  | 577 | return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params); | 
|  | 578 | } | 
|  | 579 |  | 
|  | 580 | /** | 
|  | 581 | * perform_atomic_semop[_slow] - Attempt to perform semaphore | 
|  | 582 | *                               operations on a given array. | 
|  | 583 | * @sma: semaphore array | 
|  | 584 | * @q: struct sem_queue that describes the operation | 
|  | 585 | * | 
|  | 586 | * Caller blocking are as follows, based the value | 
|  | 587 | * indicated by the semaphore operation (sem_op): | 
|  | 588 | * | 
|  | 589 | *  (1) >0 never blocks. | 
|  | 590 | *  (2)  0 (wait-for-zero operation): semval is non-zero. | 
|  | 591 | *  (3) <0 attempting to decrement semval to a value smaller than zero. | 
|  | 592 | * | 
|  | 593 | * Returns 0 if the operation was possible. | 
|  | 594 | * Returns 1 if the operation is impossible, the caller must sleep. | 
|  | 595 | * Returns <0 for error codes. | 
|  | 596 | */ | 
|  | 597 | static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q) | 
|  | 598 | { | 
|  | 599 | int result, sem_op, nsops, pid; | 
|  | 600 | struct sembuf *sop; | 
|  | 601 | struct sem *curr; | 
|  | 602 | struct sembuf *sops; | 
|  | 603 | struct sem_undo *un; | 
|  | 604 |  | 
|  | 605 | sops = q->sops; | 
|  | 606 | nsops = q->nsops; | 
|  | 607 | un = q->undo; | 
|  | 608 |  | 
|  | 609 | for (sop = sops; sop < sops + nsops; sop++) { | 
|  | 610 | curr = &sma->sems[sop->sem_num]; | 
|  | 611 | sem_op = sop->sem_op; | 
|  | 612 | result = curr->semval; | 
|  | 613 |  | 
|  | 614 | if (!sem_op && result) | 
|  | 615 | goto would_block; | 
|  | 616 |  | 
|  | 617 | result += sem_op; | 
|  | 618 | if (result < 0) | 
|  | 619 | goto would_block; | 
|  | 620 | if (result > SEMVMX) | 
|  | 621 | goto out_of_range; | 
|  | 622 |  | 
|  | 623 | if (sop->sem_flg & SEM_UNDO) { | 
|  | 624 | int undo = un->semadj[sop->sem_num] - sem_op; | 
|  | 625 | /* Exceeding the undo range is an error. */ | 
|  | 626 | if (undo < (-SEMAEM - 1) || undo > SEMAEM) | 
|  | 627 | goto out_of_range; | 
|  | 628 | un->semadj[sop->sem_num] = undo; | 
|  | 629 | } | 
|  | 630 |  | 
|  | 631 | curr->semval = result; | 
|  | 632 | } | 
|  | 633 |  | 
|  | 634 | sop--; | 
|  | 635 | pid = q->pid; | 
|  | 636 | while (sop >= sops) { | 
|  | 637 | sma->sems[sop->sem_num].sempid = pid; | 
|  | 638 | sop--; | 
|  | 639 | } | 
|  | 640 |  | 
|  | 641 | return 0; | 
|  | 642 |  | 
|  | 643 | out_of_range: | 
|  | 644 | result = -ERANGE; | 
|  | 645 | goto undo; | 
|  | 646 |  | 
|  | 647 | would_block: | 
|  | 648 | q->blocking = sop; | 
|  | 649 |  | 
|  | 650 | if (sop->sem_flg & IPC_NOWAIT) | 
|  | 651 | result = -EAGAIN; | 
|  | 652 | else | 
|  | 653 | result = 1; | 
|  | 654 |  | 
|  | 655 | undo: | 
|  | 656 | sop--; | 
|  | 657 | while (sop >= sops) { | 
|  | 658 | sem_op = sop->sem_op; | 
|  | 659 | sma->sems[sop->sem_num].semval -= sem_op; | 
|  | 660 | if (sop->sem_flg & SEM_UNDO) | 
|  | 661 | un->semadj[sop->sem_num] += sem_op; | 
|  | 662 | sop--; | 
|  | 663 | } | 
|  | 664 |  | 
|  | 665 | return result; | 
|  | 666 | } | 
|  | 667 |  | 
|  | 668 | static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q) | 
|  | 669 | { | 
|  | 670 | int result, sem_op, nsops; | 
|  | 671 | struct sembuf *sop; | 
|  | 672 | struct sem *curr; | 
|  | 673 | struct sembuf *sops; | 
|  | 674 | struct sem_undo *un; | 
|  | 675 |  | 
|  | 676 | sops = q->sops; | 
|  | 677 | nsops = q->nsops; | 
|  | 678 | un = q->undo; | 
|  | 679 |  | 
|  | 680 | if (unlikely(q->dupsop)) | 
|  | 681 | return perform_atomic_semop_slow(sma, q); | 
|  | 682 |  | 
|  | 683 | /* | 
|  | 684 | * We scan the semaphore set twice, first to ensure that the entire | 
|  | 685 | * operation can succeed, therefore avoiding any pointless writes | 
|  | 686 | * to shared memory and having to undo such changes in order to block | 
|  | 687 | * until the operations can go through. | 
|  | 688 | */ | 
|  | 689 | for (sop = sops; sop < sops + nsops; sop++) { | 
|  | 690 | curr = &sma->sems[sop->sem_num]; | 
|  | 691 | sem_op = sop->sem_op; | 
|  | 692 | result = curr->semval; | 
|  | 693 |  | 
|  | 694 | if (!sem_op && result) | 
|  | 695 | goto would_block; /* wait-for-zero */ | 
|  | 696 |  | 
|  | 697 | result += sem_op; | 
|  | 698 | if (result < 0) | 
|  | 699 | goto would_block; | 
|  | 700 |  | 
|  | 701 | if (result > SEMVMX) | 
|  | 702 | return -ERANGE; | 
|  | 703 |  | 
|  | 704 | if (sop->sem_flg & SEM_UNDO) { | 
|  | 705 | int undo = un->semadj[sop->sem_num] - sem_op; | 
|  | 706 |  | 
|  | 707 | /* Exceeding the undo range is an error. */ | 
|  | 708 | if (undo < (-SEMAEM - 1) || undo > SEMAEM) | 
|  | 709 | return -ERANGE; | 
|  | 710 | } | 
|  | 711 | } | 
|  | 712 |  | 
|  | 713 | for (sop = sops; sop < sops + nsops; sop++) { | 
|  | 714 | curr = &sma->sems[sop->sem_num]; | 
|  | 715 | sem_op = sop->sem_op; | 
|  | 716 | result = curr->semval; | 
|  | 717 |  | 
|  | 718 | if (sop->sem_flg & SEM_UNDO) { | 
|  | 719 | int undo = un->semadj[sop->sem_num] - sem_op; | 
|  | 720 |  | 
|  | 721 | un->semadj[sop->sem_num] = undo; | 
|  | 722 | } | 
|  | 723 | curr->semval += sem_op; | 
|  | 724 | curr->sempid = q->pid; | 
|  | 725 | } | 
|  | 726 |  | 
|  | 727 | return 0; | 
|  | 728 |  | 
|  | 729 | would_block: | 
|  | 730 | q->blocking = sop; | 
|  | 731 | return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1; | 
|  | 732 | } | 
|  | 733 |  | 
|  | 734 | static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error, | 
|  | 735 | struct wake_q_head *wake_q) | 
|  | 736 | { | 
|  | 737 | wake_q_add(wake_q, q->sleeper); | 
|  | 738 | /* | 
|  | 739 | * Rely on the above implicit barrier, such that we can | 
|  | 740 | * ensure that we hold reference to the task before setting | 
|  | 741 | * q->status. Otherwise we could race with do_exit if the | 
|  | 742 | * task is awoken by an external event before calling | 
|  | 743 | * wake_up_process(). | 
|  | 744 | */ | 
|  | 745 | WRITE_ONCE(q->status, error); | 
|  | 746 | } | 
|  | 747 |  | 
|  | 748 | static void unlink_queue(struct sem_array *sma, struct sem_queue *q) | 
|  | 749 | { | 
|  | 750 | list_del(&q->list); | 
|  | 751 | if (q->nsops > 1) | 
|  | 752 | sma->complex_count--; | 
|  | 753 | } | 
|  | 754 |  | 
|  | 755 | /** check_restart(sma, q) | 
|  | 756 | * @sma: semaphore array | 
|  | 757 | * @q: the operation that just completed | 
|  | 758 | * | 
|  | 759 | * update_queue is O(N^2) when it restarts scanning the whole queue of | 
|  | 760 | * waiting operations. Therefore this function checks if the restart is | 
|  | 761 | * really necessary. It is called after a previously waiting operation | 
|  | 762 | * modified the array. | 
|  | 763 | * Note that wait-for-zero operations are handled without restart. | 
|  | 764 | */ | 
|  | 765 | static inline int check_restart(struct sem_array *sma, struct sem_queue *q) | 
|  | 766 | { | 
|  | 767 | /* pending complex alter operations are too difficult to analyse */ | 
|  | 768 | if (!list_empty(&sma->pending_alter)) | 
|  | 769 | return 1; | 
|  | 770 |  | 
|  | 771 | /* we were a sleeping complex operation. Too difficult */ | 
|  | 772 | if (q->nsops > 1) | 
|  | 773 | return 1; | 
|  | 774 |  | 
|  | 775 | /* It is impossible that someone waits for the new value: | 
|  | 776 | * - complex operations always restart. | 
|  | 777 | * - wait-for-zero are handled seperately. | 
|  | 778 | * - q is a previously sleeping simple operation that | 
|  | 779 | *   altered the array. It must be a decrement, because | 
|  | 780 | *   simple increments never sleep. | 
|  | 781 | * - If there are older (higher priority) decrements | 
|  | 782 | *   in the queue, then they have observed the original | 
|  | 783 | *   semval value and couldn't proceed. The operation | 
|  | 784 | *   decremented to value - thus they won't proceed either. | 
|  | 785 | */ | 
|  | 786 | return 0; | 
|  | 787 | } | 
|  | 788 |  | 
|  | 789 | /** | 
|  | 790 | * wake_const_ops - wake up non-alter tasks | 
|  | 791 | * @sma: semaphore array. | 
|  | 792 | * @semnum: semaphore that was modified. | 
|  | 793 | * @wake_q: lockless wake-queue head. | 
|  | 794 | * | 
|  | 795 | * wake_const_ops must be called after a semaphore in a semaphore array | 
|  | 796 | * was set to 0. If complex const operations are pending, wake_const_ops must | 
|  | 797 | * be called with semnum = -1, as well as with the number of each modified | 
|  | 798 | * semaphore. | 
|  | 799 | * The tasks that must be woken up are added to @wake_q. The return code | 
|  | 800 | * is stored in q->pid. | 
|  | 801 | * The function returns 1 if at least one operation was completed successfully. | 
|  | 802 | */ | 
|  | 803 | static int wake_const_ops(struct sem_array *sma, int semnum, | 
|  | 804 | struct wake_q_head *wake_q) | 
|  | 805 | { | 
|  | 806 | struct sem_queue *q, *tmp; | 
|  | 807 | struct list_head *pending_list; | 
|  | 808 | int semop_completed = 0; | 
|  | 809 |  | 
|  | 810 | if (semnum == -1) | 
|  | 811 | pending_list = &sma->pending_const; | 
|  | 812 | else | 
|  | 813 | pending_list = &sma->sems[semnum].pending_const; | 
|  | 814 |  | 
|  | 815 | list_for_each_entry_safe(q, tmp, pending_list, list) { | 
|  | 816 | int error = perform_atomic_semop(sma, q); | 
|  | 817 |  | 
|  | 818 | if (error > 0) | 
|  | 819 | continue; | 
|  | 820 | /* operation completed, remove from queue & wakeup */ | 
|  | 821 | unlink_queue(sma, q); | 
|  | 822 |  | 
|  | 823 | wake_up_sem_queue_prepare(q, error, wake_q); | 
|  | 824 | if (error == 0) | 
|  | 825 | semop_completed = 1; | 
|  | 826 | } | 
|  | 827 |  | 
|  | 828 | return semop_completed; | 
|  | 829 | } | 
|  | 830 |  | 
|  | 831 | /** | 
|  | 832 | * do_smart_wakeup_zero - wakeup all wait for zero tasks | 
|  | 833 | * @sma: semaphore array | 
|  | 834 | * @sops: operations that were performed | 
|  | 835 | * @nsops: number of operations | 
|  | 836 | * @wake_q: lockless wake-queue head | 
|  | 837 | * | 
|  | 838 | * Checks all required queue for wait-for-zero operations, based | 
|  | 839 | * on the actual changes that were performed on the semaphore array. | 
|  | 840 | * The function returns 1 if at least one operation was completed successfully. | 
|  | 841 | */ | 
|  | 842 | static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops, | 
|  | 843 | int nsops, struct wake_q_head *wake_q) | 
|  | 844 | { | 
|  | 845 | int i; | 
|  | 846 | int semop_completed = 0; | 
|  | 847 | int got_zero = 0; | 
|  | 848 |  | 
|  | 849 | /* first: the per-semaphore queues, if known */ | 
|  | 850 | if (sops) { | 
|  | 851 | for (i = 0; i < nsops; i++) { | 
|  | 852 | int num = sops[i].sem_num; | 
|  | 853 |  | 
|  | 854 | if (sma->sems[num].semval == 0) { | 
|  | 855 | got_zero = 1; | 
|  | 856 | semop_completed |= wake_const_ops(sma, num, wake_q); | 
|  | 857 | } | 
|  | 858 | } | 
|  | 859 | } else { | 
|  | 860 | /* | 
|  | 861 | * No sops means modified semaphores not known. | 
|  | 862 | * Assume all were changed. | 
|  | 863 | */ | 
|  | 864 | for (i = 0; i < sma->sem_nsems; i++) { | 
|  | 865 | if (sma->sems[i].semval == 0) { | 
|  | 866 | got_zero = 1; | 
|  | 867 | semop_completed |= wake_const_ops(sma, i, wake_q); | 
|  | 868 | } | 
|  | 869 | } | 
|  | 870 | } | 
|  | 871 | /* | 
|  | 872 | * If one of the modified semaphores got 0, | 
|  | 873 | * then check the global queue, too. | 
|  | 874 | */ | 
|  | 875 | if (got_zero) | 
|  | 876 | semop_completed |= wake_const_ops(sma, -1, wake_q); | 
|  | 877 |  | 
|  | 878 | return semop_completed; | 
|  | 879 | } | 
|  | 880 |  | 
|  | 881 |  | 
|  | 882 | /** | 
|  | 883 | * update_queue - look for tasks that can be completed. | 
|  | 884 | * @sma: semaphore array. | 
|  | 885 | * @semnum: semaphore that was modified. | 
|  | 886 | * @wake_q: lockless wake-queue head. | 
|  | 887 | * | 
|  | 888 | * update_queue must be called after a semaphore in a semaphore array | 
|  | 889 | * was modified. If multiple semaphores were modified, update_queue must | 
|  | 890 | * be called with semnum = -1, as well as with the number of each modified | 
|  | 891 | * semaphore. | 
|  | 892 | * The tasks that must be woken up are added to @wake_q. The return code | 
|  | 893 | * is stored in q->pid. | 
|  | 894 | * The function internally checks if const operations can now succeed. | 
|  | 895 | * | 
|  | 896 | * The function return 1 if at least one semop was completed successfully. | 
|  | 897 | */ | 
|  | 898 | static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q) | 
|  | 899 | { | 
|  | 900 | struct sem_queue *q, *tmp; | 
|  | 901 | struct list_head *pending_list; | 
|  | 902 | int semop_completed = 0; | 
|  | 903 |  | 
|  | 904 | if (semnum == -1) | 
|  | 905 | pending_list = &sma->pending_alter; | 
|  | 906 | else | 
|  | 907 | pending_list = &sma->sems[semnum].pending_alter; | 
|  | 908 |  | 
|  | 909 | again: | 
|  | 910 | list_for_each_entry_safe(q, tmp, pending_list, list) { | 
|  | 911 | int error, restart; | 
|  | 912 |  | 
|  | 913 | /* If we are scanning the single sop, per-semaphore list of | 
|  | 914 | * one semaphore and that semaphore is 0, then it is not | 
|  | 915 | * necessary to scan further: simple increments | 
|  | 916 | * that affect only one entry succeed immediately and cannot | 
|  | 917 | * be in the  per semaphore pending queue, and decrements | 
|  | 918 | * cannot be successful if the value is already 0. | 
|  | 919 | */ | 
|  | 920 | if (semnum != -1 && sma->sems[semnum].semval == 0) | 
|  | 921 | break; | 
|  | 922 |  | 
|  | 923 | error = perform_atomic_semop(sma, q); | 
|  | 924 |  | 
|  | 925 | /* Does q->sleeper still need to sleep? */ | 
|  | 926 | if (error > 0) | 
|  | 927 | continue; | 
|  | 928 |  | 
|  | 929 | unlink_queue(sma, q); | 
|  | 930 |  | 
|  | 931 | if (error) { | 
|  | 932 | restart = 0; | 
|  | 933 | } else { | 
|  | 934 | semop_completed = 1; | 
|  | 935 | do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q); | 
|  | 936 | restart = check_restart(sma, q); | 
|  | 937 | } | 
|  | 938 |  | 
|  | 939 | wake_up_sem_queue_prepare(q, error, wake_q); | 
|  | 940 | if (restart) | 
|  | 941 | goto again; | 
|  | 942 | } | 
|  | 943 | return semop_completed; | 
|  | 944 | } | 
|  | 945 |  | 
|  | 946 | /** | 
|  | 947 | * set_semotime - set sem_otime | 
|  | 948 | * @sma: semaphore array | 
|  | 949 | * @sops: operations that modified the array, may be NULL | 
|  | 950 | * | 
|  | 951 | * sem_otime is replicated to avoid cache line trashing. | 
|  | 952 | * This function sets one instance to the current time. | 
|  | 953 | */ | 
|  | 954 | static void set_semotime(struct sem_array *sma, struct sembuf *sops) | 
|  | 955 | { | 
|  | 956 | if (sops == NULL) { | 
|  | 957 | sma->sems[0].sem_otime = get_seconds(); | 
|  | 958 | } else { | 
|  | 959 | sma->sems[sops[0].sem_num].sem_otime = | 
|  | 960 | get_seconds(); | 
|  | 961 | } | 
|  | 962 | } | 
|  | 963 |  | 
|  | 964 | /** | 
|  | 965 | * do_smart_update - optimized update_queue | 
|  | 966 | * @sma: semaphore array | 
|  | 967 | * @sops: operations that were performed | 
|  | 968 | * @nsops: number of operations | 
|  | 969 | * @otime: force setting otime | 
|  | 970 | * @wake_q: lockless wake-queue head | 
|  | 971 | * | 
|  | 972 | * do_smart_update() does the required calls to update_queue and wakeup_zero, | 
|  | 973 | * based on the actual changes that were performed on the semaphore array. | 
|  | 974 | * Note that the function does not do the actual wake-up: the caller is | 
|  | 975 | * responsible for calling wake_up_q(). | 
|  | 976 | * It is safe to perform this call after dropping all locks. | 
|  | 977 | */ | 
|  | 978 | static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops, | 
|  | 979 | int otime, struct wake_q_head *wake_q) | 
|  | 980 | { | 
|  | 981 | int i; | 
|  | 982 |  | 
|  | 983 | otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q); | 
|  | 984 |  | 
|  | 985 | if (!list_empty(&sma->pending_alter)) { | 
|  | 986 | /* semaphore array uses the global queue - just process it. */ | 
|  | 987 | otime |= update_queue(sma, -1, wake_q); | 
|  | 988 | } else { | 
|  | 989 | if (!sops) { | 
|  | 990 | /* | 
|  | 991 | * No sops, thus the modified semaphores are not | 
|  | 992 | * known. Check all. | 
|  | 993 | */ | 
|  | 994 | for (i = 0; i < sma->sem_nsems; i++) | 
|  | 995 | otime |= update_queue(sma, i, wake_q); | 
|  | 996 | } else { | 
|  | 997 | /* | 
|  | 998 | * Check the semaphores that were increased: | 
|  | 999 | * - No complex ops, thus all sleeping ops are | 
|  | 1000 | *   decrease. | 
|  | 1001 | * - if we decreased the value, then any sleeping | 
|  | 1002 | *   semaphore ops wont be able to run: If the | 
|  | 1003 | *   previous value was too small, then the new | 
|  | 1004 | *   value will be too small, too. | 
|  | 1005 | */ | 
|  | 1006 | for (i = 0; i < nsops; i++) { | 
|  | 1007 | if (sops[i].sem_op > 0) { | 
|  | 1008 | otime |= update_queue(sma, | 
|  | 1009 | sops[i].sem_num, wake_q); | 
|  | 1010 | } | 
|  | 1011 | } | 
|  | 1012 | } | 
|  | 1013 | } | 
|  | 1014 | if (otime) | 
|  | 1015 | set_semotime(sma, sops); | 
|  | 1016 | } | 
|  | 1017 |  | 
|  | 1018 | /* | 
|  | 1019 | * check_qop: Test if a queued operation sleeps on the semaphore semnum | 
|  | 1020 | */ | 
|  | 1021 | static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q, | 
|  | 1022 | bool count_zero) | 
|  | 1023 | { | 
|  | 1024 | struct sembuf *sop = q->blocking; | 
|  | 1025 |  | 
|  | 1026 | /* | 
|  | 1027 | * Linux always (since 0.99.10) reported a task as sleeping on all | 
|  | 1028 | * semaphores. This violates SUS, therefore it was changed to the | 
|  | 1029 | * standard compliant behavior. | 
|  | 1030 | * Give the administrators a chance to notice that an application | 
|  | 1031 | * might misbehave because it relies on the Linux behavior. | 
|  | 1032 | */ | 
|  | 1033 | pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n" | 
|  | 1034 | "The task %s (%d) triggered the difference, watch for misbehavior.\n", | 
|  | 1035 | current->comm, task_pid_nr(current)); | 
|  | 1036 |  | 
|  | 1037 | if (sop->sem_num != semnum) | 
|  | 1038 | return 0; | 
|  | 1039 |  | 
|  | 1040 | if (count_zero && sop->sem_op == 0) | 
|  | 1041 | return 1; | 
|  | 1042 | if (!count_zero && sop->sem_op < 0) | 
|  | 1043 | return 1; | 
|  | 1044 |  | 
|  | 1045 | return 0; | 
|  | 1046 | } | 
|  | 1047 |  | 
|  | 1048 | /* The following counts are associated to each semaphore: | 
|  | 1049 | *   semncnt        number of tasks waiting on semval being nonzero | 
|  | 1050 | *   semzcnt        number of tasks waiting on semval being zero | 
|  | 1051 | * | 
|  | 1052 | * Per definition, a task waits only on the semaphore of the first semop | 
|  | 1053 | * that cannot proceed, even if additional operation would block, too. | 
|  | 1054 | */ | 
|  | 1055 | static int count_semcnt(struct sem_array *sma, ushort semnum, | 
|  | 1056 | bool count_zero) | 
|  | 1057 | { | 
|  | 1058 | struct list_head *l; | 
|  | 1059 | struct sem_queue *q; | 
|  | 1060 | int semcnt; | 
|  | 1061 |  | 
|  | 1062 | semcnt = 0; | 
|  | 1063 | /* First: check the simple operations. They are easy to evaluate */ | 
|  | 1064 | if (count_zero) | 
|  | 1065 | l = &sma->sems[semnum].pending_const; | 
|  | 1066 | else | 
|  | 1067 | l = &sma->sems[semnum].pending_alter; | 
|  | 1068 |  | 
|  | 1069 | list_for_each_entry(q, l, list) { | 
|  | 1070 | /* all task on a per-semaphore list sleep on exactly | 
|  | 1071 | * that semaphore | 
|  | 1072 | */ | 
|  | 1073 | semcnt++; | 
|  | 1074 | } | 
|  | 1075 |  | 
|  | 1076 | /* Then: check the complex operations. */ | 
|  | 1077 | list_for_each_entry(q, &sma->pending_alter, list) { | 
|  | 1078 | semcnt += check_qop(sma, semnum, q, count_zero); | 
|  | 1079 | } | 
|  | 1080 | if (count_zero) { | 
|  | 1081 | list_for_each_entry(q, &sma->pending_const, list) { | 
|  | 1082 | semcnt += check_qop(sma, semnum, q, count_zero); | 
|  | 1083 | } | 
|  | 1084 | } | 
|  | 1085 | return semcnt; | 
|  | 1086 | } | 
|  | 1087 |  | 
|  | 1088 | /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked | 
|  | 1089 | * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem | 
|  | 1090 | * remains locked on exit. | 
|  | 1091 | */ | 
|  | 1092 | static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp) | 
|  | 1093 | { | 
|  | 1094 | struct sem_undo *un, *tu; | 
|  | 1095 | struct sem_queue *q, *tq; | 
|  | 1096 | struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); | 
|  | 1097 | int i; | 
|  | 1098 | DEFINE_WAKE_Q(wake_q); | 
|  | 1099 |  | 
|  | 1100 | /* Free the existing undo structures for this semaphore set.  */ | 
|  | 1101 | ipc_assert_locked_object(&sma->sem_perm); | 
|  | 1102 | list_for_each_entry_safe(un, tu, &sma->list_id, list_id) { | 
|  | 1103 | list_del(&un->list_id); | 
|  | 1104 | spin_lock(&un->ulp->lock); | 
|  | 1105 | un->semid = -1; | 
|  | 1106 | list_del_rcu(&un->list_proc); | 
|  | 1107 | spin_unlock(&un->ulp->lock); | 
|  | 1108 | kfree_rcu(un, rcu); | 
|  | 1109 | } | 
|  | 1110 |  | 
|  | 1111 | /* Wake up all pending processes and let them fail with EIDRM. */ | 
|  | 1112 | list_for_each_entry_safe(q, tq, &sma->pending_const, list) { | 
|  | 1113 | unlink_queue(sma, q); | 
|  | 1114 | wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); | 
|  | 1115 | } | 
|  | 1116 |  | 
|  | 1117 | list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { | 
|  | 1118 | unlink_queue(sma, q); | 
|  | 1119 | wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); | 
|  | 1120 | } | 
|  | 1121 | for (i = 0; i < sma->sem_nsems; i++) { | 
|  | 1122 | struct sem *sem = &sma->sems[i]; | 
|  | 1123 | list_for_each_entry_safe(q, tq, &sem->pending_const, list) { | 
|  | 1124 | unlink_queue(sma, q); | 
|  | 1125 | wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); | 
|  | 1126 | } | 
|  | 1127 | list_for_each_entry_safe(q, tq, &sem->pending_alter, list) { | 
|  | 1128 | unlink_queue(sma, q); | 
|  | 1129 | wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); | 
|  | 1130 | } | 
|  | 1131 | } | 
|  | 1132 |  | 
|  | 1133 | /* Remove the semaphore set from the IDR */ | 
|  | 1134 | sem_rmid(ns, sma); | 
|  | 1135 | sem_unlock(sma, -1); | 
|  | 1136 | rcu_read_unlock(); | 
|  | 1137 |  | 
|  | 1138 | wake_up_q(&wake_q); | 
|  | 1139 | ns->used_sems -= sma->sem_nsems; | 
|  | 1140 | ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); | 
|  | 1141 | } | 
|  | 1142 |  | 
|  | 1143 | static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version) | 
|  | 1144 | { | 
|  | 1145 | switch (version) { | 
|  | 1146 | case IPC_64: | 
|  | 1147 | return copy_to_user(buf, in, sizeof(*in)); | 
|  | 1148 | case IPC_OLD: | 
|  | 1149 | { | 
|  | 1150 | struct semid_ds out; | 
|  | 1151 |  | 
|  | 1152 | memset(&out, 0, sizeof(out)); | 
|  | 1153 |  | 
|  | 1154 | ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm); | 
|  | 1155 |  | 
|  | 1156 | out.sem_otime	= in->sem_otime; | 
|  | 1157 | out.sem_ctime	= in->sem_ctime; | 
|  | 1158 | out.sem_nsems	= in->sem_nsems; | 
|  | 1159 |  | 
|  | 1160 | return copy_to_user(buf, &out, sizeof(out)); | 
|  | 1161 | } | 
|  | 1162 | default: | 
|  | 1163 | return -EINVAL; | 
|  | 1164 | } | 
|  | 1165 | } | 
|  | 1166 |  | 
|  | 1167 | static time64_t get_semotime(struct sem_array *sma) | 
|  | 1168 | { | 
|  | 1169 | int i; | 
|  | 1170 | time64_t res; | 
|  | 1171 |  | 
|  | 1172 | res = sma->sems[0].sem_otime; | 
|  | 1173 | for (i = 1; i < sma->sem_nsems; i++) { | 
|  | 1174 | time64_t to = sma->sems[i].sem_otime; | 
|  | 1175 |  | 
|  | 1176 | if (to > res) | 
|  | 1177 | res = to; | 
|  | 1178 | } | 
|  | 1179 | return res; | 
|  | 1180 | } | 
|  | 1181 |  | 
|  | 1182 | static int semctl_stat(struct ipc_namespace *ns, int semid, | 
|  | 1183 | int cmd, struct semid64_ds *semid64) | 
|  | 1184 | { | 
|  | 1185 | struct sem_array *sma; | 
|  | 1186 | int id = 0; | 
|  | 1187 | int err; | 
|  | 1188 |  | 
|  | 1189 | memset(semid64, 0, sizeof(*semid64)); | 
|  | 1190 |  | 
|  | 1191 | rcu_read_lock(); | 
|  | 1192 | if (cmd == SEM_STAT) { | 
|  | 1193 | sma = sem_obtain_object(ns, semid); | 
|  | 1194 | if (IS_ERR(sma)) { | 
|  | 1195 | err = PTR_ERR(sma); | 
|  | 1196 | goto out_unlock; | 
|  | 1197 | } | 
|  | 1198 | id = sma->sem_perm.id; | 
|  | 1199 | } else { | 
|  | 1200 | sma = sem_obtain_object_check(ns, semid); | 
|  | 1201 | if (IS_ERR(sma)) { | 
|  | 1202 | err = PTR_ERR(sma); | 
|  | 1203 | goto out_unlock; | 
|  | 1204 | } | 
|  | 1205 | } | 
|  | 1206 |  | 
|  | 1207 | err = -EACCES; | 
|  | 1208 | if (ipcperms(ns, &sma->sem_perm, S_IRUGO)) | 
|  | 1209 | goto out_unlock; | 
|  | 1210 |  | 
|  | 1211 | err = security_sem_semctl(sma, cmd); | 
|  | 1212 | if (err) | 
|  | 1213 | goto out_unlock; | 
|  | 1214 |  | 
|  | 1215 | kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm); | 
|  | 1216 | semid64->sem_otime = get_semotime(sma); | 
|  | 1217 | semid64->sem_ctime = sma->sem_ctime; | 
|  | 1218 | semid64->sem_nsems = sma->sem_nsems; | 
|  | 1219 | rcu_read_unlock(); | 
|  | 1220 | return id; | 
|  | 1221 |  | 
|  | 1222 | out_unlock: | 
|  | 1223 | rcu_read_unlock(); | 
|  | 1224 | return err; | 
|  | 1225 | } | 
|  | 1226 |  | 
|  | 1227 | static int semctl_info(struct ipc_namespace *ns, int semid, | 
|  | 1228 | int cmd, void __user *p) | 
|  | 1229 | { | 
|  | 1230 | struct seminfo seminfo; | 
|  | 1231 | int max_id; | 
|  | 1232 | int err; | 
|  | 1233 |  | 
|  | 1234 | err = security_sem_semctl(NULL, cmd); | 
|  | 1235 | if (err) | 
|  | 1236 | return err; | 
|  | 1237 |  | 
|  | 1238 | memset(&seminfo, 0, sizeof(seminfo)); | 
|  | 1239 | seminfo.semmni = ns->sc_semmni; | 
|  | 1240 | seminfo.semmns = ns->sc_semmns; | 
|  | 1241 | seminfo.semmsl = ns->sc_semmsl; | 
|  | 1242 | seminfo.semopm = ns->sc_semopm; | 
|  | 1243 | seminfo.semvmx = SEMVMX; | 
|  | 1244 | seminfo.semmnu = SEMMNU; | 
|  | 1245 | seminfo.semmap = SEMMAP; | 
|  | 1246 | seminfo.semume = SEMUME; | 
|  | 1247 | down_read(&sem_ids(ns).rwsem); | 
|  | 1248 | if (cmd == SEM_INFO) { | 
|  | 1249 | seminfo.semusz = sem_ids(ns).in_use; | 
|  | 1250 | seminfo.semaem = ns->used_sems; | 
|  | 1251 | } else { | 
|  | 1252 | seminfo.semusz = SEMUSZ; | 
|  | 1253 | seminfo.semaem = SEMAEM; | 
|  | 1254 | } | 
|  | 1255 | max_id = ipc_get_maxid(&sem_ids(ns)); | 
|  | 1256 | up_read(&sem_ids(ns).rwsem); | 
|  | 1257 | if (copy_to_user(p, &seminfo, sizeof(struct seminfo))) | 
|  | 1258 | return -EFAULT; | 
|  | 1259 | return (max_id < 0) ? 0 : max_id; | 
|  | 1260 | } | 
|  | 1261 |  | 
|  | 1262 | static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum, | 
|  | 1263 | int val) | 
|  | 1264 | { | 
|  | 1265 | struct sem_undo *un; | 
|  | 1266 | struct sem_array *sma; | 
|  | 1267 | struct sem *curr; | 
|  | 1268 | int err; | 
|  | 1269 | DEFINE_WAKE_Q(wake_q); | 
|  | 1270 |  | 
|  | 1271 | if (val > SEMVMX || val < 0) | 
|  | 1272 | return -ERANGE; | 
|  | 1273 |  | 
|  | 1274 | rcu_read_lock(); | 
|  | 1275 | sma = sem_obtain_object_check(ns, semid); | 
|  | 1276 | if (IS_ERR(sma)) { | 
|  | 1277 | rcu_read_unlock(); | 
|  | 1278 | return PTR_ERR(sma); | 
|  | 1279 | } | 
|  | 1280 |  | 
|  | 1281 | if (semnum < 0 || semnum >= sma->sem_nsems) { | 
|  | 1282 | rcu_read_unlock(); | 
|  | 1283 | return -EINVAL; | 
|  | 1284 | } | 
|  | 1285 |  | 
|  | 1286 |  | 
|  | 1287 | if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) { | 
|  | 1288 | rcu_read_unlock(); | 
|  | 1289 | return -EACCES; | 
|  | 1290 | } | 
|  | 1291 |  | 
|  | 1292 | err = security_sem_semctl(sma, SETVAL); | 
|  | 1293 | if (err) { | 
|  | 1294 | rcu_read_unlock(); | 
|  | 1295 | return -EACCES; | 
|  | 1296 | } | 
|  | 1297 |  | 
|  | 1298 | sem_lock(sma, NULL, -1); | 
|  | 1299 |  | 
|  | 1300 | if (!ipc_valid_object(&sma->sem_perm)) { | 
|  | 1301 | sem_unlock(sma, -1); | 
|  | 1302 | rcu_read_unlock(); | 
|  | 1303 | return -EIDRM; | 
|  | 1304 | } | 
|  | 1305 |  | 
|  | 1306 | curr = &sma->sems[semnum]; | 
|  | 1307 |  | 
|  | 1308 | ipc_assert_locked_object(&sma->sem_perm); | 
|  | 1309 | list_for_each_entry(un, &sma->list_id, list_id) | 
|  | 1310 | un->semadj[semnum] = 0; | 
|  | 1311 |  | 
|  | 1312 | curr->semval = val; | 
|  | 1313 | curr->sempid = task_tgid_vnr(current); | 
|  | 1314 | sma->sem_ctime = ktime_get_real_seconds(); | 
|  | 1315 | /* maybe some queued-up processes were waiting for this */ | 
|  | 1316 | do_smart_update(sma, NULL, 0, 0, &wake_q); | 
|  | 1317 | sem_unlock(sma, -1); | 
|  | 1318 | rcu_read_unlock(); | 
|  | 1319 | wake_up_q(&wake_q); | 
|  | 1320 | return 0; | 
|  | 1321 | } | 
|  | 1322 |  | 
|  | 1323 | static int semctl_main(struct ipc_namespace *ns, int semid, int semnum, | 
|  | 1324 | int cmd, void __user *p) | 
|  | 1325 | { | 
|  | 1326 | struct sem_array *sma; | 
|  | 1327 | struct sem *curr; | 
|  | 1328 | int err, nsems; | 
|  | 1329 | ushort fast_sem_io[SEMMSL_FAST]; | 
|  | 1330 | ushort *sem_io = fast_sem_io; | 
|  | 1331 | DEFINE_WAKE_Q(wake_q); | 
|  | 1332 |  | 
|  | 1333 | rcu_read_lock(); | 
|  | 1334 | sma = sem_obtain_object_check(ns, semid); | 
|  | 1335 | if (IS_ERR(sma)) { | 
|  | 1336 | rcu_read_unlock(); | 
|  | 1337 | return PTR_ERR(sma); | 
|  | 1338 | } | 
|  | 1339 |  | 
|  | 1340 | nsems = sma->sem_nsems; | 
|  | 1341 |  | 
|  | 1342 | err = -EACCES; | 
|  | 1343 | if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO)) | 
|  | 1344 | goto out_rcu_wakeup; | 
|  | 1345 |  | 
|  | 1346 | err = security_sem_semctl(sma, cmd); | 
|  | 1347 | if (err) | 
|  | 1348 | goto out_rcu_wakeup; | 
|  | 1349 |  | 
|  | 1350 | err = -EACCES; | 
|  | 1351 | switch (cmd) { | 
|  | 1352 | case GETALL: | 
|  | 1353 | { | 
|  | 1354 | ushort __user *array = p; | 
|  | 1355 | int i; | 
|  | 1356 |  | 
|  | 1357 | sem_lock(sma, NULL, -1); | 
|  | 1358 | if (!ipc_valid_object(&sma->sem_perm)) { | 
|  | 1359 | err = -EIDRM; | 
|  | 1360 | goto out_unlock; | 
|  | 1361 | } | 
|  | 1362 | if (nsems > SEMMSL_FAST) { | 
|  | 1363 | if (!ipc_rcu_getref(&sma->sem_perm)) { | 
|  | 1364 | err = -EIDRM; | 
|  | 1365 | goto out_unlock; | 
|  | 1366 | } | 
|  | 1367 | sem_unlock(sma, -1); | 
|  | 1368 | rcu_read_unlock(); | 
|  | 1369 | sem_io = kvmalloc_array(nsems, sizeof(ushort), | 
|  | 1370 | GFP_KERNEL); | 
|  | 1371 | if (sem_io == NULL) { | 
|  | 1372 | ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); | 
|  | 1373 | return -ENOMEM; | 
|  | 1374 | } | 
|  | 1375 |  | 
|  | 1376 | rcu_read_lock(); | 
|  | 1377 | sem_lock_and_putref(sma); | 
|  | 1378 | if (!ipc_valid_object(&sma->sem_perm)) { | 
|  | 1379 | err = -EIDRM; | 
|  | 1380 | goto out_unlock; | 
|  | 1381 | } | 
|  | 1382 | } | 
|  | 1383 | for (i = 0; i < sma->sem_nsems; i++) | 
|  | 1384 | sem_io[i] = sma->sems[i].semval; | 
|  | 1385 | sem_unlock(sma, -1); | 
|  | 1386 | rcu_read_unlock(); | 
|  | 1387 | err = 0; | 
|  | 1388 | if (copy_to_user(array, sem_io, nsems*sizeof(ushort))) | 
|  | 1389 | err = -EFAULT; | 
|  | 1390 | goto out_free; | 
|  | 1391 | } | 
|  | 1392 | case SETALL: | 
|  | 1393 | { | 
|  | 1394 | int i; | 
|  | 1395 | struct sem_undo *un; | 
|  | 1396 |  | 
|  | 1397 | if (!ipc_rcu_getref(&sma->sem_perm)) { | 
|  | 1398 | err = -EIDRM; | 
|  | 1399 | goto out_rcu_wakeup; | 
|  | 1400 | } | 
|  | 1401 | rcu_read_unlock(); | 
|  | 1402 |  | 
|  | 1403 | if (nsems > SEMMSL_FAST) { | 
|  | 1404 | sem_io = kvmalloc_array(nsems, sizeof(ushort), | 
|  | 1405 | GFP_KERNEL); | 
|  | 1406 | if (sem_io == NULL) { | 
|  | 1407 | ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); | 
|  | 1408 | return -ENOMEM; | 
|  | 1409 | } | 
|  | 1410 | } | 
|  | 1411 |  | 
|  | 1412 | if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) { | 
|  | 1413 | ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); | 
|  | 1414 | err = -EFAULT; | 
|  | 1415 | goto out_free; | 
|  | 1416 | } | 
|  | 1417 |  | 
|  | 1418 | for (i = 0; i < nsems; i++) { | 
|  | 1419 | if (sem_io[i] > SEMVMX) { | 
|  | 1420 | ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); | 
|  | 1421 | err = -ERANGE; | 
|  | 1422 | goto out_free; | 
|  | 1423 | } | 
|  | 1424 | } | 
|  | 1425 | rcu_read_lock(); | 
|  | 1426 | sem_lock_and_putref(sma); | 
|  | 1427 | if (!ipc_valid_object(&sma->sem_perm)) { | 
|  | 1428 | err = -EIDRM; | 
|  | 1429 | goto out_unlock; | 
|  | 1430 | } | 
|  | 1431 |  | 
|  | 1432 | for (i = 0; i < nsems; i++) { | 
|  | 1433 | sma->sems[i].semval = sem_io[i]; | 
|  | 1434 | sma->sems[i].sempid = task_tgid_vnr(current); | 
|  | 1435 | } | 
|  | 1436 |  | 
|  | 1437 | ipc_assert_locked_object(&sma->sem_perm); | 
|  | 1438 | list_for_each_entry(un, &sma->list_id, list_id) { | 
|  | 1439 | for (i = 0; i < nsems; i++) | 
|  | 1440 | un->semadj[i] = 0; | 
|  | 1441 | } | 
|  | 1442 | sma->sem_ctime = ktime_get_real_seconds(); | 
|  | 1443 | /* maybe some queued-up processes were waiting for this */ | 
|  | 1444 | do_smart_update(sma, NULL, 0, 0, &wake_q); | 
|  | 1445 | err = 0; | 
|  | 1446 | goto out_unlock; | 
|  | 1447 | } | 
|  | 1448 | /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */ | 
|  | 1449 | } | 
|  | 1450 | err = -EINVAL; | 
|  | 1451 | if (semnum < 0 || semnum >= nsems) | 
|  | 1452 | goto out_rcu_wakeup; | 
|  | 1453 |  | 
|  | 1454 | sem_lock(sma, NULL, -1); | 
|  | 1455 | if (!ipc_valid_object(&sma->sem_perm)) { | 
|  | 1456 | err = -EIDRM; | 
|  | 1457 | goto out_unlock; | 
|  | 1458 | } | 
|  | 1459 | curr = &sma->sems[semnum]; | 
|  | 1460 |  | 
|  | 1461 | switch (cmd) { | 
|  | 1462 | case GETVAL: | 
|  | 1463 | err = curr->semval; | 
|  | 1464 | goto out_unlock; | 
|  | 1465 | case GETPID: | 
|  | 1466 | err = curr->sempid; | 
|  | 1467 | goto out_unlock; | 
|  | 1468 | case GETNCNT: | 
|  | 1469 | err = count_semcnt(sma, semnum, 0); | 
|  | 1470 | goto out_unlock; | 
|  | 1471 | case GETZCNT: | 
|  | 1472 | err = count_semcnt(sma, semnum, 1); | 
|  | 1473 | goto out_unlock; | 
|  | 1474 | } | 
|  | 1475 |  | 
|  | 1476 | out_unlock: | 
|  | 1477 | sem_unlock(sma, -1); | 
|  | 1478 | out_rcu_wakeup: | 
|  | 1479 | rcu_read_unlock(); | 
|  | 1480 | wake_up_q(&wake_q); | 
|  | 1481 | out_free: | 
|  | 1482 | if (sem_io != fast_sem_io) | 
|  | 1483 | kvfree(sem_io); | 
|  | 1484 | return err; | 
|  | 1485 | } | 
|  | 1486 |  | 
|  | 1487 | static inline unsigned long | 
|  | 1488 | copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version) | 
|  | 1489 | { | 
|  | 1490 | switch (version) { | 
|  | 1491 | case IPC_64: | 
|  | 1492 | if (copy_from_user(out, buf, sizeof(*out))) | 
|  | 1493 | return -EFAULT; | 
|  | 1494 | return 0; | 
|  | 1495 | case IPC_OLD: | 
|  | 1496 | { | 
|  | 1497 | struct semid_ds tbuf_old; | 
|  | 1498 |  | 
|  | 1499 | if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old))) | 
|  | 1500 | return -EFAULT; | 
|  | 1501 |  | 
|  | 1502 | out->sem_perm.uid	= tbuf_old.sem_perm.uid; | 
|  | 1503 | out->sem_perm.gid	= tbuf_old.sem_perm.gid; | 
|  | 1504 | out->sem_perm.mode	= tbuf_old.sem_perm.mode; | 
|  | 1505 |  | 
|  | 1506 | return 0; | 
|  | 1507 | } | 
|  | 1508 | default: | 
|  | 1509 | return -EINVAL; | 
|  | 1510 | } | 
|  | 1511 | } | 
|  | 1512 |  | 
|  | 1513 | /* | 
|  | 1514 | * This function handles some semctl commands which require the rwsem | 
|  | 1515 | * to be held in write mode. | 
|  | 1516 | * NOTE: no locks must be held, the rwsem is taken inside this function. | 
|  | 1517 | */ | 
|  | 1518 | static int semctl_down(struct ipc_namespace *ns, int semid, | 
|  | 1519 | int cmd, struct semid64_ds *semid64) | 
|  | 1520 | { | 
|  | 1521 | struct sem_array *sma; | 
|  | 1522 | int err; | 
|  | 1523 | struct kern_ipc_perm *ipcp; | 
|  | 1524 |  | 
|  | 1525 | down_write(&sem_ids(ns).rwsem); | 
|  | 1526 | rcu_read_lock(); | 
|  | 1527 |  | 
|  | 1528 | ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd, | 
|  | 1529 | &semid64->sem_perm, 0); | 
|  | 1530 | if (IS_ERR(ipcp)) { | 
|  | 1531 | err = PTR_ERR(ipcp); | 
|  | 1532 | goto out_unlock1; | 
|  | 1533 | } | 
|  | 1534 |  | 
|  | 1535 | sma = container_of(ipcp, struct sem_array, sem_perm); | 
|  | 1536 |  | 
|  | 1537 | err = security_sem_semctl(sma, cmd); | 
|  | 1538 | if (err) | 
|  | 1539 | goto out_unlock1; | 
|  | 1540 |  | 
|  | 1541 | switch (cmd) { | 
|  | 1542 | case IPC_RMID: | 
|  | 1543 | sem_lock(sma, NULL, -1); | 
|  | 1544 | /* freeary unlocks the ipc object and rcu */ | 
|  | 1545 | freeary(ns, ipcp); | 
|  | 1546 | goto out_up; | 
|  | 1547 | case IPC_SET: | 
|  | 1548 | sem_lock(sma, NULL, -1); | 
|  | 1549 | err = ipc_update_perm(&semid64->sem_perm, ipcp); | 
|  | 1550 | if (err) | 
|  | 1551 | goto out_unlock0; | 
|  | 1552 | sma->sem_ctime = ktime_get_real_seconds(); | 
|  | 1553 | break; | 
|  | 1554 | default: | 
|  | 1555 | err = -EINVAL; | 
|  | 1556 | goto out_unlock1; | 
|  | 1557 | } | 
|  | 1558 |  | 
|  | 1559 | out_unlock0: | 
|  | 1560 | sem_unlock(sma, -1); | 
|  | 1561 | out_unlock1: | 
|  | 1562 | rcu_read_unlock(); | 
|  | 1563 | out_up: | 
|  | 1564 | up_write(&sem_ids(ns).rwsem); | 
|  | 1565 | return err; | 
|  | 1566 | } | 
|  | 1567 |  | 
|  | 1568 | SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg) | 
|  | 1569 | { | 
|  | 1570 | int version; | 
|  | 1571 | struct ipc_namespace *ns; | 
|  | 1572 | void __user *p = (void __user *)arg; | 
|  | 1573 | struct semid64_ds semid64; | 
|  | 1574 | int err; | 
|  | 1575 |  | 
|  | 1576 | if (semid < 0) | 
|  | 1577 | return -EINVAL; | 
|  | 1578 |  | 
|  | 1579 | version = ipc_parse_version(&cmd); | 
|  | 1580 | ns = current->nsproxy->ipc_ns; | 
|  | 1581 |  | 
|  | 1582 | switch (cmd) { | 
|  | 1583 | case IPC_INFO: | 
|  | 1584 | case SEM_INFO: | 
|  | 1585 | return semctl_info(ns, semid, cmd, p); | 
|  | 1586 | case IPC_STAT: | 
|  | 1587 | case SEM_STAT: | 
|  | 1588 | err = semctl_stat(ns, semid, cmd, &semid64); | 
|  | 1589 | if (err < 0) | 
|  | 1590 | return err; | 
|  | 1591 | if (copy_semid_to_user(p, &semid64, version)) | 
|  | 1592 | err = -EFAULT; | 
|  | 1593 | return err; | 
|  | 1594 | case GETALL: | 
|  | 1595 | case GETVAL: | 
|  | 1596 | case GETPID: | 
|  | 1597 | case GETNCNT: | 
|  | 1598 | case GETZCNT: | 
|  | 1599 | case SETALL: | 
|  | 1600 | return semctl_main(ns, semid, semnum, cmd, p); | 
|  | 1601 | case SETVAL: { | 
|  | 1602 | int val; | 
|  | 1603 | #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN) | 
|  | 1604 | /* big-endian 64bit */ | 
|  | 1605 | val = arg >> 32; | 
|  | 1606 | #else | 
|  | 1607 | /* 32bit or little-endian 64bit */ | 
|  | 1608 | val = arg; | 
|  | 1609 | #endif | 
|  | 1610 | return semctl_setval(ns, semid, semnum, val); | 
|  | 1611 | } | 
|  | 1612 | case IPC_SET: | 
|  | 1613 | if (copy_semid_from_user(&semid64, p, version)) | 
|  | 1614 | return -EFAULT; | 
|  | 1615 | case IPC_RMID: | 
|  | 1616 | return semctl_down(ns, semid, cmd, &semid64); | 
|  | 1617 | default: | 
|  | 1618 | return -EINVAL; | 
|  | 1619 | } | 
|  | 1620 | } | 
|  | 1621 |  | 
|  | 1622 | #ifdef CONFIG_COMPAT | 
|  | 1623 |  | 
|  | 1624 | struct compat_semid_ds { | 
|  | 1625 | struct compat_ipc_perm sem_perm; | 
|  | 1626 | compat_time_t sem_otime; | 
|  | 1627 | compat_time_t sem_ctime; | 
|  | 1628 | compat_uptr_t sem_base; | 
|  | 1629 | compat_uptr_t sem_pending; | 
|  | 1630 | compat_uptr_t sem_pending_last; | 
|  | 1631 | compat_uptr_t undo; | 
|  | 1632 | unsigned short sem_nsems; | 
|  | 1633 | }; | 
|  | 1634 |  | 
|  | 1635 | static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf, | 
|  | 1636 | int version) | 
|  | 1637 | { | 
|  | 1638 | memset(out, 0, sizeof(*out)); | 
|  | 1639 | if (version == IPC_64) { | 
|  | 1640 | struct compat_semid64_ds *p = buf; | 
|  | 1641 | return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm); | 
|  | 1642 | } else { | 
|  | 1643 | struct compat_semid_ds *p = buf; | 
|  | 1644 | return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm); | 
|  | 1645 | } | 
|  | 1646 | } | 
|  | 1647 |  | 
|  | 1648 | static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in, | 
|  | 1649 | int version) | 
|  | 1650 | { | 
|  | 1651 | if (version == IPC_64) { | 
|  | 1652 | struct compat_semid64_ds v; | 
|  | 1653 | memset(&v, 0, sizeof(v)); | 
|  | 1654 | to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm); | 
|  | 1655 | v.sem_otime = in->sem_otime; | 
|  | 1656 | v.sem_ctime = in->sem_ctime; | 
|  | 1657 | v.sem_nsems = in->sem_nsems; | 
|  | 1658 | return copy_to_user(buf, &v, sizeof(v)); | 
|  | 1659 | } else { | 
|  | 1660 | struct compat_semid_ds v; | 
|  | 1661 | memset(&v, 0, sizeof(v)); | 
|  | 1662 | to_compat_ipc_perm(&v.sem_perm, &in->sem_perm); | 
|  | 1663 | v.sem_otime = in->sem_otime; | 
|  | 1664 | v.sem_ctime = in->sem_ctime; | 
|  | 1665 | v.sem_nsems = in->sem_nsems; | 
|  | 1666 | return copy_to_user(buf, &v, sizeof(v)); | 
|  | 1667 | } | 
|  | 1668 | } | 
|  | 1669 |  | 
|  | 1670 | COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg) | 
|  | 1671 | { | 
|  | 1672 | void __user *p = compat_ptr(arg); | 
|  | 1673 | struct ipc_namespace *ns; | 
|  | 1674 | struct semid64_ds semid64; | 
|  | 1675 | int version = compat_ipc_parse_version(&cmd); | 
|  | 1676 | int err; | 
|  | 1677 |  | 
|  | 1678 | ns = current->nsproxy->ipc_ns; | 
|  | 1679 |  | 
|  | 1680 | if (semid < 0) | 
|  | 1681 | return -EINVAL; | 
|  | 1682 |  | 
|  | 1683 | switch (cmd & (~IPC_64)) { | 
|  | 1684 | case IPC_INFO: | 
|  | 1685 | case SEM_INFO: | 
|  | 1686 | return semctl_info(ns, semid, cmd, p); | 
|  | 1687 | case IPC_STAT: | 
|  | 1688 | case SEM_STAT: | 
|  | 1689 | err = semctl_stat(ns, semid, cmd, &semid64); | 
|  | 1690 | if (err < 0) | 
|  | 1691 | return err; | 
|  | 1692 | if (copy_compat_semid_to_user(p, &semid64, version)) | 
|  | 1693 | err = -EFAULT; | 
|  | 1694 | return err; | 
|  | 1695 | case GETVAL: | 
|  | 1696 | case GETPID: | 
|  | 1697 | case GETNCNT: | 
|  | 1698 | case GETZCNT: | 
|  | 1699 | case GETALL: | 
|  | 1700 | case SETALL: | 
|  | 1701 | return semctl_main(ns, semid, semnum, cmd, p); | 
|  | 1702 | case SETVAL: | 
|  | 1703 | return semctl_setval(ns, semid, semnum, arg); | 
|  | 1704 | case IPC_SET: | 
|  | 1705 | if (copy_compat_semid_from_user(&semid64, p, version)) | 
|  | 1706 | return -EFAULT; | 
|  | 1707 | /* fallthru */ | 
|  | 1708 | case IPC_RMID: | 
|  | 1709 | return semctl_down(ns, semid, cmd, &semid64); | 
|  | 1710 | default: | 
|  | 1711 | return -EINVAL; | 
|  | 1712 | } | 
|  | 1713 | } | 
|  | 1714 | #endif | 
|  | 1715 |  | 
|  | 1716 | /* If the task doesn't already have a undo_list, then allocate one | 
|  | 1717 | * here.  We guarantee there is only one thread using this undo list, | 
|  | 1718 | * and current is THE ONE | 
|  | 1719 | * | 
|  | 1720 | * If this allocation and assignment succeeds, but later | 
|  | 1721 | * portions of this code fail, there is no need to free the sem_undo_list. | 
|  | 1722 | * Just let it stay associated with the task, and it'll be freed later | 
|  | 1723 | * at exit time. | 
|  | 1724 | * | 
|  | 1725 | * This can block, so callers must hold no locks. | 
|  | 1726 | */ | 
|  | 1727 | static inline int get_undo_list(struct sem_undo_list **undo_listp) | 
|  | 1728 | { | 
|  | 1729 | struct sem_undo_list *undo_list; | 
|  | 1730 |  | 
|  | 1731 | undo_list = current->sysvsem.undo_list; | 
|  | 1732 | if (!undo_list) { | 
|  | 1733 | undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL); | 
|  | 1734 | if (undo_list == NULL) | 
|  | 1735 | return -ENOMEM; | 
|  | 1736 | spin_lock_init(&undo_list->lock); | 
|  | 1737 | refcount_set(&undo_list->refcnt, 1); | 
|  | 1738 | INIT_LIST_HEAD(&undo_list->list_proc); | 
|  | 1739 |  | 
|  | 1740 | current->sysvsem.undo_list = undo_list; | 
|  | 1741 | } | 
|  | 1742 | *undo_listp = undo_list; | 
|  | 1743 | return 0; | 
|  | 1744 | } | 
|  | 1745 |  | 
|  | 1746 | static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid) | 
|  | 1747 | { | 
|  | 1748 | struct sem_undo *un; | 
|  | 1749 |  | 
|  | 1750 | list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) { | 
|  | 1751 | if (un->semid == semid) | 
|  | 1752 | return un; | 
|  | 1753 | } | 
|  | 1754 | return NULL; | 
|  | 1755 | } | 
|  | 1756 |  | 
|  | 1757 | static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid) | 
|  | 1758 | { | 
|  | 1759 | struct sem_undo *un; | 
|  | 1760 |  | 
|  | 1761 | assert_spin_locked(&ulp->lock); | 
|  | 1762 |  | 
|  | 1763 | un = __lookup_undo(ulp, semid); | 
|  | 1764 | if (un) { | 
|  | 1765 | list_del_rcu(&un->list_proc); | 
|  | 1766 | list_add_rcu(&un->list_proc, &ulp->list_proc); | 
|  | 1767 | } | 
|  | 1768 | return un; | 
|  | 1769 | } | 
|  | 1770 |  | 
|  | 1771 | /** | 
|  | 1772 | * find_alloc_undo - lookup (and if not present create) undo array | 
|  | 1773 | * @ns: namespace | 
|  | 1774 | * @semid: semaphore array id | 
|  | 1775 | * | 
|  | 1776 | * The function looks up (and if not present creates) the undo structure. | 
|  | 1777 | * The size of the undo structure depends on the size of the semaphore | 
|  | 1778 | * array, thus the alloc path is not that straightforward. | 
|  | 1779 | * Lifetime-rules: sem_undo is rcu-protected, on success, the function | 
|  | 1780 | * performs a rcu_read_lock(). | 
|  | 1781 | */ | 
|  | 1782 | static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid) | 
|  | 1783 | { | 
|  | 1784 | struct sem_array *sma; | 
|  | 1785 | struct sem_undo_list *ulp; | 
|  | 1786 | struct sem_undo *un, *new; | 
|  | 1787 | int nsems, error; | 
|  | 1788 |  | 
|  | 1789 | error = get_undo_list(&ulp); | 
|  | 1790 | if (error) | 
|  | 1791 | return ERR_PTR(error); | 
|  | 1792 |  | 
|  | 1793 | rcu_read_lock(); | 
|  | 1794 | spin_lock(&ulp->lock); | 
|  | 1795 | un = lookup_undo(ulp, semid); | 
|  | 1796 | spin_unlock(&ulp->lock); | 
|  | 1797 | if (likely(un != NULL)) | 
|  | 1798 | goto out; | 
|  | 1799 |  | 
|  | 1800 | /* no undo structure around - allocate one. */ | 
|  | 1801 | /* step 1: figure out the size of the semaphore array */ | 
|  | 1802 | sma = sem_obtain_object_check(ns, semid); | 
|  | 1803 | if (IS_ERR(sma)) { | 
|  | 1804 | rcu_read_unlock(); | 
|  | 1805 | return ERR_CAST(sma); | 
|  | 1806 | } | 
|  | 1807 |  | 
|  | 1808 | nsems = sma->sem_nsems; | 
|  | 1809 | if (!ipc_rcu_getref(&sma->sem_perm)) { | 
|  | 1810 | rcu_read_unlock(); | 
|  | 1811 | un = ERR_PTR(-EIDRM); | 
|  | 1812 | goto out; | 
|  | 1813 | } | 
|  | 1814 | rcu_read_unlock(); | 
|  | 1815 |  | 
|  | 1816 | /* step 2: allocate new undo structure */ | 
|  | 1817 | new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL); | 
|  | 1818 | if (!new) { | 
|  | 1819 | ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); | 
|  | 1820 | return ERR_PTR(-ENOMEM); | 
|  | 1821 | } | 
|  | 1822 |  | 
|  | 1823 | /* step 3: Acquire the lock on semaphore array */ | 
|  | 1824 | rcu_read_lock(); | 
|  | 1825 | sem_lock_and_putref(sma); | 
|  | 1826 | if (!ipc_valid_object(&sma->sem_perm)) { | 
|  | 1827 | sem_unlock(sma, -1); | 
|  | 1828 | rcu_read_unlock(); | 
|  | 1829 | kfree(new); | 
|  | 1830 | un = ERR_PTR(-EIDRM); | 
|  | 1831 | goto out; | 
|  | 1832 | } | 
|  | 1833 | spin_lock(&ulp->lock); | 
|  | 1834 |  | 
|  | 1835 | /* | 
|  | 1836 | * step 4: check for races: did someone else allocate the undo struct? | 
|  | 1837 | */ | 
|  | 1838 | un = lookup_undo(ulp, semid); | 
|  | 1839 | if (un) { | 
|  | 1840 | kfree(new); | 
|  | 1841 | goto success; | 
|  | 1842 | } | 
|  | 1843 | /* step 5: initialize & link new undo structure */ | 
|  | 1844 | new->semadj = (short *) &new[1]; | 
|  | 1845 | new->ulp = ulp; | 
|  | 1846 | new->semid = semid; | 
|  | 1847 | assert_spin_locked(&ulp->lock); | 
|  | 1848 | list_add_rcu(&new->list_proc, &ulp->list_proc); | 
|  | 1849 | ipc_assert_locked_object(&sma->sem_perm); | 
|  | 1850 | list_add(&new->list_id, &sma->list_id); | 
|  | 1851 | un = new; | 
|  | 1852 |  | 
|  | 1853 | success: | 
|  | 1854 | spin_unlock(&ulp->lock); | 
|  | 1855 | sem_unlock(sma, -1); | 
|  | 1856 | out: | 
|  | 1857 | return un; | 
|  | 1858 | } | 
|  | 1859 |  | 
|  | 1860 | static long do_semtimedop(int semid, struct sembuf __user *tsops, | 
|  | 1861 | unsigned nsops, const struct timespec64 *timeout) | 
|  | 1862 | { | 
|  | 1863 | int error = -EINVAL; | 
|  | 1864 | struct sem_array *sma; | 
|  | 1865 | struct sembuf fast_sops[SEMOPM_FAST]; | 
|  | 1866 | struct sembuf *sops = fast_sops, *sop; | 
|  | 1867 | struct sem_undo *un; | 
|  | 1868 | int max, locknum; | 
|  | 1869 | bool undos = false, alter = false, dupsop = false; | 
|  | 1870 | struct sem_queue queue; | 
|  | 1871 | unsigned long dup = 0, jiffies_left = 0; | 
|  | 1872 | struct ipc_namespace *ns; | 
|  | 1873 |  | 
|  | 1874 | ns = current->nsproxy->ipc_ns; | 
|  | 1875 |  | 
|  | 1876 | if (nsops < 1 || semid < 0) | 
|  | 1877 | return -EINVAL; | 
|  | 1878 | if (nsops > ns->sc_semopm) | 
|  | 1879 | return -E2BIG; | 
|  | 1880 | if (nsops > SEMOPM_FAST) { | 
|  | 1881 | sops = kvmalloc(sizeof(*sops)*nsops, GFP_KERNEL); | 
|  | 1882 | if (sops == NULL) | 
|  | 1883 | return -ENOMEM; | 
|  | 1884 | } | 
|  | 1885 |  | 
|  | 1886 | if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) { | 
|  | 1887 | error =  -EFAULT; | 
|  | 1888 | goto out_free; | 
|  | 1889 | } | 
|  | 1890 |  | 
|  | 1891 | if (timeout) { | 
|  | 1892 | if (timeout->tv_sec < 0 || timeout->tv_nsec < 0 || | 
|  | 1893 | timeout->tv_nsec >= 1000000000L) { | 
|  | 1894 | error = -EINVAL; | 
|  | 1895 | goto out_free; | 
|  | 1896 | } | 
|  | 1897 | jiffies_left = timespec64_to_jiffies(timeout); | 
|  | 1898 | } | 
|  | 1899 |  | 
|  | 1900 | max = 0; | 
|  | 1901 | for (sop = sops; sop < sops + nsops; sop++) { | 
|  | 1902 | unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG); | 
|  | 1903 |  | 
|  | 1904 | if (sop->sem_num >= max) | 
|  | 1905 | max = sop->sem_num; | 
|  | 1906 | if (sop->sem_flg & SEM_UNDO) | 
|  | 1907 | undos = true; | 
|  | 1908 | if (dup & mask) { | 
|  | 1909 | /* | 
|  | 1910 | * There was a previous alter access that appears | 
|  | 1911 | * to have accessed the same semaphore, thus use | 
|  | 1912 | * the dupsop logic. "appears", because the detection | 
|  | 1913 | * can only check % BITS_PER_LONG. | 
|  | 1914 | */ | 
|  | 1915 | dupsop = true; | 
|  | 1916 | } | 
|  | 1917 | if (sop->sem_op != 0) { | 
|  | 1918 | alter = true; | 
|  | 1919 | dup |= mask; | 
|  | 1920 | } | 
|  | 1921 | } | 
|  | 1922 |  | 
|  | 1923 | if (undos) { | 
|  | 1924 | /* On success, find_alloc_undo takes the rcu_read_lock */ | 
|  | 1925 | un = find_alloc_undo(ns, semid); | 
|  | 1926 | if (IS_ERR(un)) { | 
|  | 1927 | error = PTR_ERR(un); | 
|  | 1928 | goto out_free; | 
|  | 1929 | } | 
|  | 1930 | } else { | 
|  | 1931 | un = NULL; | 
|  | 1932 | rcu_read_lock(); | 
|  | 1933 | } | 
|  | 1934 |  | 
|  | 1935 | sma = sem_obtain_object_check(ns, semid); | 
|  | 1936 | if (IS_ERR(sma)) { | 
|  | 1937 | rcu_read_unlock(); | 
|  | 1938 | error = PTR_ERR(sma); | 
|  | 1939 | goto out_free; | 
|  | 1940 | } | 
|  | 1941 |  | 
|  | 1942 | error = -EFBIG; | 
|  | 1943 | if (max >= sma->sem_nsems) { | 
|  | 1944 | rcu_read_unlock(); | 
|  | 1945 | goto out_free; | 
|  | 1946 | } | 
|  | 1947 |  | 
|  | 1948 | error = -EACCES; | 
|  | 1949 | if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) { | 
|  | 1950 | rcu_read_unlock(); | 
|  | 1951 | goto out_free; | 
|  | 1952 | } | 
|  | 1953 |  | 
|  | 1954 | error = security_sem_semop(sma, sops, nsops, alter); | 
|  | 1955 | if (error) { | 
|  | 1956 | rcu_read_unlock(); | 
|  | 1957 | goto out_free; | 
|  | 1958 | } | 
|  | 1959 |  | 
|  | 1960 | error = -EIDRM; | 
|  | 1961 | locknum = sem_lock(sma, sops, nsops); | 
|  | 1962 | /* | 
|  | 1963 | * We eventually might perform the following check in a lockless | 
|  | 1964 | * fashion, considering ipc_valid_object() locking constraints. | 
|  | 1965 | * If nsops == 1 and there is no contention for sem_perm.lock, then | 
|  | 1966 | * only a per-semaphore lock is held and it's OK to proceed with the | 
|  | 1967 | * check below. More details on the fine grained locking scheme | 
|  | 1968 | * entangled here and why it's RMID race safe on comments at sem_lock() | 
|  | 1969 | */ | 
|  | 1970 | if (!ipc_valid_object(&sma->sem_perm)) | 
|  | 1971 | goto out_unlock_free; | 
|  | 1972 | /* | 
|  | 1973 | * semid identifiers are not unique - find_alloc_undo may have | 
|  | 1974 | * allocated an undo structure, it was invalidated by an RMID | 
|  | 1975 | * and now a new array with received the same id. Check and fail. | 
|  | 1976 | * This case can be detected checking un->semid. The existence of | 
|  | 1977 | * "un" itself is guaranteed by rcu. | 
|  | 1978 | */ | 
|  | 1979 | if (un && un->semid == -1) | 
|  | 1980 | goto out_unlock_free; | 
|  | 1981 |  | 
|  | 1982 | queue.sops = sops; | 
|  | 1983 | queue.nsops = nsops; | 
|  | 1984 | queue.undo = un; | 
|  | 1985 | queue.pid = task_tgid_vnr(current); | 
|  | 1986 | queue.alter = alter; | 
|  | 1987 | queue.dupsop = dupsop; | 
|  | 1988 |  | 
|  | 1989 | error = perform_atomic_semop(sma, &queue); | 
|  | 1990 | if (error == 0) { /* non-blocking succesfull path */ | 
|  | 1991 | DEFINE_WAKE_Q(wake_q); | 
|  | 1992 |  | 
|  | 1993 | /* | 
|  | 1994 | * If the operation was successful, then do | 
|  | 1995 | * the required updates. | 
|  | 1996 | */ | 
|  | 1997 | if (alter) | 
|  | 1998 | do_smart_update(sma, sops, nsops, 1, &wake_q); | 
|  | 1999 | else | 
|  | 2000 | set_semotime(sma, sops); | 
|  | 2001 |  | 
|  | 2002 | sem_unlock(sma, locknum); | 
|  | 2003 | rcu_read_unlock(); | 
|  | 2004 | wake_up_q(&wake_q); | 
|  | 2005 |  | 
|  | 2006 | goto out_free; | 
|  | 2007 | } | 
|  | 2008 | if (error < 0) /* non-blocking error path */ | 
|  | 2009 | goto out_unlock_free; | 
|  | 2010 |  | 
|  | 2011 | /* | 
|  | 2012 | * We need to sleep on this operation, so we put the current | 
|  | 2013 | * task into the pending queue and go to sleep. | 
|  | 2014 | */ | 
|  | 2015 | if (nsops == 1) { | 
|  | 2016 | struct sem *curr; | 
|  | 2017 | curr = &sma->sems[sops->sem_num]; | 
|  | 2018 |  | 
|  | 2019 | if (alter) { | 
|  | 2020 | if (sma->complex_count) { | 
|  | 2021 | list_add_tail(&queue.list, | 
|  | 2022 | &sma->pending_alter); | 
|  | 2023 | } else { | 
|  | 2024 |  | 
|  | 2025 | list_add_tail(&queue.list, | 
|  | 2026 | &curr->pending_alter); | 
|  | 2027 | } | 
|  | 2028 | } else { | 
|  | 2029 | list_add_tail(&queue.list, &curr->pending_const); | 
|  | 2030 | } | 
|  | 2031 | } else { | 
|  | 2032 | if (!sma->complex_count) | 
|  | 2033 | merge_queues(sma); | 
|  | 2034 |  | 
|  | 2035 | if (alter) | 
|  | 2036 | list_add_tail(&queue.list, &sma->pending_alter); | 
|  | 2037 | else | 
|  | 2038 | list_add_tail(&queue.list, &sma->pending_const); | 
|  | 2039 |  | 
|  | 2040 | sma->complex_count++; | 
|  | 2041 | } | 
|  | 2042 |  | 
|  | 2043 | do { | 
|  | 2044 | WRITE_ONCE(queue.status, -EINTR); | 
|  | 2045 | queue.sleeper = current; | 
|  | 2046 |  | 
|  | 2047 | __set_current_state(TASK_INTERRUPTIBLE); | 
|  | 2048 | sem_unlock(sma, locknum); | 
|  | 2049 | rcu_read_unlock(); | 
|  | 2050 |  | 
|  | 2051 | if (timeout) | 
|  | 2052 | jiffies_left = schedule_timeout(jiffies_left); | 
|  | 2053 | else | 
|  | 2054 | schedule(); | 
|  | 2055 |  | 
|  | 2056 | /* | 
|  | 2057 | * fastpath: the semop has completed, either successfully or | 
|  | 2058 | * not, from the syscall pov, is quite irrelevant to us at this | 
|  | 2059 | * point; we're done. | 
|  | 2060 | * | 
|  | 2061 | * We _do_ care, nonetheless, about being awoken by a signal or | 
|  | 2062 | * spuriously.  The queue.status is checked again in the | 
|  | 2063 | * slowpath (aka after taking sem_lock), such that we can detect | 
|  | 2064 | * scenarios where we were awakened externally, during the | 
|  | 2065 | * window between wake_q_add() and wake_up_q(). | 
|  | 2066 | */ | 
|  | 2067 | error = READ_ONCE(queue.status); | 
|  | 2068 | if (error != -EINTR) { | 
|  | 2069 | /* | 
|  | 2070 | * User space could assume that semop() is a memory | 
|  | 2071 | * barrier: Without the mb(), the cpu could | 
|  | 2072 | * speculatively read in userspace stale data that was | 
|  | 2073 | * overwritten by the previous owner of the semaphore. | 
|  | 2074 | */ | 
|  | 2075 | smp_mb(); | 
|  | 2076 | goto out_free; | 
|  | 2077 | } | 
|  | 2078 |  | 
|  | 2079 | rcu_read_lock(); | 
|  | 2080 | locknum = sem_lock(sma, sops, nsops); | 
|  | 2081 |  | 
|  | 2082 | if (!ipc_valid_object(&sma->sem_perm)) | 
|  | 2083 | goto out_unlock_free; | 
|  | 2084 |  | 
|  | 2085 | error = READ_ONCE(queue.status); | 
|  | 2086 |  | 
|  | 2087 | /* | 
|  | 2088 | * If queue.status != -EINTR we are woken up by another process. | 
|  | 2089 | * Leave without unlink_queue(), but with sem_unlock(). | 
|  | 2090 | */ | 
|  | 2091 | if (error != -EINTR) | 
|  | 2092 | goto out_unlock_free; | 
|  | 2093 |  | 
|  | 2094 | /* | 
|  | 2095 | * If an interrupt occurred we have to clean up the queue. | 
|  | 2096 | */ | 
|  | 2097 | if (timeout && jiffies_left == 0) | 
|  | 2098 | error = -EAGAIN; | 
|  | 2099 | } while (error == -EINTR && !signal_pending(current)); /* spurious */ | 
|  | 2100 |  | 
|  | 2101 | unlink_queue(sma, &queue); | 
|  | 2102 |  | 
|  | 2103 | out_unlock_free: | 
|  | 2104 | sem_unlock(sma, locknum); | 
|  | 2105 | rcu_read_unlock(); | 
|  | 2106 | out_free: | 
|  | 2107 | if (sops != fast_sops) | 
|  | 2108 | kvfree(sops); | 
|  | 2109 | return error; | 
|  | 2110 | } | 
|  | 2111 |  | 
|  | 2112 | SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops, | 
|  | 2113 | unsigned, nsops, const struct timespec __user *, timeout) | 
|  | 2114 | { | 
|  | 2115 | if (timeout) { | 
|  | 2116 | struct timespec64 ts; | 
|  | 2117 | if (get_timespec64(&ts, timeout)) | 
|  | 2118 | return -EFAULT; | 
|  | 2119 | return do_semtimedop(semid, tsops, nsops, &ts); | 
|  | 2120 | } | 
|  | 2121 | return do_semtimedop(semid, tsops, nsops, NULL); | 
|  | 2122 | } | 
|  | 2123 |  | 
|  | 2124 | #ifdef CONFIG_COMPAT | 
|  | 2125 | COMPAT_SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsems, | 
|  | 2126 | unsigned, nsops, | 
|  | 2127 | const struct compat_timespec __user *, timeout) | 
|  | 2128 | { | 
|  | 2129 | if (timeout) { | 
|  | 2130 | struct timespec64 ts; | 
|  | 2131 | if (compat_get_timespec64(&ts, timeout)) | 
|  | 2132 | return -EFAULT; | 
|  | 2133 | return do_semtimedop(semid, tsems, nsops, &ts); | 
|  | 2134 | } | 
|  | 2135 | return do_semtimedop(semid, tsems, nsops, NULL); | 
|  | 2136 | } | 
|  | 2137 | #endif | 
|  | 2138 |  | 
|  | 2139 | SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops, | 
|  | 2140 | unsigned, nsops) | 
|  | 2141 | { | 
|  | 2142 | return do_semtimedop(semid, tsops, nsops, NULL); | 
|  | 2143 | } | 
|  | 2144 |  | 
|  | 2145 | /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between | 
|  | 2146 | * parent and child tasks. | 
|  | 2147 | */ | 
|  | 2148 |  | 
|  | 2149 | int copy_semundo(unsigned long clone_flags, struct task_struct *tsk) | 
|  | 2150 | { | 
|  | 2151 | struct sem_undo_list *undo_list; | 
|  | 2152 | int error; | 
|  | 2153 |  | 
|  | 2154 | if (clone_flags & CLONE_SYSVSEM) { | 
|  | 2155 | error = get_undo_list(&undo_list); | 
|  | 2156 | if (error) | 
|  | 2157 | return error; | 
|  | 2158 | refcount_inc(&undo_list->refcnt); | 
|  | 2159 | tsk->sysvsem.undo_list = undo_list; | 
|  | 2160 | } else | 
|  | 2161 | tsk->sysvsem.undo_list = NULL; | 
|  | 2162 |  | 
|  | 2163 | return 0; | 
|  | 2164 | } | 
|  | 2165 |  | 
|  | 2166 | /* | 
|  | 2167 | * add semadj values to semaphores, free undo structures. | 
|  | 2168 | * undo structures are not freed when semaphore arrays are destroyed | 
|  | 2169 | * so some of them may be out of date. | 
|  | 2170 | * IMPLEMENTATION NOTE: There is some confusion over whether the | 
|  | 2171 | * set of adjustments that needs to be done should be done in an atomic | 
|  | 2172 | * manner or not. That is, if we are attempting to decrement the semval | 
|  | 2173 | * should we queue up and wait until we can do so legally? | 
|  | 2174 | * The original implementation attempted to do this (queue and wait). | 
|  | 2175 | * The current implementation does not do so. The POSIX standard | 
|  | 2176 | * and SVID should be consulted to determine what behavior is mandated. | 
|  | 2177 | */ | 
|  | 2178 | void exit_sem(struct task_struct *tsk) | 
|  | 2179 | { | 
|  | 2180 | struct sem_undo_list *ulp; | 
|  | 2181 |  | 
|  | 2182 | ulp = tsk->sysvsem.undo_list; | 
|  | 2183 | if (!ulp) | 
|  | 2184 | return; | 
|  | 2185 | tsk->sysvsem.undo_list = NULL; | 
|  | 2186 |  | 
|  | 2187 | if (!refcount_dec_and_test(&ulp->refcnt)) | 
|  | 2188 | return; | 
|  | 2189 |  | 
|  | 2190 | for (;;) { | 
|  | 2191 | struct sem_array *sma; | 
|  | 2192 | struct sem_undo *un; | 
|  | 2193 | int semid, i; | 
|  | 2194 | DEFINE_WAKE_Q(wake_q); | 
|  | 2195 |  | 
|  | 2196 | cond_resched(); | 
|  | 2197 |  | 
|  | 2198 | rcu_read_lock(); | 
|  | 2199 | un = list_entry_rcu(ulp->list_proc.next, | 
|  | 2200 | struct sem_undo, list_proc); | 
|  | 2201 | if (&un->list_proc == &ulp->list_proc) { | 
|  | 2202 | /* | 
|  | 2203 | * We must wait for freeary() before freeing this ulp, | 
|  | 2204 | * in case we raced with last sem_undo. There is a small | 
|  | 2205 | * possibility where we exit while freeary() didn't | 
|  | 2206 | * finish unlocking sem_undo_list. | 
|  | 2207 | */ | 
|  | 2208 | spin_lock(&ulp->lock); | 
|  | 2209 | spin_unlock(&ulp->lock); | 
|  | 2210 | rcu_read_unlock(); | 
|  | 2211 | break; | 
|  | 2212 | } | 
|  | 2213 | spin_lock(&ulp->lock); | 
|  | 2214 | semid = un->semid; | 
|  | 2215 | spin_unlock(&ulp->lock); | 
|  | 2216 |  | 
|  | 2217 | /* exit_sem raced with IPC_RMID, nothing to do */ | 
|  | 2218 | if (semid == -1) { | 
|  | 2219 | rcu_read_unlock(); | 
|  | 2220 | continue; | 
|  | 2221 | } | 
|  | 2222 |  | 
|  | 2223 | sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid); | 
|  | 2224 | /* exit_sem raced with IPC_RMID, nothing to do */ | 
|  | 2225 | if (IS_ERR(sma)) { | 
|  | 2226 | rcu_read_unlock(); | 
|  | 2227 | continue; | 
|  | 2228 | } | 
|  | 2229 |  | 
|  | 2230 | sem_lock(sma, NULL, -1); | 
|  | 2231 | /* exit_sem raced with IPC_RMID, nothing to do */ | 
|  | 2232 | if (!ipc_valid_object(&sma->sem_perm)) { | 
|  | 2233 | sem_unlock(sma, -1); | 
|  | 2234 | rcu_read_unlock(); | 
|  | 2235 | continue; | 
|  | 2236 | } | 
|  | 2237 | un = __lookup_undo(ulp, semid); | 
|  | 2238 | if (un == NULL) { | 
|  | 2239 | /* exit_sem raced with IPC_RMID+semget() that created | 
|  | 2240 | * exactly the same semid. Nothing to do. | 
|  | 2241 | */ | 
|  | 2242 | sem_unlock(sma, -1); | 
|  | 2243 | rcu_read_unlock(); | 
|  | 2244 | continue; | 
|  | 2245 | } | 
|  | 2246 |  | 
|  | 2247 | /* remove un from the linked lists */ | 
|  | 2248 | ipc_assert_locked_object(&sma->sem_perm); | 
|  | 2249 | list_del(&un->list_id); | 
|  | 2250 |  | 
|  | 2251 | spin_lock(&ulp->lock); | 
|  | 2252 | list_del_rcu(&un->list_proc); | 
|  | 2253 | spin_unlock(&ulp->lock); | 
|  | 2254 |  | 
|  | 2255 | /* perform adjustments registered in un */ | 
|  | 2256 | for (i = 0; i < sma->sem_nsems; i++) { | 
|  | 2257 | struct sem *semaphore = &sma->sems[i]; | 
|  | 2258 | if (un->semadj[i]) { | 
|  | 2259 | semaphore->semval += un->semadj[i]; | 
|  | 2260 | /* | 
|  | 2261 | * Range checks of the new semaphore value, | 
|  | 2262 | * not defined by sus: | 
|  | 2263 | * - Some unices ignore the undo entirely | 
|  | 2264 | *   (e.g. HP UX 11i 11.22, Tru64 V5.1) | 
|  | 2265 | * - some cap the value (e.g. FreeBSD caps | 
|  | 2266 | *   at 0, but doesn't enforce SEMVMX) | 
|  | 2267 | * | 
|  | 2268 | * Linux caps the semaphore value, both at 0 | 
|  | 2269 | * and at SEMVMX. | 
|  | 2270 | * | 
|  | 2271 | *	Manfred <manfred@colorfullife.com> | 
|  | 2272 | */ | 
|  | 2273 | if (semaphore->semval < 0) | 
|  | 2274 | semaphore->semval = 0; | 
|  | 2275 | if (semaphore->semval > SEMVMX) | 
|  | 2276 | semaphore->semval = SEMVMX; | 
|  | 2277 | semaphore->sempid = task_tgid_vnr(current); | 
|  | 2278 | } | 
|  | 2279 | } | 
|  | 2280 | /* maybe some queued-up processes were waiting for this */ | 
|  | 2281 | do_smart_update(sma, NULL, 0, 1, &wake_q); | 
|  | 2282 | sem_unlock(sma, -1); | 
|  | 2283 | rcu_read_unlock(); | 
|  | 2284 | wake_up_q(&wake_q); | 
|  | 2285 |  | 
|  | 2286 | kfree_rcu(un, rcu); | 
|  | 2287 | } | 
|  | 2288 | kfree(ulp); | 
|  | 2289 | } | 
|  | 2290 |  | 
|  | 2291 | #ifdef CONFIG_PROC_FS | 
|  | 2292 | static int sysvipc_sem_proc_show(struct seq_file *s, void *it) | 
|  | 2293 | { | 
|  | 2294 | struct user_namespace *user_ns = seq_user_ns(s); | 
|  | 2295 | struct kern_ipc_perm *ipcp = it; | 
|  | 2296 | struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); | 
|  | 2297 | time64_t sem_otime; | 
|  | 2298 |  | 
|  | 2299 | /* | 
|  | 2300 | * The proc interface isn't aware of sem_lock(), it calls | 
|  | 2301 | * ipc_lock_object() directly (in sysvipc_find_ipc). | 
|  | 2302 | * In order to stay compatible with sem_lock(), we must | 
|  | 2303 | * enter / leave complex_mode. | 
|  | 2304 | */ | 
|  | 2305 | complexmode_enter(sma); | 
|  | 2306 |  | 
|  | 2307 | sem_otime = get_semotime(sma); | 
|  | 2308 |  | 
|  | 2309 | seq_printf(s, | 
|  | 2310 | "%10d %10d  %4o %10u %5u %5u %5u %5u %10llu %10llu\n", | 
|  | 2311 | sma->sem_perm.key, | 
|  | 2312 | sma->sem_perm.id, | 
|  | 2313 | sma->sem_perm.mode, | 
|  | 2314 | sma->sem_nsems, | 
|  | 2315 | from_kuid_munged(user_ns, sma->sem_perm.uid), | 
|  | 2316 | from_kgid_munged(user_ns, sma->sem_perm.gid), | 
|  | 2317 | from_kuid_munged(user_ns, sma->sem_perm.cuid), | 
|  | 2318 | from_kgid_munged(user_ns, sma->sem_perm.cgid), | 
|  | 2319 | sem_otime, | 
|  | 2320 | sma->sem_ctime); | 
|  | 2321 |  | 
|  | 2322 | complexmode_tryleave(sma); | 
|  | 2323 |  | 
|  | 2324 | return 0; | 
|  | 2325 | } | 
|  | 2326 | #endif |