| rjw | 1f88458 | 2022-01-06 17:20:42 +0800 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2009 Red Hat, Inc. |
| 3 | * |
| 4 | * This work is licensed under the terms of the GNU GPL, version 2. See |
| 5 | * the COPYING file in the top-level directory. |
| 6 | */ |
| 7 | |
| 8 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| 9 | |
| 10 | #include <linux/mm.h> |
| 11 | #include <linux/sched.h> |
| 12 | #include <linux/sched/coredump.h> |
| 13 | #include <linux/sched/numa_balancing.h> |
| 14 | #include <linux/highmem.h> |
| 15 | #include <linux/hugetlb.h> |
| 16 | #include <linux/mmu_notifier.h> |
| 17 | #include <linux/rmap.h> |
| 18 | #include <linux/swap.h> |
| 19 | #include <linux/shrinker.h> |
| 20 | #include <linux/mm_inline.h> |
| 21 | #include <linux/swapops.h> |
| 22 | #include <linux/dax.h> |
| 23 | #include <linux/khugepaged.h> |
| 24 | #include <linux/freezer.h> |
| 25 | #include <linux/pfn_t.h> |
| 26 | #include <linux/mman.h> |
| 27 | #include <linux/memremap.h> |
| 28 | #include <linux/pagemap.h> |
| 29 | #include <linux/debugfs.h> |
| 30 | #include <linux/migrate.h> |
| 31 | #include <linux/hashtable.h> |
| 32 | #include <linux/userfaultfd_k.h> |
| 33 | #include <linux/page_idle.h> |
| 34 | #include <linux/shmem_fs.h> |
| 35 | #include <linux/oom.h> |
| 36 | #include <linux/page_owner.h> |
| 37 | |
| 38 | #include <asm/tlb.h> |
| 39 | #include <asm/pgalloc.h> |
| 40 | #include "internal.h" |
| 41 | |
| 42 | /* |
| 43 | * By default transparent hugepage support is disabled in order that avoid |
| 44 | * to risk increase the memory footprint of applications without a guaranteed |
| 45 | * benefit. When transparent hugepage support is enabled, is for all mappings, |
| 46 | * and khugepaged scans all mappings. |
| 47 | * Defrag is invoked by khugepaged hugepage allocations and by page faults |
| 48 | * for all hugepage allocations. |
| 49 | */ |
| 50 | unsigned long transparent_hugepage_flags __read_mostly = |
| 51 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS |
| 52 | (1<<TRANSPARENT_HUGEPAGE_FLAG)| |
| 53 | #endif |
| 54 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE |
| 55 | (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| |
| 56 | #endif |
| 57 | (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)| |
| 58 | (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| |
| 59 | (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); |
| 60 | |
| 61 | static struct shrinker deferred_split_shrinker; |
| 62 | |
| 63 | static atomic_t huge_zero_refcount; |
| 64 | struct page *huge_zero_page __read_mostly; |
| 65 | |
| 66 | static struct page *get_huge_zero_page(void) |
| 67 | { |
| 68 | struct page *zero_page; |
| 69 | retry: |
| 70 | if (likely(atomic_inc_not_zero(&huge_zero_refcount))) |
| 71 | return READ_ONCE(huge_zero_page); |
| 72 | |
| 73 | zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, |
| 74 | HPAGE_PMD_ORDER); |
| 75 | if (!zero_page) { |
| 76 | count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); |
| 77 | return NULL; |
| 78 | } |
| 79 | count_vm_event(THP_ZERO_PAGE_ALLOC); |
| 80 | preempt_disable(); |
| 81 | if (cmpxchg(&huge_zero_page, NULL, zero_page)) { |
| 82 | preempt_enable(); |
| 83 | __free_pages(zero_page, compound_order(zero_page)); |
| 84 | goto retry; |
| 85 | } |
| 86 | |
| 87 | /* We take additional reference here. It will be put back by shrinker */ |
| 88 | atomic_set(&huge_zero_refcount, 2); |
| 89 | preempt_enable(); |
| 90 | return READ_ONCE(huge_zero_page); |
| 91 | } |
| 92 | |
| 93 | static void put_huge_zero_page(void) |
| 94 | { |
| 95 | /* |
| 96 | * Counter should never go to zero here. Only shrinker can put |
| 97 | * last reference. |
| 98 | */ |
| 99 | BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); |
| 100 | } |
| 101 | |
| 102 | struct page *mm_get_huge_zero_page(struct mm_struct *mm) |
| 103 | { |
| 104 | if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) |
| 105 | return READ_ONCE(huge_zero_page); |
| 106 | |
| 107 | if (!get_huge_zero_page()) |
| 108 | return NULL; |
| 109 | |
| 110 | if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) |
| 111 | put_huge_zero_page(); |
| 112 | |
| 113 | return READ_ONCE(huge_zero_page); |
| 114 | } |
| 115 | |
| 116 | void mm_put_huge_zero_page(struct mm_struct *mm) |
| 117 | { |
| 118 | if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) |
| 119 | put_huge_zero_page(); |
| 120 | } |
| 121 | |
| 122 | static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, |
| 123 | struct shrink_control *sc) |
| 124 | { |
| 125 | /* we can free zero page only if last reference remains */ |
| 126 | return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; |
| 127 | } |
| 128 | |
| 129 | static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, |
| 130 | struct shrink_control *sc) |
| 131 | { |
| 132 | if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { |
| 133 | struct page *zero_page = xchg(&huge_zero_page, NULL); |
| 134 | BUG_ON(zero_page == NULL); |
| 135 | __free_pages(zero_page, compound_order(zero_page)); |
| 136 | return HPAGE_PMD_NR; |
| 137 | } |
| 138 | |
| 139 | return 0; |
| 140 | } |
| 141 | |
| 142 | static struct shrinker huge_zero_page_shrinker = { |
| 143 | .count_objects = shrink_huge_zero_page_count, |
| 144 | .scan_objects = shrink_huge_zero_page_scan, |
| 145 | .seeks = DEFAULT_SEEKS, |
| 146 | }; |
| 147 | |
| 148 | #ifdef CONFIG_SYSFS |
| 149 | static ssize_t enabled_show(struct kobject *kobj, |
| 150 | struct kobj_attribute *attr, char *buf) |
| 151 | { |
| 152 | if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags)) |
| 153 | return sprintf(buf, "[always] madvise never\n"); |
| 154 | else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags)) |
| 155 | return sprintf(buf, "always [madvise] never\n"); |
| 156 | else |
| 157 | return sprintf(buf, "always madvise [never]\n"); |
| 158 | } |
| 159 | |
| 160 | static ssize_t enabled_store(struct kobject *kobj, |
| 161 | struct kobj_attribute *attr, |
| 162 | const char *buf, size_t count) |
| 163 | { |
| 164 | ssize_t ret = count; |
| 165 | |
| 166 | if (sysfs_streq(buf, "always")) { |
| 167 | clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); |
| 168 | set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); |
| 169 | } else if (sysfs_streq(buf, "madvise")) { |
| 170 | clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); |
| 171 | set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); |
| 172 | } else if (sysfs_streq(buf, "never")) { |
| 173 | clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); |
| 174 | clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); |
| 175 | } else |
| 176 | ret = -EINVAL; |
| 177 | |
| 178 | if (ret > 0) { |
| 179 | int err = start_stop_khugepaged(); |
| 180 | if (err) |
| 181 | ret = err; |
| 182 | } |
| 183 | return ret; |
| 184 | } |
| 185 | static struct kobj_attribute enabled_attr = |
| 186 | __ATTR(enabled, 0644, enabled_show, enabled_store); |
| 187 | |
| 188 | ssize_t single_hugepage_flag_show(struct kobject *kobj, |
| 189 | struct kobj_attribute *attr, char *buf, |
| 190 | enum transparent_hugepage_flag flag) |
| 191 | { |
| 192 | return sprintf(buf, "%d\n", |
| 193 | !!test_bit(flag, &transparent_hugepage_flags)); |
| 194 | } |
| 195 | |
| 196 | ssize_t single_hugepage_flag_store(struct kobject *kobj, |
| 197 | struct kobj_attribute *attr, |
| 198 | const char *buf, size_t count, |
| 199 | enum transparent_hugepage_flag flag) |
| 200 | { |
| 201 | unsigned long value; |
| 202 | int ret; |
| 203 | |
| 204 | ret = kstrtoul(buf, 10, &value); |
| 205 | if (ret < 0) |
| 206 | return ret; |
| 207 | if (value > 1) |
| 208 | return -EINVAL; |
| 209 | |
| 210 | if (value) |
| 211 | set_bit(flag, &transparent_hugepage_flags); |
| 212 | else |
| 213 | clear_bit(flag, &transparent_hugepage_flags); |
| 214 | |
| 215 | return count; |
| 216 | } |
| 217 | |
| 218 | static ssize_t defrag_show(struct kobject *kobj, |
| 219 | struct kobj_attribute *attr, char *buf) |
| 220 | { |
| 221 | if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) |
| 222 | return sprintf(buf, "[always] defer defer+madvise madvise never\n"); |
| 223 | if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) |
| 224 | return sprintf(buf, "always [defer] defer+madvise madvise never\n"); |
| 225 | if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) |
| 226 | return sprintf(buf, "always defer [defer+madvise] madvise never\n"); |
| 227 | if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) |
| 228 | return sprintf(buf, "always defer defer+madvise [madvise] never\n"); |
| 229 | return sprintf(buf, "always defer defer+madvise madvise [never]\n"); |
| 230 | } |
| 231 | |
| 232 | static ssize_t defrag_store(struct kobject *kobj, |
| 233 | struct kobj_attribute *attr, |
| 234 | const char *buf, size_t count) |
| 235 | { |
| 236 | if (sysfs_streq(buf, "always")) { |
| 237 | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); |
| 238 | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); |
| 239 | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); |
| 240 | set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); |
| 241 | } else if (sysfs_streq(buf, "defer+madvise")) { |
| 242 | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); |
| 243 | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); |
| 244 | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); |
| 245 | set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); |
| 246 | } else if (sysfs_streq(buf, "defer")) { |
| 247 | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); |
| 248 | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); |
| 249 | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); |
| 250 | set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); |
| 251 | } else if (sysfs_streq(buf, "madvise")) { |
| 252 | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); |
| 253 | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); |
| 254 | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); |
| 255 | set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); |
| 256 | } else if (sysfs_streq(buf, "never")) { |
| 257 | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); |
| 258 | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); |
| 259 | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); |
| 260 | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); |
| 261 | } else |
| 262 | return -EINVAL; |
| 263 | |
| 264 | return count; |
| 265 | } |
| 266 | static struct kobj_attribute defrag_attr = |
| 267 | __ATTR(defrag, 0644, defrag_show, defrag_store); |
| 268 | |
| 269 | static ssize_t use_zero_page_show(struct kobject *kobj, |
| 270 | struct kobj_attribute *attr, char *buf) |
| 271 | { |
| 272 | return single_hugepage_flag_show(kobj, attr, buf, |
| 273 | TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); |
| 274 | } |
| 275 | static ssize_t use_zero_page_store(struct kobject *kobj, |
| 276 | struct kobj_attribute *attr, const char *buf, size_t count) |
| 277 | { |
| 278 | return single_hugepage_flag_store(kobj, attr, buf, count, |
| 279 | TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); |
| 280 | } |
| 281 | static struct kobj_attribute use_zero_page_attr = |
| 282 | __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store); |
| 283 | |
| 284 | static ssize_t hpage_pmd_size_show(struct kobject *kobj, |
| 285 | struct kobj_attribute *attr, char *buf) |
| 286 | { |
| 287 | return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE); |
| 288 | } |
| 289 | static struct kobj_attribute hpage_pmd_size_attr = |
| 290 | __ATTR_RO(hpage_pmd_size); |
| 291 | |
| 292 | #ifdef CONFIG_DEBUG_VM |
| 293 | static ssize_t debug_cow_show(struct kobject *kobj, |
| 294 | struct kobj_attribute *attr, char *buf) |
| 295 | { |
| 296 | return single_hugepage_flag_show(kobj, attr, buf, |
| 297 | TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); |
| 298 | } |
| 299 | static ssize_t debug_cow_store(struct kobject *kobj, |
| 300 | struct kobj_attribute *attr, |
| 301 | const char *buf, size_t count) |
| 302 | { |
| 303 | return single_hugepage_flag_store(kobj, attr, buf, count, |
| 304 | TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); |
| 305 | } |
| 306 | static struct kobj_attribute debug_cow_attr = |
| 307 | __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store); |
| 308 | #endif /* CONFIG_DEBUG_VM */ |
| 309 | |
| 310 | static struct attribute *hugepage_attr[] = { |
| 311 | &enabled_attr.attr, |
| 312 | &defrag_attr.attr, |
| 313 | &use_zero_page_attr.attr, |
| 314 | &hpage_pmd_size_attr.attr, |
| 315 | #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) |
| 316 | &shmem_enabled_attr.attr, |
| 317 | #endif |
| 318 | #ifdef CONFIG_DEBUG_VM |
| 319 | &debug_cow_attr.attr, |
| 320 | #endif |
| 321 | NULL, |
| 322 | }; |
| 323 | |
| 324 | static const struct attribute_group hugepage_attr_group = { |
| 325 | .attrs = hugepage_attr, |
| 326 | }; |
| 327 | |
| 328 | static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) |
| 329 | { |
| 330 | int err; |
| 331 | |
| 332 | *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); |
| 333 | if (unlikely(!*hugepage_kobj)) { |
| 334 | pr_err("failed to create transparent hugepage kobject\n"); |
| 335 | return -ENOMEM; |
| 336 | } |
| 337 | |
| 338 | err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); |
| 339 | if (err) { |
| 340 | pr_err("failed to register transparent hugepage group\n"); |
| 341 | goto delete_obj; |
| 342 | } |
| 343 | |
| 344 | err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); |
| 345 | if (err) { |
| 346 | pr_err("failed to register transparent hugepage group\n"); |
| 347 | goto remove_hp_group; |
| 348 | } |
| 349 | |
| 350 | return 0; |
| 351 | |
| 352 | remove_hp_group: |
| 353 | sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); |
| 354 | delete_obj: |
| 355 | kobject_put(*hugepage_kobj); |
| 356 | return err; |
| 357 | } |
| 358 | |
| 359 | static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) |
| 360 | { |
| 361 | sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); |
| 362 | sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); |
| 363 | kobject_put(hugepage_kobj); |
| 364 | } |
| 365 | #else |
| 366 | static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) |
| 367 | { |
| 368 | return 0; |
| 369 | } |
| 370 | |
| 371 | static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) |
| 372 | { |
| 373 | } |
| 374 | #endif /* CONFIG_SYSFS */ |
| 375 | |
| 376 | static int __init hugepage_init(void) |
| 377 | { |
| 378 | int err; |
| 379 | struct kobject *hugepage_kobj; |
| 380 | |
| 381 | if (!has_transparent_hugepage()) { |
| 382 | transparent_hugepage_flags = 0; |
| 383 | return -EINVAL; |
| 384 | } |
| 385 | |
| 386 | /* |
| 387 | * hugepages can't be allocated by the buddy allocator |
| 388 | */ |
| 389 | MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER); |
| 390 | /* |
| 391 | * we use page->mapping and page->index in second tail page |
| 392 | * as list_head: assuming THP order >= 2 |
| 393 | */ |
| 394 | MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2); |
| 395 | |
| 396 | err = hugepage_init_sysfs(&hugepage_kobj); |
| 397 | if (err) |
| 398 | goto err_sysfs; |
| 399 | |
| 400 | err = khugepaged_init(); |
| 401 | if (err) |
| 402 | goto err_slab; |
| 403 | |
| 404 | err = register_shrinker(&huge_zero_page_shrinker); |
| 405 | if (err) |
| 406 | goto err_hzp_shrinker; |
| 407 | err = register_shrinker(&deferred_split_shrinker); |
| 408 | if (err) |
| 409 | goto err_split_shrinker; |
| 410 | |
| 411 | /* |
| 412 | * By default disable transparent hugepages on smaller systems, |
| 413 | * where the extra memory used could hurt more than TLB overhead |
| 414 | * is likely to save. The admin can still enable it through /sys. |
| 415 | */ |
| 416 | if (totalram_pages < (512 << (20 - PAGE_SHIFT))) { |
| 417 | transparent_hugepage_flags = 0; |
| 418 | return 0; |
| 419 | } |
| 420 | |
| 421 | err = start_stop_khugepaged(); |
| 422 | if (err) |
| 423 | goto err_khugepaged; |
| 424 | |
| 425 | return 0; |
| 426 | err_khugepaged: |
| 427 | unregister_shrinker(&deferred_split_shrinker); |
| 428 | err_split_shrinker: |
| 429 | unregister_shrinker(&huge_zero_page_shrinker); |
| 430 | err_hzp_shrinker: |
| 431 | khugepaged_destroy(); |
| 432 | err_slab: |
| 433 | hugepage_exit_sysfs(hugepage_kobj); |
| 434 | err_sysfs: |
| 435 | return err; |
| 436 | } |
| 437 | subsys_initcall(hugepage_init); |
| 438 | |
| 439 | static int __init setup_transparent_hugepage(char *str) |
| 440 | { |
| 441 | int ret = 0; |
| 442 | if (!str) |
| 443 | goto out; |
| 444 | if (!strcmp(str, "always")) { |
| 445 | set_bit(TRANSPARENT_HUGEPAGE_FLAG, |
| 446 | &transparent_hugepage_flags); |
| 447 | clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, |
| 448 | &transparent_hugepage_flags); |
| 449 | ret = 1; |
| 450 | } else if (!strcmp(str, "madvise")) { |
| 451 | clear_bit(TRANSPARENT_HUGEPAGE_FLAG, |
| 452 | &transparent_hugepage_flags); |
| 453 | set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, |
| 454 | &transparent_hugepage_flags); |
| 455 | ret = 1; |
| 456 | } else if (!strcmp(str, "never")) { |
| 457 | clear_bit(TRANSPARENT_HUGEPAGE_FLAG, |
| 458 | &transparent_hugepage_flags); |
| 459 | clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, |
| 460 | &transparent_hugepage_flags); |
| 461 | ret = 1; |
| 462 | } |
| 463 | out: |
| 464 | if (!ret) |
| 465 | pr_warn("transparent_hugepage= cannot parse, ignored\n"); |
| 466 | return ret; |
| 467 | } |
| 468 | __setup("transparent_hugepage=", setup_transparent_hugepage); |
| 469 | |
| 470 | pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) |
| 471 | { |
| 472 | if (likely(vma->vm_flags & VM_WRITE)) |
| 473 | pmd = pmd_mkwrite(pmd); |
| 474 | return pmd; |
| 475 | } |
| 476 | |
| 477 | static inline struct list_head *page_deferred_list(struct page *page) |
| 478 | { |
| 479 | /* |
| 480 | * ->lru in the tail pages is occupied by compound_head. |
| 481 | * Let's use ->mapping + ->index in the second tail page as list_head. |
| 482 | */ |
| 483 | return (struct list_head *)&page[2].mapping; |
| 484 | } |
| 485 | |
| 486 | void prep_transhuge_page(struct page *page) |
| 487 | { |
| 488 | /* |
| 489 | * we use page->mapping and page->indexlru in second tail page |
| 490 | * as list_head: assuming THP order >= 2 |
| 491 | */ |
| 492 | |
| 493 | INIT_LIST_HEAD(page_deferred_list(page)); |
| 494 | set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR); |
| 495 | } |
| 496 | |
| 497 | static unsigned long __thp_get_unmapped_area(struct file *filp, |
| 498 | unsigned long addr, unsigned long len, |
| 499 | loff_t off, unsigned long flags, unsigned long size) |
| 500 | { |
| 501 | loff_t off_end = off + len; |
| 502 | loff_t off_align = round_up(off, size); |
| 503 | unsigned long len_pad, ret; |
| 504 | |
| 505 | if (off_end <= off_align || (off_end - off_align) < size) |
| 506 | return 0; |
| 507 | |
| 508 | len_pad = len + size; |
| 509 | if (len_pad < len || (off + len_pad) < off) |
| 510 | return 0; |
| 511 | |
| 512 | ret = current->mm->get_unmapped_area(filp, addr, len_pad, |
| 513 | off >> PAGE_SHIFT, flags); |
| 514 | |
| 515 | /* |
| 516 | * The failure might be due to length padding. The caller will retry |
| 517 | * without the padding. |
| 518 | */ |
| 519 | if (IS_ERR_VALUE(ret)) |
| 520 | return 0; |
| 521 | |
| 522 | /* |
| 523 | * Do not try to align to THP boundary if allocation at the address |
| 524 | * hint succeeds. |
| 525 | */ |
| 526 | if (ret == addr) |
| 527 | return addr; |
| 528 | |
| 529 | ret += (off - ret) & (size - 1); |
| 530 | return ret; |
| 531 | } |
| 532 | |
| 533 | unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, |
| 534 | unsigned long len, unsigned long pgoff, unsigned long flags) |
| 535 | { |
| 536 | unsigned long ret; |
| 537 | loff_t off = (loff_t)pgoff << PAGE_SHIFT; |
| 538 | |
| 539 | if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD)) |
| 540 | goto out; |
| 541 | |
| 542 | ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE); |
| 543 | if (ret) |
| 544 | return ret; |
| 545 | out: |
| 546 | return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); |
| 547 | } |
| 548 | EXPORT_SYMBOL_GPL(thp_get_unmapped_area); |
| 549 | |
| 550 | static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page, |
| 551 | gfp_t gfp) |
| 552 | { |
| 553 | struct vm_area_struct *vma = vmf->vma; |
| 554 | struct mem_cgroup *memcg; |
| 555 | pgtable_t pgtable; |
| 556 | unsigned long haddr = vmf->address & HPAGE_PMD_MASK; |
| 557 | int ret = 0; |
| 558 | |
| 559 | VM_BUG_ON_PAGE(!PageCompound(page), page); |
| 560 | |
| 561 | if (mem_cgroup_try_charge(page, vma->vm_mm, gfp | __GFP_NORETRY, &memcg, |
| 562 | true)) { |
| 563 | put_page(page); |
| 564 | count_vm_event(THP_FAULT_FALLBACK); |
| 565 | return VM_FAULT_FALLBACK; |
| 566 | } |
| 567 | |
| 568 | pgtable = pte_alloc_one(vma->vm_mm, haddr); |
| 569 | if (unlikely(!pgtable)) { |
| 570 | ret = VM_FAULT_OOM; |
| 571 | goto release; |
| 572 | } |
| 573 | |
| 574 | clear_huge_page(page, vmf->address, HPAGE_PMD_NR); |
| 575 | /* |
| 576 | * The memory barrier inside __SetPageUptodate makes sure that |
| 577 | * clear_huge_page writes become visible before the set_pmd_at() |
| 578 | * write. |
| 579 | */ |
| 580 | __SetPageUptodate(page); |
| 581 | |
| 582 | vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); |
| 583 | if (unlikely(!pmd_none(*vmf->pmd))) { |
| 584 | goto unlock_release; |
| 585 | } else { |
| 586 | pmd_t entry; |
| 587 | |
| 588 | ret = check_stable_address_space(vma->vm_mm); |
| 589 | if (ret) |
| 590 | goto unlock_release; |
| 591 | |
| 592 | /* Deliver the page fault to userland */ |
| 593 | if (userfaultfd_missing(vma)) { |
| 594 | int ret; |
| 595 | |
| 596 | spin_unlock(vmf->ptl); |
| 597 | mem_cgroup_cancel_charge(page, memcg, true); |
| 598 | put_page(page); |
| 599 | pte_free(vma->vm_mm, pgtable); |
| 600 | ret = handle_userfault(vmf, VM_UFFD_MISSING); |
| 601 | VM_BUG_ON(ret & VM_FAULT_FALLBACK); |
| 602 | return ret; |
| 603 | } |
| 604 | |
| 605 | entry = mk_huge_pmd(page, vma->vm_page_prot); |
| 606 | entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); |
| 607 | page_add_new_anon_rmap(page, vma, haddr, true); |
| 608 | mem_cgroup_commit_charge(page, memcg, false, true); |
| 609 | lru_cache_add_active_or_unevictable(page, vma); |
| 610 | pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); |
| 611 | set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); |
| 612 | add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); |
| 613 | atomic_long_inc(&vma->vm_mm->nr_ptes); |
| 614 | spin_unlock(vmf->ptl); |
| 615 | count_vm_event(THP_FAULT_ALLOC); |
| 616 | } |
| 617 | |
| 618 | return 0; |
| 619 | unlock_release: |
| 620 | spin_unlock(vmf->ptl); |
| 621 | release: |
| 622 | if (pgtable) |
| 623 | pte_free(vma->vm_mm, pgtable); |
| 624 | mem_cgroup_cancel_charge(page, memcg, true); |
| 625 | put_page(page); |
| 626 | return ret; |
| 627 | |
| 628 | } |
| 629 | |
| 630 | /* |
| 631 | * always: directly stall for all thp allocations |
| 632 | * defer: wake kswapd and fail if not immediately available |
| 633 | * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise |
| 634 | * fail if not immediately available |
| 635 | * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately |
| 636 | * available |
| 637 | * never: never stall for any thp allocation |
| 638 | */ |
| 639 | static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma) |
| 640 | { |
| 641 | const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE); |
| 642 | |
| 643 | if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) |
| 644 | return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY); |
| 645 | if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) |
| 646 | return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM; |
| 647 | if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) |
| 648 | return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM : |
| 649 | __GFP_KSWAPD_RECLAIM); |
| 650 | if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) |
| 651 | return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM : |
| 652 | 0); |
| 653 | return GFP_TRANSHUGE_LIGHT; |
| 654 | } |
| 655 | |
| 656 | /* Caller must hold page table lock. */ |
| 657 | static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm, |
| 658 | struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, |
| 659 | struct page *zero_page) |
| 660 | { |
| 661 | pmd_t entry; |
| 662 | if (!pmd_none(*pmd)) |
| 663 | return false; |
| 664 | entry = mk_pmd(zero_page, vma->vm_page_prot); |
| 665 | entry = pmd_mkhuge(entry); |
| 666 | if (pgtable) |
| 667 | pgtable_trans_huge_deposit(mm, pmd, pgtable); |
| 668 | set_pmd_at(mm, haddr, pmd, entry); |
| 669 | atomic_long_inc(&mm->nr_ptes); |
| 670 | return true; |
| 671 | } |
| 672 | |
| 673 | int do_huge_pmd_anonymous_page(struct vm_fault *vmf) |
| 674 | { |
| 675 | struct vm_area_struct *vma = vmf->vma; |
| 676 | gfp_t gfp; |
| 677 | struct page *page; |
| 678 | unsigned long haddr = vmf->address & HPAGE_PMD_MASK; |
| 679 | |
| 680 | if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) |
| 681 | return VM_FAULT_FALLBACK; |
| 682 | if (unlikely(anon_vma_prepare(vma))) |
| 683 | return VM_FAULT_OOM; |
| 684 | if (unlikely(khugepaged_enter(vma, vma->vm_flags))) |
| 685 | return VM_FAULT_OOM; |
| 686 | if (!(vmf->flags & FAULT_FLAG_WRITE) && |
| 687 | !mm_forbids_zeropage(vma->vm_mm) && |
| 688 | transparent_hugepage_use_zero_page()) { |
| 689 | pgtable_t pgtable; |
| 690 | struct page *zero_page; |
| 691 | bool set; |
| 692 | int ret; |
| 693 | pgtable = pte_alloc_one(vma->vm_mm, haddr); |
| 694 | if (unlikely(!pgtable)) |
| 695 | return VM_FAULT_OOM; |
| 696 | zero_page = mm_get_huge_zero_page(vma->vm_mm); |
| 697 | if (unlikely(!zero_page)) { |
| 698 | pte_free(vma->vm_mm, pgtable); |
| 699 | count_vm_event(THP_FAULT_FALLBACK); |
| 700 | return VM_FAULT_FALLBACK; |
| 701 | } |
| 702 | vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); |
| 703 | ret = 0; |
| 704 | set = false; |
| 705 | if (pmd_none(*vmf->pmd)) { |
| 706 | ret = check_stable_address_space(vma->vm_mm); |
| 707 | if (ret) { |
| 708 | spin_unlock(vmf->ptl); |
| 709 | } else if (userfaultfd_missing(vma)) { |
| 710 | spin_unlock(vmf->ptl); |
| 711 | ret = handle_userfault(vmf, VM_UFFD_MISSING); |
| 712 | VM_BUG_ON(ret & VM_FAULT_FALLBACK); |
| 713 | } else { |
| 714 | set_huge_zero_page(pgtable, vma->vm_mm, vma, |
| 715 | haddr, vmf->pmd, zero_page); |
| 716 | spin_unlock(vmf->ptl); |
| 717 | set = true; |
| 718 | } |
| 719 | } else |
| 720 | spin_unlock(vmf->ptl); |
| 721 | if (!set) |
| 722 | pte_free(vma->vm_mm, pgtable); |
| 723 | return ret; |
| 724 | } |
| 725 | gfp = alloc_hugepage_direct_gfpmask(vma); |
| 726 | page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER); |
| 727 | if (unlikely(!page)) { |
| 728 | count_vm_event(THP_FAULT_FALLBACK); |
| 729 | return VM_FAULT_FALLBACK; |
| 730 | } |
| 731 | prep_transhuge_page(page); |
| 732 | return __do_huge_pmd_anonymous_page(vmf, page, gfp); |
| 733 | } |
| 734 | |
| 735 | static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, |
| 736 | pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write, |
| 737 | pgtable_t pgtable) |
| 738 | { |
| 739 | struct mm_struct *mm = vma->vm_mm; |
| 740 | pmd_t entry; |
| 741 | spinlock_t *ptl; |
| 742 | |
| 743 | ptl = pmd_lock(mm, pmd); |
| 744 | entry = pmd_mkhuge(pfn_t_pmd(pfn, prot)); |
| 745 | if (pfn_t_devmap(pfn)) |
| 746 | entry = pmd_mkdevmap(entry); |
| 747 | if (write) { |
| 748 | entry = pmd_mkyoung(pmd_mkdirty(entry)); |
| 749 | entry = maybe_pmd_mkwrite(entry, vma); |
| 750 | } |
| 751 | |
| 752 | if (pgtable) { |
| 753 | pgtable_trans_huge_deposit(mm, pmd, pgtable); |
| 754 | atomic_long_inc(&mm->nr_ptes); |
| 755 | } |
| 756 | |
| 757 | set_pmd_at(mm, addr, pmd, entry); |
| 758 | update_mmu_cache_pmd(vma, addr, pmd); |
| 759 | spin_unlock(ptl); |
| 760 | } |
| 761 | |
| 762 | int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, |
| 763 | pmd_t *pmd, pfn_t pfn, bool write) |
| 764 | { |
| 765 | pgprot_t pgprot = vma->vm_page_prot; |
| 766 | pgtable_t pgtable = NULL; |
| 767 | /* |
| 768 | * If we had pmd_special, we could avoid all these restrictions, |
| 769 | * but we need to be consistent with PTEs and architectures that |
| 770 | * can't support a 'special' bit. |
| 771 | */ |
| 772 | BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); |
| 773 | BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == |
| 774 | (VM_PFNMAP|VM_MIXEDMAP)); |
| 775 | BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); |
| 776 | BUG_ON(!pfn_t_devmap(pfn)); |
| 777 | |
| 778 | if (addr < vma->vm_start || addr >= vma->vm_end) |
| 779 | return VM_FAULT_SIGBUS; |
| 780 | |
| 781 | if (arch_needs_pgtable_deposit()) { |
| 782 | pgtable = pte_alloc_one(vma->vm_mm, addr); |
| 783 | if (!pgtable) |
| 784 | return VM_FAULT_OOM; |
| 785 | } |
| 786 | |
| 787 | track_pfn_insert(vma, &pgprot, pfn); |
| 788 | |
| 789 | insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable); |
| 790 | return VM_FAULT_NOPAGE; |
| 791 | } |
| 792 | EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd); |
| 793 | |
| 794 | #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD |
| 795 | static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma) |
| 796 | { |
| 797 | if (likely(vma->vm_flags & VM_WRITE)) |
| 798 | pud = pud_mkwrite(pud); |
| 799 | return pud; |
| 800 | } |
| 801 | |
| 802 | static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr, |
| 803 | pud_t *pud, pfn_t pfn, pgprot_t prot, bool write) |
| 804 | { |
| 805 | struct mm_struct *mm = vma->vm_mm; |
| 806 | pud_t entry; |
| 807 | spinlock_t *ptl; |
| 808 | |
| 809 | ptl = pud_lock(mm, pud); |
| 810 | entry = pud_mkhuge(pfn_t_pud(pfn, prot)); |
| 811 | if (pfn_t_devmap(pfn)) |
| 812 | entry = pud_mkdevmap(entry); |
| 813 | if (write) { |
| 814 | entry = pud_mkyoung(pud_mkdirty(entry)); |
| 815 | entry = maybe_pud_mkwrite(entry, vma); |
| 816 | } |
| 817 | set_pud_at(mm, addr, pud, entry); |
| 818 | update_mmu_cache_pud(vma, addr, pud); |
| 819 | spin_unlock(ptl); |
| 820 | } |
| 821 | |
| 822 | int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr, |
| 823 | pud_t *pud, pfn_t pfn, bool write) |
| 824 | { |
| 825 | pgprot_t pgprot = vma->vm_page_prot; |
| 826 | /* |
| 827 | * If we had pud_special, we could avoid all these restrictions, |
| 828 | * but we need to be consistent with PTEs and architectures that |
| 829 | * can't support a 'special' bit. |
| 830 | */ |
| 831 | BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); |
| 832 | BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == |
| 833 | (VM_PFNMAP|VM_MIXEDMAP)); |
| 834 | BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); |
| 835 | BUG_ON(!pfn_t_devmap(pfn)); |
| 836 | |
| 837 | if (addr < vma->vm_start || addr >= vma->vm_end) |
| 838 | return VM_FAULT_SIGBUS; |
| 839 | |
| 840 | track_pfn_insert(vma, &pgprot, pfn); |
| 841 | |
| 842 | insert_pfn_pud(vma, addr, pud, pfn, pgprot, write); |
| 843 | return VM_FAULT_NOPAGE; |
| 844 | } |
| 845 | EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud); |
| 846 | #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ |
| 847 | |
| 848 | static void touch_pmd(struct vm_area_struct *vma, unsigned long addr, |
| 849 | pmd_t *pmd, int flags) |
| 850 | { |
| 851 | pmd_t _pmd; |
| 852 | |
| 853 | _pmd = pmd_mkyoung(*pmd); |
| 854 | if (flags & FOLL_WRITE) |
| 855 | _pmd = pmd_mkdirty(_pmd); |
| 856 | if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, |
| 857 | pmd, _pmd, flags & FOLL_WRITE)) |
| 858 | update_mmu_cache_pmd(vma, addr, pmd); |
| 859 | } |
| 860 | |
| 861 | struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, |
| 862 | pmd_t *pmd, int flags) |
| 863 | { |
| 864 | unsigned long pfn = pmd_pfn(*pmd); |
| 865 | struct mm_struct *mm = vma->vm_mm; |
| 866 | struct dev_pagemap *pgmap; |
| 867 | struct page *page; |
| 868 | |
| 869 | assert_spin_locked(pmd_lockptr(mm, pmd)); |
| 870 | |
| 871 | /* |
| 872 | * When we COW a devmap PMD entry, we split it into PTEs, so we should |
| 873 | * not be in this function with `flags & FOLL_COW` set. |
| 874 | */ |
| 875 | WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set"); |
| 876 | |
| 877 | if (flags & FOLL_WRITE && !pmd_write(*pmd)) |
| 878 | return NULL; |
| 879 | |
| 880 | if (pmd_present(*pmd) && pmd_devmap(*pmd)) |
| 881 | /* pass */; |
| 882 | else |
| 883 | return NULL; |
| 884 | |
| 885 | if (flags & FOLL_TOUCH) |
| 886 | touch_pmd(vma, addr, pmd, flags); |
| 887 | |
| 888 | /* |
| 889 | * device mapped pages can only be returned if the |
| 890 | * caller will manage the page reference count. |
| 891 | */ |
| 892 | if (!(flags & FOLL_GET)) |
| 893 | return ERR_PTR(-EEXIST); |
| 894 | |
| 895 | pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT; |
| 896 | pgmap = get_dev_pagemap(pfn, NULL); |
| 897 | if (!pgmap) |
| 898 | return ERR_PTR(-EFAULT); |
| 899 | page = pfn_to_page(pfn); |
| 900 | get_page(page); |
| 901 | put_dev_pagemap(pgmap); |
| 902 | |
| 903 | return page; |
| 904 | } |
| 905 | |
| 906 | int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, |
| 907 | pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, |
| 908 | struct vm_area_struct *vma) |
| 909 | { |
| 910 | spinlock_t *dst_ptl, *src_ptl; |
| 911 | struct page *src_page; |
| 912 | pmd_t pmd; |
| 913 | pgtable_t pgtable = NULL; |
| 914 | int ret = -ENOMEM; |
| 915 | |
| 916 | /* Skip if can be re-fill on fault */ |
| 917 | if (!vma_is_anonymous(vma)) |
| 918 | return 0; |
| 919 | |
| 920 | pgtable = pte_alloc_one(dst_mm, addr); |
| 921 | if (unlikely(!pgtable)) |
| 922 | goto out; |
| 923 | |
| 924 | dst_ptl = pmd_lock(dst_mm, dst_pmd); |
| 925 | src_ptl = pmd_lockptr(src_mm, src_pmd); |
| 926 | spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); |
| 927 | |
| 928 | ret = -EAGAIN; |
| 929 | pmd = *src_pmd; |
| 930 | |
| 931 | #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION |
| 932 | if (unlikely(is_swap_pmd(pmd))) { |
| 933 | swp_entry_t entry = pmd_to_swp_entry(pmd); |
| 934 | |
| 935 | VM_BUG_ON(!is_pmd_migration_entry(pmd)); |
| 936 | if (is_write_migration_entry(entry)) { |
| 937 | make_migration_entry_read(&entry); |
| 938 | pmd = swp_entry_to_pmd(entry); |
| 939 | if (pmd_swp_soft_dirty(*src_pmd)) |
| 940 | pmd = pmd_swp_mksoft_dirty(pmd); |
| 941 | set_pmd_at(src_mm, addr, src_pmd, pmd); |
| 942 | } |
| 943 | add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); |
| 944 | atomic_long_inc(&dst_mm->nr_ptes); |
| 945 | pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); |
| 946 | set_pmd_at(dst_mm, addr, dst_pmd, pmd); |
| 947 | ret = 0; |
| 948 | goto out_unlock; |
| 949 | } |
| 950 | #endif |
| 951 | |
| 952 | if (unlikely(!pmd_trans_huge(pmd))) { |
| 953 | pte_free(dst_mm, pgtable); |
| 954 | goto out_unlock; |
| 955 | } |
| 956 | /* |
| 957 | * When page table lock is held, the huge zero pmd should not be |
| 958 | * under splitting since we don't split the page itself, only pmd to |
| 959 | * a page table. |
| 960 | */ |
| 961 | if (is_huge_zero_pmd(pmd)) { |
| 962 | struct page *zero_page; |
| 963 | /* |
| 964 | * get_huge_zero_page() will never allocate a new page here, |
| 965 | * since we already have a zero page to copy. It just takes a |
| 966 | * reference. |
| 967 | */ |
| 968 | zero_page = mm_get_huge_zero_page(dst_mm); |
| 969 | set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd, |
| 970 | zero_page); |
| 971 | ret = 0; |
| 972 | goto out_unlock; |
| 973 | } |
| 974 | |
| 975 | src_page = pmd_page(pmd); |
| 976 | VM_BUG_ON_PAGE(!PageHead(src_page), src_page); |
| 977 | get_page(src_page); |
| 978 | page_dup_rmap(src_page, true); |
| 979 | add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); |
| 980 | atomic_long_inc(&dst_mm->nr_ptes); |
| 981 | pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); |
| 982 | |
| 983 | pmdp_set_wrprotect(src_mm, addr, src_pmd); |
| 984 | pmd = pmd_mkold(pmd_wrprotect(pmd)); |
| 985 | set_pmd_at(dst_mm, addr, dst_pmd, pmd); |
| 986 | |
| 987 | ret = 0; |
| 988 | out_unlock: |
| 989 | spin_unlock(src_ptl); |
| 990 | spin_unlock(dst_ptl); |
| 991 | out: |
| 992 | return ret; |
| 993 | } |
| 994 | |
| 995 | #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD |
| 996 | static void touch_pud(struct vm_area_struct *vma, unsigned long addr, |
| 997 | pud_t *pud, int flags) |
| 998 | { |
| 999 | pud_t _pud; |
| 1000 | |
| 1001 | _pud = pud_mkyoung(*pud); |
| 1002 | if (flags & FOLL_WRITE) |
| 1003 | _pud = pud_mkdirty(_pud); |
| 1004 | if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK, |
| 1005 | pud, _pud, flags & FOLL_WRITE)) |
| 1006 | update_mmu_cache_pud(vma, addr, pud); |
| 1007 | } |
| 1008 | |
| 1009 | struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr, |
| 1010 | pud_t *pud, int flags) |
| 1011 | { |
| 1012 | unsigned long pfn = pud_pfn(*pud); |
| 1013 | struct mm_struct *mm = vma->vm_mm; |
| 1014 | struct dev_pagemap *pgmap; |
| 1015 | struct page *page; |
| 1016 | |
| 1017 | assert_spin_locked(pud_lockptr(mm, pud)); |
| 1018 | |
| 1019 | if (flags & FOLL_WRITE && !pud_write(*pud)) |
| 1020 | return NULL; |
| 1021 | |
| 1022 | if (pud_present(*pud) && pud_devmap(*pud)) |
| 1023 | /* pass */; |
| 1024 | else |
| 1025 | return NULL; |
| 1026 | |
| 1027 | if (flags & FOLL_TOUCH) |
| 1028 | touch_pud(vma, addr, pud, flags); |
| 1029 | |
| 1030 | /* |
| 1031 | * device mapped pages can only be returned if the |
| 1032 | * caller will manage the page reference count. |
| 1033 | */ |
| 1034 | if (!(flags & FOLL_GET)) |
| 1035 | return ERR_PTR(-EEXIST); |
| 1036 | |
| 1037 | pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT; |
| 1038 | pgmap = get_dev_pagemap(pfn, NULL); |
| 1039 | if (!pgmap) |
| 1040 | return ERR_PTR(-EFAULT); |
| 1041 | page = pfn_to_page(pfn); |
| 1042 | get_page(page); |
| 1043 | put_dev_pagemap(pgmap); |
| 1044 | |
| 1045 | return page; |
| 1046 | } |
| 1047 | |
| 1048 | int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, |
| 1049 | pud_t *dst_pud, pud_t *src_pud, unsigned long addr, |
| 1050 | struct vm_area_struct *vma) |
| 1051 | { |
| 1052 | spinlock_t *dst_ptl, *src_ptl; |
| 1053 | pud_t pud; |
| 1054 | int ret; |
| 1055 | |
| 1056 | dst_ptl = pud_lock(dst_mm, dst_pud); |
| 1057 | src_ptl = pud_lockptr(src_mm, src_pud); |
| 1058 | spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); |
| 1059 | |
| 1060 | ret = -EAGAIN; |
| 1061 | pud = *src_pud; |
| 1062 | if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud))) |
| 1063 | goto out_unlock; |
| 1064 | |
| 1065 | /* |
| 1066 | * When page table lock is held, the huge zero pud should not be |
| 1067 | * under splitting since we don't split the page itself, only pud to |
| 1068 | * a page table. |
| 1069 | */ |
| 1070 | if (is_huge_zero_pud(pud)) { |
| 1071 | /* No huge zero pud yet */ |
| 1072 | } |
| 1073 | |
| 1074 | pudp_set_wrprotect(src_mm, addr, src_pud); |
| 1075 | pud = pud_mkold(pud_wrprotect(pud)); |
| 1076 | set_pud_at(dst_mm, addr, dst_pud, pud); |
| 1077 | |
| 1078 | ret = 0; |
| 1079 | out_unlock: |
| 1080 | spin_unlock(src_ptl); |
| 1081 | spin_unlock(dst_ptl); |
| 1082 | return ret; |
| 1083 | } |
| 1084 | |
| 1085 | void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud) |
| 1086 | { |
| 1087 | pud_t entry; |
| 1088 | unsigned long haddr; |
| 1089 | bool write = vmf->flags & FAULT_FLAG_WRITE; |
| 1090 | |
| 1091 | vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud); |
| 1092 | if (unlikely(!pud_same(*vmf->pud, orig_pud))) |
| 1093 | goto unlock; |
| 1094 | |
| 1095 | entry = pud_mkyoung(orig_pud); |
| 1096 | if (write) |
| 1097 | entry = pud_mkdirty(entry); |
| 1098 | haddr = vmf->address & HPAGE_PUD_MASK; |
| 1099 | if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write)) |
| 1100 | update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud); |
| 1101 | |
| 1102 | unlock: |
| 1103 | spin_unlock(vmf->ptl); |
| 1104 | } |
| 1105 | #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ |
| 1106 | |
| 1107 | void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd) |
| 1108 | { |
| 1109 | pmd_t entry; |
| 1110 | unsigned long haddr; |
| 1111 | bool write = vmf->flags & FAULT_FLAG_WRITE; |
| 1112 | |
| 1113 | vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); |
| 1114 | if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) |
| 1115 | goto unlock; |
| 1116 | |
| 1117 | entry = pmd_mkyoung(orig_pmd); |
| 1118 | if (write) |
| 1119 | entry = pmd_mkdirty(entry); |
| 1120 | haddr = vmf->address & HPAGE_PMD_MASK; |
| 1121 | if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write)) |
| 1122 | update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd); |
| 1123 | |
| 1124 | unlock: |
| 1125 | spin_unlock(vmf->ptl); |
| 1126 | } |
| 1127 | |
| 1128 | static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd, |
| 1129 | struct page *page) |
| 1130 | { |
| 1131 | struct vm_area_struct *vma = vmf->vma; |
| 1132 | unsigned long haddr = vmf->address & HPAGE_PMD_MASK; |
| 1133 | struct mem_cgroup *memcg; |
| 1134 | pgtable_t pgtable; |
| 1135 | pmd_t _pmd; |
| 1136 | int ret = 0, i; |
| 1137 | struct page **pages; |
| 1138 | unsigned long mmun_start; /* For mmu_notifiers */ |
| 1139 | unsigned long mmun_end; /* For mmu_notifiers */ |
| 1140 | |
| 1141 | pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR, |
| 1142 | GFP_KERNEL); |
| 1143 | if (unlikely(!pages)) { |
| 1144 | ret |= VM_FAULT_OOM; |
| 1145 | goto out; |
| 1146 | } |
| 1147 | |
| 1148 | for (i = 0; i < HPAGE_PMD_NR; i++) { |
| 1149 | pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma, |
| 1150 | vmf->address, page_to_nid(page)); |
| 1151 | if (unlikely(!pages[i] || |
| 1152 | mem_cgroup_try_charge(pages[i], vma->vm_mm, |
| 1153 | GFP_KERNEL, &memcg, false))) { |
| 1154 | if (pages[i]) |
| 1155 | put_page(pages[i]); |
| 1156 | while (--i >= 0) { |
| 1157 | memcg = (void *)page_private(pages[i]); |
| 1158 | set_page_private(pages[i], 0); |
| 1159 | mem_cgroup_cancel_charge(pages[i], memcg, |
| 1160 | false); |
| 1161 | put_page(pages[i]); |
| 1162 | } |
| 1163 | kfree(pages); |
| 1164 | ret |= VM_FAULT_OOM; |
| 1165 | goto out; |
| 1166 | } |
| 1167 | set_page_private(pages[i], (unsigned long)memcg); |
| 1168 | } |
| 1169 | |
| 1170 | for (i = 0; i < HPAGE_PMD_NR; i++) { |
| 1171 | copy_user_highpage(pages[i], page + i, |
| 1172 | haddr + PAGE_SIZE * i, vma); |
| 1173 | __SetPageUptodate(pages[i]); |
| 1174 | cond_resched(); |
| 1175 | } |
| 1176 | |
| 1177 | mmun_start = haddr; |
| 1178 | mmun_end = haddr + HPAGE_PMD_SIZE; |
| 1179 | mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end); |
| 1180 | |
| 1181 | vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); |
| 1182 | if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) |
| 1183 | goto out_free_pages; |
| 1184 | VM_BUG_ON_PAGE(!PageHead(page), page); |
| 1185 | |
| 1186 | pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd); |
| 1187 | /* leave pmd empty until pte is filled */ |
| 1188 | |
| 1189 | pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd); |
| 1190 | pmd_populate(vma->vm_mm, &_pmd, pgtable); |
| 1191 | |
| 1192 | for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { |
| 1193 | pte_t entry; |
| 1194 | entry = mk_pte(pages[i], vma->vm_page_prot); |
| 1195 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); |
| 1196 | memcg = (void *)page_private(pages[i]); |
| 1197 | set_page_private(pages[i], 0); |
| 1198 | page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false); |
| 1199 | mem_cgroup_commit_charge(pages[i], memcg, false, false); |
| 1200 | lru_cache_add_active_or_unevictable(pages[i], vma); |
| 1201 | vmf->pte = pte_offset_map(&_pmd, haddr); |
| 1202 | VM_BUG_ON(!pte_none(*vmf->pte)); |
| 1203 | set_pte_at(vma->vm_mm, haddr, vmf->pte, entry); |
| 1204 | pte_unmap(vmf->pte); |
| 1205 | } |
| 1206 | kfree(pages); |
| 1207 | |
| 1208 | smp_wmb(); /* make pte visible before pmd */ |
| 1209 | pmd_populate(vma->vm_mm, vmf->pmd, pgtable); |
| 1210 | page_remove_rmap(page, true); |
| 1211 | spin_unlock(vmf->ptl); |
| 1212 | |
| 1213 | mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end); |
| 1214 | |
| 1215 | ret |= VM_FAULT_WRITE; |
| 1216 | put_page(page); |
| 1217 | |
| 1218 | out: |
| 1219 | return ret; |
| 1220 | |
| 1221 | out_free_pages: |
| 1222 | spin_unlock(vmf->ptl); |
| 1223 | mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end); |
| 1224 | for (i = 0; i < HPAGE_PMD_NR; i++) { |
| 1225 | memcg = (void *)page_private(pages[i]); |
| 1226 | set_page_private(pages[i], 0); |
| 1227 | mem_cgroup_cancel_charge(pages[i], memcg, false); |
| 1228 | put_page(pages[i]); |
| 1229 | } |
| 1230 | kfree(pages); |
| 1231 | goto out; |
| 1232 | } |
| 1233 | |
| 1234 | int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd) |
| 1235 | { |
| 1236 | struct vm_area_struct *vma = vmf->vma; |
| 1237 | struct page *page = NULL, *new_page; |
| 1238 | struct mem_cgroup *memcg; |
| 1239 | unsigned long haddr = vmf->address & HPAGE_PMD_MASK; |
| 1240 | unsigned long mmun_start; /* For mmu_notifiers */ |
| 1241 | unsigned long mmun_end; /* For mmu_notifiers */ |
| 1242 | gfp_t huge_gfp; /* for allocation and charge */ |
| 1243 | int ret = 0; |
| 1244 | |
| 1245 | vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd); |
| 1246 | VM_BUG_ON_VMA(!vma->anon_vma, vma); |
| 1247 | if (is_huge_zero_pmd(orig_pmd)) |
| 1248 | goto alloc; |
| 1249 | spin_lock(vmf->ptl); |
| 1250 | if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) |
| 1251 | goto out_unlock; |
| 1252 | |
| 1253 | page = pmd_page(orig_pmd); |
| 1254 | VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page); |
| 1255 | /* |
| 1256 | * We can only reuse the page if nobody else maps the huge page or it's |
| 1257 | * part. |
| 1258 | */ |
| 1259 | if (!trylock_page(page)) { |
| 1260 | get_page(page); |
| 1261 | spin_unlock(vmf->ptl); |
| 1262 | lock_page(page); |
| 1263 | spin_lock(vmf->ptl); |
| 1264 | if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { |
| 1265 | unlock_page(page); |
| 1266 | put_page(page); |
| 1267 | goto out_unlock; |
| 1268 | } |
| 1269 | put_page(page); |
| 1270 | } |
| 1271 | if (reuse_swap_page(page, NULL)) { |
| 1272 | pmd_t entry; |
| 1273 | entry = pmd_mkyoung(orig_pmd); |
| 1274 | entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); |
| 1275 | if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1)) |
| 1276 | update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); |
| 1277 | ret |= VM_FAULT_WRITE; |
| 1278 | unlock_page(page); |
| 1279 | goto out_unlock; |
| 1280 | } |
| 1281 | unlock_page(page); |
| 1282 | get_page(page); |
| 1283 | spin_unlock(vmf->ptl); |
| 1284 | alloc: |
| 1285 | if (transparent_hugepage_enabled(vma) && |
| 1286 | !transparent_hugepage_debug_cow()) { |
| 1287 | huge_gfp = alloc_hugepage_direct_gfpmask(vma); |
| 1288 | new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER); |
| 1289 | } else |
| 1290 | new_page = NULL; |
| 1291 | |
| 1292 | if (likely(new_page)) { |
| 1293 | prep_transhuge_page(new_page); |
| 1294 | } else { |
| 1295 | if (!page) { |
| 1296 | split_huge_pmd(vma, vmf->pmd, vmf->address); |
| 1297 | ret |= VM_FAULT_FALLBACK; |
| 1298 | } else { |
| 1299 | ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page); |
| 1300 | if (ret & VM_FAULT_OOM) { |
| 1301 | split_huge_pmd(vma, vmf->pmd, vmf->address); |
| 1302 | ret |= VM_FAULT_FALLBACK; |
| 1303 | } |
| 1304 | put_page(page); |
| 1305 | } |
| 1306 | count_vm_event(THP_FAULT_FALLBACK); |
| 1307 | goto out; |
| 1308 | } |
| 1309 | |
| 1310 | if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm, |
| 1311 | huge_gfp | __GFP_NORETRY, &memcg, true))) { |
| 1312 | put_page(new_page); |
| 1313 | split_huge_pmd(vma, vmf->pmd, vmf->address); |
| 1314 | if (page) |
| 1315 | put_page(page); |
| 1316 | ret |= VM_FAULT_FALLBACK; |
| 1317 | count_vm_event(THP_FAULT_FALLBACK); |
| 1318 | goto out; |
| 1319 | } |
| 1320 | |
| 1321 | count_vm_event(THP_FAULT_ALLOC); |
| 1322 | |
| 1323 | if (!page) |
| 1324 | clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR); |
| 1325 | else |
| 1326 | copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR); |
| 1327 | __SetPageUptodate(new_page); |
| 1328 | |
| 1329 | mmun_start = haddr; |
| 1330 | mmun_end = haddr + HPAGE_PMD_SIZE; |
| 1331 | mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end); |
| 1332 | |
| 1333 | spin_lock(vmf->ptl); |
| 1334 | if (page) |
| 1335 | put_page(page); |
| 1336 | if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { |
| 1337 | spin_unlock(vmf->ptl); |
| 1338 | mem_cgroup_cancel_charge(new_page, memcg, true); |
| 1339 | put_page(new_page); |
| 1340 | goto out_mn; |
| 1341 | } else { |
| 1342 | pmd_t entry; |
| 1343 | entry = mk_huge_pmd(new_page, vma->vm_page_prot); |
| 1344 | entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); |
| 1345 | pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd); |
| 1346 | page_add_new_anon_rmap(new_page, vma, haddr, true); |
| 1347 | mem_cgroup_commit_charge(new_page, memcg, false, true); |
| 1348 | lru_cache_add_active_or_unevictable(new_page, vma); |
| 1349 | set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); |
| 1350 | update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); |
| 1351 | if (!page) { |
| 1352 | add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); |
| 1353 | } else { |
| 1354 | VM_BUG_ON_PAGE(!PageHead(page), page); |
| 1355 | page_remove_rmap(page, true); |
| 1356 | put_page(page); |
| 1357 | } |
| 1358 | ret |= VM_FAULT_WRITE; |
| 1359 | } |
| 1360 | spin_unlock(vmf->ptl); |
| 1361 | out_mn: |
| 1362 | mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end); |
| 1363 | out: |
| 1364 | return ret; |
| 1365 | out_unlock: |
| 1366 | spin_unlock(vmf->ptl); |
| 1367 | return ret; |
| 1368 | } |
| 1369 | |
| 1370 | /* |
| 1371 | * FOLL_FORCE can write to even unwritable pmd's, but only |
| 1372 | * after we've gone through a COW cycle and they are dirty. |
| 1373 | */ |
| 1374 | static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags) |
| 1375 | { |
| 1376 | return pmd_write(pmd) || |
| 1377 | ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd)); |
| 1378 | } |
| 1379 | |
| 1380 | struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, |
| 1381 | unsigned long addr, |
| 1382 | pmd_t *pmd, |
| 1383 | unsigned int flags) |
| 1384 | { |
| 1385 | struct mm_struct *mm = vma->vm_mm; |
| 1386 | struct page *page = NULL; |
| 1387 | |
| 1388 | assert_spin_locked(pmd_lockptr(mm, pmd)); |
| 1389 | |
| 1390 | if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags)) |
| 1391 | goto out; |
| 1392 | |
| 1393 | /* Avoid dumping huge zero page */ |
| 1394 | if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd)) |
| 1395 | return ERR_PTR(-EFAULT); |
| 1396 | |
| 1397 | /* Full NUMA hinting faults to serialise migration in fault paths */ |
| 1398 | if ((flags & FOLL_NUMA) && pmd_protnone(*pmd)) |
| 1399 | goto out; |
| 1400 | |
| 1401 | page = pmd_page(*pmd); |
| 1402 | VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page); |
| 1403 | if (flags & FOLL_TOUCH) |
| 1404 | touch_pmd(vma, addr, pmd, flags); |
| 1405 | if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { |
| 1406 | /* |
| 1407 | * We don't mlock() pte-mapped THPs. This way we can avoid |
| 1408 | * leaking mlocked pages into non-VM_LOCKED VMAs. |
| 1409 | * |
| 1410 | * For anon THP: |
| 1411 | * |
| 1412 | * In most cases the pmd is the only mapping of the page as we |
| 1413 | * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for |
| 1414 | * writable private mappings in populate_vma_page_range(). |
| 1415 | * |
| 1416 | * The only scenario when we have the page shared here is if we |
| 1417 | * mlocking read-only mapping shared over fork(). We skip |
| 1418 | * mlocking such pages. |
| 1419 | * |
| 1420 | * For file THP: |
| 1421 | * |
| 1422 | * We can expect PageDoubleMap() to be stable under page lock: |
| 1423 | * for file pages we set it in page_add_file_rmap(), which |
| 1424 | * requires page to be locked. |
| 1425 | */ |
| 1426 | |
| 1427 | if (PageAnon(page) && compound_mapcount(page) != 1) |
| 1428 | goto skip_mlock; |
| 1429 | if (PageDoubleMap(page) || !page->mapping) |
| 1430 | goto skip_mlock; |
| 1431 | if (!trylock_page(page)) |
| 1432 | goto skip_mlock; |
| 1433 | lru_add_drain(); |
| 1434 | if (page->mapping && !PageDoubleMap(page)) |
| 1435 | mlock_vma_page(page); |
| 1436 | unlock_page(page); |
| 1437 | } |
| 1438 | skip_mlock: |
| 1439 | page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; |
| 1440 | VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page); |
| 1441 | if (flags & FOLL_GET) |
| 1442 | get_page(page); |
| 1443 | |
| 1444 | out: |
| 1445 | return page; |
| 1446 | } |
| 1447 | |
| 1448 | /* NUMA hinting page fault entry point for trans huge pmds */ |
| 1449 | int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd) |
| 1450 | { |
| 1451 | struct vm_area_struct *vma = vmf->vma; |
| 1452 | struct anon_vma *anon_vma = NULL; |
| 1453 | struct page *page; |
| 1454 | unsigned long haddr = vmf->address & HPAGE_PMD_MASK; |
| 1455 | int page_nid = -1, this_nid = numa_node_id(); |
| 1456 | int target_nid, last_cpupid = -1; |
| 1457 | bool page_locked; |
| 1458 | bool migrated = false; |
| 1459 | bool was_writable; |
| 1460 | int flags = 0; |
| 1461 | |
| 1462 | vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); |
| 1463 | if (unlikely(!pmd_same(pmd, *vmf->pmd))) |
| 1464 | goto out_unlock; |
| 1465 | |
| 1466 | /* |
| 1467 | * If there are potential migrations, wait for completion and retry |
| 1468 | * without disrupting NUMA hinting information. Do not relock and |
| 1469 | * check_same as the page may no longer be mapped. |
| 1470 | */ |
| 1471 | if (unlikely(pmd_trans_migrating(*vmf->pmd))) { |
| 1472 | page = pmd_page(*vmf->pmd); |
| 1473 | if (!get_page_unless_zero(page)) |
| 1474 | goto out_unlock; |
| 1475 | spin_unlock(vmf->ptl); |
| 1476 | wait_on_page_locked(page); |
| 1477 | put_page(page); |
| 1478 | goto out; |
| 1479 | } |
| 1480 | |
| 1481 | page = pmd_page(pmd); |
| 1482 | BUG_ON(is_huge_zero_page(page)); |
| 1483 | page_nid = page_to_nid(page); |
| 1484 | last_cpupid = page_cpupid_last(page); |
| 1485 | count_vm_numa_event(NUMA_HINT_FAULTS); |
| 1486 | if (page_nid == this_nid) { |
| 1487 | count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); |
| 1488 | flags |= TNF_FAULT_LOCAL; |
| 1489 | } |
| 1490 | |
| 1491 | /* See similar comment in do_numa_page for explanation */ |
| 1492 | if (!pmd_savedwrite(pmd)) |
| 1493 | flags |= TNF_NO_GROUP; |
| 1494 | |
| 1495 | /* |
| 1496 | * Acquire the page lock to serialise THP migrations but avoid dropping |
| 1497 | * page_table_lock if at all possible |
| 1498 | */ |
| 1499 | page_locked = trylock_page(page); |
| 1500 | target_nid = mpol_misplaced(page, vma, haddr); |
| 1501 | if (target_nid == -1) { |
| 1502 | /* If the page was locked, there are no parallel migrations */ |
| 1503 | if (page_locked) |
| 1504 | goto clear_pmdnuma; |
| 1505 | } |
| 1506 | |
| 1507 | /* Migration could have started since the pmd_trans_migrating check */ |
| 1508 | if (!page_locked) { |
| 1509 | page_nid = -1; |
| 1510 | if (!get_page_unless_zero(page)) |
| 1511 | goto out_unlock; |
| 1512 | spin_unlock(vmf->ptl); |
| 1513 | wait_on_page_locked(page); |
| 1514 | put_page(page); |
| 1515 | goto out; |
| 1516 | } |
| 1517 | |
| 1518 | /* |
| 1519 | * Page is misplaced. Page lock serialises migrations. Acquire anon_vma |
| 1520 | * to serialises splits |
| 1521 | */ |
| 1522 | get_page(page); |
| 1523 | spin_unlock(vmf->ptl); |
| 1524 | anon_vma = page_lock_anon_vma_read(page); |
| 1525 | |
| 1526 | /* Confirm the PMD did not change while page_table_lock was released */ |
| 1527 | spin_lock(vmf->ptl); |
| 1528 | if (unlikely(!pmd_same(pmd, *vmf->pmd))) { |
| 1529 | unlock_page(page); |
| 1530 | put_page(page); |
| 1531 | page_nid = -1; |
| 1532 | goto out_unlock; |
| 1533 | } |
| 1534 | |
| 1535 | /* Bail if we fail to protect against THP splits for any reason */ |
| 1536 | if (unlikely(!anon_vma)) { |
| 1537 | put_page(page); |
| 1538 | page_nid = -1; |
| 1539 | goto clear_pmdnuma; |
| 1540 | } |
| 1541 | |
| 1542 | /* |
| 1543 | * Since we took the NUMA fault, we must have observed the !accessible |
| 1544 | * bit. Make sure all other CPUs agree with that, to avoid them |
| 1545 | * modifying the page we're about to migrate. |
| 1546 | * |
| 1547 | * Must be done under PTL such that we'll observe the relevant |
| 1548 | * inc_tlb_flush_pending(). |
| 1549 | * |
| 1550 | * We are not sure a pending tlb flush here is for a huge page |
| 1551 | * mapping or not. Hence use the tlb range variant |
| 1552 | */ |
| 1553 | if (mm_tlb_flush_pending(vma->vm_mm)) |
| 1554 | flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE); |
| 1555 | |
| 1556 | /* |
| 1557 | * Migrate the THP to the requested node, returns with page unlocked |
| 1558 | * and access rights restored. |
| 1559 | */ |
| 1560 | spin_unlock(vmf->ptl); |
| 1561 | |
| 1562 | migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma, |
| 1563 | vmf->pmd, pmd, vmf->address, page, target_nid); |
| 1564 | if (migrated) { |
| 1565 | flags |= TNF_MIGRATED; |
| 1566 | page_nid = target_nid; |
| 1567 | } else |
| 1568 | flags |= TNF_MIGRATE_FAIL; |
| 1569 | |
| 1570 | goto out; |
| 1571 | clear_pmdnuma: |
| 1572 | BUG_ON(!PageLocked(page)); |
| 1573 | was_writable = pmd_savedwrite(pmd); |
| 1574 | pmd = pmd_modify(pmd, vma->vm_page_prot); |
| 1575 | pmd = pmd_mkyoung(pmd); |
| 1576 | if (was_writable) |
| 1577 | pmd = pmd_mkwrite(pmd); |
| 1578 | set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd); |
| 1579 | update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); |
| 1580 | unlock_page(page); |
| 1581 | out_unlock: |
| 1582 | spin_unlock(vmf->ptl); |
| 1583 | |
| 1584 | out: |
| 1585 | if (anon_vma) |
| 1586 | page_unlock_anon_vma_read(anon_vma); |
| 1587 | |
| 1588 | if (page_nid != -1) |
| 1589 | task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, |
| 1590 | flags); |
| 1591 | |
| 1592 | return 0; |
| 1593 | } |
| 1594 | |
| 1595 | /* |
| 1596 | * Return true if we do MADV_FREE successfully on entire pmd page. |
| 1597 | * Otherwise, return false. |
| 1598 | */ |
| 1599 | bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, |
| 1600 | pmd_t *pmd, unsigned long addr, unsigned long next) |
| 1601 | { |
| 1602 | spinlock_t *ptl; |
| 1603 | pmd_t orig_pmd; |
| 1604 | struct page *page; |
| 1605 | struct mm_struct *mm = tlb->mm; |
| 1606 | bool ret = false; |
| 1607 | |
| 1608 | tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE); |
| 1609 | |
| 1610 | ptl = pmd_trans_huge_lock(pmd, vma); |
| 1611 | if (!ptl) |
| 1612 | goto out_unlocked; |
| 1613 | |
| 1614 | orig_pmd = *pmd; |
| 1615 | if (is_huge_zero_pmd(orig_pmd)) |
| 1616 | goto out; |
| 1617 | |
| 1618 | if (unlikely(!pmd_present(orig_pmd))) { |
| 1619 | VM_BUG_ON(thp_migration_supported() && |
| 1620 | !is_pmd_migration_entry(orig_pmd)); |
| 1621 | goto out; |
| 1622 | } |
| 1623 | |
| 1624 | page = pmd_page(orig_pmd); |
| 1625 | /* |
| 1626 | * If other processes are mapping this page, we couldn't discard |
| 1627 | * the page unless they all do MADV_FREE so let's skip the page. |
| 1628 | */ |
| 1629 | if (page_mapcount(page) != 1) |
| 1630 | goto out; |
| 1631 | |
| 1632 | if (!trylock_page(page)) |
| 1633 | goto out; |
| 1634 | |
| 1635 | /* |
| 1636 | * If user want to discard part-pages of THP, split it so MADV_FREE |
| 1637 | * will deactivate only them. |
| 1638 | */ |
| 1639 | if (next - addr != HPAGE_PMD_SIZE) { |
| 1640 | get_page(page); |
| 1641 | spin_unlock(ptl); |
| 1642 | split_huge_page(page); |
| 1643 | unlock_page(page); |
| 1644 | put_page(page); |
| 1645 | goto out_unlocked; |
| 1646 | } |
| 1647 | |
| 1648 | if (PageDirty(page)) |
| 1649 | ClearPageDirty(page); |
| 1650 | unlock_page(page); |
| 1651 | |
| 1652 | if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) { |
| 1653 | pmdp_invalidate(vma, addr, pmd); |
| 1654 | orig_pmd = pmd_mkold(orig_pmd); |
| 1655 | orig_pmd = pmd_mkclean(orig_pmd); |
| 1656 | |
| 1657 | set_pmd_at(mm, addr, pmd, orig_pmd); |
| 1658 | tlb_remove_pmd_tlb_entry(tlb, pmd, addr); |
| 1659 | } |
| 1660 | |
| 1661 | mark_page_lazyfree(page); |
| 1662 | ret = true; |
| 1663 | out: |
| 1664 | spin_unlock(ptl); |
| 1665 | out_unlocked: |
| 1666 | return ret; |
| 1667 | } |
| 1668 | |
| 1669 | static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd) |
| 1670 | { |
| 1671 | pgtable_t pgtable; |
| 1672 | |
| 1673 | pgtable = pgtable_trans_huge_withdraw(mm, pmd); |
| 1674 | pte_free(mm, pgtable); |
| 1675 | atomic_long_dec(&mm->nr_ptes); |
| 1676 | } |
| 1677 | |
| 1678 | int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, |
| 1679 | pmd_t *pmd, unsigned long addr) |
| 1680 | { |
| 1681 | pmd_t orig_pmd; |
| 1682 | spinlock_t *ptl; |
| 1683 | |
| 1684 | tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE); |
| 1685 | |
| 1686 | ptl = __pmd_trans_huge_lock(pmd, vma); |
| 1687 | if (!ptl) |
| 1688 | return 0; |
| 1689 | /* |
| 1690 | * For architectures like ppc64 we look at deposited pgtable |
| 1691 | * when calling pmdp_huge_get_and_clear. So do the |
| 1692 | * pgtable_trans_huge_withdraw after finishing pmdp related |
| 1693 | * operations. |
| 1694 | */ |
| 1695 | orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd, |
| 1696 | tlb->fullmm); |
| 1697 | tlb_remove_pmd_tlb_entry(tlb, pmd, addr); |
| 1698 | if (vma_is_dax(vma)) { |
| 1699 | if (arch_needs_pgtable_deposit()) |
| 1700 | zap_deposited_table(tlb->mm, pmd); |
| 1701 | spin_unlock(ptl); |
| 1702 | if (is_huge_zero_pmd(orig_pmd)) |
| 1703 | tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE); |
| 1704 | } else if (is_huge_zero_pmd(orig_pmd)) { |
| 1705 | zap_deposited_table(tlb->mm, pmd); |
| 1706 | spin_unlock(ptl); |
| 1707 | tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE); |
| 1708 | } else { |
| 1709 | struct page *page = NULL; |
| 1710 | int flush_needed = 1; |
| 1711 | |
| 1712 | if (pmd_present(orig_pmd)) { |
| 1713 | page = pmd_page(orig_pmd); |
| 1714 | page_remove_rmap(page, true); |
| 1715 | VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); |
| 1716 | VM_BUG_ON_PAGE(!PageHead(page), page); |
| 1717 | } else if (thp_migration_supported()) { |
| 1718 | swp_entry_t entry; |
| 1719 | |
| 1720 | VM_BUG_ON(!is_pmd_migration_entry(orig_pmd)); |
| 1721 | entry = pmd_to_swp_entry(orig_pmd); |
| 1722 | page = pfn_to_page(swp_offset(entry)); |
| 1723 | flush_needed = 0; |
| 1724 | } else |
| 1725 | WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!"); |
| 1726 | |
| 1727 | if (PageAnon(page)) { |
| 1728 | zap_deposited_table(tlb->mm, pmd); |
| 1729 | add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); |
| 1730 | } else { |
| 1731 | if (arch_needs_pgtable_deposit()) |
| 1732 | zap_deposited_table(tlb->mm, pmd); |
| 1733 | add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR); |
| 1734 | } |
| 1735 | |
| 1736 | spin_unlock(ptl); |
| 1737 | if (flush_needed) |
| 1738 | tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE); |
| 1739 | } |
| 1740 | return 1; |
| 1741 | } |
| 1742 | |
| 1743 | #ifndef pmd_move_must_withdraw |
| 1744 | static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl, |
| 1745 | spinlock_t *old_pmd_ptl, |
| 1746 | struct vm_area_struct *vma) |
| 1747 | { |
| 1748 | /* |
| 1749 | * With split pmd lock we also need to move preallocated |
| 1750 | * PTE page table if new_pmd is on different PMD page table. |
| 1751 | * |
| 1752 | * We also don't deposit and withdraw tables for file pages. |
| 1753 | */ |
| 1754 | return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); |
| 1755 | } |
| 1756 | #endif |
| 1757 | |
| 1758 | static pmd_t move_soft_dirty_pmd(pmd_t pmd) |
| 1759 | { |
| 1760 | #ifdef CONFIG_MEM_SOFT_DIRTY |
| 1761 | if (unlikely(is_pmd_migration_entry(pmd))) |
| 1762 | pmd = pmd_swp_mksoft_dirty(pmd); |
| 1763 | else if (pmd_present(pmd)) |
| 1764 | pmd = pmd_mksoft_dirty(pmd); |
| 1765 | #endif |
| 1766 | return pmd; |
| 1767 | } |
| 1768 | |
| 1769 | bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, |
| 1770 | unsigned long new_addr, unsigned long old_end, |
| 1771 | pmd_t *old_pmd, pmd_t *new_pmd) |
| 1772 | { |
| 1773 | spinlock_t *old_ptl, *new_ptl; |
| 1774 | pmd_t pmd; |
| 1775 | struct mm_struct *mm = vma->vm_mm; |
| 1776 | bool force_flush = false; |
| 1777 | |
| 1778 | if ((old_addr & ~HPAGE_PMD_MASK) || |
| 1779 | (new_addr & ~HPAGE_PMD_MASK) || |
| 1780 | old_end - old_addr < HPAGE_PMD_SIZE) |
| 1781 | return false; |
| 1782 | |
| 1783 | /* |
| 1784 | * The destination pmd shouldn't be established, free_pgtables() |
| 1785 | * should have release it. |
| 1786 | */ |
| 1787 | if (WARN_ON(!pmd_none(*new_pmd))) { |
| 1788 | VM_BUG_ON(pmd_trans_huge(*new_pmd)); |
| 1789 | return false; |
| 1790 | } |
| 1791 | |
| 1792 | /* |
| 1793 | * We don't have to worry about the ordering of src and dst |
| 1794 | * ptlocks because exclusive mmap_sem prevents deadlock. |
| 1795 | */ |
| 1796 | old_ptl = __pmd_trans_huge_lock(old_pmd, vma); |
| 1797 | if (old_ptl) { |
| 1798 | new_ptl = pmd_lockptr(mm, new_pmd); |
| 1799 | if (new_ptl != old_ptl) |
| 1800 | spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); |
| 1801 | pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); |
| 1802 | if (pmd_present(pmd)) |
| 1803 | force_flush = true; |
| 1804 | VM_BUG_ON(!pmd_none(*new_pmd)); |
| 1805 | |
| 1806 | if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) { |
| 1807 | pgtable_t pgtable; |
| 1808 | pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); |
| 1809 | pgtable_trans_huge_deposit(mm, new_pmd, pgtable); |
| 1810 | } |
| 1811 | pmd = move_soft_dirty_pmd(pmd); |
| 1812 | set_pmd_at(mm, new_addr, new_pmd, pmd); |
| 1813 | if (force_flush) |
| 1814 | flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE); |
| 1815 | if (new_ptl != old_ptl) |
| 1816 | spin_unlock(new_ptl); |
| 1817 | spin_unlock(old_ptl); |
| 1818 | return true; |
| 1819 | } |
| 1820 | return false; |
| 1821 | } |
| 1822 | |
| 1823 | /* |
| 1824 | * Returns |
| 1825 | * - 0 if PMD could not be locked |
| 1826 | * - 1 if PMD was locked but protections unchange and TLB flush unnecessary |
| 1827 | * - HPAGE_PMD_NR is protections changed and TLB flush necessary |
| 1828 | */ |
| 1829 | int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, |
| 1830 | unsigned long addr, pgprot_t newprot, int prot_numa) |
| 1831 | { |
| 1832 | struct mm_struct *mm = vma->vm_mm; |
| 1833 | spinlock_t *ptl; |
| 1834 | pmd_t entry; |
| 1835 | bool preserve_write; |
| 1836 | int ret; |
| 1837 | |
| 1838 | ptl = __pmd_trans_huge_lock(pmd, vma); |
| 1839 | if (!ptl) |
| 1840 | return 0; |
| 1841 | |
| 1842 | preserve_write = prot_numa && pmd_write(*pmd); |
| 1843 | ret = 1; |
| 1844 | |
| 1845 | #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION |
| 1846 | if (is_swap_pmd(*pmd)) { |
| 1847 | swp_entry_t entry = pmd_to_swp_entry(*pmd); |
| 1848 | |
| 1849 | VM_BUG_ON(!is_pmd_migration_entry(*pmd)); |
| 1850 | if (is_write_migration_entry(entry)) { |
| 1851 | pmd_t newpmd; |
| 1852 | /* |
| 1853 | * A protection check is difficult so |
| 1854 | * just be safe and disable write |
| 1855 | */ |
| 1856 | make_migration_entry_read(&entry); |
| 1857 | newpmd = swp_entry_to_pmd(entry); |
| 1858 | if (pmd_swp_soft_dirty(*pmd)) |
| 1859 | newpmd = pmd_swp_mksoft_dirty(newpmd); |
| 1860 | set_pmd_at(mm, addr, pmd, newpmd); |
| 1861 | } |
| 1862 | goto unlock; |
| 1863 | } |
| 1864 | #endif |
| 1865 | |
| 1866 | /* |
| 1867 | * Avoid trapping faults against the zero page. The read-only |
| 1868 | * data is likely to be read-cached on the local CPU and |
| 1869 | * local/remote hits to the zero page are not interesting. |
| 1870 | */ |
| 1871 | if (prot_numa && is_huge_zero_pmd(*pmd)) |
| 1872 | goto unlock; |
| 1873 | |
| 1874 | if (prot_numa && pmd_protnone(*pmd)) |
| 1875 | goto unlock; |
| 1876 | |
| 1877 | /* |
| 1878 | * In case prot_numa, we are under down_read(mmap_sem). It's critical |
| 1879 | * to not clear pmd intermittently to avoid race with MADV_DONTNEED |
| 1880 | * which is also under down_read(mmap_sem): |
| 1881 | * |
| 1882 | * CPU0: CPU1: |
| 1883 | * change_huge_pmd(prot_numa=1) |
| 1884 | * pmdp_huge_get_and_clear_notify() |
| 1885 | * madvise_dontneed() |
| 1886 | * zap_pmd_range() |
| 1887 | * pmd_trans_huge(*pmd) == 0 (without ptl) |
| 1888 | * // skip the pmd |
| 1889 | * set_pmd_at(); |
| 1890 | * // pmd is re-established |
| 1891 | * |
| 1892 | * The race makes MADV_DONTNEED miss the huge pmd and don't clear it |
| 1893 | * which may break userspace. |
| 1894 | * |
| 1895 | * pmdp_invalidate() is required to make sure we don't miss |
| 1896 | * dirty/young flags set by hardware. |
| 1897 | */ |
| 1898 | entry = *pmd; |
| 1899 | pmdp_invalidate(vma, addr, pmd); |
| 1900 | |
| 1901 | /* |
| 1902 | * Recover dirty/young flags. It relies on pmdp_invalidate to not |
| 1903 | * corrupt them. |
| 1904 | */ |
| 1905 | if (pmd_dirty(*pmd)) |
| 1906 | entry = pmd_mkdirty(entry); |
| 1907 | if (pmd_young(*pmd)) |
| 1908 | entry = pmd_mkyoung(entry); |
| 1909 | |
| 1910 | entry = pmd_modify(entry, newprot); |
| 1911 | if (preserve_write) |
| 1912 | entry = pmd_mk_savedwrite(entry); |
| 1913 | ret = HPAGE_PMD_NR; |
| 1914 | set_pmd_at(mm, addr, pmd, entry); |
| 1915 | BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry)); |
| 1916 | unlock: |
| 1917 | spin_unlock(ptl); |
| 1918 | return ret; |
| 1919 | } |
| 1920 | |
| 1921 | /* |
| 1922 | * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise. |
| 1923 | * |
| 1924 | * Note that if it returns page table lock pointer, this routine returns without |
| 1925 | * unlocking page table lock. So callers must unlock it. |
| 1926 | */ |
| 1927 | spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) |
| 1928 | { |
| 1929 | spinlock_t *ptl; |
| 1930 | ptl = pmd_lock(vma->vm_mm, pmd); |
| 1931 | if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || |
| 1932 | pmd_devmap(*pmd))) |
| 1933 | return ptl; |
| 1934 | spin_unlock(ptl); |
| 1935 | return NULL; |
| 1936 | } |
| 1937 | |
| 1938 | /* |
| 1939 | * Returns true if a given pud maps a thp, false otherwise. |
| 1940 | * |
| 1941 | * Note that if it returns true, this routine returns without unlocking page |
| 1942 | * table lock. So callers must unlock it. |
| 1943 | */ |
| 1944 | spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma) |
| 1945 | { |
| 1946 | spinlock_t *ptl; |
| 1947 | |
| 1948 | ptl = pud_lock(vma->vm_mm, pud); |
| 1949 | if (likely(pud_trans_huge(*pud) || pud_devmap(*pud))) |
| 1950 | return ptl; |
| 1951 | spin_unlock(ptl); |
| 1952 | return NULL; |
| 1953 | } |
| 1954 | |
| 1955 | #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD |
| 1956 | int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, |
| 1957 | pud_t *pud, unsigned long addr) |
| 1958 | { |
| 1959 | pud_t orig_pud; |
| 1960 | spinlock_t *ptl; |
| 1961 | |
| 1962 | ptl = __pud_trans_huge_lock(pud, vma); |
| 1963 | if (!ptl) |
| 1964 | return 0; |
| 1965 | /* |
| 1966 | * For architectures like ppc64 we look at deposited pgtable |
| 1967 | * when calling pudp_huge_get_and_clear. So do the |
| 1968 | * pgtable_trans_huge_withdraw after finishing pudp related |
| 1969 | * operations. |
| 1970 | */ |
| 1971 | orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud, |
| 1972 | tlb->fullmm); |
| 1973 | tlb_remove_pud_tlb_entry(tlb, pud, addr); |
| 1974 | if (vma_is_dax(vma)) { |
| 1975 | spin_unlock(ptl); |
| 1976 | /* No zero page support yet */ |
| 1977 | } else { |
| 1978 | /* No support for anonymous PUD pages yet */ |
| 1979 | BUG(); |
| 1980 | } |
| 1981 | return 1; |
| 1982 | } |
| 1983 | |
| 1984 | static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud, |
| 1985 | unsigned long haddr) |
| 1986 | { |
| 1987 | VM_BUG_ON(haddr & ~HPAGE_PUD_MASK); |
| 1988 | VM_BUG_ON_VMA(vma->vm_start > haddr, vma); |
| 1989 | VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma); |
| 1990 | VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud)); |
| 1991 | |
| 1992 | count_vm_event(THP_SPLIT_PUD); |
| 1993 | |
| 1994 | pudp_huge_clear_flush_notify(vma, haddr, pud); |
| 1995 | } |
| 1996 | |
| 1997 | void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, |
| 1998 | unsigned long address) |
| 1999 | { |
| 2000 | spinlock_t *ptl; |
| 2001 | struct mm_struct *mm = vma->vm_mm; |
| 2002 | unsigned long haddr = address & HPAGE_PUD_MASK; |
| 2003 | |
| 2004 | mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE); |
| 2005 | ptl = pud_lock(mm, pud); |
| 2006 | if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud))) |
| 2007 | goto out; |
| 2008 | __split_huge_pud_locked(vma, pud, haddr); |
| 2009 | |
| 2010 | out: |
| 2011 | spin_unlock(ptl); |
| 2012 | mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PUD_SIZE); |
| 2013 | } |
| 2014 | #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ |
| 2015 | |
| 2016 | static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, |
| 2017 | unsigned long haddr, pmd_t *pmd) |
| 2018 | { |
| 2019 | struct mm_struct *mm = vma->vm_mm; |
| 2020 | pgtable_t pgtable; |
| 2021 | pmd_t _pmd; |
| 2022 | int i; |
| 2023 | |
| 2024 | /* leave pmd empty until pte is filled */ |
| 2025 | pmdp_huge_clear_flush_notify(vma, haddr, pmd); |
| 2026 | |
| 2027 | pgtable = pgtable_trans_huge_withdraw(mm, pmd); |
| 2028 | pmd_populate(mm, &_pmd, pgtable); |
| 2029 | |
| 2030 | for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { |
| 2031 | pte_t *pte, entry; |
| 2032 | entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot); |
| 2033 | entry = pte_mkspecial(entry); |
| 2034 | pte = pte_offset_map(&_pmd, haddr); |
| 2035 | VM_BUG_ON(!pte_none(*pte)); |
| 2036 | set_pte_at(mm, haddr, pte, entry); |
| 2037 | pte_unmap(pte); |
| 2038 | } |
| 2039 | smp_wmb(); /* make pte visible before pmd */ |
| 2040 | pmd_populate(mm, pmd, pgtable); |
| 2041 | } |
| 2042 | |
| 2043 | static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, |
| 2044 | unsigned long haddr, bool freeze) |
| 2045 | { |
| 2046 | struct mm_struct *mm = vma->vm_mm; |
| 2047 | struct page *page; |
| 2048 | pgtable_t pgtable; |
| 2049 | pmd_t _pmd; |
| 2050 | bool young, write, dirty, soft_dirty, pmd_migration = false; |
| 2051 | unsigned long addr; |
| 2052 | int i; |
| 2053 | |
| 2054 | VM_BUG_ON(haddr & ~HPAGE_PMD_MASK); |
| 2055 | VM_BUG_ON_VMA(vma->vm_start > haddr, vma); |
| 2056 | VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma); |
| 2057 | VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd) |
| 2058 | && !pmd_devmap(*pmd)); |
| 2059 | |
| 2060 | count_vm_event(THP_SPLIT_PMD); |
| 2061 | |
| 2062 | if (!vma_is_anonymous(vma)) { |
| 2063 | _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd); |
| 2064 | /* |
| 2065 | * We are going to unmap this huge page. So |
| 2066 | * just go ahead and zap it |
| 2067 | */ |
| 2068 | if (arch_needs_pgtable_deposit()) |
| 2069 | zap_deposited_table(mm, pmd); |
| 2070 | if (vma_is_dax(vma)) |
| 2071 | return; |
| 2072 | page = pmd_page(_pmd); |
| 2073 | if (!PageDirty(page) && pmd_dirty(_pmd)) |
| 2074 | set_page_dirty(page); |
| 2075 | if (!PageReferenced(page) && pmd_young(_pmd)) |
| 2076 | SetPageReferenced(page); |
| 2077 | page_remove_rmap(page, true); |
| 2078 | put_page(page); |
| 2079 | add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR); |
| 2080 | return; |
| 2081 | } else if (pmd_trans_huge(*pmd) && is_huge_zero_pmd(*pmd)) { |
| 2082 | return __split_huge_zero_page_pmd(vma, haddr, pmd); |
| 2083 | } |
| 2084 | |
| 2085 | #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION |
| 2086 | pmd_migration = is_pmd_migration_entry(*pmd); |
| 2087 | if (pmd_migration) { |
| 2088 | swp_entry_t entry; |
| 2089 | |
| 2090 | entry = pmd_to_swp_entry(*pmd); |
| 2091 | page = pfn_to_page(swp_offset(entry)); |
| 2092 | } else |
| 2093 | #endif |
| 2094 | page = pmd_page(*pmd); |
| 2095 | VM_BUG_ON_PAGE(!page_count(page), page); |
| 2096 | page_ref_add(page, HPAGE_PMD_NR - 1); |
| 2097 | write = pmd_write(*pmd); |
| 2098 | young = pmd_young(*pmd); |
| 2099 | dirty = pmd_dirty(*pmd); |
| 2100 | soft_dirty = pmd_soft_dirty(*pmd); |
| 2101 | |
| 2102 | pmdp_huge_split_prepare(vma, haddr, pmd); |
| 2103 | pgtable = pgtable_trans_huge_withdraw(mm, pmd); |
| 2104 | pmd_populate(mm, &_pmd, pgtable); |
| 2105 | |
| 2106 | for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { |
| 2107 | pte_t entry, *pte; |
| 2108 | /* |
| 2109 | * Note that NUMA hinting access restrictions are not |
| 2110 | * transferred to avoid any possibility of altering |
| 2111 | * permissions across VMAs. |
| 2112 | */ |
| 2113 | if (freeze || pmd_migration) { |
| 2114 | swp_entry_t swp_entry; |
| 2115 | swp_entry = make_migration_entry(page + i, write); |
| 2116 | entry = swp_entry_to_pte(swp_entry); |
| 2117 | if (soft_dirty) |
| 2118 | entry = pte_swp_mksoft_dirty(entry); |
| 2119 | } else { |
| 2120 | entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot)); |
| 2121 | entry = maybe_mkwrite(entry, vma); |
| 2122 | if (!write) |
| 2123 | entry = pte_wrprotect(entry); |
| 2124 | if (!young) |
| 2125 | entry = pte_mkold(entry); |
| 2126 | if (soft_dirty) |
| 2127 | entry = pte_mksoft_dirty(entry); |
| 2128 | } |
| 2129 | if (dirty) |
| 2130 | SetPageDirty(page + i); |
| 2131 | pte = pte_offset_map(&_pmd, addr); |
| 2132 | BUG_ON(!pte_none(*pte)); |
| 2133 | set_pte_at(mm, addr, pte, entry); |
| 2134 | if (!pmd_migration) |
| 2135 | atomic_inc(&page[i]._mapcount); |
| 2136 | pte_unmap(pte); |
| 2137 | } |
| 2138 | |
| 2139 | if (!pmd_migration) { |
| 2140 | /* |
| 2141 | * Set PG_double_map before dropping compound_mapcount to avoid |
| 2142 | * false-negative page_mapped(). |
| 2143 | */ |
| 2144 | if (compound_mapcount(page) > 1 && |
| 2145 | !TestSetPageDoubleMap(page)) { |
| 2146 | for (i = 0; i < HPAGE_PMD_NR; i++) |
| 2147 | atomic_inc(&page[i]._mapcount); |
| 2148 | } |
| 2149 | |
| 2150 | lock_page_memcg(page); |
| 2151 | if (atomic_add_negative(-1, compound_mapcount_ptr(page))) { |
| 2152 | /* Last compound_mapcount is gone. */ |
| 2153 | __dec_lruvec_page_state(page, NR_ANON_THPS); |
| 2154 | if (TestClearPageDoubleMap(page)) { |
| 2155 | /* No need in mapcount reference anymore */ |
| 2156 | for (i = 0; i < HPAGE_PMD_NR; i++) |
| 2157 | atomic_dec(&page[i]._mapcount); |
| 2158 | } |
| 2159 | } |
| 2160 | unlock_page_memcg(page); |
| 2161 | } |
| 2162 | |
| 2163 | smp_wmb(); /* make pte visible before pmd */ |
| 2164 | /* |
| 2165 | * Up to this point the pmd is present and huge and userland has the |
| 2166 | * whole access to the hugepage during the split (which happens in |
| 2167 | * place). If we overwrite the pmd with the not-huge version pointing |
| 2168 | * to the pte here (which of course we could if all CPUs were bug |
| 2169 | * free), userland could trigger a small page size TLB miss on the |
| 2170 | * small sized TLB while the hugepage TLB entry is still established in |
| 2171 | * the huge TLB. Some CPU doesn't like that. |
| 2172 | * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum |
| 2173 | * 383 on page 93. Intel should be safe but is also warns that it's |
| 2174 | * only safe if the permission and cache attributes of the two entries |
| 2175 | * loaded in the two TLB is identical (which should be the case here). |
| 2176 | * But it is generally safer to never allow small and huge TLB entries |
| 2177 | * for the same virtual address to be loaded simultaneously. So instead |
| 2178 | * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the |
| 2179 | * current pmd notpresent (atomically because here the pmd_trans_huge |
| 2180 | * and pmd_trans_splitting must remain set at all times on the pmd |
| 2181 | * until the split is complete for this pmd), then we flush the SMP TLB |
| 2182 | * and finally we write the non-huge version of the pmd entry with |
| 2183 | * pmd_populate. |
| 2184 | */ |
| 2185 | pmdp_invalidate(vma, haddr, pmd); |
| 2186 | pmd_populate(mm, pmd, pgtable); |
| 2187 | |
| 2188 | if (freeze) { |
| 2189 | for (i = 0; i < HPAGE_PMD_NR; i++) { |
| 2190 | page_remove_rmap(page + i, false); |
| 2191 | put_page(page + i); |
| 2192 | } |
| 2193 | } |
| 2194 | } |
| 2195 | |
| 2196 | void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, |
| 2197 | unsigned long address, bool freeze, struct page *page) |
| 2198 | { |
| 2199 | spinlock_t *ptl; |
| 2200 | struct mm_struct *mm = vma->vm_mm; |
| 2201 | unsigned long haddr = address & HPAGE_PMD_MASK; |
| 2202 | bool was_locked = false; |
| 2203 | pmd_t _pmd; |
| 2204 | |
| 2205 | mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE); |
| 2206 | ptl = pmd_lock(mm, pmd); |
| 2207 | |
| 2208 | /* |
| 2209 | * If caller asks to setup a migration entries, we need a page to check |
| 2210 | * pmd against. Otherwise we can end up replacing wrong page. |
| 2211 | */ |
| 2212 | VM_BUG_ON(freeze && !page); |
| 2213 | if (page) { |
| 2214 | VM_WARN_ON_ONCE(!PageLocked(page)); |
| 2215 | was_locked = true; |
| 2216 | if (page != pmd_page(*pmd)) |
| 2217 | goto out; |
| 2218 | } |
| 2219 | |
| 2220 | repeat: |
| 2221 | if (pmd_trans_huge(*pmd)) { |
| 2222 | if (!page) { |
| 2223 | page = pmd_page(*pmd); |
| 2224 | if (unlikely(!trylock_page(page))) { |
| 2225 | get_page(page); |
| 2226 | _pmd = *pmd; |
| 2227 | spin_unlock(ptl); |
| 2228 | lock_page(page); |
| 2229 | spin_lock(ptl); |
| 2230 | if (unlikely(!pmd_same(*pmd, _pmd))) { |
| 2231 | unlock_page(page); |
| 2232 | put_page(page); |
| 2233 | page = NULL; |
| 2234 | goto repeat; |
| 2235 | } |
| 2236 | put_page(page); |
| 2237 | } |
| 2238 | } |
| 2239 | if (PageMlocked(page)) |
| 2240 | clear_page_mlock(page); |
| 2241 | } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd))) |
| 2242 | goto out; |
| 2243 | __split_huge_pmd_locked(vma, pmd, haddr, freeze); |
| 2244 | out: |
| 2245 | spin_unlock(ptl); |
| 2246 | if (!was_locked && page) |
| 2247 | unlock_page(page); |
| 2248 | mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE); |
| 2249 | } |
| 2250 | |
| 2251 | void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, |
| 2252 | bool freeze, struct page *page) |
| 2253 | { |
| 2254 | pgd_t *pgd; |
| 2255 | p4d_t *p4d; |
| 2256 | pud_t *pud; |
| 2257 | pmd_t *pmd; |
| 2258 | |
| 2259 | pgd = pgd_offset(vma->vm_mm, address); |
| 2260 | if (!pgd_present(*pgd)) |
| 2261 | return; |
| 2262 | |
| 2263 | p4d = p4d_offset(pgd, address); |
| 2264 | if (!p4d_present(*p4d)) |
| 2265 | return; |
| 2266 | |
| 2267 | pud = pud_offset(p4d, address); |
| 2268 | if (!pud_present(*pud)) |
| 2269 | return; |
| 2270 | |
| 2271 | pmd = pmd_offset(pud, address); |
| 2272 | |
| 2273 | __split_huge_pmd(vma, pmd, address, freeze, page); |
| 2274 | } |
| 2275 | |
| 2276 | void vma_adjust_trans_huge(struct vm_area_struct *vma, |
| 2277 | unsigned long start, |
| 2278 | unsigned long end, |
| 2279 | long adjust_next) |
| 2280 | { |
| 2281 | /* |
| 2282 | * If the new start address isn't hpage aligned and it could |
| 2283 | * previously contain an hugepage: check if we need to split |
| 2284 | * an huge pmd. |
| 2285 | */ |
| 2286 | if (start & ~HPAGE_PMD_MASK && |
| 2287 | (start & HPAGE_PMD_MASK) >= vma->vm_start && |
| 2288 | (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) |
| 2289 | split_huge_pmd_address(vma, start, false, NULL); |
| 2290 | |
| 2291 | /* |
| 2292 | * If the new end address isn't hpage aligned and it could |
| 2293 | * previously contain an hugepage: check if we need to split |
| 2294 | * an huge pmd. |
| 2295 | */ |
| 2296 | if (end & ~HPAGE_PMD_MASK && |
| 2297 | (end & HPAGE_PMD_MASK) >= vma->vm_start && |
| 2298 | (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) |
| 2299 | split_huge_pmd_address(vma, end, false, NULL); |
| 2300 | |
| 2301 | /* |
| 2302 | * If we're also updating the vma->vm_next->vm_start, if the new |
| 2303 | * vm_next->vm_start isn't page aligned and it could previously |
| 2304 | * contain an hugepage: check if we need to split an huge pmd. |
| 2305 | */ |
| 2306 | if (adjust_next > 0) { |
| 2307 | struct vm_area_struct *next = vma->vm_next; |
| 2308 | unsigned long nstart = next->vm_start; |
| 2309 | nstart += adjust_next << PAGE_SHIFT; |
| 2310 | if (nstart & ~HPAGE_PMD_MASK && |
| 2311 | (nstart & HPAGE_PMD_MASK) >= next->vm_start && |
| 2312 | (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end) |
| 2313 | split_huge_pmd_address(next, nstart, false, NULL); |
| 2314 | } |
| 2315 | } |
| 2316 | |
| 2317 | static void unmap_page(struct page *page) |
| 2318 | { |
| 2319 | enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS | |
| 2320 | TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD; |
| 2321 | bool unmap_success; |
| 2322 | |
| 2323 | VM_BUG_ON_PAGE(!PageHead(page), page); |
| 2324 | |
| 2325 | if (PageAnon(page)) |
| 2326 | ttu_flags |= TTU_SPLIT_FREEZE; |
| 2327 | |
| 2328 | unmap_success = try_to_unmap(page, ttu_flags); |
| 2329 | VM_BUG_ON_PAGE(!unmap_success, page); |
| 2330 | } |
| 2331 | |
| 2332 | static void remap_page(struct page *page) |
| 2333 | { |
| 2334 | int i; |
| 2335 | if (PageTransHuge(page)) { |
| 2336 | remove_migration_ptes(page, page, true); |
| 2337 | } else { |
| 2338 | for (i = 0; i < HPAGE_PMD_NR; i++) |
| 2339 | remove_migration_ptes(page + i, page + i, true); |
| 2340 | } |
| 2341 | } |
| 2342 | |
| 2343 | static void __split_huge_page_tail(struct page *head, int tail, |
| 2344 | struct lruvec *lruvec, struct list_head *list) |
| 2345 | { |
| 2346 | struct page *page_tail = head + tail; |
| 2347 | |
| 2348 | VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail); |
| 2349 | |
| 2350 | /* |
| 2351 | * Clone page flags before unfreezing refcount. |
| 2352 | * |
| 2353 | * After successful get_page_unless_zero() might follow flags change, |
| 2354 | * for exmaple lock_page() which set PG_waiters. |
| 2355 | */ |
| 2356 | page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; |
| 2357 | page_tail->flags |= (head->flags & |
| 2358 | ((1L << PG_referenced) | |
| 2359 | (1L << PG_swapbacked) | |
| 2360 | (1L << PG_swapcache) | |
| 2361 | (1L << PG_mlocked) | |
| 2362 | (1L << PG_uptodate) | |
| 2363 | (1L << PG_active) | |
| 2364 | (1L << PG_locked) | |
| 2365 | (1L << PG_unevictable) | |
| 2366 | (1L << PG_dirty))); |
| 2367 | |
| 2368 | /* ->mapping in first tail page is compound_mapcount */ |
| 2369 | VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING, |
| 2370 | page_tail); |
| 2371 | page_tail->mapping = head->mapping; |
| 2372 | page_tail->index = head->index + tail; |
| 2373 | |
| 2374 | /* Page flags must be visible before we make the page non-compound. */ |
| 2375 | smp_wmb(); |
| 2376 | |
| 2377 | /* |
| 2378 | * Clear PageTail before unfreezing page refcount. |
| 2379 | * |
| 2380 | * After successful get_page_unless_zero() might follow put_page() |
| 2381 | * which needs correct compound_head(). |
| 2382 | */ |
| 2383 | clear_compound_head(page_tail); |
| 2384 | |
| 2385 | /* Finally unfreeze refcount. Additional reference from page cache. */ |
| 2386 | page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) || |
| 2387 | PageSwapCache(head))); |
| 2388 | |
| 2389 | if (page_is_young(head)) |
| 2390 | set_page_young(page_tail); |
| 2391 | if (page_is_idle(head)) |
| 2392 | set_page_idle(page_tail); |
| 2393 | |
| 2394 | page_cpupid_xchg_last(page_tail, page_cpupid_last(head)); |
| 2395 | lru_add_page_tail(head, page_tail, lruvec, list); |
| 2396 | } |
| 2397 | |
| 2398 | static void __split_huge_page(struct page *page, struct list_head *list, |
| 2399 | pgoff_t end, unsigned long flags) |
| 2400 | { |
| 2401 | struct page *head = compound_head(page); |
| 2402 | struct zone *zone = page_zone(head); |
| 2403 | struct lruvec *lruvec; |
| 2404 | int i; |
| 2405 | |
| 2406 | lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat); |
| 2407 | |
| 2408 | /* complete memcg works before add pages to LRU */ |
| 2409 | mem_cgroup_split_huge_fixup(head); |
| 2410 | |
| 2411 | for (i = HPAGE_PMD_NR - 1; i >= 1; i--) { |
| 2412 | __split_huge_page_tail(head, i, lruvec, list); |
| 2413 | /* Some pages can be beyond i_size: drop them from page cache */ |
| 2414 | if (head[i].index >= end) { |
| 2415 | ClearPageDirty(head + i); |
| 2416 | __delete_from_page_cache(head + i, NULL); |
| 2417 | if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head)) |
| 2418 | shmem_uncharge(head->mapping->host, 1); |
| 2419 | put_page(head + i); |
| 2420 | } |
| 2421 | } |
| 2422 | |
| 2423 | ClearPageCompound(head); |
| 2424 | |
| 2425 | split_page_owner(head, HPAGE_PMD_ORDER); |
| 2426 | |
| 2427 | /* See comment in __split_huge_page_tail() */ |
| 2428 | if (PageAnon(head)) { |
| 2429 | /* Additional pin to radix tree of swap cache */ |
| 2430 | if (PageSwapCache(head)) |
| 2431 | page_ref_add(head, 2); |
| 2432 | else |
| 2433 | page_ref_inc(head); |
| 2434 | } else { |
| 2435 | /* Additional pin to radix tree */ |
| 2436 | page_ref_add(head, 2); |
| 2437 | spin_unlock(&head->mapping->tree_lock); |
| 2438 | } |
| 2439 | |
| 2440 | spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags); |
| 2441 | |
| 2442 | remap_page(head); |
| 2443 | |
| 2444 | for (i = 0; i < HPAGE_PMD_NR; i++) { |
| 2445 | struct page *subpage = head + i; |
| 2446 | if (subpage == page) |
| 2447 | continue; |
| 2448 | unlock_page(subpage); |
| 2449 | |
| 2450 | /* |
| 2451 | * Subpages may be freed if there wasn't any mapping |
| 2452 | * like if add_to_swap() is running on a lru page that |
| 2453 | * had its mapping zapped. And freeing these pages |
| 2454 | * requires taking the lru_lock so we do the put_page |
| 2455 | * of the tail pages after the split is complete. |
| 2456 | */ |
| 2457 | put_page(subpage); |
| 2458 | } |
| 2459 | } |
| 2460 | |
| 2461 | int total_mapcount(struct page *page) |
| 2462 | { |
| 2463 | int i, compound, ret; |
| 2464 | |
| 2465 | VM_BUG_ON_PAGE(PageTail(page), page); |
| 2466 | |
| 2467 | if (likely(!PageCompound(page))) |
| 2468 | return atomic_read(&page->_mapcount) + 1; |
| 2469 | |
| 2470 | compound = compound_mapcount(page); |
| 2471 | if (PageHuge(page)) |
| 2472 | return compound; |
| 2473 | ret = compound; |
| 2474 | for (i = 0; i < HPAGE_PMD_NR; i++) |
| 2475 | ret += atomic_read(&page[i]._mapcount) + 1; |
| 2476 | /* File pages has compound_mapcount included in _mapcount */ |
| 2477 | if (!PageAnon(page)) |
| 2478 | return ret - compound * HPAGE_PMD_NR; |
| 2479 | if (PageDoubleMap(page)) |
| 2480 | ret -= HPAGE_PMD_NR; |
| 2481 | return ret; |
| 2482 | } |
| 2483 | |
| 2484 | /* |
| 2485 | * This calculates accurately how many mappings a transparent hugepage |
| 2486 | * has (unlike page_mapcount() which isn't fully accurate). This full |
| 2487 | * accuracy is primarily needed to know if copy-on-write faults can |
| 2488 | * reuse the page and change the mapping to read-write instead of |
| 2489 | * copying them. At the same time this returns the total_mapcount too. |
| 2490 | * |
| 2491 | * The function returns the highest mapcount any one of the subpages |
| 2492 | * has. If the return value is one, even if different processes are |
| 2493 | * mapping different subpages of the transparent hugepage, they can |
| 2494 | * all reuse it, because each process is reusing a different subpage. |
| 2495 | * |
| 2496 | * The total_mapcount is instead counting all virtual mappings of the |
| 2497 | * subpages. If the total_mapcount is equal to "one", it tells the |
| 2498 | * caller all mappings belong to the same "mm" and in turn the |
| 2499 | * anon_vma of the transparent hugepage can become the vma->anon_vma |
| 2500 | * local one as no other process may be mapping any of the subpages. |
| 2501 | * |
| 2502 | * It would be more accurate to replace page_mapcount() with |
| 2503 | * page_trans_huge_mapcount(), however we only use |
| 2504 | * page_trans_huge_mapcount() in the copy-on-write faults where we |
| 2505 | * need full accuracy to avoid breaking page pinning, because |
| 2506 | * page_trans_huge_mapcount() is slower than page_mapcount(). |
| 2507 | */ |
| 2508 | int page_trans_huge_mapcount(struct page *page, int *total_mapcount) |
| 2509 | { |
| 2510 | int i, ret, _total_mapcount, mapcount; |
| 2511 | |
| 2512 | /* hugetlbfs shouldn't call it */ |
| 2513 | VM_BUG_ON_PAGE(PageHuge(page), page); |
| 2514 | |
| 2515 | if (likely(!PageTransCompound(page))) { |
| 2516 | mapcount = atomic_read(&page->_mapcount) + 1; |
| 2517 | if (total_mapcount) |
| 2518 | *total_mapcount = mapcount; |
| 2519 | return mapcount; |
| 2520 | } |
| 2521 | |
| 2522 | page = compound_head(page); |
| 2523 | |
| 2524 | _total_mapcount = ret = 0; |
| 2525 | for (i = 0; i < HPAGE_PMD_NR; i++) { |
| 2526 | mapcount = atomic_read(&page[i]._mapcount) + 1; |
| 2527 | ret = max(ret, mapcount); |
| 2528 | _total_mapcount += mapcount; |
| 2529 | } |
| 2530 | if (PageDoubleMap(page)) { |
| 2531 | ret -= 1; |
| 2532 | _total_mapcount -= HPAGE_PMD_NR; |
| 2533 | } |
| 2534 | mapcount = compound_mapcount(page); |
| 2535 | ret += mapcount; |
| 2536 | _total_mapcount += mapcount; |
| 2537 | if (total_mapcount) |
| 2538 | *total_mapcount = _total_mapcount; |
| 2539 | return ret; |
| 2540 | } |
| 2541 | |
| 2542 | /* Racy check whether the huge page can be split */ |
| 2543 | bool can_split_huge_page(struct page *page, int *pextra_pins) |
| 2544 | { |
| 2545 | int extra_pins; |
| 2546 | |
| 2547 | /* Additional pins from radix tree */ |
| 2548 | if (PageAnon(page)) |
| 2549 | extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0; |
| 2550 | else |
| 2551 | extra_pins = HPAGE_PMD_NR; |
| 2552 | if (pextra_pins) |
| 2553 | *pextra_pins = extra_pins; |
| 2554 | return total_mapcount(page) == page_count(page) - extra_pins - 1; |
| 2555 | } |
| 2556 | |
| 2557 | /* |
| 2558 | * This function splits huge page into normal pages. @page can point to any |
| 2559 | * subpage of huge page to split. Split doesn't change the position of @page. |
| 2560 | * |
| 2561 | * Only caller must hold pin on the @page, otherwise split fails with -EBUSY. |
| 2562 | * The huge page must be locked. |
| 2563 | * |
| 2564 | * If @list is null, tail pages will be added to LRU list, otherwise, to @list. |
| 2565 | * |
| 2566 | * Both head page and tail pages will inherit mapping, flags, and so on from |
| 2567 | * the hugepage. |
| 2568 | * |
| 2569 | * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if |
| 2570 | * they are not mapped. |
| 2571 | * |
| 2572 | * Returns 0 if the hugepage is split successfully. |
| 2573 | * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under |
| 2574 | * us. |
| 2575 | */ |
| 2576 | int split_huge_page_to_list(struct page *page, struct list_head *list) |
| 2577 | { |
| 2578 | struct page *head = compound_head(page); |
| 2579 | struct pglist_data *pgdata = NODE_DATA(page_to_nid(head)); |
| 2580 | struct anon_vma *anon_vma = NULL; |
| 2581 | struct address_space *mapping = NULL; |
| 2582 | int count, mapcount, extra_pins, ret; |
| 2583 | bool mlocked; |
| 2584 | unsigned long flags; |
| 2585 | pgoff_t end; |
| 2586 | |
| 2587 | VM_BUG_ON_PAGE(is_huge_zero_page(head), head); |
| 2588 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
| 2589 | VM_BUG_ON_PAGE(!PageCompound(page), page); |
| 2590 | |
| 2591 | if (PageWriteback(page)) |
| 2592 | return -EBUSY; |
| 2593 | |
| 2594 | if (PageAnon(head)) { |
| 2595 | /* |
| 2596 | * The caller does not necessarily hold an mmap_sem that would |
| 2597 | * prevent the anon_vma disappearing so we first we take a |
| 2598 | * reference to it and then lock the anon_vma for write. This |
| 2599 | * is similar to page_lock_anon_vma_read except the write lock |
| 2600 | * is taken to serialise against parallel split or collapse |
| 2601 | * operations. |
| 2602 | */ |
| 2603 | anon_vma = page_get_anon_vma(head); |
| 2604 | if (!anon_vma) { |
| 2605 | ret = -EBUSY; |
| 2606 | goto out; |
| 2607 | } |
| 2608 | end = -1; |
| 2609 | mapping = NULL; |
| 2610 | anon_vma_lock_write(anon_vma); |
| 2611 | } else { |
| 2612 | mapping = head->mapping; |
| 2613 | |
| 2614 | /* Truncated ? */ |
| 2615 | if (!mapping) { |
| 2616 | ret = -EBUSY; |
| 2617 | goto out; |
| 2618 | } |
| 2619 | |
| 2620 | anon_vma = NULL; |
| 2621 | i_mmap_lock_read(mapping); |
| 2622 | |
| 2623 | /* |
| 2624 | *__split_huge_page() may need to trim off pages beyond EOF: |
| 2625 | * but on 32-bit, i_size_read() takes an irq-unsafe seqlock, |
| 2626 | * which cannot be nested inside the page tree lock. So note |
| 2627 | * end now: i_size itself may be changed at any moment, but |
| 2628 | * head page lock is good enough to serialize the trimming. |
| 2629 | */ |
| 2630 | end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); |
| 2631 | } |
| 2632 | |
| 2633 | /* |
| 2634 | * Racy check if we can split the page, before unmap_page() will |
| 2635 | * split PMDs |
| 2636 | */ |
| 2637 | if (!can_split_huge_page(head, &extra_pins)) { |
| 2638 | ret = -EBUSY; |
| 2639 | goto out_unlock; |
| 2640 | } |
| 2641 | |
| 2642 | mlocked = PageMlocked(page); |
| 2643 | unmap_page(head); |
| 2644 | VM_BUG_ON_PAGE(compound_mapcount(head), head); |
| 2645 | |
| 2646 | /* Make sure the page is not on per-CPU pagevec as it takes pin */ |
| 2647 | if (mlocked) |
| 2648 | lru_add_drain(); |
| 2649 | |
| 2650 | /* prevent PageLRU to go away from under us, and freeze lru stats */ |
| 2651 | spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags); |
| 2652 | |
| 2653 | if (mapping) { |
| 2654 | void **pslot; |
| 2655 | |
| 2656 | spin_lock(&mapping->tree_lock); |
| 2657 | pslot = radix_tree_lookup_slot(&mapping->page_tree, |
| 2658 | page_index(head)); |
| 2659 | /* |
| 2660 | * Check if the head page is present in radix tree. |
| 2661 | * We assume all tail are present too, if head is there. |
| 2662 | */ |
| 2663 | if (radix_tree_deref_slot_protected(pslot, |
| 2664 | &mapping->tree_lock) != head) |
| 2665 | goto fail; |
| 2666 | } |
| 2667 | |
| 2668 | /* Prevent deferred_split_scan() touching ->_refcount */ |
| 2669 | spin_lock(&pgdata->split_queue_lock); |
| 2670 | count = page_count(head); |
| 2671 | mapcount = total_mapcount(head); |
| 2672 | if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) { |
| 2673 | if (!list_empty(page_deferred_list(head))) { |
| 2674 | pgdata->split_queue_len--; |
| 2675 | list_del(page_deferred_list(head)); |
| 2676 | } |
| 2677 | if (mapping) |
| 2678 | __dec_node_page_state(page, NR_SHMEM_THPS); |
| 2679 | spin_unlock(&pgdata->split_queue_lock); |
| 2680 | __split_huge_page(page, list, end, flags); |
| 2681 | if (PageSwapCache(head)) { |
| 2682 | swp_entry_t entry = { .val = page_private(head) }; |
| 2683 | |
| 2684 | ret = split_swap_cluster(entry); |
| 2685 | } else |
| 2686 | ret = 0; |
| 2687 | } else { |
| 2688 | if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) { |
| 2689 | pr_alert("total_mapcount: %u, page_count(): %u\n", |
| 2690 | mapcount, count); |
| 2691 | if (PageTail(page)) |
| 2692 | dump_page(head, NULL); |
| 2693 | dump_page(page, "total_mapcount(head) > 0"); |
| 2694 | BUG(); |
| 2695 | } |
| 2696 | spin_unlock(&pgdata->split_queue_lock); |
| 2697 | fail: if (mapping) |
| 2698 | spin_unlock(&mapping->tree_lock); |
| 2699 | spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags); |
| 2700 | remap_page(head); |
| 2701 | ret = -EBUSY; |
| 2702 | } |
| 2703 | |
| 2704 | out_unlock: |
| 2705 | if (anon_vma) { |
| 2706 | anon_vma_unlock_write(anon_vma); |
| 2707 | put_anon_vma(anon_vma); |
| 2708 | } |
| 2709 | if (mapping) |
| 2710 | i_mmap_unlock_read(mapping); |
| 2711 | out: |
| 2712 | count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED); |
| 2713 | return ret; |
| 2714 | } |
| 2715 | |
| 2716 | void free_transhuge_page(struct page *page) |
| 2717 | { |
| 2718 | struct pglist_data *pgdata = NODE_DATA(page_to_nid(page)); |
| 2719 | unsigned long flags; |
| 2720 | |
| 2721 | spin_lock_irqsave(&pgdata->split_queue_lock, flags); |
| 2722 | if (!list_empty(page_deferred_list(page))) { |
| 2723 | pgdata->split_queue_len--; |
| 2724 | list_del(page_deferred_list(page)); |
| 2725 | } |
| 2726 | spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); |
| 2727 | free_compound_page(page); |
| 2728 | } |
| 2729 | |
| 2730 | void deferred_split_huge_page(struct page *page) |
| 2731 | { |
| 2732 | struct pglist_data *pgdata = NODE_DATA(page_to_nid(page)); |
| 2733 | unsigned long flags; |
| 2734 | |
| 2735 | VM_BUG_ON_PAGE(!PageTransHuge(page), page); |
| 2736 | |
| 2737 | spin_lock_irqsave(&pgdata->split_queue_lock, flags); |
| 2738 | if (list_empty(page_deferred_list(page))) { |
| 2739 | count_vm_event(THP_DEFERRED_SPLIT_PAGE); |
| 2740 | list_add_tail(page_deferred_list(page), &pgdata->split_queue); |
| 2741 | pgdata->split_queue_len++; |
| 2742 | } |
| 2743 | spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); |
| 2744 | } |
| 2745 | |
| 2746 | static unsigned long deferred_split_count(struct shrinker *shrink, |
| 2747 | struct shrink_control *sc) |
| 2748 | { |
| 2749 | struct pglist_data *pgdata = NODE_DATA(sc->nid); |
| 2750 | return ACCESS_ONCE(pgdata->split_queue_len); |
| 2751 | } |
| 2752 | |
| 2753 | static unsigned long deferred_split_scan(struct shrinker *shrink, |
| 2754 | struct shrink_control *sc) |
| 2755 | { |
| 2756 | struct pglist_data *pgdata = NODE_DATA(sc->nid); |
| 2757 | unsigned long flags; |
| 2758 | LIST_HEAD(list), *pos, *next; |
| 2759 | struct page *page; |
| 2760 | int split = 0; |
| 2761 | |
| 2762 | spin_lock_irqsave(&pgdata->split_queue_lock, flags); |
| 2763 | /* Take pin on all head pages to avoid freeing them under us */ |
| 2764 | list_for_each_safe(pos, next, &pgdata->split_queue) { |
| 2765 | page = list_entry((void *)pos, struct page, mapping); |
| 2766 | page = compound_head(page); |
| 2767 | if (get_page_unless_zero(page)) { |
| 2768 | list_move(page_deferred_list(page), &list); |
| 2769 | } else { |
| 2770 | /* We lost race with put_compound_page() */ |
| 2771 | list_del_init(page_deferred_list(page)); |
| 2772 | pgdata->split_queue_len--; |
| 2773 | } |
| 2774 | if (!--sc->nr_to_scan) |
| 2775 | break; |
| 2776 | } |
| 2777 | spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); |
| 2778 | |
| 2779 | list_for_each_safe(pos, next, &list) { |
| 2780 | page = list_entry((void *)pos, struct page, mapping); |
| 2781 | if (!trylock_page(page)) |
| 2782 | goto next; |
| 2783 | /* split_huge_page() removes page from list on success */ |
| 2784 | if (!split_huge_page(page)) |
| 2785 | split++; |
| 2786 | unlock_page(page); |
| 2787 | next: |
| 2788 | put_page(page); |
| 2789 | } |
| 2790 | |
| 2791 | spin_lock_irqsave(&pgdata->split_queue_lock, flags); |
| 2792 | list_splice_tail(&list, &pgdata->split_queue); |
| 2793 | spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); |
| 2794 | |
| 2795 | /* |
| 2796 | * Stop shrinker if we didn't split any page, but the queue is empty. |
| 2797 | * This can happen if pages were freed under us. |
| 2798 | */ |
| 2799 | if (!split && list_empty(&pgdata->split_queue)) |
| 2800 | return SHRINK_STOP; |
| 2801 | return split; |
| 2802 | } |
| 2803 | |
| 2804 | static struct shrinker deferred_split_shrinker = { |
| 2805 | .count_objects = deferred_split_count, |
| 2806 | .scan_objects = deferred_split_scan, |
| 2807 | .seeks = DEFAULT_SEEKS, |
| 2808 | .flags = SHRINKER_NUMA_AWARE, |
| 2809 | }; |
| 2810 | |
| 2811 | #ifdef CONFIG_DEBUG_FS |
| 2812 | static int split_huge_pages_set(void *data, u64 val) |
| 2813 | { |
| 2814 | struct zone *zone; |
| 2815 | struct page *page; |
| 2816 | unsigned long pfn, max_zone_pfn; |
| 2817 | unsigned long total = 0, split = 0; |
| 2818 | |
| 2819 | if (val != 1) |
| 2820 | return -EINVAL; |
| 2821 | |
| 2822 | for_each_populated_zone(zone) { |
| 2823 | max_zone_pfn = zone_end_pfn(zone); |
| 2824 | for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { |
| 2825 | if (!pfn_valid(pfn)) |
| 2826 | continue; |
| 2827 | |
| 2828 | page = pfn_to_page(pfn); |
| 2829 | if (!get_page_unless_zero(page)) |
| 2830 | continue; |
| 2831 | |
| 2832 | if (zone != page_zone(page)) |
| 2833 | goto next; |
| 2834 | |
| 2835 | if (!PageHead(page) || PageHuge(page) || !PageLRU(page)) |
| 2836 | goto next; |
| 2837 | |
| 2838 | total++; |
| 2839 | lock_page(page); |
| 2840 | if (!split_huge_page(page)) |
| 2841 | split++; |
| 2842 | unlock_page(page); |
| 2843 | next: |
| 2844 | put_page(page); |
| 2845 | } |
| 2846 | } |
| 2847 | |
| 2848 | pr_info("%lu of %lu THP split\n", split, total); |
| 2849 | |
| 2850 | return 0; |
| 2851 | } |
| 2852 | DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set, |
| 2853 | "%llu\n"); |
| 2854 | |
| 2855 | static int __init split_huge_pages_debugfs(void) |
| 2856 | { |
| 2857 | void *ret; |
| 2858 | |
| 2859 | ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL, |
| 2860 | &split_huge_pages_fops); |
| 2861 | if (!ret) |
| 2862 | pr_warn("Failed to create split_huge_pages in debugfs"); |
| 2863 | return 0; |
| 2864 | } |
| 2865 | late_initcall(split_huge_pages_debugfs); |
| 2866 | #endif |
| 2867 | |
| 2868 | #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION |
| 2869 | void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, |
| 2870 | struct page *page) |
| 2871 | { |
| 2872 | struct vm_area_struct *vma = pvmw->vma; |
| 2873 | struct mm_struct *mm = vma->vm_mm; |
| 2874 | unsigned long address = pvmw->address; |
| 2875 | pmd_t pmdval; |
| 2876 | swp_entry_t entry; |
| 2877 | pmd_t pmdswp; |
| 2878 | |
| 2879 | if (!(pvmw->pmd && !pvmw->pte)) |
| 2880 | return; |
| 2881 | |
| 2882 | flush_cache_range(vma, address, address + HPAGE_PMD_SIZE); |
| 2883 | pmdval = *pvmw->pmd; |
| 2884 | pmdp_invalidate(vma, address, pvmw->pmd); |
| 2885 | if (pmd_dirty(pmdval)) |
| 2886 | set_page_dirty(page); |
| 2887 | entry = make_migration_entry(page, pmd_write(pmdval)); |
| 2888 | pmdswp = swp_entry_to_pmd(entry); |
| 2889 | if (pmd_soft_dirty(pmdval)) |
| 2890 | pmdswp = pmd_swp_mksoft_dirty(pmdswp); |
| 2891 | set_pmd_at(mm, address, pvmw->pmd, pmdswp); |
| 2892 | page_remove_rmap(page, true); |
| 2893 | put_page(page); |
| 2894 | } |
| 2895 | |
| 2896 | void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new) |
| 2897 | { |
| 2898 | struct vm_area_struct *vma = pvmw->vma; |
| 2899 | struct mm_struct *mm = vma->vm_mm; |
| 2900 | unsigned long address = pvmw->address; |
| 2901 | unsigned long mmun_start = address & HPAGE_PMD_MASK; |
| 2902 | pmd_t pmde; |
| 2903 | swp_entry_t entry; |
| 2904 | |
| 2905 | if (!(pvmw->pmd && !pvmw->pte)) |
| 2906 | return; |
| 2907 | |
| 2908 | entry = pmd_to_swp_entry(*pvmw->pmd); |
| 2909 | get_page(new); |
| 2910 | pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot)); |
| 2911 | if (pmd_swp_soft_dirty(*pvmw->pmd)) |
| 2912 | pmde = pmd_mksoft_dirty(pmde); |
| 2913 | if (is_write_migration_entry(entry)) |
| 2914 | pmde = maybe_pmd_mkwrite(pmde, vma); |
| 2915 | |
| 2916 | flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE); |
| 2917 | page_add_anon_rmap(new, vma, mmun_start, true); |
| 2918 | set_pmd_at(mm, mmun_start, pvmw->pmd, pmde); |
| 2919 | if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new)) |
| 2920 | mlock_vma_page(new); |
| 2921 | update_mmu_cache_pmd(vma, address, pvmw->pmd); |
| 2922 | } |
| 2923 | #endif |