| rjw | 1f88458 | 2022-01-06 17:20:42 +0800 | [diff] [blame] | 1 | /* | 
|  | 2 | * IEEE754 floating point | 
|  | 3 | * double precision internal header file | 
|  | 4 | */ | 
|  | 5 | /* | 
|  | 6 | * MIPS floating point support | 
|  | 7 | * Copyright (C) 1994-2000 Algorithmics Ltd. | 
|  | 8 | * | 
|  | 9 | *  This program is free software; you can distribute it and/or modify it | 
|  | 10 | *  under the terms of the GNU General Public License (Version 2) as | 
|  | 11 | *  published by the Free Software Foundation. | 
|  | 12 | * | 
|  | 13 | *  This program is distributed in the hope it will be useful, but WITHOUT | 
|  | 14 | *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | 15 | *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License | 
|  | 16 | *  for more details. | 
|  | 17 | * | 
|  | 18 | *  You should have received a copy of the GNU General Public License along | 
|  | 19 | *  with this program; if not, write to the Free Software Foundation, Inc., | 
|  | 20 | *  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA. | 
|  | 21 | */ | 
|  | 22 |  | 
|  | 23 | #include <linux/compiler.h> | 
|  | 24 |  | 
|  | 25 | #include "ieee754int.h" | 
|  | 26 |  | 
|  | 27 | #define assert(expr) ((void)0) | 
|  | 28 |  | 
|  | 29 | #define SP_EBIAS	127 | 
|  | 30 | #define SP_EMIN		(-126) | 
|  | 31 | #define SP_EMAX		127 | 
|  | 32 | #define SP_FBITS	23 | 
|  | 33 | #define SP_MBITS	23 | 
|  | 34 |  | 
|  | 35 | #define SP_MBIT(x)	((u32)1 << (x)) | 
|  | 36 | #define SP_HIDDEN_BIT	SP_MBIT(SP_FBITS) | 
|  | 37 | #define SP_SIGN_BIT	SP_MBIT(31) | 
|  | 38 |  | 
|  | 39 | #define SPSIGN(sp)	(sp.sign) | 
|  | 40 | #define SPBEXP(sp)	(sp.bexp) | 
|  | 41 | #define SPMANT(sp)	(sp.mant) | 
|  | 42 |  | 
|  | 43 | static inline int ieee754sp_finite(union ieee754sp x) | 
|  | 44 | { | 
|  | 45 | return SPBEXP(x) != SP_EMAX + 1 + SP_EBIAS; | 
|  | 46 | } | 
|  | 47 |  | 
|  | 48 | /* 64 bit right shift with rounding */ | 
|  | 49 | #define XSPSRS64(v, rs)						\ | 
|  | 50 | (((rs) >= 64) ? ((v) != 0) : ((v) >> (rs)) | ((v) << (64-(rs)) != 0)) | 
|  | 51 |  | 
|  | 52 | /* 3bit extended single precision sticky right shift */ | 
|  | 53 | #define XSPSRS(v, rs)						\ | 
|  | 54 | ((rs > (SP_FBITS+3))?1:((v) >> (rs)) | ((v) << (32-(rs)) != 0)) | 
|  | 55 |  | 
|  | 56 | #define XSPSRS1(m) \ | 
|  | 57 | ((m >> 1) | (m & 1)) | 
|  | 58 |  | 
|  | 59 | #define SPXSRSX1() \ | 
|  | 60 | (xe++, (xm = XSPSRS1(xm))) | 
|  | 61 |  | 
|  | 62 | #define SPXSRSY1() \ | 
|  | 63 | (ye++, (ym = XSPSRS1(ym))) | 
|  | 64 |  | 
|  | 65 | /* convert denormal to normalized with extended exponent */ | 
|  | 66 | #define SPDNORMx(m,e) \ | 
|  | 67 | while ((m >> SP_FBITS) == 0) { m <<= 1; e--; } | 
|  | 68 | #define SPDNORMX	SPDNORMx(xm, xe) | 
|  | 69 | #define SPDNORMY	SPDNORMx(ym, ye) | 
|  | 70 | #define SPDNORMZ	SPDNORMx(zm, ze) | 
|  | 71 |  | 
|  | 72 | static inline union ieee754sp buildsp(int s, int bx, unsigned m) | 
|  | 73 | { | 
|  | 74 | union ieee754sp r; | 
|  | 75 |  | 
|  | 76 | assert((s) == 0 || (s) == 1); | 
|  | 77 | assert((bx) >= SP_EMIN - 1 + SP_EBIAS | 
|  | 78 | && (bx) <= SP_EMAX + 1 + SP_EBIAS); | 
|  | 79 | assert(((m) >> SP_FBITS) == 0); | 
|  | 80 |  | 
|  | 81 | r.sign = s; | 
|  | 82 | r.bexp = bx; | 
|  | 83 | r.mant = m; | 
|  | 84 |  | 
|  | 85 | return r; | 
|  | 86 | } | 
|  | 87 |  | 
|  | 88 | extern union ieee754sp __cold ieee754sp_nanxcpt(union ieee754sp); | 
|  | 89 | extern union ieee754sp ieee754sp_format(int, int, unsigned); |