| rjw | 1f88458 | 2022-01-06 17:20:42 +0800 | [diff] [blame] | 1 | /* | 
|  | 2 | *  linux/mm/vmstat.c | 
|  | 3 | * | 
|  | 4 | *  Manages VM statistics | 
|  | 5 | *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds | 
|  | 6 | * | 
|  | 7 | *  zoned VM statistics | 
|  | 8 | *  Copyright (C) 2006 Silicon Graphics, Inc., | 
|  | 9 | *		Christoph Lameter <christoph@lameter.com> | 
|  | 10 | *  Copyright (C) 2008-2014 Christoph Lameter | 
|  | 11 | */ | 
|  | 12 | #include <linux/fs.h> | 
|  | 13 | #include <linux/mm.h> | 
|  | 14 | #include <linux/err.h> | 
|  | 15 | #include <linux/module.h> | 
|  | 16 | #include <linux/slab.h> | 
|  | 17 | #include <linux/cpu.h> | 
|  | 18 | #include <linux/cpumask.h> | 
|  | 19 | #include <linux/vmstat.h> | 
|  | 20 | #include <linux/proc_fs.h> | 
|  | 21 | #include <linux/seq_file.h> | 
|  | 22 | #include <linux/debugfs.h> | 
|  | 23 | #include <linux/sched.h> | 
|  | 24 | #include <linux/math64.h> | 
|  | 25 | #include <linux/writeback.h> | 
|  | 26 | #include <linux/compaction.h> | 
|  | 27 | #include <linux/mm_inline.h> | 
|  | 28 | #include <linux/page_ext.h> | 
|  | 29 | #include <linux/page_owner.h> | 
|  | 30 |  | 
|  | 31 | #include "internal.h" | 
|  | 32 |  | 
|  | 33 | #define NUMA_STATS_THRESHOLD (U16_MAX - 2) | 
|  | 34 |  | 
|  | 35 | #ifdef CONFIG_VM_EVENT_COUNTERS | 
|  | 36 | DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; | 
|  | 37 | EXPORT_PER_CPU_SYMBOL(vm_event_states); | 
|  | 38 |  | 
|  | 39 | static void sum_vm_events(unsigned long *ret) | 
|  | 40 | { | 
|  | 41 | int cpu; | 
|  | 42 | int i; | 
|  | 43 |  | 
|  | 44 | memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); | 
|  | 45 |  | 
|  | 46 | for_each_online_cpu(cpu) { | 
|  | 47 | struct vm_event_state *this = &per_cpu(vm_event_states, cpu); | 
|  | 48 |  | 
|  | 49 | for (i = 0; i < NR_VM_EVENT_ITEMS; i++) | 
|  | 50 | ret[i] += this->event[i]; | 
|  | 51 | } | 
|  | 52 | } | 
|  | 53 |  | 
|  | 54 | /* | 
|  | 55 | * Accumulate the vm event counters across all CPUs. | 
|  | 56 | * The result is unavoidably approximate - it can change | 
|  | 57 | * during and after execution of this function. | 
|  | 58 | */ | 
|  | 59 | void all_vm_events(unsigned long *ret) | 
|  | 60 | { | 
|  | 61 | get_online_cpus(); | 
|  | 62 | sum_vm_events(ret); | 
|  | 63 | put_online_cpus(); | 
|  | 64 | } | 
|  | 65 | EXPORT_SYMBOL_GPL(all_vm_events); | 
|  | 66 |  | 
|  | 67 | /* | 
|  | 68 | * Fold the foreign cpu events into our own. | 
|  | 69 | * | 
|  | 70 | * This is adding to the events on one processor | 
|  | 71 | * but keeps the global counts constant. | 
|  | 72 | */ | 
|  | 73 | void vm_events_fold_cpu(int cpu) | 
|  | 74 | { | 
|  | 75 | struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu); | 
|  | 76 | int i; | 
|  | 77 |  | 
|  | 78 | for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { | 
|  | 79 | count_vm_events(i, fold_state->event[i]); | 
|  | 80 | fold_state->event[i] = 0; | 
|  | 81 | } | 
|  | 82 | } | 
|  | 83 |  | 
|  | 84 | #endif /* CONFIG_VM_EVENT_COUNTERS */ | 
|  | 85 |  | 
|  | 86 | /* | 
|  | 87 | * Manage combined zone based / global counters | 
|  | 88 | * | 
|  | 89 | * vm_stat contains the global counters | 
|  | 90 | */ | 
|  | 91 | atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp; | 
|  | 92 | atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS] __cacheline_aligned_in_smp; | 
|  | 93 | atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp; | 
|  | 94 | EXPORT_SYMBOL(vm_zone_stat); | 
|  | 95 | EXPORT_SYMBOL(vm_numa_stat); | 
|  | 96 | EXPORT_SYMBOL(vm_node_stat); | 
|  | 97 |  | 
|  | 98 | #ifdef CONFIG_SMP | 
|  | 99 |  | 
|  | 100 | int calculate_pressure_threshold(struct zone *zone) | 
|  | 101 | { | 
|  | 102 | int threshold; | 
|  | 103 | int watermark_distance; | 
|  | 104 |  | 
|  | 105 | /* | 
|  | 106 | * As vmstats are not up to date, there is drift between the estimated | 
|  | 107 | * and real values. For high thresholds and a high number of CPUs, it | 
|  | 108 | * is possible for the min watermark to be breached while the estimated | 
|  | 109 | * value looks fine. The pressure threshold is a reduced value such | 
|  | 110 | * that even the maximum amount of drift will not accidentally breach | 
|  | 111 | * the min watermark | 
|  | 112 | */ | 
|  | 113 | watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone); | 
|  | 114 | threshold = max(1, (int)(watermark_distance / num_online_cpus())); | 
|  | 115 |  | 
|  | 116 | /* | 
|  | 117 | * Maximum threshold is 125 | 
|  | 118 | */ | 
|  | 119 | threshold = min(125, threshold); | 
|  | 120 |  | 
|  | 121 | return threshold; | 
|  | 122 | } | 
|  | 123 |  | 
|  | 124 | int calculate_normal_threshold(struct zone *zone) | 
|  | 125 | { | 
|  | 126 | int threshold; | 
|  | 127 | int mem;	/* memory in 128 MB units */ | 
|  | 128 |  | 
|  | 129 | /* | 
|  | 130 | * The threshold scales with the number of processors and the amount | 
|  | 131 | * of memory per zone. More memory means that we can defer updates for | 
|  | 132 | * longer, more processors could lead to more contention. | 
|  | 133 | * fls() is used to have a cheap way of logarithmic scaling. | 
|  | 134 | * | 
|  | 135 | * Some sample thresholds: | 
|  | 136 | * | 
|  | 137 | * Threshold	Processors	(fls)	Zonesize	fls(mem+1) | 
|  | 138 | * ------------------------------------------------------------------ | 
|  | 139 | * 8		1		1	0.9-1 GB	4 | 
|  | 140 | * 16		2		2	0.9-1 GB	4 | 
|  | 141 | * 20 		2		2	1-2 GB		5 | 
|  | 142 | * 24		2		2	2-4 GB		6 | 
|  | 143 | * 28		2		2	4-8 GB		7 | 
|  | 144 | * 32		2		2	8-16 GB		8 | 
|  | 145 | * 4		2		2	<128M		1 | 
|  | 146 | * 30		4		3	2-4 GB		5 | 
|  | 147 | * 48		4		3	8-16 GB		8 | 
|  | 148 | * 32		8		4	1-2 GB		4 | 
|  | 149 | * 32		8		4	0.9-1GB		4 | 
|  | 150 | * 10		16		5	<128M		1 | 
|  | 151 | * 40		16		5	900M		4 | 
|  | 152 | * 70		64		7	2-4 GB		5 | 
|  | 153 | * 84		64		7	4-8 GB		6 | 
|  | 154 | * 108		512		9	4-8 GB		6 | 
|  | 155 | * 125		1024		10	8-16 GB		8 | 
|  | 156 | * 125		1024		10	16-32 GB	9 | 
|  | 157 | */ | 
|  | 158 |  | 
|  | 159 | mem = zone->managed_pages >> (27 - PAGE_SHIFT); | 
|  | 160 |  | 
|  | 161 | threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem)); | 
|  | 162 |  | 
|  | 163 | /* | 
|  | 164 | * Maximum threshold is 125 | 
|  | 165 | */ | 
|  | 166 | threshold = min(125, threshold); | 
|  | 167 |  | 
|  | 168 | return threshold; | 
|  | 169 | } | 
|  | 170 |  | 
|  | 171 | /* | 
|  | 172 | * Refresh the thresholds for each zone. | 
|  | 173 | */ | 
|  | 174 | void refresh_zone_stat_thresholds(void) | 
|  | 175 | { | 
|  | 176 | struct pglist_data *pgdat; | 
|  | 177 | struct zone *zone; | 
|  | 178 | int cpu; | 
|  | 179 | int threshold; | 
|  | 180 |  | 
|  | 181 | /* Zero current pgdat thresholds */ | 
|  | 182 | for_each_online_pgdat(pgdat) { | 
|  | 183 | for_each_online_cpu(cpu) { | 
|  | 184 | per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0; | 
|  | 185 | } | 
|  | 186 | } | 
|  | 187 |  | 
|  | 188 | for_each_populated_zone(zone) { | 
|  | 189 | struct pglist_data *pgdat = zone->zone_pgdat; | 
|  | 190 | unsigned long max_drift, tolerate_drift; | 
|  | 191 |  | 
|  | 192 | threshold = calculate_normal_threshold(zone); | 
|  | 193 |  | 
|  | 194 | for_each_online_cpu(cpu) { | 
|  | 195 | int pgdat_threshold; | 
|  | 196 |  | 
|  | 197 | per_cpu_ptr(zone->pageset, cpu)->stat_threshold | 
|  | 198 | = threshold; | 
|  | 199 |  | 
|  | 200 | /* Base nodestat threshold on the largest populated zone. */ | 
|  | 201 | pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold; | 
|  | 202 | per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold | 
|  | 203 | = max(threshold, pgdat_threshold); | 
|  | 204 | } | 
|  | 205 |  | 
|  | 206 | /* | 
|  | 207 | * Only set percpu_drift_mark if there is a danger that | 
|  | 208 | * NR_FREE_PAGES reports the low watermark is ok when in fact | 
|  | 209 | * the min watermark could be breached by an allocation | 
|  | 210 | */ | 
|  | 211 | tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone); | 
|  | 212 | max_drift = num_online_cpus() * threshold; | 
|  | 213 | if (max_drift > tolerate_drift) | 
|  | 214 | zone->percpu_drift_mark = high_wmark_pages(zone) + | 
|  | 215 | max_drift; | 
|  | 216 | } | 
|  | 217 | } | 
|  | 218 |  | 
|  | 219 | void set_pgdat_percpu_threshold(pg_data_t *pgdat, | 
|  | 220 | int (*calculate_pressure)(struct zone *)) | 
|  | 221 | { | 
|  | 222 | struct zone *zone; | 
|  | 223 | int cpu; | 
|  | 224 | int threshold; | 
|  | 225 | int i; | 
|  | 226 |  | 
|  | 227 | for (i = 0; i < pgdat->nr_zones; i++) { | 
|  | 228 | zone = &pgdat->node_zones[i]; | 
|  | 229 | if (!zone->percpu_drift_mark) | 
|  | 230 | continue; | 
|  | 231 |  | 
|  | 232 | threshold = (*calculate_pressure)(zone); | 
|  | 233 | for_each_online_cpu(cpu) | 
|  | 234 | per_cpu_ptr(zone->pageset, cpu)->stat_threshold | 
|  | 235 | = threshold; | 
|  | 236 | } | 
|  | 237 | } | 
|  | 238 |  | 
|  | 239 | /* | 
|  | 240 | * For use when we know that interrupts are disabled, | 
|  | 241 | * or when we know that preemption is disabled and that | 
|  | 242 | * particular counter cannot be updated from interrupt context. | 
|  | 243 | */ | 
|  | 244 | void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, | 
|  | 245 | long delta) | 
|  | 246 | { | 
|  | 247 | struct per_cpu_pageset __percpu *pcp = zone->pageset; | 
|  | 248 | s8 __percpu *p = pcp->vm_stat_diff + item; | 
|  | 249 | long x; | 
|  | 250 | long t; | 
|  | 251 |  | 
|  | 252 | x = delta + __this_cpu_read(*p); | 
|  | 253 |  | 
|  | 254 | t = __this_cpu_read(pcp->stat_threshold); | 
|  | 255 |  | 
|  | 256 | if (unlikely(x > t || x < -t)) { | 
|  | 257 | zone_page_state_add(x, zone, item); | 
|  | 258 | x = 0; | 
|  | 259 | } | 
|  | 260 | __this_cpu_write(*p, x); | 
|  | 261 | } | 
|  | 262 | EXPORT_SYMBOL(__mod_zone_page_state); | 
|  | 263 |  | 
|  | 264 | void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, | 
|  | 265 | long delta) | 
|  | 266 | { | 
|  | 267 | struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; | 
|  | 268 | s8 __percpu *p = pcp->vm_node_stat_diff + item; | 
|  | 269 | long x; | 
|  | 270 | long t; | 
|  | 271 |  | 
|  | 272 | x = delta + __this_cpu_read(*p); | 
|  | 273 |  | 
|  | 274 | t = __this_cpu_read(pcp->stat_threshold); | 
|  | 275 |  | 
|  | 276 | if (unlikely(x > t || x < -t)) { | 
|  | 277 | node_page_state_add(x, pgdat, item); | 
|  | 278 | x = 0; | 
|  | 279 | } | 
|  | 280 | __this_cpu_write(*p, x); | 
|  | 281 | } | 
|  | 282 | EXPORT_SYMBOL(__mod_node_page_state); | 
|  | 283 |  | 
|  | 284 | /* | 
|  | 285 | * Optimized increment and decrement functions. | 
|  | 286 | * | 
|  | 287 | * These are only for a single page and therefore can take a struct page * | 
|  | 288 | * argument instead of struct zone *. This allows the inclusion of the code | 
|  | 289 | * generated for page_zone(page) into the optimized functions. | 
|  | 290 | * | 
|  | 291 | * No overflow check is necessary and therefore the differential can be | 
|  | 292 | * incremented or decremented in place which may allow the compilers to | 
|  | 293 | * generate better code. | 
|  | 294 | * The increment or decrement is known and therefore one boundary check can | 
|  | 295 | * be omitted. | 
|  | 296 | * | 
|  | 297 | * NOTE: These functions are very performance sensitive. Change only | 
|  | 298 | * with care. | 
|  | 299 | * | 
|  | 300 | * Some processors have inc/dec instructions that are atomic vs an interrupt. | 
|  | 301 | * However, the code must first determine the differential location in a zone | 
|  | 302 | * based on the processor number and then inc/dec the counter. There is no | 
|  | 303 | * guarantee without disabling preemption that the processor will not change | 
|  | 304 | * in between and therefore the atomicity vs. interrupt cannot be exploited | 
|  | 305 | * in a useful way here. | 
|  | 306 | */ | 
|  | 307 | void __inc_zone_state(struct zone *zone, enum zone_stat_item item) | 
|  | 308 | { | 
|  | 309 | struct per_cpu_pageset __percpu *pcp = zone->pageset; | 
|  | 310 | s8 __percpu *p = pcp->vm_stat_diff + item; | 
|  | 311 | s8 v, t; | 
|  | 312 |  | 
|  | 313 | v = __this_cpu_inc_return(*p); | 
|  | 314 | t = __this_cpu_read(pcp->stat_threshold); | 
|  | 315 | if (unlikely(v > t)) { | 
|  | 316 | s8 overstep = t >> 1; | 
|  | 317 |  | 
|  | 318 | zone_page_state_add(v + overstep, zone, item); | 
|  | 319 | __this_cpu_write(*p, -overstep); | 
|  | 320 | } | 
|  | 321 | } | 
|  | 322 |  | 
|  | 323 | void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) | 
|  | 324 | { | 
|  | 325 | struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; | 
|  | 326 | s8 __percpu *p = pcp->vm_node_stat_diff + item; | 
|  | 327 | s8 v, t; | 
|  | 328 |  | 
|  | 329 | v = __this_cpu_inc_return(*p); | 
|  | 330 | t = __this_cpu_read(pcp->stat_threshold); | 
|  | 331 | if (unlikely(v > t)) { | 
|  | 332 | s8 overstep = t >> 1; | 
|  | 333 |  | 
|  | 334 | node_page_state_add(v + overstep, pgdat, item); | 
|  | 335 | __this_cpu_write(*p, -overstep); | 
|  | 336 | } | 
|  | 337 | } | 
|  | 338 |  | 
|  | 339 | void __inc_zone_page_state(struct page *page, enum zone_stat_item item) | 
|  | 340 | { | 
|  | 341 | __inc_zone_state(page_zone(page), item); | 
|  | 342 | } | 
|  | 343 | EXPORT_SYMBOL(__inc_zone_page_state); | 
|  | 344 |  | 
|  | 345 | void __inc_node_page_state(struct page *page, enum node_stat_item item) | 
|  | 346 | { | 
|  | 347 | __inc_node_state(page_pgdat(page), item); | 
|  | 348 | } | 
|  | 349 | EXPORT_SYMBOL(__inc_node_page_state); | 
|  | 350 |  | 
|  | 351 | void __dec_zone_state(struct zone *zone, enum zone_stat_item item) | 
|  | 352 | { | 
|  | 353 | struct per_cpu_pageset __percpu *pcp = zone->pageset; | 
|  | 354 | s8 __percpu *p = pcp->vm_stat_diff + item; | 
|  | 355 | s8 v, t; | 
|  | 356 |  | 
|  | 357 | v = __this_cpu_dec_return(*p); | 
|  | 358 | t = __this_cpu_read(pcp->stat_threshold); | 
|  | 359 | if (unlikely(v < - t)) { | 
|  | 360 | s8 overstep = t >> 1; | 
|  | 361 |  | 
|  | 362 | zone_page_state_add(v - overstep, zone, item); | 
|  | 363 | __this_cpu_write(*p, overstep); | 
|  | 364 | } | 
|  | 365 | } | 
|  | 366 |  | 
|  | 367 | void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item) | 
|  | 368 | { | 
|  | 369 | struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; | 
|  | 370 | s8 __percpu *p = pcp->vm_node_stat_diff + item; | 
|  | 371 | s8 v, t; | 
|  | 372 |  | 
|  | 373 | v = __this_cpu_dec_return(*p); | 
|  | 374 | t = __this_cpu_read(pcp->stat_threshold); | 
|  | 375 | if (unlikely(v < - t)) { | 
|  | 376 | s8 overstep = t >> 1; | 
|  | 377 |  | 
|  | 378 | node_page_state_add(v - overstep, pgdat, item); | 
|  | 379 | __this_cpu_write(*p, overstep); | 
|  | 380 | } | 
|  | 381 | } | 
|  | 382 |  | 
|  | 383 | void __dec_zone_page_state(struct page *page, enum zone_stat_item item) | 
|  | 384 | { | 
|  | 385 | __dec_zone_state(page_zone(page), item); | 
|  | 386 | } | 
|  | 387 | EXPORT_SYMBOL(__dec_zone_page_state); | 
|  | 388 |  | 
|  | 389 | void __dec_node_page_state(struct page *page, enum node_stat_item item) | 
|  | 390 | { | 
|  | 391 | __dec_node_state(page_pgdat(page), item); | 
|  | 392 | } | 
|  | 393 | EXPORT_SYMBOL(__dec_node_page_state); | 
|  | 394 |  | 
|  | 395 | #ifdef CONFIG_HAVE_CMPXCHG_LOCAL | 
|  | 396 | /* | 
|  | 397 | * If we have cmpxchg_local support then we do not need to incur the overhead | 
|  | 398 | * that comes with local_irq_save/restore if we use this_cpu_cmpxchg. | 
|  | 399 | * | 
|  | 400 | * mod_state() modifies the zone counter state through atomic per cpu | 
|  | 401 | * operations. | 
|  | 402 | * | 
|  | 403 | * Overstep mode specifies how overstep should handled: | 
|  | 404 | *     0       No overstepping | 
|  | 405 | *     1       Overstepping half of threshold | 
|  | 406 | *     -1      Overstepping minus half of threshold | 
|  | 407 | */ | 
|  | 408 | static inline void mod_zone_state(struct zone *zone, | 
|  | 409 | enum zone_stat_item item, long delta, int overstep_mode) | 
|  | 410 | { | 
|  | 411 | struct per_cpu_pageset __percpu *pcp = zone->pageset; | 
|  | 412 | s8 __percpu *p = pcp->vm_stat_diff + item; | 
|  | 413 | long o, n, t, z; | 
|  | 414 |  | 
|  | 415 | do { | 
|  | 416 | z = 0;  /* overflow to zone counters */ | 
|  | 417 |  | 
|  | 418 | /* | 
|  | 419 | * The fetching of the stat_threshold is racy. We may apply | 
|  | 420 | * a counter threshold to the wrong the cpu if we get | 
|  | 421 | * rescheduled while executing here. However, the next | 
|  | 422 | * counter update will apply the threshold again and | 
|  | 423 | * therefore bring the counter under the threshold again. | 
|  | 424 | * | 
|  | 425 | * Most of the time the thresholds are the same anyways | 
|  | 426 | * for all cpus in a zone. | 
|  | 427 | */ | 
|  | 428 | t = this_cpu_read(pcp->stat_threshold); | 
|  | 429 |  | 
|  | 430 | o = this_cpu_read(*p); | 
|  | 431 | n = delta + o; | 
|  | 432 |  | 
|  | 433 | if (n > t || n < -t) { | 
|  | 434 | int os = overstep_mode * (t >> 1) ; | 
|  | 435 |  | 
|  | 436 | /* Overflow must be added to zone counters */ | 
|  | 437 | z = n + os; | 
|  | 438 | n = -os; | 
|  | 439 | } | 
|  | 440 | } while (this_cpu_cmpxchg(*p, o, n) != o); | 
|  | 441 |  | 
|  | 442 | if (z) | 
|  | 443 | zone_page_state_add(z, zone, item); | 
|  | 444 | } | 
|  | 445 |  | 
|  | 446 | void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, | 
|  | 447 | long delta) | 
|  | 448 | { | 
|  | 449 | mod_zone_state(zone, item, delta, 0); | 
|  | 450 | } | 
|  | 451 | EXPORT_SYMBOL(mod_zone_page_state); | 
|  | 452 |  | 
|  | 453 | void inc_zone_page_state(struct page *page, enum zone_stat_item item) | 
|  | 454 | { | 
|  | 455 | mod_zone_state(page_zone(page), item, 1, 1); | 
|  | 456 | } | 
|  | 457 | EXPORT_SYMBOL(inc_zone_page_state); | 
|  | 458 |  | 
|  | 459 | void dec_zone_page_state(struct page *page, enum zone_stat_item item) | 
|  | 460 | { | 
|  | 461 | mod_zone_state(page_zone(page), item, -1, -1); | 
|  | 462 | } | 
|  | 463 | EXPORT_SYMBOL(dec_zone_page_state); | 
|  | 464 |  | 
|  | 465 | static inline void mod_node_state(struct pglist_data *pgdat, | 
|  | 466 | enum node_stat_item item, int delta, int overstep_mode) | 
|  | 467 | { | 
|  | 468 | struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; | 
|  | 469 | s8 __percpu *p = pcp->vm_node_stat_diff + item; | 
|  | 470 | long o, n, t, z; | 
|  | 471 |  | 
|  | 472 | do { | 
|  | 473 | z = 0;  /* overflow to node counters */ | 
|  | 474 |  | 
|  | 475 | /* | 
|  | 476 | * The fetching of the stat_threshold is racy. We may apply | 
|  | 477 | * a counter threshold to the wrong the cpu if we get | 
|  | 478 | * rescheduled while executing here. However, the next | 
|  | 479 | * counter update will apply the threshold again and | 
|  | 480 | * therefore bring the counter under the threshold again. | 
|  | 481 | * | 
|  | 482 | * Most of the time the thresholds are the same anyways | 
|  | 483 | * for all cpus in a node. | 
|  | 484 | */ | 
|  | 485 | t = this_cpu_read(pcp->stat_threshold); | 
|  | 486 |  | 
|  | 487 | o = this_cpu_read(*p); | 
|  | 488 | n = delta + o; | 
|  | 489 |  | 
|  | 490 | if (n > t || n < -t) { | 
|  | 491 | int os = overstep_mode * (t >> 1) ; | 
|  | 492 |  | 
|  | 493 | /* Overflow must be added to node counters */ | 
|  | 494 | z = n + os; | 
|  | 495 | n = -os; | 
|  | 496 | } | 
|  | 497 | } while (this_cpu_cmpxchg(*p, o, n) != o); | 
|  | 498 |  | 
|  | 499 | if (z) | 
|  | 500 | node_page_state_add(z, pgdat, item); | 
|  | 501 | } | 
|  | 502 |  | 
|  | 503 | void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, | 
|  | 504 | long delta) | 
|  | 505 | { | 
|  | 506 | mod_node_state(pgdat, item, delta, 0); | 
|  | 507 | } | 
|  | 508 | EXPORT_SYMBOL(mod_node_page_state); | 
|  | 509 |  | 
|  | 510 | void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) | 
|  | 511 | { | 
|  | 512 | mod_node_state(pgdat, item, 1, 1); | 
|  | 513 | } | 
|  | 514 |  | 
|  | 515 | void inc_node_page_state(struct page *page, enum node_stat_item item) | 
|  | 516 | { | 
|  | 517 | mod_node_state(page_pgdat(page), item, 1, 1); | 
|  | 518 | } | 
|  | 519 | EXPORT_SYMBOL(inc_node_page_state); | 
|  | 520 |  | 
|  | 521 | void dec_node_page_state(struct page *page, enum node_stat_item item) | 
|  | 522 | { | 
|  | 523 | mod_node_state(page_pgdat(page), item, -1, -1); | 
|  | 524 | } | 
|  | 525 | EXPORT_SYMBOL(dec_node_page_state); | 
|  | 526 | #else | 
|  | 527 | /* | 
|  | 528 | * Use interrupt disable to serialize counter updates | 
|  | 529 | */ | 
|  | 530 | void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, | 
|  | 531 | long delta) | 
|  | 532 | { | 
|  | 533 | unsigned long flags; | 
|  | 534 |  | 
|  | 535 | local_irq_save(flags); | 
|  | 536 | __mod_zone_page_state(zone, item, delta); | 
|  | 537 | local_irq_restore(flags); | 
|  | 538 | } | 
|  | 539 | EXPORT_SYMBOL(mod_zone_page_state); | 
|  | 540 |  | 
|  | 541 | void inc_zone_page_state(struct page *page, enum zone_stat_item item) | 
|  | 542 | { | 
|  | 543 | unsigned long flags; | 
|  | 544 | struct zone *zone; | 
|  | 545 |  | 
|  | 546 | zone = page_zone(page); | 
|  | 547 | local_irq_save(flags); | 
|  | 548 | __inc_zone_state(zone, item); | 
|  | 549 | local_irq_restore(flags); | 
|  | 550 | } | 
|  | 551 | EXPORT_SYMBOL(inc_zone_page_state); | 
|  | 552 |  | 
|  | 553 | void dec_zone_page_state(struct page *page, enum zone_stat_item item) | 
|  | 554 | { | 
|  | 555 | unsigned long flags; | 
|  | 556 |  | 
|  | 557 | local_irq_save(flags); | 
|  | 558 | __dec_zone_page_state(page, item); | 
|  | 559 | local_irq_restore(flags); | 
|  | 560 | } | 
|  | 561 | EXPORT_SYMBOL(dec_zone_page_state); | 
|  | 562 |  | 
|  | 563 | void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) | 
|  | 564 | { | 
|  | 565 | unsigned long flags; | 
|  | 566 |  | 
|  | 567 | local_irq_save(flags); | 
|  | 568 | __inc_node_state(pgdat, item); | 
|  | 569 | local_irq_restore(flags); | 
|  | 570 | } | 
|  | 571 | EXPORT_SYMBOL(inc_node_state); | 
|  | 572 |  | 
|  | 573 | void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, | 
|  | 574 | long delta) | 
|  | 575 | { | 
|  | 576 | unsigned long flags; | 
|  | 577 |  | 
|  | 578 | local_irq_save(flags); | 
|  | 579 | __mod_node_page_state(pgdat, item, delta); | 
|  | 580 | local_irq_restore(flags); | 
|  | 581 | } | 
|  | 582 | EXPORT_SYMBOL(mod_node_page_state); | 
|  | 583 |  | 
|  | 584 | void inc_node_page_state(struct page *page, enum node_stat_item item) | 
|  | 585 | { | 
|  | 586 | unsigned long flags; | 
|  | 587 | struct pglist_data *pgdat; | 
|  | 588 |  | 
|  | 589 | pgdat = page_pgdat(page); | 
|  | 590 | local_irq_save(flags); | 
|  | 591 | __inc_node_state(pgdat, item); | 
|  | 592 | local_irq_restore(flags); | 
|  | 593 | } | 
|  | 594 | EXPORT_SYMBOL(inc_node_page_state); | 
|  | 595 |  | 
|  | 596 | void dec_node_page_state(struct page *page, enum node_stat_item item) | 
|  | 597 | { | 
|  | 598 | unsigned long flags; | 
|  | 599 |  | 
|  | 600 | local_irq_save(flags); | 
|  | 601 | __dec_node_page_state(page, item); | 
|  | 602 | local_irq_restore(flags); | 
|  | 603 | } | 
|  | 604 | EXPORT_SYMBOL(dec_node_page_state); | 
|  | 605 | #endif | 
|  | 606 |  | 
|  | 607 | /* | 
|  | 608 | * Fold a differential into the global counters. | 
|  | 609 | * Returns the number of counters updated. | 
|  | 610 | */ | 
|  | 611 | #ifdef CONFIG_NUMA | 
|  | 612 | static int fold_diff(int *zone_diff, int *numa_diff, int *node_diff) | 
|  | 613 | { | 
|  | 614 | int i; | 
|  | 615 | int changes = 0; | 
|  | 616 |  | 
|  | 617 | for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) | 
|  | 618 | if (zone_diff[i]) { | 
|  | 619 | atomic_long_add(zone_diff[i], &vm_zone_stat[i]); | 
|  | 620 | changes++; | 
|  | 621 | } | 
|  | 622 |  | 
|  | 623 | for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) | 
|  | 624 | if (numa_diff[i]) { | 
|  | 625 | atomic_long_add(numa_diff[i], &vm_numa_stat[i]); | 
|  | 626 | changes++; | 
|  | 627 | } | 
|  | 628 |  | 
|  | 629 | for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) | 
|  | 630 | if (node_diff[i]) { | 
|  | 631 | atomic_long_add(node_diff[i], &vm_node_stat[i]); | 
|  | 632 | changes++; | 
|  | 633 | } | 
|  | 634 | return changes; | 
|  | 635 | } | 
|  | 636 | #else | 
|  | 637 | static int fold_diff(int *zone_diff, int *node_diff) | 
|  | 638 | { | 
|  | 639 | int i; | 
|  | 640 | int changes = 0; | 
|  | 641 |  | 
|  | 642 | for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) | 
|  | 643 | if (zone_diff[i]) { | 
|  | 644 | atomic_long_add(zone_diff[i], &vm_zone_stat[i]); | 
|  | 645 | changes++; | 
|  | 646 | } | 
|  | 647 |  | 
|  | 648 | for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) | 
|  | 649 | if (node_diff[i]) { | 
|  | 650 | atomic_long_add(node_diff[i], &vm_node_stat[i]); | 
|  | 651 | changes++; | 
|  | 652 | } | 
|  | 653 | return changes; | 
|  | 654 | } | 
|  | 655 | #endif /* CONFIG_NUMA */ | 
|  | 656 |  | 
|  | 657 | /* | 
|  | 658 | * Update the zone counters for the current cpu. | 
|  | 659 | * | 
|  | 660 | * Note that refresh_cpu_vm_stats strives to only access | 
|  | 661 | * node local memory. The per cpu pagesets on remote zones are placed | 
|  | 662 | * in the memory local to the processor using that pageset. So the | 
|  | 663 | * loop over all zones will access a series of cachelines local to | 
|  | 664 | * the processor. | 
|  | 665 | * | 
|  | 666 | * The call to zone_page_state_add updates the cachelines with the | 
|  | 667 | * statistics in the remote zone struct as well as the global cachelines | 
|  | 668 | * with the global counters. These could cause remote node cache line | 
|  | 669 | * bouncing and will have to be only done when necessary. | 
|  | 670 | * | 
|  | 671 | * The function returns the number of global counters updated. | 
|  | 672 | */ | 
|  | 673 | static int refresh_cpu_vm_stats(bool do_pagesets) | 
|  | 674 | { | 
|  | 675 | struct pglist_data *pgdat; | 
|  | 676 | struct zone *zone; | 
|  | 677 | int i; | 
|  | 678 | int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; | 
|  | 679 | #ifdef CONFIG_NUMA | 
|  | 680 | int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, }; | 
|  | 681 | #endif | 
|  | 682 | int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, }; | 
|  | 683 | int changes = 0; | 
|  | 684 |  | 
|  | 685 | for_each_populated_zone(zone) { | 
|  | 686 | struct per_cpu_pageset __percpu *p = zone->pageset; | 
|  | 687 |  | 
|  | 688 | for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { | 
|  | 689 | int v; | 
|  | 690 |  | 
|  | 691 | v = this_cpu_xchg(p->vm_stat_diff[i], 0); | 
|  | 692 | if (v) { | 
|  | 693 |  | 
|  | 694 | atomic_long_add(v, &zone->vm_stat[i]); | 
|  | 695 | global_zone_diff[i] += v; | 
|  | 696 | #ifdef CONFIG_NUMA | 
|  | 697 | /* 3 seconds idle till flush */ | 
|  | 698 | __this_cpu_write(p->expire, 3); | 
|  | 699 | #endif | 
|  | 700 | } | 
|  | 701 | } | 
|  | 702 | #ifdef CONFIG_NUMA | 
|  | 703 | for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) { | 
|  | 704 | int v; | 
|  | 705 |  | 
|  | 706 | v = this_cpu_xchg(p->vm_numa_stat_diff[i], 0); | 
|  | 707 | if (v) { | 
|  | 708 |  | 
|  | 709 | atomic_long_add(v, &zone->vm_numa_stat[i]); | 
|  | 710 | global_numa_diff[i] += v; | 
|  | 711 | __this_cpu_write(p->expire, 3); | 
|  | 712 | } | 
|  | 713 | } | 
|  | 714 |  | 
|  | 715 | if (do_pagesets) { | 
|  | 716 | cond_resched(); | 
|  | 717 | /* | 
|  | 718 | * Deal with draining the remote pageset of this | 
|  | 719 | * processor | 
|  | 720 | * | 
|  | 721 | * Check if there are pages remaining in this pageset | 
|  | 722 | * if not then there is nothing to expire. | 
|  | 723 | */ | 
|  | 724 | if (!__this_cpu_read(p->expire) || | 
|  | 725 | !__this_cpu_read(p->pcp.count)) | 
|  | 726 | continue; | 
|  | 727 |  | 
|  | 728 | /* | 
|  | 729 | * We never drain zones local to this processor. | 
|  | 730 | */ | 
|  | 731 | if (zone_to_nid(zone) == numa_node_id()) { | 
|  | 732 | __this_cpu_write(p->expire, 0); | 
|  | 733 | continue; | 
|  | 734 | } | 
|  | 735 |  | 
|  | 736 | if (__this_cpu_dec_return(p->expire)) | 
|  | 737 | continue; | 
|  | 738 |  | 
|  | 739 | if (__this_cpu_read(p->pcp.count)) { | 
|  | 740 | drain_zone_pages(zone, this_cpu_ptr(&p->pcp)); | 
|  | 741 | changes++; | 
|  | 742 | } | 
|  | 743 | } | 
|  | 744 | #endif | 
|  | 745 | } | 
|  | 746 |  | 
|  | 747 | for_each_online_pgdat(pgdat) { | 
|  | 748 | struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats; | 
|  | 749 |  | 
|  | 750 | for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { | 
|  | 751 | int v; | 
|  | 752 |  | 
|  | 753 | v = this_cpu_xchg(p->vm_node_stat_diff[i], 0); | 
|  | 754 | if (v) { | 
|  | 755 | atomic_long_add(v, &pgdat->vm_stat[i]); | 
|  | 756 | global_node_diff[i] += v; | 
|  | 757 | } | 
|  | 758 | } | 
|  | 759 | } | 
|  | 760 |  | 
|  | 761 | #ifdef CONFIG_NUMA | 
|  | 762 | changes += fold_diff(global_zone_diff, global_numa_diff, | 
|  | 763 | global_node_diff); | 
|  | 764 | #else | 
|  | 765 | changes += fold_diff(global_zone_diff, global_node_diff); | 
|  | 766 | #endif | 
|  | 767 | return changes; | 
|  | 768 | } | 
|  | 769 |  | 
|  | 770 | /* | 
|  | 771 | * Fold the data for an offline cpu into the global array. | 
|  | 772 | * There cannot be any access by the offline cpu and therefore | 
|  | 773 | * synchronization is simplified. | 
|  | 774 | */ | 
|  | 775 | void cpu_vm_stats_fold(int cpu) | 
|  | 776 | { | 
|  | 777 | struct pglist_data *pgdat; | 
|  | 778 | struct zone *zone; | 
|  | 779 | int i; | 
|  | 780 | int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; | 
|  | 781 | #ifdef CONFIG_NUMA | 
|  | 782 | int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, }; | 
|  | 783 | #endif | 
|  | 784 | int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, }; | 
|  | 785 |  | 
|  | 786 | for_each_populated_zone(zone) { | 
|  | 787 | struct per_cpu_pageset *p; | 
|  | 788 |  | 
|  | 789 | p = per_cpu_ptr(zone->pageset, cpu); | 
|  | 790 |  | 
|  | 791 | for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) | 
|  | 792 | if (p->vm_stat_diff[i]) { | 
|  | 793 | int v; | 
|  | 794 |  | 
|  | 795 | v = p->vm_stat_diff[i]; | 
|  | 796 | p->vm_stat_diff[i] = 0; | 
|  | 797 | atomic_long_add(v, &zone->vm_stat[i]); | 
|  | 798 | global_zone_diff[i] += v; | 
|  | 799 | } | 
|  | 800 |  | 
|  | 801 | #ifdef CONFIG_NUMA | 
|  | 802 | for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) | 
|  | 803 | if (p->vm_numa_stat_diff[i]) { | 
|  | 804 | int v; | 
|  | 805 |  | 
|  | 806 | v = p->vm_numa_stat_diff[i]; | 
|  | 807 | p->vm_numa_stat_diff[i] = 0; | 
|  | 808 | atomic_long_add(v, &zone->vm_numa_stat[i]); | 
|  | 809 | global_numa_diff[i] += v; | 
|  | 810 | } | 
|  | 811 | #endif | 
|  | 812 | } | 
|  | 813 |  | 
|  | 814 | for_each_online_pgdat(pgdat) { | 
|  | 815 | struct per_cpu_nodestat *p; | 
|  | 816 |  | 
|  | 817 | p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); | 
|  | 818 |  | 
|  | 819 | for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) | 
|  | 820 | if (p->vm_node_stat_diff[i]) { | 
|  | 821 | int v; | 
|  | 822 |  | 
|  | 823 | v = p->vm_node_stat_diff[i]; | 
|  | 824 | p->vm_node_stat_diff[i] = 0; | 
|  | 825 | atomic_long_add(v, &pgdat->vm_stat[i]); | 
|  | 826 | global_node_diff[i] += v; | 
|  | 827 | } | 
|  | 828 | } | 
|  | 829 |  | 
|  | 830 | #ifdef CONFIG_NUMA | 
|  | 831 | fold_diff(global_zone_diff, global_numa_diff, global_node_diff); | 
|  | 832 | #else | 
|  | 833 | fold_diff(global_zone_diff, global_node_diff); | 
|  | 834 | #endif | 
|  | 835 | } | 
|  | 836 |  | 
|  | 837 | /* | 
|  | 838 | * this is only called if !populated_zone(zone), which implies no other users of | 
|  | 839 | * pset->vm_stat_diff[] exsist. | 
|  | 840 | */ | 
|  | 841 | void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset) | 
|  | 842 | { | 
|  | 843 | int i; | 
|  | 844 |  | 
|  | 845 | for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) | 
|  | 846 | if (pset->vm_stat_diff[i]) { | 
|  | 847 | int v = pset->vm_stat_diff[i]; | 
|  | 848 | pset->vm_stat_diff[i] = 0; | 
|  | 849 | atomic_long_add(v, &zone->vm_stat[i]); | 
|  | 850 | atomic_long_add(v, &vm_zone_stat[i]); | 
|  | 851 | } | 
|  | 852 |  | 
|  | 853 | #ifdef CONFIG_NUMA | 
|  | 854 | for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) | 
|  | 855 | if (pset->vm_numa_stat_diff[i]) { | 
|  | 856 | int v = pset->vm_numa_stat_diff[i]; | 
|  | 857 |  | 
|  | 858 | pset->vm_numa_stat_diff[i] = 0; | 
|  | 859 | atomic_long_add(v, &zone->vm_numa_stat[i]); | 
|  | 860 | atomic_long_add(v, &vm_numa_stat[i]); | 
|  | 861 | } | 
|  | 862 | #endif | 
|  | 863 | } | 
|  | 864 | #endif | 
|  | 865 |  | 
|  | 866 | #ifdef CONFIG_NUMA | 
|  | 867 | void __inc_numa_state(struct zone *zone, | 
|  | 868 | enum numa_stat_item item) | 
|  | 869 | { | 
|  | 870 | struct per_cpu_pageset __percpu *pcp = zone->pageset; | 
|  | 871 | u16 __percpu *p = pcp->vm_numa_stat_diff + item; | 
|  | 872 | u16 v; | 
|  | 873 |  | 
|  | 874 | v = __this_cpu_inc_return(*p); | 
|  | 875 |  | 
|  | 876 | if (unlikely(v > NUMA_STATS_THRESHOLD)) { | 
|  | 877 | zone_numa_state_add(v, zone, item); | 
|  | 878 | __this_cpu_write(*p, 0); | 
|  | 879 | } | 
|  | 880 | } | 
|  | 881 |  | 
|  | 882 | /* | 
|  | 883 | * Determine the per node value of a stat item. This function | 
|  | 884 | * is called frequently in a NUMA machine, so try to be as | 
|  | 885 | * frugal as possible. | 
|  | 886 | */ | 
|  | 887 | unsigned long sum_zone_node_page_state(int node, | 
|  | 888 | enum zone_stat_item item) | 
|  | 889 | { | 
|  | 890 | struct zone *zones = NODE_DATA(node)->node_zones; | 
|  | 891 | int i; | 
|  | 892 | unsigned long count = 0; | 
|  | 893 |  | 
|  | 894 | for (i = 0; i < MAX_NR_ZONES; i++) | 
|  | 895 | count += zone_page_state(zones + i, item); | 
|  | 896 |  | 
|  | 897 | return count; | 
|  | 898 | } | 
|  | 899 |  | 
|  | 900 | /* | 
|  | 901 | * Determine the per node value of a numa stat item. To avoid deviation, | 
|  | 902 | * the per cpu stat number in vm_numa_stat_diff[] is also included. | 
|  | 903 | */ | 
|  | 904 | unsigned long sum_zone_numa_state(int node, | 
|  | 905 | enum numa_stat_item item) | 
|  | 906 | { | 
|  | 907 | struct zone *zones = NODE_DATA(node)->node_zones; | 
|  | 908 | int i; | 
|  | 909 | unsigned long count = 0; | 
|  | 910 |  | 
|  | 911 | for (i = 0; i < MAX_NR_ZONES; i++) | 
|  | 912 | count += zone_numa_state_snapshot(zones + i, item); | 
|  | 913 |  | 
|  | 914 | return count; | 
|  | 915 | } | 
|  | 916 |  | 
|  | 917 | /* | 
|  | 918 | * Determine the per node value of a stat item. | 
|  | 919 | */ | 
|  | 920 | unsigned long node_page_state(struct pglist_data *pgdat, | 
|  | 921 | enum node_stat_item item) | 
|  | 922 | { | 
|  | 923 | long x = atomic_long_read(&pgdat->vm_stat[item]); | 
|  | 924 | #ifdef CONFIG_SMP | 
|  | 925 | if (x < 0) | 
|  | 926 | x = 0; | 
|  | 927 | #endif | 
|  | 928 | return x; | 
|  | 929 | } | 
|  | 930 | #endif | 
|  | 931 |  | 
|  | 932 | #ifdef CONFIG_COMPACTION | 
|  | 933 |  | 
|  | 934 | struct contig_page_info { | 
|  | 935 | unsigned long free_pages; | 
|  | 936 | unsigned long free_blocks_total; | 
|  | 937 | unsigned long free_blocks_suitable; | 
|  | 938 | }; | 
|  | 939 |  | 
|  | 940 | /* | 
|  | 941 | * Calculate the number of free pages in a zone, how many contiguous | 
|  | 942 | * pages are free and how many are large enough to satisfy an allocation of | 
|  | 943 | * the target size. Note that this function makes no attempt to estimate | 
|  | 944 | * how many suitable free blocks there *might* be if MOVABLE pages were | 
|  | 945 | * migrated. Calculating that is possible, but expensive and can be | 
|  | 946 | * figured out from userspace | 
|  | 947 | */ | 
|  | 948 | static void fill_contig_page_info(struct zone *zone, | 
|  | 949 | unsigned int suitable_order, | 
|  | 950 | struct contig_page_info *info) | 
|  | 951 | { | 
|  | 952 | unsigned int order; | 
|  | 953 |  | 
|  | 954 | info->free_pages = 0; | 
|  | 955 | info->free_blocks_total = 0; | 
|  | 956 | info->free_blocks_suitable = 0; | 
|  | 957 |  | 
|  | 958 | for (order = 0; order < MAX_ORDER; order++) { | 
|  | 959 | unsigned long blocks; | 
|  | 960 |  | 
|  | 961 | /* Count number of free blocks */ | 
|  | 962 | blocks = zone->free_area[order].nr_free; | 
|  | 963 | info->free_blocks_total += blocks; | 
|  | 964 |  | 
|  | 965 | /* Count free base pages */ | 
|  | 966 | info->free_pages += blocks << order; | 
|  | 967 |  | 
|  | 968 | /* Count the suitable free blocks */ | 
|  | 969 | if (order >= suitable_order) | 
|  | 970 | info->free_blocks_suitable += blocks << | 
|  | 971 | (order - suitable_order); | 
|  | 972 | } | 
|  | 973 | } | 
|  | 974 |  | 
|  | 975 | /* | 
|  | 976 | * A fragmentation index only makes sense if an allocation of a requested | 
|  | 977 | * size would fail. If that is true, the fragmentation index indicates | 
|  | 978 | * whether external fragmentation or a lack of memory was the problem. | 
|  | 979 | * The value can be used to determine if page reclaim or compaction | 
|  | 980 | * should be used | 
|  | 981 | */ | 
|  | 982 | static int __fragmentation_index(unsigned int order, struct contig_page_info *info) | 
|  | 983 | { | 
|  | 984 | unsigned long requested = 1UL << order; | 
|  | 985 |  | 
|  | 986 | if (WARN_ON_ONCE(order >= MAX_ORDER)) | 
|  | 987 | return 0; | 
|  | 988 |  | 
|  | 989 | if (!info->free_blocks_total) | 
|  | 990 | return 0; | 
|  | 991 |  | 
|  | 992 | /* Fragmentation index only makes sense when a request would fail */ | 
|  | 993 | if (info->free_blocks_suitable) | 
|  | 994 | return -1000; | 
|  | 995 |  | 
|  | 996 | /* | 
|  | 997 | * Index is between 0 and 1 so return within 3 decimal places | 
|  | 998 | * | 
|  | 999 | * 0 => allocation would fail due to lack of memory | 
|  | 1000 | * 1 => allocation would fail due to fragmentation | 
|  | 1001 | */ | 
|  | 1002 | return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total); | 
|  | 1003 | } | 
|  | 1004 |  | 
|  | 1005 | /* Same as __fragmentation index but allocs contig_page_info on stack */ | 
|  | 1006 | int fragmentation_index(struct zone *zone, unsigned int order) | 
|  | 1007 | { | 
|  | 1008 | struct contig_page_info info; | 
|  | 1009 |  | 
|  | 1010 | fill_contig_page_info(zone, order, &info); | 
|  | 1011 | return __fragmentation_index(order, &info); | 
|  | 1012 | } | 
|  | 1013 | #endif | 
|  | 1014 |  | 
|  | 1015 | #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA) | 
|  | 1016 | #ifdef CONFIG_ZONE_DMA | 
|  | 1017 | #define TEXT_FOR_DMA(xx) xx "_dma", | 
|  | 1018 | #else | 
|  | 1019 | #define TEXT_FOR_DMA(xx) | 
|  | 1020 | #endif | 
|  | 1021 |  | 
|  | 1022 | #ifdef CONFIG_ZONE_DMA32 | 
|  | 1023 | #define TEXT_FOR_DMA32(xx) xx "_dma32", | 
|  | 1024 | #else | 
|  | 1025 | #define TEXT_FOR_DMA32(xx) | 
|  | 1026 | #endif | 
|  | 1027 |  | 
|  | 1028 | #ifdef CONFIG_HIGHMEM | 
|  | 1029 | #define TEXT_FOR_HIGHMEM(xx) xx "_high", | 
|  | 1030 | #else | 
|  | 1031 | #define TEXT_FOR_HIGHMEM(xx) | 
|  | 1032 | #endif | 
|  | 1033 |  | 
|  | 1034 | #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \ | 
|  | 1035 | TEXT_FOR_HIGHMEM(xx) xx "_movable", | 
|  | 1036 |  | 
|  | 1037 | const char * const vmstat_text[] = { | 
|  | 1038 | /* enum zone_stat_item countes */ | 
|  | 1039 | "nr_free_pages", | 
|  | 1040 | "nr_zone_inactive_anon", | 
|  | 1041 | "nr_zone_active_anon", | 
|  | 1042 | "nr_zone_inactive_file", | 
|  | 1043 | "nr_zone_active_file", | 
|  | 1044 | "nr_zone_unevictable", | 
|  | 1045 | "nr_zone_write_pending", | 
|  | 1046 | "nr_mlock", | 
|  | 1047 | "nr_page_table_pages", | 
|  | 1048 | "nr_kernel_stack", | 
|  | 1049 | "nr_bounce", | 
|  | 1050 | #if IS_ENABLED(CONFIG_ZSMALLOC) | 
|  | 1051 | "nr_zspages", | 
|  | 1052 | #endif | 
|  | 1053 | "nr_free_cma", | 
|  | 1054 |  | 
|  | 1055 | /* enum numa_stat_item counters */ | 
|  | 1056 | #ifdef CONFIG_NUMA | 
|  | 1057 | "numa_hit", | 
|  | 1058 | "numa_miss", | 
|  | 1059 | "numa_foreign", | 
|  | 1060 | "numa_interleave", | 
|  | 1061 | "numa_local", | 
|  | 1062 | "numa_other", | 
|  | 1063 | #endif | 
|  | 1064 |  | 
|  | 1065 | /* Node-based counters */ | 
|  | 1066 | "nr_inactive_anon", | 
|  | 1067 | "nr_active_anon", | 
|  | 1068 | "nr_inactive_file", | 
|  | 1069 | "nr_active_file", | 
|  | 1070 | "nr_unevictable", | 
|  | 1071 | "nr_slab_reclaimable", | 
|  | 1072 | "nr_slab_unreclaimable", | 
|  | 1073 | "nr_isolated_anon", | 
|  | 1074 | "nr_isolated_file", | 
|  | 1075 | "workingset_refault", | 
|  | 1076 | "workingset_activate", | 
|  | 1077 | "workingset_nodereclaim", | 
|  | 1078 | "nr_anon_pages", | 
|  | 1079 | "nr_mapped", | 
|  | 1080 | "nr_file_pages", | 
|  | 1081 | "nr_dirty", | 
|  | 1082 | "nr_writeback", | 
|  | 1083 | "nr_writeback_temp", | 
|  | 1084 | "nr_shmem", | 
|  | 1085 | "nr_shmem_hugepages", | 
|  | 1086 | "nr_shmem_pmdmapped", | 
|  | 1087 | "nr_anon_transparent_hugepages", | 
|  | 1088 | "nr_unstable", | 
|  | 1089 | "nr_vmscan_write", | 
|  | 1090 | "nr_vmscan_immediate_reclaim", | 
|  | 1091 | "nr_dirtied", | 
|  | 1092 | "nr_written", | 
|  | 1093 | "", /* nr_indirectly_reclaimable */ | 
|  | 1094 |  | 
|  | 1095 | /* enum writeback_stat_item counters */ | 
|  | 1096 | "nr_dirty_threshold", | 
|  | 1097 | "nr_dirty_background_threshold", | 
|  | 1098 |  | 
|  | 1099 | #ifdef CONFIG_VM_EVENT_COUNTERS | 
|  | 1100 | /* enum vm_event_item counters */ | 
|  | 1101 | "pgpgin", | 
|  | 1102 | "pgpgout", | 
|  | 1103 | "pswpin", | 
|  | 1104 | "pswpout", | 
|  | 1105 |  | 
|  | 1106 | TEXTS_FOR_ZONES("pgalloc") | 
|  | 1107 | TEXTS_FOR_ZONES("allocstall") | 
|  | 1108 | TEXTS_FOR_ZONES("pgskip") | 
|  | 1109 |  | 
|  | 1110 | "pgfree", | 
|  | 1111 | "pgactivate", | 
|  | 1112 | "pgdeactivate", | 
|  | 1113 | "pglazyfree", | 
|  | 1114 |  | 
|  | 1115 | "pgfault", | 
|  | 1116 | "pgmajfault", | 
|  | 1117 | "pglazyfreed", | 
|  | 1118 |  | 
|  | 1119 | "pgrefill", | 
|  | 1120 | "pgsteal_kswapd", | 
|  | 1121 | "pgsteal_direct", | 
|  | 1122 | "pgscan_kswapd", | 
|  | 1123 | "pgscan_direct", | 
|  | 1124 | "pgscan_direct_throttle", | 
|  | 1125 |  | 
|  | 1126 | #ifdef CONFIG_NUMA | 
|  | 1127 | "zone_reclaim_failed", | 
|  | 1128 | #endif | 
|  | 1129 | "pginodesteal", | 
|  | 1130 | "slabs_scanned", | 
|  | 1131 | "kswapd_inodesteal", | 
|  | 1132 | "kswapd_low_wmark_hit_quickly", | 
|  | 1133 | "kswapd_high_wmark_hit_quickly", | 
|  | 1134 | "pageoutrun", | 
|  | 1135 |  | 
|  | 1136 | "pgrotated", | 
|  | 1137 |  | 
|  | 1138 | "drop_pagecache", | 
|  | 1139 | "drop_slab", | 
|  | 1140 | "oom_kill", | 
|  | 1141 |  | 
|  | 1142 | #ifdef CONFIG_NUMA_BALANCING | 
|  | 1143 | "numa_pte_updates", | 
|  | 1144 | "numa_huge_pte_updates", | 
|  | 1145 | "numa_hint_faults", | 
|  | 1146 | "numa_hint_faults_local", | 
|  | 1147 | "numa_pages_migrated", | 
|  | 1148 | #endif | 
|  | 1149 | #ifdef CONFIG_MIGRATION | 
|  | 1150 | "pgmigrate_success", | 
|  | 1151 | "pgmigrate_fail", | 
|  | 1152 | #endif | 
|  | 1153 | #ifdef CONFIG_COMPACTION | 
|  | 1154 | "compact_migrate_scanned", | 
|  | 1155 | "compact_free_scanned", | 
|  | 1156 | "compact_isolated", | 
|  | 1157 | "compact_stall", | 
|  | 1158 | "compact_fail", | 
|  | 1159 | "compact_success", | 
|  | 1160 | "compact_daemon_wake", | 
|  | 1161 | "compact_daemon_migrate_scanned", | 
|  | 1162 | "compact_daemon_free_scanned", | 
|  | 1163 | #endif | 
|  | 1164 |  | 
|  | 1165 | #ifdef CONFIG_HUGETLB_PAGE | 
|  | 1166 | "htlb_buddy_alloc_success", | 
|  | 1167 | "htlb_buddy_alloc_fail", | 
|  | 1168 | #endif | 
|  | 1169 | "unevictable_pgs_culled", | 
|  | 1170 | "unevictable_pgs_scanned", | 
|  | 1171 | "unevictable_pgs_rescued", | 
|  | 1172 | "unevictable_pgs_mlocked", | 
|  | 1173 | "unevictable_pgs_munlocked", | 
|  | 1174 | "unevictable_pgs_cleared", | 
|  | 1175 | "unevictable_pgs_stranded", | 
|  | 1176 |  | 
|  | 1177 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | 1178 | "thp_fault_alloc", | 
|  | 1179 | "thp_fault_fallback", | 
|  | 1180 | "thp_collapse_alloc", | 
|  | 1181 | "thp_collapse_alloc_failed", | 
|  | 1182 | "thp_file_alloc", | 
|  | 1183 | "thp_file_mapped", | 
|  | 1184 | "thp_split_page", | 
|  | 1185 | "thp_split_page_failed", | 
|  | 1186 | "thp_deferred_split_page", | 
|  | 1187 | "thp_split_pmd", | 
|  | 1188 | #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD | 
|  | 1189 | "thp_split_pud", | 
|  | 1190 | #endif | 
|  | 1191 | "thp_zero_page_alloc", | 
|  | 1192 | "thp_zero_page_alloc_failed", | 
|  | 1193 | "thp_swpout", | 
|  | 1194 | "thp_swpout_fallback", | 
|  | 1195 | #endif | 
|  | 1196 | #ifdef CONFIG_MEMORY_BALLOON | 
|  | 1197 | "balloon_inflate", | 
|  | 1198 | "balloon_deflate", | 
|  | 1199 | #ifdef CONFIG_BALLOON_COMPACTION | 
|  | 1200 | "balloon_migrate", | 
|  | 1201 | #endif | 
|  | 1202 | #endif /* CONFIG_MEMORY_BALLOON */ | 
|  | 1203 | #ifdef CONFIG_DEBUG_TLBFLUSH | 
|  | 1204 | "nr_tlb_remote_flush", | 
|  | 1205 | "nr_tlb_remote_flush_received", | 
|  | 1206 | "nr_tlb_local_flush_all", | 
|  | 1207 | "nr_tlb_local_flush_one", | 
|  | 1208 | #endif /* CONFIG_DEBUG_TLBFLUSH */ | 
|  | 1209 |  | 
|  | 1210 | #ifdef CONFIG_DEBUG_VM_VMACACHE | 
|  | 1211 | "vmacache_find_calls", | 
|  | 1212 | "vmacache_find_hits", | 
|  | 1213 | #endif | 
|  | 1214 | #ifdef CONFIG_SWAP | 
|  | 1215 | "swap_ra", | 
|  | 1216 | "swap_ra_hit", | 
|  | 1217 | #endif | 
|  | 1218 | #endif /* CONFIG_VM_EVENTS_COUNTERS */ | 
|  | 1219 | }; | 
|  | 1220 | #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */ | 
|  | 1221 |  | 
|  | 1222 | #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \ | 
|  | 1223 | defined(CONFIG_PROC_FS) | 
|  | 1224 | static void *frag_start(struct seq_file *m, loff_t *pos) | 
|  | 1225 | { | 
|  | 1226 | pg_data_t *pgdat; | 
|  | 1227 | loff_t node = *pos; | 
|  | 1228 |  | 
|  | 1229 | for (pgdat = first_online_pgdat(); | 
|  | 1230 | pgdat && node; | 
|  | 1231 | pgdat = next_online_pgdat(pgdat)) | 
|  | 1232 | --node; | 
|  | 1233 |  | 
|  | 1234 | return pgdat; | 
|  | 1235 | } | 
|  | 1236 |  | 
|  | 1237 | static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) | 
|  | 1238 | { | 
|  | 1239 | pg_data_t *pgdat = (pg_data_t *)arg; | 
|  | 1240 |  | 
|  | 1241 | (*pos)++; | 
|  | 1242 | return next_online_pgdat(pgdat); | 
|  | 1243 | } | 
|  | 1244 |  | 
|  | 1245 | static void frag_stop(struct seq_file *m, void *arg) | 
|  | 1246 | { | 
|  | 1247 | } | 
|  | 1248 |  | 
|  | 1249 | /* | 
|  | 1250 | * Walk zones in a node and print using a callback. | 
|  | 1251 | * If @assert_populated is true, only use callback for zones that are populated. | 
|  | 1252 | */ | 
|  | 1253 | static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat, | 
|  | 1254 | bool assert_populated, bool nolock, | 
|  | 1255 | void (*print)(struct seq_file *m, pg_data_t *, struct zone *)) | 
|  | 1256 | { | 
|  | 1257 | struct zone *zone; | 
|  | 1258 | struct zone *node_zones = pgdat->node_zones; | 
|  | 1259 | unsigned long flags; | 
|  | 1260 |  | 
|  | 1261 | for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { | 
|  | 1262 | if (assert_populated && !populated_zone(zone)) | 
|  | 1263 | continue; | 
|  | 1264 |  | 
|  | 1265 | if (!nolock) | 
|  | 1266 | spin_lock_irqsave(&zone->lock, flags); | 
|  | 1267 | print(m, pgdat, zone); | 
|  | 1268 | if (!nolock) | 
|  | 1269 | spin_unlock_irqrestore(&zone->lock, flags); | 
|  | 1270 | } | 
|  | 1271 | } | 
|  | 1272 | #endif | 
|  | 1273 |  | 
|  | 1274 | #ifdef CONFIG_PROC_FS | 
|  | 1275 | static void frag_show_print(struct seq_file *m, pg_data_t *pgdat, | 
|  | 1276 | struct zone *zone) | 
|  | 1277 | { | 
|  | 1278 | int order; | 
|  | 1279 |  | 
|  | 1280 | seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); | 
|  | 1281 | for (order = 0; order < MAX_ORDER; ++order) | 
|  | 1282 | seq_printf(m, "%6lu ", zone->free_area[order].nr_free); | 
|  | 1283 | seq_putc(m, '\n'); | 
|  | 1284 | } | 
|  | 1285 |  | 
|  | 1286 | /* | 
|  | 1287 | * This walks the free areas for each zone. | 
|  | 1288 | */ | 
|  | 1289 | static int frag_show(struct seq_file *m, void *arg) | 
|  | 1290 | { | 
|  | 1291 | pg_data_t *pgdat = (pg_data_t *)arg; | 
|  | 1292 | walk_zones_in_node(m, pgdat, true, false, frag_show_print); | 
|  | 1293 | return 0; | 
|  | 1294 | } | 
|  | 1295 |  | 
|  | 1296 | static void pagetypeinfo_showfree_print(struct seq_file *m, | 
|  | 1297 | pg_data_t *pgdat, struct zone *zone) | 
|  | 1298 | { | 
|  | 1299 | int order, mtype; | 
|  | 1300 |  | 
|  | 1301 | for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) { | 
|  | 1302 | seq_printf(m, "Node %4d, zone %8s, type %12s ", | 
|  | 1303 | pgdat->node_id, | 
|  | 1304 | zone->name, | 
|  | 1305 | migratetype_names[mtype]); | 
|  | 1306 | for (order = 0; order < MAX_ORDER; ++order) { | 
|  | 1307 | unsigned long freecount = 0; | 
|  | 1308 | struct free_area *area; | 
|  | 1309 | struct list_head *curr; | 
|  | 1310 |  | 
|  | 1311 | area = &(zone->free_area[order]); | 
|  | 1312 |  | 
|  | 1313 | list_for_each(curr, &area->free_list[mtype]) | 
|  | 1314 | freecount++; | 
|  | 1315 | seq_printf(m, "%6lu ", freecount); | 
|  | 1316 | } | 
|  | 1317 | seq_putc(m, '\n'); | 
|  | 1318 | } | 
|  | 1319 | } | 
|  | 1320 |  | 
|  | 1321 | /* Print out the free pages at each order for each migatetype */ | 
|  | 1322 | static int pagetypeinfo_showfree(struct seq_file *m, void *arg) | 
|  | 1323 | { | 
|  | 1324 | int order; | 
|  | 1325 | pg_data_t *pgdat = (pg_data_t *)arg; | 
|  | 1326 |  | 
|  | 1327 | /* Print header */ | 
|  | 1328 | seq_printf(m, "%-43s ", "Free pages count per migrate type at order"); | 
|  | 1329 | for (order = 0; order < MAX_ORDER; ++order) | 
|  | 1330 | seq_printf(m, "%6d ", order); | 
|  | 1331 | seq_putc(m, '\n'); | 
|  | 1332 |  | 
|  | 1333 | walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print); | 
|  | 1334 |  | 
|  | 1335 | return 0; | 
|  | 1336 | } | 
|  | 1337 |  | 
|  | 1338 | static void pagetypeinfo_showblockcount_print(struct seq_file *m, | 
|  | 1339 | pg_data_t *pgdat, struct zone *zone) | 
|  | 1340 | { | 
|  | 1341 | int mtype; | 
|  | 1342 | unsigned long pfn; | 
|  | 1343 | unsigned long start_pfn = zone->zone_start_pfn; | 
|  | 1344 | unsigned long end_pfn = zone_end_pfn(zone); | 
|  | 1345 | unsigned long count[MIGRATE_TYPES] = { 0, }; | 
|  | 1346 |  | 
|  | 1347 | for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { | 
|  | 1348 | struct page *page; | 
|  | 1349 |  | 
|  | 1350 | page = pfn_to_online_page(pfn); | 
|  | 1351 | if (!page) | 
|  | 1352 | continue; | 
|  | 1353 |  | 
|  | 1354 | /* Watch for unexpected holes punched in the memmap */ | 
|  | 1355 | if (!memmap_valid_within(pfn, page, zone)) | 
|  | 1356 | continue; | 
|  | 1357 |  | 
|  | 1358 | if (page_zone(page) != zone) | 
|  | 1359 | continue; | 
|  | 1360 |  | 
|  | 1361 | mtype = get_pageblock_migratetype(page); | 
|  | 1362 |  | 
|  | 1363 | if (mtype < MIGRATE_TYPES) | 
|  | 1364 | count[mtype]++; | 
|  | 1365 | } | 
|  | 1366 |  | 
|  | 1367 | /* Print counts */ | 
|  | 1368 | seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); | 
|  | 1369 | for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) | 
|  | 1370 | seq_printf(m, "%12lu ", count[mtype]); | 
|  | 1371 | seq_putc(m, '\n'); | 
|  | 1372 | } | 
|  | 1373 |  | 
|  | 1374 | /* Print out the number of pageblocks for each migratetype */ | 
|  | 1375 | static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg) | 
|  | 1376 | { | 
|  | 1377 | int mtype; | 
|  | 1378 | pg_data_t *pgdat = (pg_data_t *)arg; | 
|  | 1379 |  | 
|  | 1380 | seq_printf(m, "\n%-23s", "Number of blocks type "); | 
|  | 1381 | for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) | 
|  | 1382 | seq_printf(m, "%12s ", migratetype_names[mtype]); | 
|  | 1383 | seq_putc(m, '\n'); | 
|  | 1384 | walk_zones_in_node(m, pgdat, true, false, | 
|  | 1385 | pagetypeinfo_showblockcount_print); | 
|  | 1386 |  | 
|  | 1387 | return 0; | 
|  | 1388 | } | 
|  | 1389 |  | 
|  | 1390 | /* | 
|  | 1391 | * Print out the number of pageblocks for each migratetype that contain pages | 
|  | 1392 | * of other types. This gives an indication of how well fallbacks are being | 
|  | 1393 | * contained by rmqueue_fallback(). It requires information from PAGE_OWNER | 
|  | 1394 | * to determine what is going on | 
|  | 1395 | */ | 
|  | 1396 | static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat) | 
|  | 1397 | { | 
|  | 1398 | #ifdef CONFIG_PAGE_OWNER | 
|  | 1399 | int mtype; | 
|  | 1400 |  | 
|  | 1401 | if (!static_branch_unlikely(&page_owner_inited)) | 
|  | 1402 | return; | 
|  | 1403 |  | 
|  | 1404 | drain_all_pages(NULL); | 
|  | 1405 |  | 
|  | 1406 | seq_printf(m, "\n%-23s", "Number of mixed blocks "); | 
|  | 1407 | for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) | 
|  | 1408 | seq_printf(m, "%12s ", migratetype_names[mtype]); | 
|  | 1409 | seq_putc(m, '\n'); | 
|  | 1410 |  | 
|  | 1411 | walk_zones_in_node(m, pgdat, true, true, | 
|  | 1412 | pagetypeinfo_showmixedcount_print); | 
|  | 1413 | #endif /* CONFIG_PAGE_OWNER */ | 
|  | 1414 | } | 
|  | 1415 |  | 
|  | 1416 | /* | 
|  | 1417 | * This prints out statistics in relation to grouping pages by mobility. | 
|  | 1418 | * It is expensive to collect so do not constantly read the file. | 
|  | 1419 | */ | 
|  | 1420 | static int pagetypeinfo_show(struct seq_file *m, void *arg) | 
|  | 1421 | { | 
|  | 1422 | pg_data_t *pgdat = (pg_data_t *)arg; | 
|  | 1423 |  | 
|  | 1424 | /* check memoryless node */ | 
|  | 1425 | if (!node_state(pgdat->node_id, N_MEMORY)) | 
|  | 1426 | return 0; | 
|  | 1427 |  | 
|  | 1428 | seq_printf(m, "Page block order: %d\n", pageblock_order); | 
|  | 1429 | seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages); | 
|  | 1430 | seq_putc(m, '\n'); | 
|  | 1431 | pagetypeinfo_showfree(m, pgdat); | 
|  | 1432 | pagetypeinfo_showblockcount(m, pgdat); | 
|  | 1433 | pagetypeinfo_showmixedcount(m, pgdat); | 
|  | 1434 |  | 
|  | 1435 | return 0; | 
|  | 1436 | } | 
|  | 1437 |  | 
|  | 1438 | static const struct seq_operations fragmentation_op = { | 
|  | 1439 | .start	= frag_start, | 
|  | 1440 | .next	= frag_next, | 
|  | 1441 | .stop	= frag_stop, | 
|  | 1442 | .show	= frag_show, | 
|  | 1443 | }; | 
|  | 1444 |  | 
|  | 1445 | static int fragmentation_open(struct inode *inode, struct file *file) | 
|  | 1446 | { | 
|  | 1447 | return seq_open(file, &fragmentation_op); | 
|  | 1448 | } | 
|  | 1449 |  | 
|  | 1450 | static const struct file_operations buddyinfo_file_operations = { | 
|  | 1451 | .open		= fragmentation_open, | 
|  | 1452 | .read		= seq_read, | 
|  | 1453 | .llseek		= seq_lseek, | 
|  | 1454 | .release	= seq_release, | 
|  | 1455 | }; | 
|  | 1456 |  | 
|  | 1457 | static const struct seq_operations pagetypeinfo_op = { | 
|  | 1458 | .start	= frag_start, | 
|  | 1459 | .next	= frag_next, | 
|  | 1460 | .stop	= frag_stop, | 
|  | 1461 | .show	= pagetypeinfo_show, | 
|  | 1462 | }; | 
|  | 1463 |  | 
|  | 1464 | static int pagetypeinfo_open(struct inode *inode, struct file *file) | 
|  | 1465 | { | 
|  | 1466 | return seq_open(file, &pagetypeinfo_op); | 
|  | 1467 | } | 
|  | 1468 |  | 
|  | 1469 | static const struct file_operations pagetypeinfo_file_operations = { | 
|  | 1470 | .open		= pagetypeinfo_open, | 
|  | 1471 | .read		= seq_read, | 
|  | 1472 | .llseek		= seq_lseek, | 
|  | 1473 | .release	= seq_release, | 
|  | 1474 | }; | 
|  | 1475 |  | 
|  | 1476 | static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone) | 
|  | 1477 | { | 
|  | 1478 | int zid; | 
|  | 1479 |  | 
|  | 1480 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | 
|  | 1481 | struct zone *compare = &pgdat->node_zones[zid]; | 
|  | 1482 |  | 
|  | 1483 | if (populated_zone(compare)) | 
|  | 1484 | return zone == compare; | 
|  | 1485 | } | 
|  | 1486 |  | 
|  | 1487 | return false; | 
|  | 1488 | } | 
|  | 1489 |  | 
|  | 1490 | static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, | 
|  | 1491 | struct zone *zone) | 
|  | 1492 | { | 
|  | 1493 | int i; | 
|  | 1494 | seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); | 
|  | 1495 | if (is_zone_first_populated(pgdat, zone)) { | 
|  | 1496 | seq_printf(m, "\n  per-node stats"); | 
|  | 1497 | for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { | 
|  | 1498 | /* Skip hidden vmstat items. */ | 
|  | 1499 | if (*vmstat_text[i + NR_VM_ZONE_STAT_ITEMS + | 
|  | 1500 | NR_VM_NUMA_STAT_ITEMS] == '\0') | 
|  | 1501 | continue; | 
|  | 1502 | seq_printf(m, "\n      %-12s %lu", | 
|  | 1503 | vmstat_text[i + NR_VM_ZONE_STAT_ITEMS + | 
|  | 1504 | NR_VM_NUMA_STAT_ITEMS], | 
|  | 1505 | node_page_state(pgdat, i)); | 
|  | 1506 | } | 
|  | 1507 | } | 
|  | 1508 | seq_printf(m, | 
|  | 1509 | "\n  pages free     %lu" | 
|  | 1510 | "\n        min      %lu" | 
|  | 1511 | "\n        low      %lu" | 
|  | 1512 | "\n        high     %lu" | 
|  | 1513 | "\n        spanned  %lu" | 
|  | 1514 | "\n        present  %lu" | 
|  | 1515 | "\n        managed  %lu", | 
|  | 1516 | zone_page_state(zone, NR_FREE_PAGES), | 
|  | 1517 | min_wmark_pages(zone), | 
|  | 1518 | low_wmark_pages(zone), | 
|  | 1519 | high_wmark_pages(zone), | 
|  | 1520 | zone->spanned_pages, | 
|  | 1521 | zone->present_pages, | 
|  | 1522 | zone->managed_pages); | 
|  | 1523 |  | 
|  | 1524 | seq_printf(m, | 
|  | 1525 | "\n        protection: (%ld", | 
|  | 1526 | zone->lowmem_reserve[0]); | 
|  | 1527 | for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) | 
|  | 1528 | seq_printf(m, ", %ld", zone->lowmem_reserve[i]); | 
|  | 1529 | seq_putc(m, ')'); | 
|  | 1530 |  | 
|  | 1531 | /* If unpopulated, no other information is useful */ | 
|  | 1532 | if (!populated_zone(zone)) { | 
|  | 1533 | seq_putc(m, '\n'); | 
|  | 1534 | return; | 
|  | 1535 | } | 
|  | 1536 |  | 
|  | 1537 | for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) | 
|  | 1538 | seq_printf(m, "\n      %-12s %lu", vmstat_text[i], | 
|  | 1539 | zone_page_state(zone, i)); | 
|  | 1540 |  | 
|  | 1541 | #ifdef CONFIG_NUMA | 
|  | 1542 | for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) | 
|  | 1543 | seq_printf(m, "\n      %-12s %lu", | 
|  | 1544 | vmstat_text[i + NR_VM_ZONE_STAT_ITEMS], | 
|  | 1545 | zone_numa_state_snapshot(zone, i)); | 
|  | 1546 | #endif | 
|  | 1547 |  | 
|  | 1548 | seq_printf(m, "\n  pagesets"); | 
|  | 1549 | for_each_online_cpu(i) { | 
|  | 1550 | struct per_cpu_pageset *pageset; | 
|  | 1551 |  | 
|  | 1552 | pageset = per_cpu_ptr(zone->pageset, i); | 
|  | 1553 | seq_printf(m, | 
|  | 1554 | "\n    cpu: %i" | 
|  | 1555 | "\n              count: %i" | 
|  | 1556 | "\n              high:  %i" | 
|  | 1557 | "\n              batch: %i", | 
|  | 1558 | i, | 
|  | 1559 | pageset->pcp.count, | 
|  | 1560 | pageset->pcp.high, | 
|  | 1561 | pageset->pcp.batch); | 
|  | 1562 | #ifdef CONFIG_SMP | 
|  | 1563 | seq_printf(m, "\n  vm stats threshold: %d", | 
|  | 1564 | pageset->stat_threshold); | 
|  | 1565 | #endif | 
|  | 1566 | } | 
|  | 1567 | seq_printf(m, | 
|  | 1568 | "\n  node_unreclaimable:  %u" | 
|  | 1569 | "\n  start_pfn:           %lu" | 
|  | 1570 | "\n  node_inactive_ratio: %u", | 
|  | 1571 | pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES, | 
|  | 1572 | zone->zone_start_pfn, | 
|  | 1573 | zone->zone_pgdat->inactive_ratio); | 
|  | 1574 | seq_putc(m, '\n'); | 
|  | 1575 | } | 
|  | 1576 |  | 
|  | 1577 | /* | 
|  | 1578 | * Output information about zones in @pgdat.  All zones are printed regardless | 
|  | 1579 | * of whether they are populated or not: lowmem_reserve_ratio operates on the | 
|  | 1580 | * set of all zones and userspace would not be aware of such zones if they are | 
|  | 1581 | * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio). | 
|  | 1582 | */ | 
|  | 1583 | static int zoneinfo_show(struct seq_file *m, void *arg) | 
|  | 1584 | { | 
|  | 1585 | pg_data_t *pgdat = (pg_data_t *)arg; | 
|  | 1586 | walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print); | 
|  | 1587 | return 0; | 
|  | 1588 | } | 
|  | 1589 |  | 
|  | 1590 | static const struct seq_operations zoneinfo_op = { | 
|  | 1591 | .start	= frag_start, /* iterate over all zones. The same as in | 
|  | 1592 | * fragmentation. */ | 
|  | 1593 | .next	= frag_next, | 
|  | 1594 | .stop	= frag_stop, | 
|  | 1595 | .show	= zoneinfo_show, | 
|  | 1596 | }; | 
|  | 1597 |  | 
|  | 1598 | static int zoneinfo_open(struct inode *inode, struct file *file) | 
|  | 1599 | { | 
|  | 1600 | return seq_open(file, &zoneinfo_op); | 
|  | 1601 | } | 
|  | 1602 |  | 
|  | 1603 | static const struct file_operations zoneinfo_file_operations = { | 
|  | 1604 | .open		= zoneinfo_open, | 
|  | 1605 | .read		= seq_read, | 
|  | 1606 | .llseek		= seq_lseek, | 
|  | 1607 | .release	= seq_release, | 
|  | 1608 | }; | 
|  | 1609 |  | 
|  | 1610 | enum writeback_stat_item { | 
|  | 1611 | NR_DIRTY_THRESHOLD, | 
|  | 1612 | NR_DIRTY_BG_THRESHOLD, | 
|  | 1613 | NR_VM_WRITEBACK_STAT_ITEMS, | 
|  | 1614 | }; | 
|  | 1615 |  | 
|  | 1616 | static void *vmstat_start(struct seq_file *m, loff_t *pos) | 
|  | 1617 | { | 
|  | 1618 | unsigned long *v; | 
|  | 1619 | int i, stat_items_size; | 
|  | 1620 |  | 
|  | 1621 | if (*pos >= ARRAY_SIZE(vmstat_text)) | 
|  | 1622 | return NULL; | 
|  | 1623 | stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) + | 
|  | 1624 | NR_VM_NUMA_STAT_ITEMS * sizeof(unsigned long) + | 
|  | 1625 | NR_VM_NODE_STAT_ITEMS * sizeof(unsigned long) + | 
|  | 1626 | NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long); | 
|  | 1627 |  | 
|  | 1628 | #ifdef CONFIG_VM_EVENT_COUNTERS | 
|  | 1629 | stat_items_size += sizeof(struct vm_event_state); | 
|  | 1630 | #endif | 
|  | 1631 |  | 
|  | 1632 | v = kmalloc(stat_items_size, GFP_KERNEL); | 
|  | 1633 | m->private = v; | 
|  | 1634 | if (!v) | 
|  | 1635 | return ERR_PTR(-ENOMEM); | 
|  | 1636 | for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) | 
|  | 1637 | v[i] = global_zone_page_state(i); | 
|  | 1638 | v += NR_VM_ZONE_STAT_ITEMS; | 
|  | 1639 |  | 
|  | 1640 | #ifdef CONFIG_NUMA | 
|  | 1641 | for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) | 
|  | 1642 | v[i] = global_numa_state(i); | 
|  | 1643 | v += NR_VM_NUMA_STAT_ITEMS; | 
|  | 1644 | #endif | 
|  | 1645 |  | 
|  | 1646 | for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) | 
|  | 1647 | v[i] = global_node_page_state(i); | 
|  | 1648 | v += NR_VM_NODE_STAT_ITEMS; | 
|  | 1649 |  | 
|  | 1650 | global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD, | 
|  | 1651 | v + NR_DIRTY_THRESHOLD); | 
|  | 1652 | v += NR_VM_WRITEBACK_STAT_ITEMS; | 
|  | 1653 |  | 
|  | 1654 | #ifdef CONFIG_VM_EVENT_COUNTERS | 
|  | 1655 | all_vm_events(v); | 
|  | 1656 | v[PGPGIN] /= 2;		/* sectors -> kbytes */ | 
|  | 1657 | v[PGPGOUT] /= 2; | 
|  | 1658 | #endif | 
|  | 1659 | return (unsigned long *)m->private + *pos; | 
|  | 1660 | } | 
|  | 1661 |  | 
|  | 1662 | static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) | 
|  | 1663 | { | 
|  | 1664 | (*pos)++; | 
|  | 1665 | if (*pos >= ARRAY_SIZE(vmstat_text)) | 
|  | 1666 | return NULL; | 
|  | 1667 | return (unsigned long *)m->private + *pos; | 
|  | 1668 | } | 
|  | 1669 |  | 
|  | 1670 | static int vmstat_show(struct seq_file *m, void *arg) | 
|  | 1671 | { | 
|  | 1672 | unsigned long *l = arg; | 
|  | 1673 | unsigned long off = l - (unsigned long *)m->private; | 
|  | 1674 |  | 
|  | 1675 | /* Skip hidden vmstat items. */ | 
|  | 1676 | if (*vmstat_text[off] == '\0') | 
|  | 1677 | return 0; | 
|  | 1678 |  | 
|  | 1679 | seq_puts(m, vmstat_text[off]); | 
|  | 1680 | seq_put_decimal_ull(m, " ", *l); | 
|  | 1681 | seq_putc(m, '\n'); | 
|  | 1682 | return 0; | 
|  | 1683 | } | 
|  | 1684 |  | 
|  | 1685 | static void vmstat_stop(struct seq_file *m, void *arg) | 
|  | 1686 | { | 
|  | 1687 | kfree(m->private); | 
|  | 1688 | m->private = NULL; | 
|  | 1689 | } | 
|  | 1690 |  | 
|  | 1691 | static const struct seq_operations vmstat_op = { | 
|  | 1692 | .start	= vmstat_start, | 
|  | 1693 | .next	= vmstat_next, | 
|  | 1694 | .stop	= vmstat_stop, | 
|  | 1695 | .show	= vmstat_show, | 
|  | 1696 | }; | 
|  | 1697 |  | 
|  | 1698 | static int vmstat_open(struct inode *inode, struct file *file) | 
|  | 1699 | { | 
|  | 1700 | return seq_open(file, &vmstat_op); | 
|  | 1701 | } | 
|  | 1702 |  | 
|  | 1703 | static const struct file_operations vmstat_file_operations = { | 
|  | 1704 | .open		= vmstat_open, | 
|  | 1705 | .read		= seq_read, | 
|  | 1706 | .llseek		= seq_lseek, | 
|  | 1707 | .release	= seq_release, | 
|  | 1708 | }; | 
|  | 1709 | #endif /* CONFIG_PROC_FS */ | 
|  | 1710 |  | 
|  | 1711 | #ifdef CONFIG_SMP | 
|  | 1712 | static DEFINE_PER_CPU(struct delayed_work, vmstat_work); | 
|  | 1713 | int sysctl_stat_interval __read_mostly = HZ; | 
|  | 1714 |  | 
|  | 1715 | #ifdef CONFIG_PROC_FS | 
|  | 1716 | static void refresh_vm_stats(struct work_struct *work) | 
|  | 1717 | { | 
|  | 1718 | refresh_cpu_vm_stats(true); | 
|  | 1719 | } | 
|  | 1720 |  | 
|  | 1721 | int vmstat_refresh(struct ctl_table *table, int write, | 
|  | 1722 | void __user *buffer, size_t *lenp, loff_t *ppos) | 
|  | 1723 | { | 
|  | 1724 | long val; | 
|  | 1725 | int err; | 
|  | 1726 | int i; | 
|  | 1727 |  | 
|  | 1728 | /* | 
|  | 1729 | * The regular update, every sysctl_stat_interval, may come later | 
|  | 1730 | * than expected: leaving a significant amount in per_cpu buckets. | 
|  | 1731 | * This is particularly misleading when checking a quantity of HUGE | 
|  | 1732 | * pages, immediately after running a test.  /proc/sys/vm/stat_refresh, | 
|  | 1733 | * which can equally be echo'ed to or cat'ted from (by root), | 
|  | 1734 | * can be used to update the stats just before reading them. | 
|  | 1735 | * | 
|  | 1736 | * Oh, and since global_zone_page_state() etc. are so careful to hide | 
|  | 1737 | * transiently negative values, report an error here if any of | 
|  | 1738 | * the stats is negative, so we know to go looking for imbalance. | 
|  | 1739 | */ | 
|  | 1740 | err = schedule_on_each_cpu(refresh_vm_stats); | 
|  | 1741 | if (err) | 
|  | 1742 | return err; | 
|  | 1743 | for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { | 
|  | 1744 | val = atomic_long_read(&vm_zone_stat[i]); | 
|  | 1745 | if (val < 0) { | 
|  | 1746 | pr_warn("%s: %s %ld\n", | 
|  | 1747 | __func__, vmstat_text[i], val); | 
|  | 1748 | err = -EINVAL; | 
|  | 1749 | } | 
|  | 1750 | } | 
|  | 1751 | #ifdef CONFIG_NUMA | 
|  | 1752 | for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) { | 
|  | 1753 | val = atomic_long_read(&vm_numa_stat[i]); | 
|  | 1754 | if (val < 0) { | 
|  | 1755 | pr_warn("%s: %s %ld\n", | 
|  | 1756 | __func__, vmstat_text[i + NR_VM_ZONE_STAT_ITEMS], val); | 
|  | 1757 | err = -EINVAL; | 
|  | 1758 | } | 
|  | 1759 | } | 
|  | 1760 | #endif | 
|  | 1761 | if (err) | 
|  | 1762 | return err; | 
|  | 1763 | if (write) | 
|  | 1764 | *ppos += *lenp; | 
|  | 1765 | else | 
|  | 1766 | *lenp = 0; | 
|  | 1767 | return 0; | 
|  | 1768 | } | 
|  | 1769 | #endif /* CONFIG_PROC_FS */ | 
|  | 1770 |  | 
|  | 1771 | static void vmstat_update(struct work_struct *w) | 
|  | 1772 | { | 
|  | 1773 | if (refresh_cpu_vm_stats(true)) { | 
|  | 1774 | /* | 
|  | 1775 | * Counters were updated so we expect more updates | 
|  | 1776 | * to occur in the future. Keep on running the | 
|  | 1777 | * update worker thread. | 
|  | 1778 | */ | 
|  | 1779 | queue_delayed_work_on(smp_processor_id(), mm_percpu_wq, | 
|  | 1780 | this_cpu_ptr(&vmstat_work), | 
|  | 1781 | round_jiffies_relative(sysctl_stat_interval)); | 
|  | 1782 | } | 
|  | 1783 | } | 
|  | 1784 |  | 
|  | 1785 | /* | 
|  | 1786 | * Switch off vmstat processing and then fold all the remaining differentials | 
|  | 1787 | * until the diffs stay at zero. The function is used by NOHZ and can only be | 
|  | 1788 | * invoked when tick processing is not active. | 
|  | 1789 | */ | 
|  | 1790 | /* | 
|  | 1791 | * Check if the diffs for a certain cpu indicate that | 
|  | 1792 | * an update is needed. | 
|  | 1793 | */ | 
|  | 1794 | static bool need_update(int cpu) | 
|  | 1795 | { | 
|  | 1796 | struct zone *zone; | 
|  | 1797 |  | 
|  | 1798 | for_each_populated_zone(zone) { | 
|  | 1799 | struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu); | 
|  | 1800 |  | 
|  | 1801 | BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1); | 
|  | 1802 | #ifdef CONFIG_NUMA | 
|  | 1803 | BUILD_BUG_ON(sizeof(p->vm_numa_stat_diff[0]) != 2); | 
|  | 1804 | #endif | 
|  | 1805 |  | 
|  | 1806 | /* | 
|  | 1807 | * The fast way of checking if there are any vmstat diffs. | 
|  | 1808 | */ | 
|  | 1809 | if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS * | 
|  | 1810 | sizeof(p->vm_stat_diff[0]))) | 
|  | 1811 | return true; | 
|  | 1812 | #ifdef CONFIG_NUMA | 
|  | 1813 | if (memchr_inv(p->vm_numa_stat_diff, 0, NR_VM_NUMA_STAT_ITEMS * | 
|  | 1814 | sizeof(p->vm_numa_stat_diff[0]))) | 
|  | 1815 | return true; | 
|  | 1816 | #endif | 
|  | 1817 | } | 
|  | 1818 | return false; | 
|  | 1819 | } | 
|  | 1820 |  | 
|  | 1821 | /* | 
|  | 1822 | * Switch off vmstat processing and then fold all the remaining differentials | 
|  | 1823 | * until the diffs stay at zero. The function is used by NOHZ and can only be | 
|  | 1824 | * invoked when tick processing is not active. | 
|  | 1825 | */ | 
|  | 1826 | void quiet_vmstat(void) | 
|  | 1827 | { | 
|  | 1828 | if (system_state != SYSTEM_RUNNING) | 
|  | 1829 | return; | 
|  | 1830 |  | 
|  | 1831 | if (!delayed_work_pending(this_cpu_ptr(&vmstat_work))) | 
|  | 1832 | return; | 
|  | 1833 |  | 
|  | 1834 | if (!need_update(smp_processor_id())) | 
|  | 1835 | return; | 
|  | 1836 |  | 
|  | 1837 | /* | 
|  | 1838 | * Just refresh counters and do not care about the pending delayed | 
|  | 1839 | * vmstat_update. It doesn't fire that often to matter and canceling | 
|  | 1840 | * it would be too expensive from this path. | 
|  | 1841 | * vmstat_shepherd will take care about that for us. | 
|  | 1842 | */ | 
|  | 1843 | refresh_cpu_vm_stats(false); | 
|  | 1844 | } | 
|  | 1845 |  | 
|  | 1846 | /* | 
|  | 1847 | * Shepherd worker thread that checks the | 
|  | 1848 | * differentials of processors that have their worker | 
|  | 1849 | * threads for vm statistics updates disabled because of | 
|  | 1850 | * inactivity. | 
|  | 1851 | */ | 
|  | 1852 | static void vmstat_shepherd(struct work_struct *w); | 
|  | 1853 |  | 
|  | 1854 | static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd); | 
|  | 1855 |  | 
|  | 1856 | static void vmstat_shepherd(struct work_struct *w) | 
|  | 1857 | { | 
|  | 1858 | int cpu; | 
|  | 1859 |  | 
|  | 1860 | get_online_cpus(); | 
|  | 1861 | /* Check processors whose vmstat worker threads have been disabled */ | 
|  | 1862 | for_each_online_cpu(cpu) { | 
|  | 1863 | struct delayed_work *dw = &per_cpu(vmstat_work, cpu); | 
|  | 1864 |  | 
|  | 1865 | if (!delayed_work_pending(dw) && need_update(cpu)) | 
|  | 1866 | queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0); | 
|  | 1867 | } | 
|  | 1868 | put_online_cpus(); | 
|  | 1869 |  | 
|  | 1870 | schedule_delayed_work(&shepherd, | 
|  | 1871 | round_jiffies_relative(sysctl_stat_interval)); | 
|  | 1872 | } | 
|  | 1873 |  | 
|  | 1874 | static void __init start_shepherd_timer(void) | 
|  | 1875 | { | 
|  | 1876 | int cpu; | 
|  | 1877 |  | 
|  | 1878 | for_each_possible_cpu(cpu) | 
|  | 1879 | INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu), | 
|  | 1880 | vmstat_update); | 
|  | 1881 |  | 
|  | 1882 | schedule_delayed_work(&shepherd, | 
|  | 1883 | round_jiffies_relative(sysctl_stat_interval)); | 
|  | 1884 | } | 
|  | 1885 |  | 
|  | 1886 | static void __init init_cpu_node_state(void) | 
|  | 1887 | { | 
|  | 1888 | int node; | 
|  | 1889 |  | 
|  | 1890 | for_each_online_node(node) { | 
|  | 1891 | if (cpumask_weight(cpumask_of_node(node)) > 0) | 
|  | 1892 | node_set_state(node, N_CPU); | 
|  | 1893 | } | 
|  | 1894 | } | 
|  | 1895 |  | 
|  | 1896 | static int vmstat_cpu_online(unsigned int cpu) | 
|  | 1897 | { | 
|  | 1898 | refresh_zone_stat_thresholds(); | 
|  | 1899 | node_set_state(cpu_to_node(cpu), N_CPU); | 
|  | 1900 | return 0; | 
|  | 1901 | } | 
|  | 1902 |  | 
|  | 1903 | static int vmstat_cpu_down_prep(unsigned int cpu) | 
|  | 1904 | { | 
|  | 1905 | cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu)); | 
|  | 1906 | return 0; | 
|  | 1907 | } | 
|  | 1908 |  | 
|  | 1909 | static int vmstat_cpu_dead(unsigned int cpu) | 
|  | 1910 | { | 
|  | 1911 | const struct cpumask *node_cpus; | 
|  | 1912 | int node; | 
|  | 1913 |  | 
|  | 1914 | node = cpu_to_node(cpu); | 
|  | 1915 |  | 
|  | 1916 | refresh_zone_stat_thresholds(); | 
|  | 1917 | node_cpus = cpumask_of_node(node); | 
|  | 1918 | if (cpumask_weight(node_cpus) > 0) | 
|  | 1919 | return 0; | 
|  | 1920 |  | 
|  | 1921 | node_clear_state(node, N_CPU); | 
|  | 1922 | return 0; | 
|  | 1923 | } | 
|  | 1924 |  | 
|  | 1925 | #endif | 
|  | 1926 |  | 
|  | 1927 | struct workqueue_struct *mm_percpu_wq; | 
|  | 1928 |  | 
|  | 1929 | void __init init_mm_internals(void) | 
|  | 1930 | { | 
|  | 1931 | int ret __maybe_unused; | 
|  | 1932 |  | 
|  | 1933 | mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0); | 
|  | 1934 |  | 
|  | 1935 | #ifdef CONFIG_SMP | 
|  | 1936 | ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead", | 
|  | 1937 | NULL, vmstat_cpu_dead); | 
|  | 1938 | if (ret < 0) | 
|  | 1939 | pr_err("vmstat: failed to register 'dead' hotplug state\n"); | 
|  | 1940 |  | 
|  | 1941 | ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online", | 
|  | 1942 | vmstat_cpu_online, | 
|  | 1943 | vmstat_cpu_down_prep); | 
|  | 1944 | if (ret < 0) | 
|  | 1945 | pr_err("vmstat: failed to register 'online' hotplug state\n"); | 
|  | 1946 |  | 
|  | 1947 | get_online_cpus(); | 
|  | 1948 | init_cpu_node_state(); | 
|  | 1949 | put_online_cpus(); | 
|  | 1950 |  | 
|  | 1951 | start_shepherd_timer(); | 
|  | 1952 | #endif | 
|  | 1953 | #ifdef CONFIG_PROC_FS | 
|  | 1954 | proc_create("buddyinfo", 0444, NULL, &buddyinfo_file_operations); | 
|  | 1955 | proc_create("pagetypeinfo", 0400, NULL, &pagetypeinfo_file_operations); | 
|  | 1956 | proc_create("vmstat", 0444, NULL, &vmstat_file_operations); | 
|  | 1957 | proc_create("zoneinfo", 0444, NULL, &zoneinfo_file_operations); | 
|  | 1958 | #endif | 
|  | 1959 | } | 
|  | 1960 |  | 
|  | 1961 | #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION) | 
|  | 1962 |  | 
|  | 1963 | /* | 
|  | 1964 | * Return an index indicating how much of the available free memory is | 
|  | 1965 | * unusable for an allocation of the requested size. | 
|  | 1966 | */ | 
|  | 1967 | static int unusable_free_index(unsigned int order, | 
|  | 1968 | struct contig_page_info *info) | 
|  | 1969 | { | 
|  | 1970 | /* No free memory is interpreted as all free memory is unusable */ | 
|  | 1971 | if (info->free_pages == 0) | 
|  | 1972 | return 1000; | 
|  | 1973 |  | 
|  | 1974 | /* | 
|  | 1975 | * Index should be a value between 0 and 1. Return a value to 3 | 
|  | 1976 | * decimal places. | 
|  | 1977 | * | 
|  | 1978 | * 0 => no fragmentation | 
|  | 1979 | * 1 => high fragmentation | 
|  | 1980 | */ | 
|  | 1981 | return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages); | 
|  | 1982 |  | 
|  | 1983 | } | 
|  | 1984 |  | 
|  | 1985 | static void unusable_show_print(struct seq_file *m, | 
|  | 1986 | pg_data_t *pgdat, struct zone *zone) | 
|  | 1987 | { | 
|  | 1988 | unsigned int order; | 
|  | 1989 | int index; | 
|  | 1990 | struct contig_page_info info; | 
|  | 1991 |  | 
|  | 1992 | seq_printf(m, "Node %d, zone %8s ", | 
|  | 1993 | pgdat->node_id, | 
|  | 1994 | zone->name); | 
|  | 1995 | for (order = 0; order < MAX_ORDER; ++order) { | 
|  | 1996 | fill_contig_page_info(zone, order, &info); | 
|  | 1997 | index = unusable_free_index(order, &info); | 
|  | 1998 | seq_printf(m, "%d.%03d ", index / 1000, index % 1000); | 
|  | 1999 | } | 
|  | 2000 |  | 
|  | 2001 | seq_putc(m, '\n'); | 
|  | 2002 | } | 
|  | 2003 |  | 
|  | 2004 | /* | 
|  | 2005 | * Display unusable free space index | 
|  | 2006 | * | 
|  | 2007 | * The unusable free space index measures how much of the available free | 
|  | 2008 | * memory cannot be used to satisfy an allocation of a given size and is a | 
|  | 2009 | * value between 0 and 1. The higher the value, the more of free memory is | 
|  | 2010 | * unusable and by implication, the worse the external fragmentation is. This | 
|  | 2011 | * can be expressed as a percentage by multiplying by 100. | 
|  | 2012 | */ | 
|  | 2013 | static int unusable_show(struct seq_file *m, void *arg) | 
|  | 2014 | { | 
|  | 2015 | pg_data_t *pgdat = (pg_data_t *)arg; | 
|  | 2016 |  | 
|  | 2017 | /* check memoryless node */ | 
|  | 2018 | if (!node_state(pgdat->node_id, N_MEMORY)) | 
|  | 2019 | return 0; | 
|  | 2020 |  | 
|  | 2021 | walk_zones_in_node(m, pgdat, true, false, unusable_show_print); | 
|  | 2022 |  | 
|  | 2023 | return 0; | 
|  | 2024 | } | 
|  | 2025 |  | 
|  | 2026 | static const struct seq_operations unusable_op = { | 
|  | 2027 | .start	= frag_start, | 
|  | 2028 | .next	= frag_next, | 
|  | 2029 | .stop	= frag_stop, | 
|  | 2030 | .show	= unusable_show, | 
|  | 2031 | }; | 
|  | 2032 |  | 
|  | 2033 | static int unusable_open(struct inode *inode, struct file *file) | 
|  | 2034 | { | 
|  | 2035 | return seq_open(file, &unusable_op); | 
|  | 2036 | } | 
|  | 2037 |  | 
|  | 2038 | static const struct file_operations unusable_file_ops = { | 
|  | 2039 | .open		= unusable_open, | 
|  | 2040 | .read		= seq_read, | 
|  | 2041 | .llseek		= seq_lseek, | 
|  | 2042 | .release	= seq_release, | 
|  | 2043 | }; | 
|  | 2044 |  | 
|  | 2045 | static void extfrag_show_print(struct seq_file *m, | 
|  | 2046 | pg_data_t *pgdat, struct zone *zone) | 
|  | 2047 | { | 
|  | 2048 | unsigned int order; | 
|  | 2049 | int index; | 
|  | 2050 |  | 
|  | 2051 | /* Alloc on stack as interrupts are disabled for zone walk */ | 
|  | 2052 | struct contig_page_info info; | 
|  | 2053 |  | 
|  | 2054 | seq_printf(m, "Node %d, zone %8s ", | 
|  | 2055 | pgdat->node_id, | 
|  | 2056 | zone->name); | 
|  | 2057 | for (order = 0; order < MAX_ORDER; ++order) { | 
|  | 2058 | fill_contig_page_info(zone, order, &info); | 
|  | 2059 | index = __fragmentation_index(order, &info); | 
|  | 2060 | seq_printf(m, "%d.%03d ", index / 1000, index % 1000); | 
|  | 2061 | } | 
|  | 2062 |  | 
|  | 2063 | seq_putc(m, '\n'); | 
|  | 2064 | } | 
|  | 2065 |  | 
|  | 2066 | /* | 
|  | 2067 | * Display fragmentation index for orders that allocations would fail for | 
|  | 2068 | */ | 
|  | 2069 | static int extfrag_show(struct seq_file *m, void *arg) | 
|  | 2070 | { | 
|  | 2071 | pg_data_t *pgdat = (pg_data_t *)arg; | 
|  | 2072 |  | 
|  | 2073 | walk_zones_in_node(m, pgdat, true, false, extfrag_show_print); | 
|  | 2074 |  | 
|  | 2075 | return 0; | 
|  | 2076 | } | 
|  | 2077 |  | 
|  | 2078 | static const struct seq_operations extfrag_op = { | 
|  | 2079 | .start	= frag_start, | 
|  | 2080 | .next	= frag_next, | 
|  | 2081 | .stop	= frag_stop, | 
|  | 2082 | .show	= extfrag_show, | 
|  | 2083 | }; | 
|  | 2084 |  | 
|  | 2085 | static int extfrag_open(struct inode *inode, struct file *file) | 
|  | 2086 | { | 
|  | 2087 | return seq_open(file, &extfrag_op); | 
|  | 2088 | } | 
|  | 2089 |  | 
|  | 2090 | static const struct file_operations extfrag_file_ops = { | 
|  | 2091 | .open		= extfrag_open, | 
|  | 2092 | .read		= seq_read, | 
|  | 2093 | .llseek		= seq_lseek, | 
|  | 2094 | .release	= seq_release, | 
|  | 2095 | }; | 
|  | 2096 |  | 
|  | 2097 | static int __init extfrag_debug_init(void) | 
|  | 2098 | { | 
|  | 2099 | struct dentry *extfrag_debug_root; | 
|  | 2100 |  | 
|  | 2101 | extfrag_debug_root = debugfs_create_dir("extfrag", NULL); | 
|  | 2102 | if (!extfrag_debug_root) | 
|  | 2103 | return -ENOMEM; | 
|  | 2104 |  | 
|  | 2105 | if (!debugfs_create_file("unusable_index", 0444, | 
|  | 2106 | extfrag_debug_root, NULL, &unusable_file_ops)) | 
|  | 2107 | goto fail; | 
|  | 2108 |  | 
|  | 2109 | if (!debugfs_create_file("extfrag_index", 0444, | 
|  | 2110 | extfrag_debug_root, NULL, &extfrag_file_ops)) | 
|  | 2111 | goto fail; | 
|  | 2112 |  | 
|  | 2113 | return 0; | 
|  | 2114 | fail: | 
|  | 2115 | debugfs_remove_recursive(extfrag_debug_root); | 
|  | 2116 | return -ENOMEM; | 
|  | 2117 | } | 
|  | 2118 |  | 
|  | 2119 | module_init(extfrag_debug_init); | 
|  | 2120 | #endif |