| rjw | 1f88458 | 2022-01-06 17:20:42 +0800 | [diff] [blame] | 1 | /* | 
|  | 2 | * Copyright (C) 2003 Jana Saout <jana@saout.de> | 
|  | 3 | * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org> | 
|  | 4 | * Copyright (C) 2006-2017 Red Hat, Inc. All rights reserved. | 
|  | 5 | * Copyright (C) 2013-2017 Milan Broz <gmazyland@gmail.com> | 
|  | 6 | * | 
|  | 7 | * This file is released under the GPL. | 
|  | 8 | */ | 
|  | 9 |  | 
|  | 10 | #include <linux/completion.h> | 
|  | 11 | #include <linux/err.h> | 
|  | 12 | #include <linux/module.h> | 
|  | 13 | #include <linux/init.h> | 
|  | 14 | #include <linux/kernel.h> | 
|  | 15 | #include <linux/key.h> | 
|  | 16 | #include <linux/bio.h> | 
|  | 17 | #include <linux/blkdev.h> | 
|  | 18 | #include <linux/mempool.h> | 
|  | 19 | #include <linux/slab.h> | 
|  | 20 | #include <linux/crypto.h> | 
|  | 21 | #include <linux/workqueue.h> | 
|  | 22 | #include <linux/kthread.h> | 
|  | 23 | #include <linux/backing-dev.h> | 
|  | 24 | #include <linux/atomic.h> | 
|  | 25 | #include <linux/scatterlist.h> | 
|  | 26 | #include <linux/rbtree.h> | 
|  | 27 | #include <linux/ctype.h> | 
|  | 28 | #include <asm/page.h> | 
|  | 29 | #include <asm/unaligned.h> | 
|  | 30 | #include <crypto/hash.h> | 
|  | 31 | #include <crypto/md5.h> | 
|  | 32 | #include <crypto/algapi.h> | 
|  | 33 | #include <crypto/skcipher.h> | 
|  | 34 | #include <crypto/aead.h> | 
|  | 35 | #include <crypto/authenc.h> | 
|  | 36 | #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */ | 
|  | 37 | #include <keys/user-type.h> | 
|  | 38 |  | 
|  | 39 | #include <linux/device-mapper.h> | 
|  | 40 |  | 
|  | 41 | #define DM_MSG_PREFIX "crypt" | 
|  | 42 |  | 
|  | 43 | /* | 
|  | 44 | * context holding the current state of a multi-part conversion | 
|  | 45 | */ | 
|  | 46 | struct convert_context { | 
|  | 47 | struct completion restart; | 
|  | 48 | struct bio *bio_in; | 
|  | 49 | struct bio *bio_out; | 
|  | 50 | struct bvec_iter iter_in; | 
|  | 51 | struct bvec_iter iter_out; | 
|  | 52 | u64 cc_sector; | 
|  | 53 | atomic_t cc_pending; | 
|  | 54 | union { | 
|  | 55 | struct skcipher_request *req; | 
|  | 56 | struct aead_request *req_aead; | 
|  | 57 | } r; | 
|  | 58 |  | 
|  | 59 | }; | 
|  | 60 |  | 
|  | 61 | /* | 
|  | 62 | * per bio private data | 
|  | 63 | */ | 
|  | 64 | struct dm_crypt_io { | 
|  | 65 | struct crypt_config *cc; | 
|  | 66 | struct bio *base_bio; | 
|  | 67 | u8 *integrity_metadata; | 
|  | 68 | bool integrity_metadata_from_pool; | 
|  | 69 | struct work_struct work; | 
|  | 70 |  | 
|  | 71 | struct convert_context ctx; | 
|  | 72 |  | 
|  | 73 | atomic_t io_pending; | 
|  | 74 | blk_status_t error; | 
|  | 75 | sector_t sector; | 
|  | 76 |  | 
|  | 77 | struct rb_node rb_node; | 
|  | 78 | } CRYPTO_MINALIGN_ATTR; | 
|  | 79 |  | 
|  | 80 | struct dm_crypt_request { | 
|  | 81 | struct convert_context *ctx; | 
|  | 82 | struct scatterlist sg_in[4]; | 
|  | 83 | struct scatterlist sg_out[4]; | 
|  | 84 | u64 iv_sector; | 
|  | 85 | }; | 
|  | 86 |  | 
|  | 87 | struct crypt_config; | 
|  | 88 |  | 
|  | 89 | struct crypt_iv_operations { | 
|  | 90 | int (*ctr)(struct crypt_config *cc, struct dm_target *ti, | 
|  | 91 | const char *opts); | 
|  | 92 | void (*dtr)(struct crypt_config *cc); | 
|  | 93 | int (*init)(struct crypt_config *cc); | 
|  | 94 | int (*wipe)(struct crypt_config *cc); | 
|  | 95 | int (*generator)(struct crypt_config *cc, u8 *iv, | 
|  | 96 | struct dm_crypt_request *dmreq); | 
|  | 97 | int (*post)(struct crypt_config *cc, u8 *iv, | 
|  | 98 | struct dm_crypt_request *dmreq); | 
|  | 99 | }; | 
|  | 100 |  | 
|  | 101 | struct iv_essiv_private { | 
|  | 102 | struct crypto_ahash *hash_tfm; | 
|  | 103 | u8 *salt; | 
|  | 104 | }; | 
|  | 105 |  | 
|  | 106 | struct iv_benbi_private { | 
|  | 107 | int shift; | 
|  | 108 | }; | 
|  | 109 |  | 
|  | 110 | #define LMK_SEED_SIZE 64 /* hash + 0 */ | 
|  | 111 | struct iv_lmk_private { | 
|  | 112 | struct crypto_shash *hash_tfm; | 
|  | 113 | u8 *seed; | 
|  | 114 | }; | 
|  | 115 |  | 
|  | 116 | #define TCW_WHITENING_SIZE 16 | 
|  | 117 | struct iv_tcw_private { | 
|  | 118 | struct crypto_shash *crc32_tfm; | 
|  | 119 | u8 *iv_seed; | 
|  | 120 | u8 *whitening; | 
|  | 121 | }; | 
|  | 122 |  | 
|  | 123 | /* | 
|  | 124 | * Crypt: maps a linear range of a block device | 
|  | 125 | * and encrypts / decrypts at the same time. | 
|  | 126 | */ | 
|  | 127 | enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID, | 
|  | 128 | DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD }; | 
|  | 129 |  | 
|  | 130 | enum cipher_flags { | 
|  | 131 | CRYPT_MODE_INTEGRITY_AEAD,	/* Use authenticated mode for cihper */ | 
|  | 132 | CRYPT_IV_LARGE_SECTORS,		/* Calculate IV from sector_size, not 512B sectors */ | 
|  | 133 | }; | 
|  | 134 |  | 
|  | 135 | /* | 
|  | 136 | * The fields in here must be read only after initialization. | 
|  | 137 | */ | 
|  | 138 | struct crypt_config { | 
|  | 139 | struct dm_dev *dev; | 
|  | 140 | sector_t start; | 
|  | 141 |  | 
|  | 142 | /* | 
|  | 143 | * pool for per bio private data, crypto requests, | 
|  | 144 | * encryption requeusts/buffer pages and integrity tags | 
|  | 145 | */ | 
|  | 146 | mempool_t *req_pool; | 
|  | 147 | mempool_t *page_pool; | 
|  | 148 | mempool_t *tag_pool; | 
|  | 149 | unsigned tag_pool_max_sectors; | 
|  | 150 |  | 
|  | 151 | struct percpu_counter n_allocated_pages; | 
|  | 152 |  | 
|  | 153 | struct bio_set *bs; | 
|  | 154 | struct mutex bio_alloc_lock; | 
|  | 155 |  | 
|  | 156 | struct workqueue_struct *io_queue; | 
|  | 157 | struct workqueue_struct *crypt_queue; | 
|  | 158 |  | 
|  | 159 | struct task_struct *write_thread; | 
|  | 160 | wait_queue_head_t write_thread_wait; | 
|  | 161 | struct rb_root write_tree; | 
|  | 162 |  | 
|  | 163 | char *cipher; | 
|  | 164 | char *cipher_string; | 
|  | 165 | char *cipher_auth; | 
|  | 166 | char *key_string; | 
|  | 167 |  | 
|  | 168 | const struct crypt_iv_operations *iv_gen_ops; | 
|  | 169 | union { | 
|  | 170 | struct iv_essiv_private essiv; | 
|  | 171 | struct iv_benbi_private benbi; | 
|  | 172 | struct iv_lmk_private lmk; | 
|  | 173 | struct iv_tcw_private tcw; | 
|  | 174 | } iv_gen_private; | 
|  | 175 | u64 iv_offset; | 
|  | 176 | unsigned int iv_size; | 
|  | 177 | unsigned short int sector_size; | 
|  | 178 | unsigned char sector_shift; | 
|  | 179 |  | 
|  | 180 | /* ESSIV: struct crypto_cipher *essiv_tfm */ | 
|  | 181 | void *iv_private; | 
|  | 182 | union { | 
|  | 183 | struct crypto_skcipher **tfms; | 
|  | 184 | struct crypto_aead **tfms_aead; | 
|  | 185 | } cipher_tfm; | 
|  | 186 | unsigned tfms_count; | 
|  | 187 | unsigned long cipher_flags; | 
|  | 188 |  | 
|  | 189 | /* | 
|  | 190 | * Layout of each crypto request: | 
|  | 191 | * | 
|  | 192 | *   struct skcipher_request | 
|  | 193 | *      context | 
|  | 194 | *      padding | 
|  | 195 | *   struct dm_crypt_request | 
|  | 196 | *      padding | 
|  | 197 | *   IV | 
|  | 198 | * | 
|  | 199 | * The padding is added so that dm_crypt_request and the IV are | 
|  | 200 | * correctly aligned. | 
|  | 201 | */ | 
|  | 202 | unsigned int dmreq_start; | 
|  | 203 |  | 
|  | 204 | unsigned int per_bio_data_size; | 
|  | 205 |  | 
|  | 206 | unsigned long flags; | 
|  | 207 | unsigned int key_size; | 
|  | 208 | unsigned int key_parts;      /* independent parts in key buffer */ | 
|  | 209 | unsigned int key_extra_size; /* additional keys length */ | 
|  | 210 | unsigned int key_mac_size;   /* MAC key size for authenc(...) */ | 
|  | 211 |  | 
|  | 212 | unsigned int integrity_tag_size; | 
|  | 213 | unsigned int integrity_iv_size; | 
|  | 214 | unsigned int on_disk_tag_size; | 
|  | 215 |  | 
|  | 216 | u8 *authenc_key; /* space for keys in authenc() format (if used) */ | 
|  | 217 | u8 key[0]; | 
|  | 218 | }; | 
|  | 219 |  | 
|  | 220 | #define MIN_IOS		64 | 
|  | 221 | #define MAX_TAG_SIZE	480 | 
|  | 222 | #define POOL_ENTRY_SIZE	512 | 
|  | 223 |  | 
|  | 224 | static DEFINE_SPINLOCK(dm_crypt_clients_lock); | 
|  | 225 | static unsigned dm_crypt_clients_n = 0; | 
|  | 226 | static volatile unsigned long dm_crypt_pages_per_client; | 
|  | 227 | #define DM_CRYPT_MEMORY_PERCENT			2 | 
|  | 228 | #define DM_CRYPT_MIN_PAGES_PER_CLIENT		(BIO_MAX_PAGES * 16) | 
|  | 229 |  | 
|  | 230 | static void clone_init(struct dm_crypt_io *, struct bio *); | 
|  | 231 | static void kcryptd_queue_crypt(struct dm_crypt_io *io); | 
|  | 232 | static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc, | 
|  | 233 | struct scatterlist *sg); | 
|  | 234 |  | 
|  | 235 | /* | 
|  | 236 | * Use this to access cipher attributes that are independent of the key. | 
|  | 237 | */ | 
|  | 238 | static struct crypto_skcipher *any_tfm(struct crypt_config *cc) | 
|  | 239 | { | 
|  | 240 | return cc->cipher_tfm.tfms[0]; | 
|  | 241 | } | 
|  | 242 |  | 
|  | 243 | static struct crypto_aead *any_tfm_aead(struct crypt_config *cc) | 
|  | 244 | { | 
|  | 245 | return cc->cipher_tfm.tfms_aead[0]; | 
|  | 246 | } | 
|  | 247 |  | 
|  | 248 | /* | 
|  | 249 | * Different IV generation algorithms: | 
|  | 250 | * | 
|  | 251 | * plain: the initial vector is the 32-bit little-endian version of the sector | 
|  | 252 | *        number, padded with zeros if necessary. | 
|  | 253 | * | 
|  | 254 | * plain64: the initial vector is the 64-bit little-endian version of the sector | 
|  | 255 | *        number, padded with zeros if necessary. | 
|  | 256 | * | 
|  | 257 | * plain64be: the initial vector is the 64-bit big-endian version of the sector | 
|  | 258 | *        number, padded with zeros if necessary. | 
|  | 259 | * | 
|  | 260 | * essiv: "encrypted sector|salt initial vector", the sector number is | 
|  | 261 | *        encrypted with the bulk cipher using a salt as key. The salt | 
|  | 262 | *        should be derived from the bulk cipher's key via hashing. | 
|  | 263 | * | 
|  | 264 | * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1 | 
|  | 265 | *        (needed for LRW-32-AES and possible other narrow block modes) | 
|  | 266 | * | 
|  | 267 | * null: the initial vector is always zero.  Provides compatibility with | 
|  | 268 | *       obsolete loop_fish2 devices.  Do not use for new devices. | 
|  | 269 | * | 
|  | 270 | * lmk:  Compatible implementation of the block chaining mode used | 
|  | 271 | *       by the Loop-AES block device encryption system | 
|  | 272 | *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/ | 
|  | 273 | *       It operates on full 512 byte sectors and uses CBC | 
|  | 274 | *       with an IV derived from the sector number, the data and | 
|  | 275 | *       optionally extra IV seed. | 
|  | 276 | *       This means that after decryption the first block | 
|  | 277 | *       of sector must be tweaked according to decrypted data. | 
|  | 278 | *       Loop-AES can use three encryption schemes: | 
|  | 279 | *         version 1: is plain aes-cbc mode | 
|  | 280 | *         version 2: uses 64 multikey scheme with lmk IV generator | 
|  | 281 | *         version 3: the same as version 2 with additional IV seed | 
|  | 282 | *                   (it uses 65 keys, last key is used as IV seed) | 
|  | 283 | * | 
|  | 284 | * tcw:  Compatible implementation of the block chaining mode used | 
|  | 285 | *       by the TrueCrypt device encryption system (prior to version 4.1). | 
|  | 286 | *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat | 
|  | 287 | *       It operates on full 512 byte sectors and uses CBC | 
|  | 288 | *       with an IV derived from initial key and the sector number. | 
|  | 289 | *       In addition, whitening value is applied on every sector, whitening | 
|  | 290 | *       is calculated from initial key, sector number and mixed using CRC32. | 
|  | 291 | *       Note that this encryption scheme is vulnerable to watermarking attacks | 
|  | 292 | *       and should be used for old compatible containers access only. | 
|  | 293 | * | 
|  | 294 | * plumb: unimplemented, see: | 
|  | 295 | * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454 | 
|  | 296 | */ | 
|  | 297 |  | 
|  | 298 | static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, | 
|  | 299 | struct dm_crypt_request *dmreq) | 
|  | 300 | { | 
|  | 301 | memset(iv, 0, cc->iv_size); | 
|  | 302 | *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff); | 
|  | 303 |  | 
|  | 304 | return 0; | 
|  | 305 | } | 
|  | 306 |  | 
|  | 307 | static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv, | 
|  | 308 | struct dm_crypt_request *dmreq) | 
|  | 309 | { | 
|  | 310 | memset(iv, 0, cc->iv_size); | 
|  | 311 | *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector); | 
|  | 312 |  | 
|  | 313 | return 0; | 
|  | 314 | } | 
|  | 315 |  | 
|  | 316 | static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv, | 
|  | 317 | struct dm_crypt_request *dmreq) | 
|  | 318 | { | 
|  | 319 | memset(iv, 0, cc->iv_size); | 
|  | 320 | /* iv_size is at least of size u64; usually it is 16 bytes */ | 
|  | 321 | *(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector); | 
|  | 322 |  | 
|  | 323 | return 0; | 
|  | 324 | } | 
|  | 325 |  | 
|  | 326 | /* Initialise ESSIV - compute salt but no local memory allocations */ | 
|  | 327 | static int crypt_iv_essiv_init(struct crypt_config *cc) | 
|  | 328 | { | 
|  | 329 | struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv; | 
|  | 330 | AHASH_REQUEST_ON_STACK(req, essiv->hash_tfm); | 
|  | 331 | struct scatterlist sg; | 
|  | 332 | struct crypto_cipher *essiv_tfm; | 
|  | 333 | int err; | 
|  | 334 |  | 
|  | 335 | sg_init_one(&sg, cc->key, cc->key_size); | 
|  | 336 | ahash_request_set_tfm(req, essiv->hash_tfm); | 
|  | 337 | ahash_request_set_callback(req, 0, NULL, NULL); | 
|  | 338 | ahash_request_set_crypt(req, &sg, essiv->salt, cc->key_size); | 
|  | 339 |  | 
|  | 340 | err = crypto_ahash_digest(req); | 
|  | 341 | ahash_request_zero(req); | 
|  | 342 | if (err) | 
|  | 343 | return err; | 
|  | 344 |  | 
|  | 345 | essiv_tfm = cc->iv_private; | 
|  | 346 |  | 
|  | 347 | err = crypto_cipher_setkey(essiv_tfm, essiv->salt, | 
|  | 348 | crypto_ahash_digestsize(essiv->hash_tfm)); | 
|  | 349 | if (err) | 
|  | 350 | return err; | 
|  | 351 |  | 
|  | 352 | return 0; | 
|  | 353 | } | 
|  | 354 |  | 
|  | 355 | /* Wipe salt and reset key derived from volume key */ | 
|  | 356 | static int crypt_iv_essiv_wipe(struct crypt_config *cc) | 
|  | 357 | { | 
|  | 358 | struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv; | 
|  | 359 | unsigned salt_size = crypto_ahash_digestsize(essiv->hash_tfm); | 
|  | 360 | struct crypto_cipher *essiv_tfm; | 
|  | 361 | int r, err = 0; | 
|  | 362 |  | 
|  | 363 | memset(essiv->salt, 0, salt_size); | 
|  | 364 |  | 
|  | 365 | essiv_tfm = cc->iv_private; | 
|  | 366 | r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size); | 
|  | 367 | if (r) | 
|  | 368 | err = r; | 
|  | 369 |  | 
|  | 370 | return err; | 
|  | 371 | } | 
|  | 372 |  | 
|  | 373 | /* Allocate the cipher for ESSIV */ | 
|  | 374 | static struct crypto_cipher *alloc_essiv_cipher(struct crypt_config *cc, | 
|  | 375 | struct dm_target *ti, | 
|  | 376 | const u8 *salt, | 
|  | 377 | unsigned int saltsize) | 
|  | 378 | { | 
|  | 379 | struct crypto_cipher *essiv_tfm; | 
|  | 380 | int err; | 
|  | 381 |  | 
|  | 382 | /* Setup the essiv_tfm with the given salt */ | 
|  | 383 | essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC); | 
|  | 384 | if (IS_ERR(essiv_tfm)) { | 
|  | 385 | ti->error = "Error allocating crypto tfm for ESSIV"; | 
|  | 386 | return essiv_tfm; | 
|  | 387 | } | 
|  | 388 |  | 
|  | 389 | if (crypto_cipher_blocksize(essiv_tfm) != cc->iv_size) { | 
|  | 390 | ti->error = "Block size of ESSIV cipher does " | 
|  | 391 | "not match IV size of block cipher"; | 
|  | 392 | crypto_free_cipher(essiv_tfm); | 
|  | 393 | return ERR_PTR(-EINVAL); | 
|  | 394 | } | 
|  | 395 |  | 
|  | 396 | err = crypto_cipher_setkey(essiv_tfm, salt, saltsize); | 
|  | 397 | if (err) { | 
|  | 398 | ti->error = "Failed to set key for ESSIV cipher"; | 
|  | 399 | crypto_free_cipher(essiv_tfm); | 
|  | 400 | return ERR_PTR(err); | 
|  | 401 | } | 
|  | 402 |  | 
|  | 403 | return essiv_tfm; | 
|  | 404 | } | 
|  | 405 |  | 
|  | 406 | static void crypt_iv_essiv_dtr(struct crypt_config *cc) | 
|  | 407 | { | 
|  | 408 | struct crypto_cipher *essiv_tfm; | 
|  | 409 | struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv; | 
|  | 410 |  | 
|  | 411 | crypto_free_ahash(essiv->hash_tfm); | 
|  | 412 | essiv->hash_tfm = NULL; | 
|  | 413 |  | 
|  | 414 | kzfree(essiv->salt); | 
|  | 415 | essiv->salt = NULL; | 
|  | 416 |  | 
|  | 417 | essiv_tfm = cc->iv_private; | 
|  | 418 |  | 
|  | 419 | if (essiv_tfm) | 
|  | 420 | crypto_free_cipher(essiv_tfm); | 
|  | 421 |  | 
|  | 422 | cc->iv_private = NULL; | 
|  | 423 | } | 
|  | 424 |  | 
|  | 425 | static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti, | 
|  | 426 | const char *opts) | 
|  | 427 | { | 
|  | 428 | struct crypto_cipher *essiv_tfm = NULL; | 
|  | 429 | struct crypto_ahash *hash_tfm = NULL; | 
|  | 430 | u8 *salt = NULL; | 
|  | 431 | int err; | 
|  | 432 |  | 
|  | 433 | if (!opts) { | 
|  | 434 | ti->error = "Digest algorithm missing for ESSIV mode"; | 
|  | 435 | return -EINVAL; | 
|  | 436 | } | 
|  | 437 |  | 
|  | 438 | /* Allocate hash algorithm */ | 
|  | 439 | hash_tfm = crypto_alloc_ahash(opts, 0, CRYPTO_ALG_ASYNC); | 
|  | 440 | if (IS_ERR(hash_tfm)) { | 
|  | 441 | ti->error = "Error initializing ESSIV hash"; | 
|  | 442 | err = PTR_ERR(hash_tfm); | 
|  | 443 | goto bad; | 
|  | 444 | } | 
|  | 445 |  | 
|  | 446 | salt = kzalloc(crypto_ahash_digestsize(hash_tfm), GFP_KERNEL); | 
|  | 447 | if (!salt) { | 
|  | 448 | ti->error = "Error kmallocing salt storage in ESSIV"; | 
|  | 449 | err = -ENOMEM; | 
|  | 450 | goto bad; | 
|  | 451 | } | 
|  | 452 |  | 
|  | 453 | cc->iv_gen_private.essiv.salt = salt; | 
|  | 454 | cc->iv_gen_private.essiv.hash_tfm = hash_tfm; | 
|  | 455 |  | 
|  | 456 | essiv_tfm = alloc_essiv_cipher(cc, ti, salt, | 
|  | 457 | crypto_ahash_digestsize(hash_tfm)); | 
|  | 458 | if (IS_ERR(essiv_tfm)) { | 
|  | 459 | crypt_iv_essiv_dtr(cc); | 
|  | 460 | return PTR_ERR(essiv_tfm); | 
|  | 461 | } | 
|  | 462 | cc->iv_private = essiv_tfm; | 
|  | 463 |  | 
|  | 464 | return 0; | 
|  | 465 |  | 
|  | 466 | bad: | 
|  | 467 | if (hash_tfm && !IS_ERR(hash_tfm)) | 
|  | 468 | crypto_free_ahash(hash_tfm); | 
|  | 469 | kfree(salt); | 
|  | 470 | return err; | 
|  | 471 | } | 
|  | 472 |  | 
|  | 473 | static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, | 
|  | 474 | struct dm_crypt_request *dmreq) | 
|  | 475 | { | 
|  | 476 | struct crypto_cipher *essiv_tfm = cc->iv_private; | 
|  | 477 |  | 
|  | 478 | memset(iv, 0, cc->iv_size); | 
|  | 479 | *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector); | 
|  | 480 | crypto_cipher_encrypt_one(essiv_tfm, iv, iv); | 
|  | 481 |  | 
|  | 482 | return 0; | 
|  | 483 | } | 
|  | 484 |  | 
|  | 485 | static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti, | 
|  | 486 | const char *opts) | 
|  | 487 | { | 
|  | 488 | unsigned bs; | 
|  | 489 | int log; | 
|  | 490 |  | 
|  | 491 | if (test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags)) | 
|  | 492 | bs = crypto_aead_blocksize(any_tfm_aead(cc)); | 
|  | 493 | else | 
|  | 494 | bs = crypto_skcipher_blocksize(any_tfm(cc)); | 
|  | 495 | log = ilog2(bs); | 
|  | 496 |  | 
|  | 497 | /* we need to calculate how far we must shift the sector count | 
|  | 498 | * to get the cipher block count, we use this shift in _gen */ | 
|  | 499 |  | 
|  | 500 | if (1 << log != bs) { | 
|  | 501 | ti->error = "cypher blocksize is not a power of 2"; | 
|  | 502 | return -EINVAL; | 
|  | 503 | } | 
|  | 504 |  | 
|  | 505 | if (log > 9) { | 
|  | 506 | ti->error = "cypher blocksize is > 512"; | 
|  | 507 | return -EINVAL; | 
|  | 508 | } | 
|  | 509 |  | 
|  | 510 | cc->iv_gen_private.benbi.shift = 9 - log; | 
|  | 511 |  | 
|  | 512 | return 0; | 
|  | 513 | } | 
|  | 514 |  | 
|  | 515 | static void crypt_iv_benbi_dtr(struct crypt_config *cc) | 
|  | 516 | { | 
|  | 517 | } | 
|  | 518 |  | 
|  | 519 | static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, | 
|  | 520 | struct dm_crypt_request *dmreq) | 
|  | 521 | { | 
|  | 522 | __be64 val; | 
|  | 523 |  | 
|  | 524 | memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */ | 
|  | 525 |  | 
|  | 526 | val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1); | 
|  | 527 | put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64))); | 
|  | 528 |  | 
|  | 529 | return 0; | 
|  | 530 | } | 
|  | 531 |  | 
|  | 532 | static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, | 
|  | 533 | struct dm_crypt_request *dmreq) | 
|  | 534 | { | 
|  | 535 | memset(iv, 0, cc->iv_size); | 
|  | 536 |  | 
|  | 537 | return 0; | 
|  | 538 | } | 
|  | 539 |  | 
|  | 540 | static void crypt_iv_lmk_dtr(struct crypt_config *cc) | 
|  | 541 | { | 
|  | 542 | struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; | 
|  | 543 |  | 
|  | 544 | if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm)) | 
|  | 545 | crypto_free_shash(lmk->hash_tfm); | 
|  | 546 | lmk->hash_tfm = NULL; | 
|  | 547 |  | 
|  | 548 | kzfree(lmk->seed); | 
|  | 549 | lmk->seed = NULL; | 
|  | 550 | } | 
|  | 551 |  | 
|  | 552 | static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti, | 
|  | 553 | const char *opts) | 
|  | 554 | { | 
|  | 555 | struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; | 
|  | 556 |  | 
|  | 557 | if (cc->sector_size != (1 << SECTOR_SHIFT)) { | 
|  | 558 | ti->error = "Unsupported sector size for LMK"; | 
|  | 559 | return -EINVAL; | 
|  | 560 | } | 
|  | 561 |  | 
|  | 562 | lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0); | 
|  | 563 | if (IS_ERR(lmk->hash_tfm)) { | 
|  | 564 | ti->error = "Error initializing LMK hash"; | 
|  | 565 | return PTR_ERR(lmk->hash_tfm); | 
|  | 566 | } | 
|  | 567 |  | 
|  | 568 | /* No seed in LMK version 2 */ | 
|  | 569 | if (cc->key_parts == cc->tfms_count) { | 
|  | 570 | lmk->seed = NULL; | 
|  | 571 | return 0; | 
|  | 572 | } | 
|  | 573 |  | 
|  | 574 | lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL); | 
|  | 575 | if (!lmk->seed) { | 
|  | 576 | crypt_iv_lmk_dtr(cc); | 
|  | 577 | ti->error = "Error kmallocing seed storage in LMK"; | 
|  | 578 | return -ENOMEM; | 
|  | 579 | } | 
|  | 580 |  | 
|  | 581 | return 0; | 
|  | 582 | } | 
|  | 583 |  | 
|  | 584 | static int crypt_iv_lmk_init(struct crypt_config *cc) | 
|  | 585 | { | 
|  | 586 | struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; | 
|  | 587 | int subkey_size = cc->key_size / cc->key_parts; | 
|  | 588 |  | 
|  | 589 | /* LMK seed is on the position of LMK_KEYS + 1 key */ | 
|  | 590 | if (lmk->seed) | 
|  | 591 | memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size), | 
|  | 592 | crypto_shash_digestsize(lmk->hash_tfm)); | 
|  | 593 |  | 
|  | 594 | return 0; | 
|  | 595 | } | 
|  | 596 |  | 
|  | 597 | static int crypt_iv_lmk_wipe(struct crypt_config *cc) | 
|  | 598 | { | 
|  | 599 | struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; | 
|  | 600 |  | 
|  | 601 | if (lmk->seed) | 
|  | 602 | memset(lmk->seed, 0, LMK_SEED_SIZE); | 
|  | 603 |  | 
|  | 604 | return 0; | 
|  | 605 | } | 
|  | 606 |  | 
|  | 607 | static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv, | 
|  | 608 | struct dm_crypt_request *dmreq, | 
|  | 609 | u8 *data) | 
|  | 610 | { | 
|  | 611 | struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; | 
|  | 612 | SHASH_DESC_ON_STACK(desc, lmk->hash_tfm); | 
|  | 613 | struct md5_state md5state; | 
|  | 614 | __le32 buf[4]; | 
|  | 615 | int i, r; | 
|  | 616 |  | 
|  | 617 | desc->tfm = lmk->hash_tfm; | 
|  | 618 | desc->flags = 0; | 
|  | 619 |  | 
|  | 620 | r = crypto_shash_init(desc); | 
|  | 621 | if (r) | 
|  | 622 | return r; | 
|  | 623 |  | 
|  | 624 | if (lmk->seed) { | 
|  | 625 | r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE); | 
|  | 626 | if (r) | 
|  | 627 | return r; | 
|  | 628 | } | 
|  | 629 |  | 
|  | 630 | /* Sector is always 512B, block size 16, add data of blocks 1-31 */ | 
|  | 631 | r = crypto_shash_update(desc, data + 16, 16 * 31); | 
|  | 632 | if (r) | 
|  | 633 | return r; | 
|  | 634 |  | 
|  | 635 | /* Sector is cropped to 56 bits here */ | 
|  | 636 | buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF); | 
|  | 637 | buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000); | 
|  | 638 | buf[2] = cpu_to_le32(4024); | 
|  | 639 | buf[3] = 0; | 
|  | 640 | r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf)); | 
|  | 641 | if (r) | 
|  | 642 | return r; | 
|  | 643 |  | 
|  | 644 | /* No MD5 padding here */ | 
|  | 645 | r = crypto_shash_export(desc, &md5state); | 
|  | 646 | if (r) | 
|  | 647 | return r; | 
|  | 648 |  | 
|  | 649 | for (i = 0; i < MD5_HASH_WORDS; i++) | 
|  | 650 | __cpu_to_le32s(&md5state.hash[i]); | 
|  | 651 | memcpy(iv, &md5state.hash, cc->iv_size); | 
|  | 652 |  | 
|  | 653 | return 0; | 
|  | 654 | } | 
|  | 655 |  | 
|  | 656 | static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv, | 
|  | 657 | struct dm_crypt_request *dmreq) | 
|  | 658 | { | 
|  | 659 | struct scatterlist *sg; | 
|  | 660 | u8 *src; | 
|  | 661 | int r = 0; | 
|  | 662 |  | 
|  | 663 | if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { | 
|  | 664 | sg = crypt_get_sg_data(cc, dmreq->sg_in); | 
|  | 665 | src = kmap_atomic(sg_page(sg)); | 
|  | 666 | r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset); | 
|  | 667 | kunmap_atomic(src); | 
|  | 668 | } else | 
|  | 669 | memset(iv, 0, cc->iv_size); | 
|  | 670 |  | 
|  | 671 | return r; | 
|  | 672 | } | 
|  | 673 |  | 
|  | 674 | static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv, | 
|  | 675 | struct dm_crypt_request *dmreq) | 
|  | 676 | { | 
|  | 677 | struct scatterlist *sg; | 
|  | 678 | u8 *dst; | 
|  | 679 | int r; | 
|  | 680 |  | 
|  | 681 | if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) | 
|  | 682 | return 0; | 
|  | 683 |  | 
|  | 684 | sg = crypt_get_sg_data(cc, dmreq->sg_out); | 
|  | 685 | dst = kmap_atomic(sg_page(sg)); | 
|  | 686 | r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset); | 
|  | 687 |  | 
|  | 688 | /* Tweak the first block of plaintext sector */ | 
|  | 689 | if (!r) | 
|  | 690 | crypto_xor(dst + sg->offset, iv, cc->iv_size); | 
|  | 691 |  | 
|  | 692 | kunmap_atomic(dst); | 
|  | 693 | return r; | 
|  | 694 | } | 
|  | 695 |  | 
|  | 696 | static void crypt_iv_tcw_dtr(struct crypt_config *cc) | 
|  | 697 | { | 
|  | 698 | struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; | 
|  | 699 |  | 
|  | 700 | kzfree(tcw->iv_seed); | 
|  | 701 | tcw->iv_seed = NULL; | 
|  | 702 | kzfree(tcw->whitening); | 
|  | 703 | tcw->whitening = NULL; | 
|  | 704 |  | 
|  | 705 | if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm)) | 
|  | 706 | crypto_free_shash(tcw->crc32_tfm); | 
|  | 707 | tcw->crc32_tfm = NULL; | 
|  | 708 | } | 
|  | 709 |  | 
|  | 710 | static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti, | 
|  | 711 | const char *opts) | 
|  | 712 | { | 
|  | 713 | struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; | 
|  | 714 |  | 
|  | 715 | if (cc->sector_size != (1 << SECTOR_SHIFT)) { | 
|  | 716 | ti->error = "Unsupported sector size for TCW"; | 
|  | 717 | return -EINVAL; | 
|  | 718 | } | 
|  | 719 |  | 
|  | 720 | if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) { | 
|  | 721 | ti->error = "Wrong key size for TCW"; | 
|  | 722 | return -EINVAL; | 
|  | 723 | } | 
|  | 724 |  | 
|  | 725 | tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0); | 
|  | 726 | if (IS_ERR(tcw->crc32_tfm)) { | 
|  | 727 | ti->error = "Error initializing CRC32 in TCW"; | 
|  | 728 | return PTR_ERR(tcw->crc32_tfm); | 
|  | 729 | } | 
|  | 730 |  | 
|  | 731 | tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL); | 
|  | 732 | tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL); | 
|  | 733 | if (!tcw->iv_seed || !tcw->whitening) { | 
|  | 734 | crypt_iv_tcw_dtr(cc); | 
|  | 735 | ti->error = "Error allocating seed storage in TCW"; | 
|  | 736 | return -ENOMEM; | 
|  | 737 | } | 
|  | 738 |  | 
|  | 739 | return 0; | 
|  | 740 | } | 
|  | 741 |  | 
|  | 742 | static int crypt_iv_tcw_init(struct crypt_config *cc) | 
|  | 743 | { | 
|  | 744 | struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; | 
|  | 745 | int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE; | 
|  | 746 |  | 
|  | 747 | memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size); | 
|  | 748 | memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size], | 
|  | 749 | TCW_WHITENING_SIZE); | 
|  | 750 |  | 
|  | 751 | return 0; | 
|  | 752 | } | 
|  | 753 |  | 
|  | 754 | static int crypt_iv_tcw_wipe(struct crypt_config *cc) | 
|  | 755 | { | 
|  | 756 | struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; | 
|  | 757 |  | 
|  | 758 | memset(tcw->iv_seed, 0, cc->iv_size); | 
|  | 759 | memset(tcw->whitening, 0, TCW_WHITENING_SIZE); | 
|  | 760 |  | 
|  | 761 | return 0; | 
|  | 762 | } | 
|  | 763 |  | 
|  | 764 | static int crypt_iv_tcw_whitening(struct crypt_config *cc, | 
|  | 765 | struct dm_crypt_request *dmreq, | 
|  | 766 | u8 *data) | 
|  | 767 | { | 
|  | 768 | struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; | 
|  | 769 | __le64 sector = cpu_to_le64(dmreq->iv_sector); | 
|  | 770 | u8 buf[TCW_WHITENING_SIZE]; | 
|  | 771 | SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm); | 
|  | 772 | int i, r; | 
|  | 773 |  | 
|  | 774 | /* xor whitening with sector number */ | 
|  | 775 | crypto_xor_cpy(buf, tcw->whitening, (u8 *)§or, 8); | 
|  | 776 | crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)§or, 8); | 
|  | 777 |  | 
|  | 778 | /* calculate crc32 for every 32bit part and xor it */ | 
|  | 779 | desc->tfm = tcw->crc32_tfm; | 
|  | 780 | desc->flags = 0; | 
|  | 781 | for (i = 0; i < 4; i++) { | 
|  | 782 | r = crypto_shash_init(desc); | 
|  | 783 | if (r) | 
|  | 784 | goto out; | 
|  | 785 | r = crypto_shash_update(desc, &buf[i * 4], 4); | 
|  | 786 | if (r) | 
|  | 787 | goto out; | 
|  | 788 | r = crypto_shash_final(desc, &buf[i * 4]); | 
|  | 789 | if (r) | 
|  | 790 | goto out; | 
|  | 791 | } | 
|  | 792 | crypto_xor(&buf[0], &buf[12], 4); | 
|  | 793 | crypto_xor(&buf[4], &buf[8], 4); | 
|  | 794 |  | 
|  | 795 | /* apply whitening (8 bytes) to whole sector */ | 
|  | 796 | for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++) | 
|  | 797 | crypto_xor(data + i * 8, buf, 8); | 
|  | 798 | out: | 
|  | 799 | memzero_explicit(buf, sizeof(buf)); | 
|  | 800 | return r; | 
|  | 801 | } | 
|  | 802 |  | 
|  | 803 | static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv, | 
|  | 804 | struct dm_crypt_request *dmreq) | 
|  | 805 | { | 
|  | 806 | struct scatterlist *sg; | 
|  | 807 | struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; | 
|  | 808 | __le64 sector = cpu_to_le64(dmreq->iv_sector); | 
|  | 809 | u8 *src; | 
|  | 810 | int r = 0; | 
|  | 811 |  | 
|  | 812 | /* Remove whitening from ciphertext */ | 
|  | 813 | if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) { | 
|  | 814 | sg = crypt_get_sg_data(cc, dmreq->sg_in); | 
|  | 815 | src = kmap_atomic(sg_page(sg)); | 
|  | 816 | r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset); | 
|  | 817 | kunmap_atomic(src); | 
|  | 818 | } | 
|  | 819 |  | 
|  | 820 | /* Calculate IV */ | 
|  | 821 | crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)§or, 8); | 
|  | 822 | if (cc->iv_size > 8) | 
|  | 823 | crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)§or, | 
|  | 824 | cc->iv_size - 8); | 
|  | 825 |  | 
|  | 826 | return r; | 
|  | 827 | } | 
|  | 828 |  | 
|  | 829 | static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv, | 
|  | 830 | struct dm_crypt_request *dmreq) | 
|  | 831 | { | 
|  | 832 | struct scatterlist *sg; | 
|  | 833 | u8 *dst; | 
|  | 834 | int r; | 
|  | 835 |  | 
|  | 836 | if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) | 
|  | 837 | return 0; | 
|  | 838 |  | 
|  | 839 | /* Apply whitening on ciphertext */ | 
|  | 840 | sg = crypt_get_sg_data(cc, dmreq->sg_out); | 
|  | 841 | dst = kmap_atomic(sg_page(sg)); | 
|  | 842 | r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset); | 
|  | 843 | kunmap_atomic(dst); | 
|  | 844 |  | 
|  | 845 | return r; | 
|  | 846 | } | 
|  | 847 |  | 
|  | 848 | static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv, | 
|  | 849 | struct dm_crypt_request *dmreq) | 
|  | 850 | { | 
|  | 851 | /* Used only for writes, there must be an additional space to store IV */ | 
|  | 852 | get_random_bytes(iv, cc->iv_size); | 
|  | 853 | return 0; | 
|  | 854 | } | 
|  | 855 |  | 
|  | 856 | static const struct crypt_iv_operations crypt_iv_plain_ops = { | 
|  | 857 | .generator = crypt_iv_plain_gen | 
|  | 858 | }; | 
|  | 859 |  | 
|  | 860 | static const struct crypt_iv_operations crypt_iv_plain64_ops = { | 
|  | 861 | .generator = crypt_iv_plain64_gen | 
|  | 862 | }; | 
|  | 863 |  | 
|  | 864 | static const struct crypt_iv_operations crypt_iv_plain64be_ops = { | 
|  | 865 | .generator = crypt_iv_plain64be_gen | 
|  | 866 | }; | 
|  | 867 |  | 
|  | 868 | static const struct crypt_iv_operations crypt_iv_essiv_ops = { | 
|  | 869 | .ctr       = crypt_iv_essiv_ctr, | 
|  | 870 | .dtr       = crypt_iv_essiv_dtr, | 
|  | 871 | .init      = crypt_iv_essiv_init, | 
|  | 872 | .wipe      = crypt_iv_essiv_wipe, | 
|  | 873 | .generator = crypt_iv_essiv_gen | 
|  | 874 | }; | 
|  | 875 |  | 
|  | 876 | static const struct crypt_iv_operations crypt_iv_benbi_ops = { | 
|  | 877 | .ctr	   = crypt_iv_benbi_ctr, | 
|  | 878 | .dtr	   = crypt_iv_benbi_dtr, | 
|  | 879 | .generator = crypt_iv_benbi_gen | 
|  | 880 | }; | 
|  | 881 |  | 
|  | 882 | static const struct crypt_iv_operations crypt_iv_null_ops = { | 
|  | 883 | .generator = crypt_iv_null_gen | 
|  | 884 | }; | 
|  | 885 |  | 
|  | 886 | static const struct crypt_iv_operations crypt_iv_lmk_ops = { | 
|  | 887 | .ctr	   = crypt_iv_lmk_ctr, | 
|  | 888 | .dtr	   = crypt_iv_lmk_dtr, | 
|  | 889 | .init	   = crypt_iv_lmk_init, | 
|  | 890 | .wipe	   = crypt_iv_lmk_wipe, | 
|  | 891 | .generator = crypt_iv_lmk_gen, | 
|  | 892 | .post	   = crypt_iv_lmk_post | 
|  | 893 | }; | 
|  | 894 |  | 
|  | 895 | static const struct crypt_iv_operations crypt_iv_tcw_ops = { | 
|  | 896 | .ctr	   = crypt_iv_tcw_ctr, | 
|  | 897 | .dtr	   = crypt_iv_tcw_dtr, | 
|  | 898 | .init	   = crypt_iv_tcw_init, | 
|  | 899 | .wipe	   = crypt_iv_tcw_wipe, | 
|  | 900 | .generator = crypt_iv_tcw_gen, | 
|  | 901 | .post	   = crypt_iv_tcw_post | 
|  | 902 | }; | 
|  | 903 |  | 
|  | 904 | static struct crypt_iv_operations crypt_iv_random_ops = { | 
|  | 905 | .generator = crypt_iv_random_gen | 
|  | 906 | }; | 
|  | 907 |  | 
|  | 908 | /* | 
|  | 909 | * Integrity extensions | 
|  | 910 | */ | 
|  | 911 | static bool crypt_integrity_aead(struct crypt_config *cc) | 
|  | 912 | { | 
|  | 913 | return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags); | 
|  | 914 | } | 
|  | 915 |  | 
|  | 916 | static bool crypt_integrity_hmac(struct crypt_config *cc) | 
|  | 917 | { | 
|  | 918 | return crypt_integrity_aead(cc) && cc->key_mac_size; | 
|  | 919 | } | 
|  | 920 |  | 
|  | 921 | /* Get sg containing data */ | 
|  | 922 | static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc, | 
|  | 923 | struct scatterlist *sg) | 
|  | 924 | { | 
|  | 925 | if (unlikely(crypt_integrity_aead(cc))) | 
|  | 926 | return &sg[2]; | 
|  | 927 |  | 
|  | 928 | return sg; | 
|  | 929 | } | 
|  | 930 |  | 
|  | 931 | static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio) | 
|  | 932 | { | 
|  | 933 | struct bio_integrity_payload *bip; | 
|  | 934 | unsigned int tag_len; | 
|  | 935 | int ret; | 
|  | 936 |  | 
|  | 937 | if (!bio_sectors(bio) || !io->cc->on_disk_tag_size) | 
|  | 938 | return 0; | 
|  | 939 |  | 
|  | 940 | bip = bio_integrity_alloc(bio, GFP_NOIO, 1); | 
|  | 941 | if (IS_ERR(bip)) | 
|  | 942 | return PTR_ERR(bip); | 
|  | 943 |  | 
|  | 944 | tag_len = io->cc->on_disk_tag_size * (bio_sectors(bio) >> io->cc->sector_shift); | 
|  | 945 |  | 
|  | 946 | bip->bip_iter.bi_size = tag_len; | 
|  | 947 | bip->bip_iter.bi_sector = io->cc->start + io->sector; | 
|  | 948 |  | 
|  | 949 | ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata), | 
|  | 950 | tag_len, offset_in_page(io->integrity_metadata)); | 
|  | 951 | if (unlikely(ret != tag_len)) | 
|  | 952 | return -ENOMEM; | 
|  | 953 |  | 
|  | 954 | return 0; | 
|  | 955 | } | 
|  | 956 |  | 
|  | 957 | static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti) | 
|  | 958 | { | 
|  | 959 | #ifdef CONFIG_BLK_DEV_INTEGRITY | 
|  | 960 | struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk); | 
|  | 961 |  | 
|  | 962 | /* From now we require underlying device with our integrity profile */ | 
|  | 963 | if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) { | 
|  | 964 | ti->error = "Integrity profile not supported."; | 
|  | 965 | return -EINVAL; | 
|  | 966 | } | 
|  | 967 |  | 
|  | 968 | if (bi->tag_size != cc->on_disk_tag_size || | 
|  | 969 | bi->tuple_size != cc->on_disk_tag_size) { | 
|  | 970 | ti->error = "Integrity profile tag size mismatch."; | 
|  | 971 | return -EINVAL; | 
|  | 972 | } | 
|  | 973 | if (1 << bi->interval_exp != cc->sector_size) { | 
|  | 974 | ti->error = "Integrity profile sector size mismatch."; | 
|  | 975 | return -EINVAL; | 
|  | 976 | } | 
|  | 977 |  | 
|  | 978 | if (crypt_integrity_aead(cc)) { | 
|  | 979 | cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size; | 
|  | 980 | DMINFO("Integrity AEAD, tag size %u, IV size %u.", | 
|  | 981 | cc->integrity_tag_size, cc->integrity_iv_size); | 
|  | 982 |  | 
|  | 983 | if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) { | 
|  | 984 | ti->error = "Integrity AEAD auth tag size is not supported."; | 
|  | 985 | return -EINVAL; | 
|  | 986 | } | 
|  | 987 | } else if (cc->integrity_iv_size) | 
|  | 988 | DMINFO("Additional per-sector space %u bytes for IV.", | 
|  | 989 | cc->integrity_iv_size); | 
|  | 990 |  | 
|  | 991 | if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) { | 
|  | 992 | ti->error = "Not enough space for integrity tag in the profile."; | 
|  | 993 | return -EINVAL; | 
|  | 994 | } | 
|  | 995 |  | 
|  | 996 | return 0; | 
|  | 997 | #else | 
|  | 998 | ti->error = "Integrity profile not supported."; | 
|  | 999 | return -EINVAL; | 
|  | 1000 | #endif | 
|  | 1001 | } | 
|  | 1002 |  | 
|  | 1003 | static void crypt_convert_init(struct crypt_config *cc, | 
|  | 1004 | struct convert_context *ctx, | 
|  | 1005 | struct bio *bio_out, struct bio *bio_in, | 
|  | 1006 | sector_t sector) | 
|  | 1007 | { | 
|  | 1008 | ctx->bio_in = bio_in; | 
|  | 1009 | ctx->bio_out = bio_out; | 
|  | 1010 | if (bio_in) | 
|  | 1011 | ctx->iter_in = bio_in->bi_iter; | 
|  | 1012 | if (bio_out) | 
|  | 1013 | ctx->iter_out = bio_out->bi_iter; | 
|  | 1014 | ctx->cc_sector = sector + cc->iv_offset; | 
|  | 1015 | init_completion(&ctx->restart); | 
|  | 1016 | } | 
|  | 1017 |  | 
|  | 1018 | static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc, | 
|  | 1019 | void *req) | 
|  | 1020 | { | 
|  | 1021 | return (struct dm_crypt_request *)((char *)req + cc->dmreq_start); | 
|  | 1022 | } | 
|  | 1023 |  | 
|  | 1024 | static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq) | 
|  | 1025 | { | 
|  | 1026 | return (void *)((char *)dmreq - cc->dmreq_start); | 
|  | 1027 | } | 
|  | 1028 |  | 
|  | 1029 | static u8 *iv_of_dmreq(struct crypt_config *cc, | 
|  | 1030 | struct dm_crypt_request *dmreq) | 
|  | 1031 | { | 
|  | 1032 | if (crypt_integrity_aead(cc)) | 
|  | 1033 | return (u8 *)ALIGN((unsigned long)(dmreq + 1), | 
|  | 1034 | crypto_aead_alignmask(any_tfm_aead(cc)) + 1); | 
|  | 1035 | else | 
|  | 1036 | return (u8 *)ALIGN((unsigned long)(dmreq + 1), | 
|  | 1037 | crypto_skcipher_alignmask(any_tfm(cc)) + 1); | 
|  | 1038 | } | 
|  | 1039 |  | 
|  | 1040 | static u8 *org_iv_of_dmreq(struct crypt_config *cc, | 
|  | 1041 | struct dm_crypt_request *dmreq) | 
|  | 1042 | { | 
|  | 1043 | return iv_of_dmreq(cc, dmreq) + cc->iv_size; | 
|  | 1044 | } | 
|  | 1045 |  | 
|  | 1046 | static uint64_t *org_sector_of_dmreq(struct crypt_config *cc, | 
|  | 1047 | struct dm_crypt_request *dmreq) | 
|  | 1048 | { | 
|  | 1049 | u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size; | 
|  | 1050 | return (uint64_t*) ptr; | 
|  | 1051 | } | 
|  | 1052 |  | 
|  | 1053 | static unsigned int *org_tag_of_dmreq(struct crypt_config *cc, | 
|  | 1054 | struct dm_crypt_request *dmreq) | 
|  | 1055 | { | 
|  | 1056 | u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + | 
|  | 1057 | cc->iv_size + sizeof(uint64_t); | 
|  | 1058 | return (unsigned int*)ptr; | 
|  | 1059 | } | 
|  | 1060 |  | 
|  | 1061 | static void *tag_from_dmreq(struct crypt_config *cc, | 
|  | 1062 | struct dm_crypt_request *dmreq) | 
|  | 1063 | { | 
|  | 1064 | struct convert_context *ctx = dmreq->ctx; | 
|  | 1065 | struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx); | 
|  | 1066 |  | 
|  | 1067 | return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) * | 
|  | 1068 | cc->on_disk_tag_size]; | 
|  | 1069 | } | 
|  | 1070 |  | 
|  | 1071 | static void *iv_tag_from_dmreq(struct crypt_config *cc, | 
|  | 1072 | struct dm_crypt_request *dmreq) | 
|  | 1073 | { | 
|  | 1074 | return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size; | 
|  | 1075 | } | 
|  | 1076 |  | 
|  | 1077 | static int crypt_convert_block_aead(struct crypt_config *cc, | 
|  | 1078 | struct convert_context *ctx, | 
|  | 1079 | struct aead_request *req, | 
|  | 1080 | unsigned int tag_offset) | 
|  | 1081 | { | 
|  | 1082 | struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in); | 
|  | 1083 | struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out); | 
|  | 1084 | struct dm_crypt_request *dmreq; | 
|  | 1085 | u8 *iv, *org_iv, *tag_iv, *tag; | 
|  | 1086 | uint64_t *sector; | 
|  | 1087 | int r = 0; | 
|  | 1088 |  | 
|  | 1089 | BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size); | 
|  | 1090 |  | 
|  | 1091 | /* Reject unexpected unaligned bio. */ | 
|  | 1092 | if (unlikely(bv_in.bv_len & (cc->sector_size - 1))) | 
|  | 1093 | return -EIO; | 
|  | 1094 |  | 
|  | 1095 | dmreq = dmreq_of_req(cc, req); | 
|  | 1096 | dmreq->iv_sector = ctx->cc_sector; | 
|  | 1097 | if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags)) | 
|  | 1098 | dmreq->iv_sector >>= cc->sector_shift; | 
|  | 1099 | dmreq->ctx = ctx; | 
|  | 1100 |  | 
|  | 1101 | *org_tag_of_dmreq(cc, dmreq) = tag_offset; | 
|  | 1102 |  | 
|  | 1103 | sector = org_sector_of_dmreq(cc, dmreq); | 
|  | 1104 | *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset); | 
|  | 1105 |  | 
|  | 1106 | iv = iv_of_dmreq(cc, dmreq); | 
|  | 1107 | org_iv = org_iv_of_dmreq(cc, dmreq); | 
|  | 1108 | tag = tag_from_dmreq(cc, dmreq); | 
|  | 1109 | tag_iv = iv_tag_from_dmreq(cc, dmreq); | 
|  | 1110 |  | 
|  | 1111 | /* AEAD request: | 
|  | 1112 | *  |----- AAD -------|------ DATA -------|-- AUTH TAG --| | 
|  | 1113 | *  | (authenticated) | (auth+encryption) |              | | 
|  | 1114 | *  | sector_LE |  IV |  sector in/out    |  tag in/out  | | 
|  | 1115 | */ | 
|  | 1116 | sg_init_table(dmreq->sg_in, 4); | 
|  | 1117 | sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t)); | 
|  | 1118 | sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size); | 
|  | 1119 | sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset); | 
|  | 1120 | sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size); | 
|  | 1121 |  | 
|  | 1122 | sg_init_table(dmreq->sg_out, 4); | 
|  | 1123 | sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t)); | 
|  | 1124 | sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size); | 
|  | 1125 | sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset); | 
|  | 1126 | sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size); | 
|  | 1127 |  | 
|  | 1128 | if (cc->iv_gen_ops) { | 
|  | 1129 | /* For READs use IV stored in integrity metadata */ | 
|  | 1130 | if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) { | 
|  | 1131 | memcpy(org_iv, tag_iv, cc->iv_size); | 
|  | 1132 | } else { | 
|  | 1133 | r = cc->iv_gen_ops->generator(cc, org_iv, dmreq); | 
|  | 1134 | if (r < 0) | 
|  | 1135 | return r; | 
|  | 1136 | /* Store generated IV in integrity metadata */ | 
|  | 1137 | if (cc->integrity_iv_size) | 
|  | 1138 | memcpy(tag_iv, org_iv, cc->iv_size); | 
|  | 1139 | } | 
|  | 1140 | /* Working copy of IV, to be modified in crypto API */ | 
|  | 1141 | memcpy(iv, org_iv, cc->iv_size); | 
|  | 1142 | } | 
|  | 1143 |  | 
|  | 1144 | aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size); | 
|  | 1145 | if (bio_data_dir(ctx->bio_in) == WRITE) { | 
|  | 1146 | aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out, | 
|  | 1147 | cc->sector_size, iv); | 
|  | 1148 | r = crypto_aead_encrypt(req); | 
|  | 1149 | if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size) | 
|  | 1150 | memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0, | 
|  | 1151 | cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size)); | 
|  | 1152 | } else { | 
|  | 1153 | aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out, | 
|  | 1154 | cc->sector_size + cc->integrity_tag_size, iv); | 
|  | 1155 | r = crypto_aead_decrypt(req); | 
|  | 1156 | } | 
|  | 1157 |  | 
|  | 1158 | if (r == -EBADMSG) | 
|  | 1159 | DMERR_LIMIT("INTEGRITY AEAD ERROR, sector %llu", | 
|  | 1160 | (unsigned long long)le64_to_cpu(*sector)); | 
|  | 1161 |  | 
|  | 1162 | if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post) | 
|  | 1163 | r = cc->iv_gen_ops->post(cc, org_iv, dmreq); | 
|  | 1164 |  | 
|  | 1165 | bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size); | 
|  | 1166 | bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size); | 
|  | 1167 |  | 
|  | 1168 | return r; | 
|  | 1169 | } | 
|  | 1170 |  | 
|  | 1171 | static int crypt_convert_block_skcipher(struct crypt_config *cc, | 
|  | 1172 | struct convert_context *ctx, | 
|  | 1173 | struct skcipher_request *req, | 
|  | 1174 | unsigned int tag_offset) | 
|  | 1175 | { | 
|  | 1176 | struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in); | 
|  | 1177 | struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out); | 
|  | 1178 | struct scatterlist *sg_in, *sg_out; | 
|  | 1179 | struct dm_crypt_request *dmreq; | 
|  | 1180 | u8 *iv, *org_iv, *tag_iv; | 
|  | 1181 | uint64_t *sector; | 
|  | 1182 | int r = 0; | 
|  | 1183 |  | 
|  | 1184 | /* Reject unexpected unaligned bio. */ | 
|  | 1185 | if (unlikely(bv_in.bv_len & (cc->sector_size - 1))) | 
|  | 1186 | return -EIO; | 
|  | 1187 |  | 
|  | 1188 | dmreq = dmreq_of_req(cc, req); | 
|  | 1189 | dmreq->iv_sector = ctx->cc_sector; | 
|  | 1190 | if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags)) | 
|  | 1191 | dmreq->iv_sector >>= cc->sector_shift; | 
|  | 1192 | dmreq->ctx = ctx; | 
|  | 1193 |  | 
|  | 1194 | *org_tag_of_dmreq(cc, dmreq) = tag_offset; | 
|  | 1195 |  | 
|  | 1196 | iv = iv_of_dmreq(cc, dmreq); | 
|  | 1197 | org_iv = org_iv_of_dmreq(cc, dmreq); | 
|  | 1198 | tag_iv = iv_tag_from_dmreq(cc, dmreq); | 
|  | 1199 |  | 
|  | 1200 | sector = org_sector_of_dmreq(cc, dmreq); | 
|  | 1201 | *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset); | 
|  | 1202 |  | 
|  | 1203 | /* For skcipher we use only the first sg item */ | 
|  | 1204 | sg_in  = &dmreq->sg_in[0]; | 
|  | 1205 | sg_out = &dmreq->sg_out[0]; | 
|  | 1206 |  | 
|  | 1207 | sg_init_table(sg_in, 1); | 
|  | 1208 | sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset); | 
|  | 1209 |  | 
|  | 1210 | sg_init_table(sg_out, 1); | 
|  | 1211 | sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset); | 
|  | 1212 |  | 
|  | 1213 | if (cc->iv_gen_ops) { | 
|  | 1214 | /* For READs use IV stored in integrity metadata */ | 
|  | 1215 | if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) { | 
|  | 1216 | memcpy(org_iv, tag_iv, cc->integrity_iv_size); | 
|  | 1217 | } else { | 
|  | 1218 | r = cc->iv_gen_ops->generator(cc, org_iv, dmreq); | 
|  | 1219 | if (r < 0) | 
|  | 1220 | return r; | 
|  | 1221 | /* Store generated IV in integrity metadata */ | 
|  | 1222 | if (cc->integrity_iv_size) | 
|  | 1223 | memcpy(tag_iv, org_iv, cc->integrity_iv_size); | 
|  | 1224 | } | 
|  | 1225 | /* Working copy of IV, to be modified in crypto API */ | 
|  | 1226 | memcpy(iv, org_iv, cc->iv_size); | 
|  | 1227 | } | 
|  | 1228 |  | 
|  | 1229 | skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv); | 
|  | 1230 |  | 
|  | 1231 | if (bio_data_dir(ctx->bio_in) == WRITE) | 
|  | 1232 | r = crypto_skcipher_encrypt(req); | 
|  | 1233 | else | 
|  | 1234 | r = crypto_skcipher_decrypt(req); | 
|  | 1235 |  | 
|  | 1236 | if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post) | 
|  | 1237 | r = cc->iv_gen_ops->post(cc, org_iv, dmreq); | 
|  | 1238 |  | 
|  | 1239 | bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size); | 
|  | 1240 | bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size); | 
|  | 1241 |  | 
|  | 1242 | return r; | 
|  | 1243 | } | 
|  | 1244 |  | 
|  | 1245 | static void kcryptd_async_done(struct crypto_async_request *async_req, | 
|  | 1246 | int error); | 
|  | 1247 |  | 
|  | 1248 | static void crypt_alloc_req_skcipher(struct crypt_config *cc, | 
|  | 1249 | struct convert_context *ctx) | 
|  | 1250 | { | 
|  | 1251 | unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1); | 
|  | 1252 |  | 
|  | 1253 | if (!ctx->r.req) | 
|  | 1254 | ctx->r.req = mempool_alloc(cc->req_pool, GFP_NOIO); | 
|  | 1255 |  | 
|  | 1256 | skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]); | 
|  | 1257 |  | 
|  | 1258 | /* | 
|  | 1259 | * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs | 
|  | 1260 | * requests if driver request queue is full. | 
|  | 1261 | */ | 
|  | 1262 | skcipher_request_set_callback(ctx->r.req, | 
|  | 1263 | CRYPTO_TFM_REQ_MAY_BACKLOG, | 
|  | 1264 | kcryptd_async_done, dmreq_of_req(cc, ctx->r.req)); | 
|  | 1265 | } | 
|  | 1266 |  | 
|  | 1267 | static void crypt_alloc_req_aead(struct crypt_config *cc, | 
|  | 1268 | struct convert_context *ctx) | 
|  | 1269 | { | 
|  | 1270 | if (!ctx->r.req_aead) | 
|  | 1271 | ctx->r.req_aead = mempool_alloc(cc->req_pool, GFP_NOIO); | 
|  | 1272 |  | 
|  | 1273 | aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]); | 
|  | 1274 |  | 
|  | 1275 | /* | 
|  | 1276 | * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs | 
|  | 1277 | * requests if driver request queue is full. | 
|  | 1278 | */ | 
|  | 1279 | aead_request_set_callback(ctx->r.req_aead, | 
|  | 1280 | CRYPTO_TFM_REQ_MAY_BACKLOG, | 
|  | 1281 | kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead)); | 
|  | 1282 | } | 
|  | 1283 |  | 
|  | 1284 | static void crypt_alloc_req(struct crypt_config *cc, | 
|  | 1285 | struct convert_context *ctx) | 
|  | 1286 | { | 
|  | 1287 | if (crypt_integrity_aead(cc)) | 
|  | 1288 | crypt_alloc_req_aead(cc, ctx); | 
|  | 1289 | else | 
|  | 1290 | crypt_alloc_req_skcipher(cc, ctx); | 
|  | 1291 | } | 
|  | 1292 |  | 
|  | 1293 | static void crypt_free_req_skcipher(struct crypt_config *cc, | 
|  | 1294 | struct skcipher_request *req, struct bio *base_bio) | 
|  | 1295 | { | 
|  | 1296 | struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size); | 
|  | 1297 |  | 
|  | 1298 | if ((struct skcipher_request *)(io + 1) != req) | 
|  | 1299 | mempool_free(req, cc->req_pool); | 
|  | 1300 | } | 
|  | 1301 |  | 
|  | 1302 | static void crypt_free_req_aead(struct crypt_config *cc, | 
|  | 1303 | struct aead_request *req, struct bio *base_bio) | 
|  | 1304 | { | 
|  | 1305 | struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size); | 
|  | 1306 |  | 
|  | 1307 | if ((struct aead_request *)(io + 1) != req) | 
|  | 1308 | mempool_free(req, cc->req_pool); | 
|  | 1309 | } | 
|  | 1310 |  | 
|  | 1311 | static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio) | 
|  | 1312 | { | 
|  | 1313 | if (crypt_integrity_aead(cc)) | 
|  | 1314 | crypt_free_req_aead(cc, req, base_bio); | 
|  | 1315 | else | 
|  | 1316 | crypt_free_req_skcipher(cc, req, base_bio); | 
|  | 1317 | } | 
|  | 1318 |  | 
|  | 1319 | /* | 
|  | 1320 | * Encrypt / decrypt data from one bio to another one (can be the same one) | 
|  | 1321 | */ | 
|  | 1322 | static blk_status_t crypt_convert(struct crypt_config *cc, | 
|  | 1323 | struct convert_context *ctx) | 
|  | 1324 | { | 
|  | 1325 | unsigned int tag_offset = 0; | 
|  | 1326 | unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT; | 
|  | 1327 | int r; | 
|  | 1328 |  | 
|  | 1329 | atomic_set(&ctx->cc_pending, 1); | 
|  | 1330 |  | 
|  | 1331 | while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) { | 
|  | 1332 |  | 
|  | 1333 | crypt_alloc_req(cc, ctx); | 
|  | 1334 | atomic_inc(&ctx->cc_pending); | 
|  | 1335 |  | 
|  | 1336 | if (crypt_integrity_aead(cc)) | 
|  | 1337 | r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset); | 
|  | 1338 | else | 
|  | 1339 | r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset); | 
|  | 1340 |  | 
|  | 1341 | switch (r) { | 
|  | 1342 | /* | 
|  | 1343 | * The request was queued by a crypto driver | 
|  | 1344 | * but the driver request queue is full, let's wait. | 
|  | 1345 | */ | 
|  | 1346 | case -EBUSY: | 
|  | 1347 | wait_for_completion(&ctx->restart); | 
|  | 1348 | reinit_completion(&ctx->restart); | 
|  | 1349 | /* fall through */ | 
|  | 1350 | /* | 
|  | 1351 | * The request is queued and processed asynchronously, | 
|  | 1352 | * completion function kcryptd_async_done() will be called. | 
|  | 1353 | */ | 
|  | 1354 | case -EINPROGRESS: | 
|  | 1355 | ctx->r.req = NULL; | 
|  | 1356 | ctx->cc_sector += sector_step; | 
|  | 1357 | tag_offset++; | 
|  | 1358 | continue; | 
|  | 1359 | /* | 
|  | 1360 | * The request was already processed (synchronously). | 
|  | 1361 | */ | 
|  | 1362 | case 0: | 
|  | 1363 | atomic_dec(&ctx->cc_pending); | 
|  | 1364 | ctx->cc_sector += sector_step; | 
|  | 1365 | tag_offset++; | 
|  | 1366 | cond_resched(); | 
|  | 1367 | continue; | 
|  | 1368 | /* | 
|  | 1369 | * There was a data integrity error. | 
|  | 1370 | */ | 
|  | 1371 | case -EBADMSG: | 
|  | 1372 | atomic_dec(&ctx->cc_pending); | 
|  | 1373 | return BLK_STS_PROTECTION; | 
|  | 1374 | /* | 
|  | 1375 | * There was an error while processing the request. | 
|  | 1376 | */ | 
|  | 1377 | default: | 
|  | 1378 | atomic_dec(&ctx->cc_pending); | 
|  | 1379 | return BLK_STS_IOERR; | 
|  | 1380 | } | 
|  | 1381 | } | 
|  | 1382 |  | 
|  | 1383 | return 0; | 
|  | 1384 | } | 
|  | 1385 |  | 
|  | 1386 | static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone); | 
|  | 1387 |  | 
|  | 1388 | /* | 
|  | 1389 | * Generate a new unfragmented bio with the given size | 
|  | 1390 | * This should never violate the device limitations (but only because | 
|  | 1391 | * max_segment_size is being constrained to PAGE_SIZE). | 
|  | 1392 | * | 
|  | 1393 | * This function may be called concurrently. If we allocate from the mempool | 
|  | 1394 | * concurrently, there is a possibility of deadlock. For example, if we have | 
|  | 1395 | * mempool of 256 pages, two processes, each wanting 256, pages allocate from | 
|  | 1396 | * the mempool concurrently, it may deadlock in a situation where both processes | 
|  | 1397 | * have allocated 128 pages and the mempool is exhausted. | 
|  | 1398 | * | 
|  | 1399 | * In order to avoid this scenario we allocate the pages under a mutex. | 
|  | 1400 | * | 
|  | 1401 | * In order to not degrade performance with excessive locking, we try | 
|  | 1402 | * non-blocking allocations without a mutex first but on failure we fallback | 
|  | 1403 | * to blocking allocations with a mutex. | 
|  | 1404 | */ | 
|  | 1405 | static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size) | 
|  | 1406 | { | 
|  | 1407 | struct crypt_config *cc = io->cc; | 
|  | 1408 | struct bio *clone; | 
|  | 1409 | unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
|  | 1410 | gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM; | 
|  | 1411 | unsigned i, len, remaining_size; | 
|  | 1412 | struct page *page; | 
|  | 1413 |  | 
|  | 1414 | retry: | 
|  | 1415 | if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM)) | 
|  | 1416 | mutex_lock(&cc->bio_alloc_lock); | 
|  | 1417 |  | 
|  | 1418 | clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs); | 
|  | 1419 | if (!clone) | 
|  | 1420 | goto out; | 
|  | 1421 |  | 
|  | 1422 | clone_init(io, clone); | 
|  | 1423 |  | 
|  | 1424 | remaining_size = size; | 
|  | 1425 |  | 
|  | 1426 | for (i = 0; i < nr_iovecs; i++) { | 
|  | 1427 | page = mempool_alloc(cc->page_pool, gfp_mask); | 
|  | 1428 | if (!page) { | 
|  | 1429 | crypt_free_buffer_pages(cc, clone); | 
|  | 1430 | bio_put(clone); | 
|  | 1431 | gfp_mask |= __GFP_DIRECT_RECLAIM; | 
|  | 1432 | goto retry; | 
|  | 1433 | } | 
|  | 1434 |  | 
|  | 1435 | len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size; | 
|  | 1436 |  | 
|  | 1437 | bio_add_page(clone, page, len, 0); | 
|  | 1438 |  | 
|  | 1439 | remaining_size -= len; | 
|  | 1440 | } | 
|  | 1441 |  | 
|  | 1442 | /* Allocate space for integrity tags */ | 
|  | 1443 | if (dm_crypt_integrity_io_alloc(io, clone)) { | 
|  | 1444 | crypt_free_buffer_pages(cc, clone); | 
|  | 1445 | bio_put(clone); | 
|  | 1446 | clone = NULL; | 
|  | 1447 | } | 
|  | 1448 | out: | 
|  | 1449 | if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM)) | 
|  | 1450 | mutex_unlock(&cc->bio_alloc_lock); | 
|  | 1451 |  | 
|  | 1452 | return clone; | 
|  | 1453 | } | 
|  | 1454 |  | 
|  | 1455 | static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone) | 
|  | 1456 | { | 
|  | 1457 | unsigned int i; | 
|  | 1458 | struct bio_vec *bv; | 
|  | 1459 |  | 
|  | 1460 | bio_for_each_segment_all(bv, clone, i) { | 
|  | 1461 | BUG_ON(!bv->bv_page); | 
|  | 1462 | mempool_free(bv->bv_page, cc->page_pool); | 
|  | 1463 | bv->bv_page = NULL; | 
|  | 1464 | } | 
|  | 1465 | } | 
|  | 1466 |  | 
|  | 1467 | static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc, | 
|  | 1468 | struct bio *bio, sector_t sector) | 
|  | 1469 | { | 
|  | 1470 | io->cc = cc; | 
|  | 1471 | io->base_bio = bio; | 
|  | 1472 | io->sector = sector; | 
|  | 1473 | io->error = 0; | 
|  | 1474 | io->ctx.r.req = NULL; | 
|  | 1475 | io->integrity_metadata = NULL; | 
|  | 1476 | io->integrity_metadata_from_pool = false; | 
|  | 1477 | atomic_set(&io->io_pending, 0); | 
|  | 1478 | } | 
|  | 1479 |  | 
|  | 1480 | static void crypt_inc_pending(struct dm_crypt_io *io) | 
|  | 1481 | { | 
|  | 1482 | atomic_inc(&io->io_pending); | 
|  | 1483 | } | 
|  | 1484 |  | 
|  | 1485 | /* | 
|  | 1486 | * One of the bios was finished. Check for completion of | 
|  | 1487 | * the whole request and correctly clean up the buffer. | 
|  | 1488 | */ | 
|  | 1489 | static void crypt_dec_pending(struct dm_crypt_io *io) | 
|  | 1490 | { | 
|  | 1491 | struct crypt_config *cc = io->cc; | 
|  | 1492 | struct bio *base_bio = io->base_bio; | 
|  | 1493 | blk_status_t error = io->error; | 
|  | 1494 |  | 
|  | 1495 | if (!atomic_dec_and_test(&io->io_pending)) | 
|  | 1496 | return; | 
|  | 1497 |  | 
|  | 1498 | if (io->ctx.r.req) | 
|  | 1499 | crypt_free_req(cc, io->ctx.r.req, base_bio); | 
|  | 1500 |  | 
|  | 1501 | if (unlikely(io->integrity_metadata_from_pool)) | 
|  | 1502 | mempool_free(io->integrity_metadata, io->cc->tag_pool); | 
|  | 1503 | else | 
|  | 1504 | kfree(io->integrity_metadata); | 
|  | 1505 |  | 
|  | 1506 | base_bio->bi_status = error; | 
|  | 1507 | bio_endio(base_bio); | 
|  | 1508 | } | 
|  | 1509 |  | 
|  | 1510 | /* | 
|  | 1511 | * kcryptd/kcryptd_io: | 
|  | 1512 | * | 
|  | 1513 | * Needed because it would be very unwise to do decryption in an | 
|  | 1514 | * interrupt context. | 
|  | 1515 | * | 
|  | 1516 | * kcryptd performs the actual encryption or decryption. | 
|  | 1517 | * | 
|  | 1518 | * kcryptd_io performs the IO submission. | 
|  | 1519 | * | 
|  | 1520 | * They must be separated as otherwise the final stages could be | 
|  | 1521 | * starved by new requests which can block in the first stages due | 
|  | 1522 | * to memory allocation. | 
|  | 1523 | * | 
|  | 1524 | * The work is done per CPU global for all dm-crypt instances. | 
|  | 1525 | * They should not depend on each other and do not block. | 
|  | 1526 | */ | 
|  | 1527 | static void crypt_endio(struct bio *clone) | 
|  | 1528 | { | 
|  | 1529 | struct dm_crypt_io *io = clone->bi_private; | 
|  | 1530 | struct crypt_config *cc = io->cc; | 
|  | 1531 | unsigned rw = bio_data_dir(clone); | 
|  | 1532 | blk_status_t error; | 
|  | 1533 |  | 
|  | 1534 | /* | 
|  | 1535 | * free the processed pages | 
|  | 1536 | */ | 
|  | 1537 | if (rw == WRITE) | 
|  | 1538 | crypt_free_buffer_pages(cc, clone); | 
|  | 1539 |  | 
|  | 1540 | error = clone->bi_status; | 
|  | 1541 | bio_put(clone); | 
|  | 1542 |  | 
|  | 1543 | if (rw == READ && !error) { | 
|  | 1544 | kcryptd_queue_crypt(io); | 
|  | 1545 | return; | 
|  | 1546 | } | 
|  | 1547 |  | 
|  | 1548 | if (unlikely(error)) | 
|  | 1549 | io->error = error; | 
|  | 1550 |  | 
|  | 1551 | crypt_dec_pending(io); | 
|  | 1552 | } | 
|  | 1553 |  | 
|  | 1554 | static void clone_init(struct dm_crypt_io *io, struct bio *clone) | 
|  | 1555 | { | 
|  | 1556 | struct crypt_config *cc = io->cc; | 
|  | 1557 |  | 
|  | 1558 | clone->bi_private = io; | 
|  | 1559 | clone->bi_end_io  = crypt_endio; | 
|  | 1560 | bio_set_dev(clone, cc->dev->bdev); | 
|  | 1561 | clone->bi_opf	  = io->base_bio->bi_opf; | 
|  | 1562 | } | 
|  | 1563 |  | 
|  | 1564 | static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp) | 
|  | 1565 | { | 
|  | 1566 | struct crypt_config *cc = io->cc; | 
|  | 1567 | struct bio *clone; | 
|  | 1568 |  | 
|  | 1569 | /* | 
|  | 1570 | * We need the original biovec array in order to decrypt | 
|  | 1571 | * the whole bio data *afterwards* -- thanks to immutable | 
|  | 1572 | * biovecs we don't need to worry about the block layer | 
|  | 1573 | * modifying the biovec array; so leverage bio_clone_fast(). | 
|  | 1574 | */ | 
|  | 1575 | clone = bio_clone_fast(io->base_bio, gfp, cc->bs); | 
|  | 1576 | if (!clone) | 
|  | 1577 | return 1; | 
|  | 1578 |  | 
|  | 1579 | crypt_inc_pending(io); | 
|  | 1580 |  | 
|  | 1581 | clone_init(io, clone); | 
|  | 1582 | clone->bi_iter.bi_sector = cc->start + io->sector; | 
|  | 1583 |  | 
|  | 1584 | if (dm_crypt_integrity_io_alloc(io, clone)) { | 
|  | 1585 | crypt_dec_pending(io); | 
|  | 1586 | bio_put(clone); | 
|  | 1587 | return 1; | 
|  | 1588 | } | 
|  | 1589 |  | 
|  | 1590 | generic_make_request(clone); | 
|  | 1591 | return 0; | 
|  | 1592 | } | 
|  | 1593 |  | 
|  | 1594 | static void kcryptd_io_read_work(struct work_struct *work) | 
|  | 1595 | { | 
|  | 1596 | struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); | 
|  | 1597 |  | 
|  | 1598 | crypt_inc_pending(io); | 
|  | 1599 | if (kcryptd_io_read(io, GFP_NOIO)) | 
|  | 1600 | io->error = BLK_STS_RESOURCE; | 
|  | 1601 | crypt_dec_pending(io); | 
|  | 1602 | } | 
|  | 1603 |  | 
|  | 1604 | static void kcryptd_queue_read(struct dm_crypt_io *io) | 
|  | 1605 | { | 
|  | 1606 | struct crypt_config *cc = io->cc; | 
|  | 1607 |  | 
|  | 1608 | INIT_WORK(&io->work, kcryptd_io_read_work); | 
|  | 1609 | queue_work(cc->io_queue, &io->work); | 
|  | 1610 | } | 
|  | 1611 |  | 
|  | 1612 | static void kcryptd_io_write(struct dm_crypt_io *io) | 
|  | 1613 | { | 
|  | 1614 | struct bio *clone = io->ctx.bio_out; | 
|  | 1615 |  | 
|  | 1616 | generic_make_request(clone); | 
|  | 1617 | } | 
|  | 1618 |  | 
|  | 1619 | #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node) | 
|  | 1620 |  | 
|  | 1621 | static int dmcrypt_write(void *data) | 
|  | 1622 | { | 
|  | 1623 | struct crypt_config *cc = data; | 
|  | 1624 | struct dm_crypt_io *io; | 
|  | 1625 |  | 
|  | 1626 | while (1) { | 
|  | 1627 | struct rb_root write_tree; | 
|  | 1628 | struct blk_plug plug; | 
|  | 1629 |  | 
|  | 1630 | DECLARE_WAITQUEUE(wait, current); | 
|  | 1631 |  | 
|  | 1632 | spin_lock_irq(&cc->write_thread_wait.lock); | 
|  | 1633 | continue_locked: | 
|  | 1634 |  | 
|  | 1635 | if (!RB_EMPTY_ROOT(&cc->write_tree)) | 
|  | 1636 | goto pop_from_list; | 
|  | 1637 |  | 
|  | 1638 | set_current_state(TASK_INTERRUPTIBLE); | 
|  | 1639 | __add_wait_queue(&cc->write_thread_wait, &wait); | 
|  | 1640 |  | 
|  | 1641 | spin_unlock_irq(&cc->write_thread_wait.lock); | 
|  | 1642 |  | 
|  | 1643 | if (unlikely(kthread_should_stop())) { | 
|  | 1644 | set_current_state(TASK_RUNNING); | 
|  | 1645 | remove_wait_queue(&cc->write_thread_wait, &wait); | 
|  | 1646 | break; | 
|  | 1647 | } | 
|  | 1648 |  | 
|  | 1649 | schedule(); | 
|  | 1650 |  | 
|  | 1651 | set_current_state(TASK_RUNNING); | 
|  | 1652 | spin_lock_irq(&cc->write_thread_wait.lock); | 
|  | 1653 | __remove_wait_queue(&cc->write_thread_wait, &wait); | 
|  | 1654 | goto continue_locked; | 
|  | 1655 |  | 
|  | 1656 | pop_from_list: | 
|  | 1657 | write_tree = cc->write_tree; | 
|  | 1658 | cc->write_tree = RB_ROOT; | 
|  | 1659 | spin_unlock_irq(&cc->write_thread_wait.lock); | 
|  | 1660 |  | 
|  | 1661 | BUG_ON(rb_parent(write_tree.rb_node)); | 
|  | 1662 |  | 
|  | 1663 | /* | 
|  | 1664 | * Note: we cannot walk the tree here with rb_next because | 
|  | 1665 | * the structures may be freed when kcryptd_io_write is called. | 
|  | 1666 | */ | 
|  | 1667 | blk_start_plug(&plug); | 
|  | 1668 | do { | 
|  | 1669 | io = crypt_io_from_node(rb_first(&write_tree)); | 
|  | 1670 | rb_erase(&io->rb_node, &write_tree); | 
|  | 1671 | kcryptd_io_write(io); | 
|  | 1672 | } while (!RB_EMPTY_ROOT(&write_tree)); | 
|  | 1673 | blk_finish_plug(&plug); | 
|  | 1674 | } | 
|  | 1675 | return 0; | 
|  | 1676 | } | 
|  | 1677 |  | 
|  | 1678 | static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async) | 
|  | 1679 | { | 
|  | 1680 | struct bio *clone = io->ctx.bio_out; | 
|  | 1681 | struct crypt_config *cc = io->cc; | 
|  | 1682 | unsigned long flags; | 
|  | 1683 | sector_t sector; | 
|  | 1684 | struct rb_node **rbp, *parent; | 
|  | 1685 |  | 
|  | 1686 | if (unlikely(io->error)) { | 
|  | 1687 | crypt_free_buffer_pages(cc, clone); | 
|  | 1688 | bio_put(clone); | 
|  | 1689 | crypt_dec_pending(io); | 
|  | 1690 | return; | 
|  | 1691 | } | 
|  | 1692 |  | 
|  | 1693 | /* crypt_convert should have filled the clone bio */ | 
|  | 1694 | BUG_ON(io->ctx.iter_out.bi_size); | 
|  | 1695 |  | 
|  | 1696 | clone->bi_iter.bi_sector = cc->start + io->sector; | 
|  | 1697 |  | 
|  | 1698 | if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) { | 
|  | 1699 | generic_make_request(clone); | 
|  | 1700 | return; | 
|  | 1701 | } | 
|  | 1702 |  | 
|  | 1703 | spin_lock_irqsave(&cc->write_thread_wait.lock, flags); | 
|  | 1704 | rbp = &cc->write_tree.rb_node; | 
|  | 1705 | parent = NULL; | 
|  | 1706 | sector = io->sector; | 
|  | 1707 | while (*rbp) { | 
|  | 1708 | parent = *rbp; | 
|  | 1709 | if (sector < crypt_io_from_node(parent)->sector) | 
|  | 1710 | rbp = &(*rbp)->rb_left; | 
|  | 1711 | else | 
|  | 1712 | rbp = &(*rbp)->rb_right; | 
|  | 1713 | } | 
|  | 1714 | rb_link_node(&io->rb_node, parent, rbp); | 
|  | 1715 | rb_insert_color(&io->rb_node, &cc->write_tree); | 
|  | 1716 |  | 
|  | 1717 | wake_up_locked(&cc->write_thread_wait); | 
|  | 1718 | spin_unlock_irqrestore(&cc->write_thread_wait.lock, flags); | 
|  | 1719 | } | 
|  | 1720 |  | 
|  | 1721 | static void kcryptd_crypt_write_convert(struct dm_crypt_io *io) | 
|  | 1722 | { | 
|  | 1723 | struct crypt_config *cc = io->cc; | 
|  | 1724 | struct bio *clone; | 
|  | 1725 | int crypt_finished; | 
|  | 1726 | sector_t sector = io->sector; | 
|  | 1727 | blk_status_t r; | 
|  | 1728 |  | 
|  | 1729 | /* | 
|  | 1730 | * Prevent io from disappearing until this function completes. | 
|  | 1731 | */ | 
|  | 1732 | crypt_inc_pending(io); | 
|  | 1733 | crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector); | 
|  | 1734 |  | 
|  | 1735 | clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size); | 
|  | 1736 | if (unlikely(!clone)) { | 
|  | 1737 | io->error = BLK_STS_IOERR; | 
|  | 1738 | goto dec; | 
|  | 1739 | } | 
|  | 1740 |  | 
|  | 1741 | io->ctx.bio_out = clone; | 
|  | 1742 | io->ctx.iter_out = clone->bi_iter; | 
|  | 1743 |  | 
|  | 1744 | sector += bio_sectors(clone); | 
|  | 1745 |  | 
|  | 1746 | crypt_inc_pending(io); | 
|  | 1747 | r = crypt_convert(cc, &io->ctx); | 
|  | 1748 | if (r) | 
|  | 1749 | io->error = r; | 
|  | 1750 | crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending); | 
|  | 1751 |  | 
|  | 1752 | /* Encryption was already finished, submit io now */ | 
|  | 1753 | if (crypt_finished) { | 
|  | 1754 | kcryptd_crypt_write_io_submit(io, 0); | 
|  | 1755 | io->sector = sector; | 
|  | 1756 | } | 
|  | 1757 |  | 
|  | 1758 | dec: | 
|  | 1759 | crypt_dec_pending(io); | 
|  | 1760 | } | 
|  | 1761 |  | 
|  | 1762 | static void kcryptd_crypt_read_done(struct dm_crypt_io *io) | 
|  | 1763 | { | 
|  | 1764 | crypt_dec_pending(io); | 
|  | 1765 | } | 
|  | 1766 |  | 
|  | 1767 | static void kcryptd_crypt_read_convert(struct dm_crypt_io *io) | 
|  | 1768 | { | 
|  | 1769 | struct crypt_config *cc = io->cc; | 
|  | 1770 | blk_status_t r; | 
|  | 1771 |  | 
|  | 1772 | crypt_inc_pending(io); | 
|  | 1773 |  | 
|  | 1774 | crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio, | 
|  | 1775 | io->sector); | 
|  | 1776 |  | 
|  | 1777 | r = crypt_convert(cc, &io->ctx); | 
|  | 1778 | if (r) | 
|  | 1779 | io->error = r; | 
|  | 1780 |  | 
|  | 1781 | if (atomic_dec_and_test(&io->ctx.cc_pending)) | 
|  | 1782 | kcryptd_crypt_read_done(io); | 
|  | 1783 |  | 
|  | 1784 | crypt_dec_pending(io); | 
|  | 1785 | } | 
|  | 1786 |  | 
|  | 1787 | static void kcryptd_async_done(struct crypto_async_request *async_req, | 
|  | 1788 | int error) | 
|  | 1789 | { | 
|  | 1790 | struct dm_crypt_request *dmreq = async_req->data; | 
|  | 1791 | struct convert_context *ctx = dmreq->ctx; | 
|  | 1792 | struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx); | 
|  | 1793 | struct crypt_config *cc = io->cc; | 
|  | 1794 |  | 
|  | 1795 | /* | 
|  | 1796 | * A request from crypto driver backlog is going to be processed now, | 
|  | 1797 | * finish the completion and continue in crypt_convert(). | 
|  | 1798 | * (Callback will be called for the second time for this request.) | 
|  | 1799 | */ | 
|  | 1800 | if (error == -EINPROGRESS) { | 
|  | 1801 | complete(&ctx->restart); | 
|  | 1802 | return; | 
|  | 1803 | } | 
|  | 1804 |  | 
|  | 1805 | if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post) | 
|  | 1806 | error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq); | 
|  | 1807 |  | 
|  | 1808 | if (error == -EBADMSG) { | 
|  | 1809 | DMERR_LIMIT("INTEGRITY AEAD ERROR, sector %llu", | 
|  | 1810 | (unsigned long long)le64_to_cpu(*org_sector_of_dmreq(cc, dmreq))); | 
|  | 1811 | io->error = BLK_STS_PROTECTION; | 
|  | 1812 | } else if (error < 0) | 
|  | 1813 | io->error = BLK_STS_IOERR; | 
|  | 1814 |  | 
|  | 1815 | crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio); | 
|  | 1816 |  | 
|  | 1817 | if (!atomic_dec_and_test(&ctx->cc_pending)) | 
|  | 1818 | return; | 
|  | 1819 |  | 
|  | 1820 | if (bio_data_dir(io->base_bio) == READ) | 
|  | 1821 | kcryptd_crypt_read_done(io); | 
|  | 1822 | else | 
|  | 1823 | kcryptd_crypt_write_io_submit(io, 1); | 
|  | 1824 | } | 
|  | 1825 |  | 
|  | 1826 | static void kcryptd_crypt(struct work_struct *work) | 
|  | 1827 | { | 
|  | 1828 | struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); | 
|  | 1829 |  | 
|  | 1830 | if (bio_data_dir(io->base_bio) == READ) | 
|  | 1831 | kcryptd_crypt_read_convert(io); | 
|  | 1832 | else | 
|  | 1833 | kcryptd_crypt_write_convert(io); | 
|  | 1834 | } | 
|  | 1835 |  | 
|  | 1836 | static void kcryptd_queue_crypt(struct dm_crypt_io *io) | 
|  | 1837 | { | 
|  | 1838 | struct crypt_config *cc = io->cc; | 
|  | 1839 |  | 
|  | 1840 | INIT_WORK(&io->work, kcryptd_crypt); | 
|  | 1841 | queue_work(cc->crypt_queue, &io->work); | 
|  | 1842 | } | 
|  | 1843 |  | 
|  | 1844 | static void crypt_free_tfms_aead(struct crypt_config *cc) | 
|  | 1845 | { | 
|  | 1846 | if (!cc->cipher_tfm.tfms_aead) | 
|  | 1847 | return; | 
|  | 1848 |  | 
|  | 1849 | if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) { | 
|  | 1850 | crypto_free_aead(cc->cipher_tfm.tfms_aead[0]); | 
|  | 1851 | cc->cipher_tfm.tfms_aead[0] = NULL; | 
|  | 1852 | } | 
|  | 1853 |  | 
|  | 1854 | kfree(cc->cipher_tfm.tfms_aead); | 
|  | 1855 | cc->cipher_tfm.tfms_aead = NULL; | 
|  | 1856 | } | 
|  | 1857 |  | 
|  | 1858 | static void crypt_free_tfms_skcipher(struct crypt_config *cc) | 
|  | 1859 | { | 
|  | 1860 | unsigned i; | 
|  | 1861 |  | 
|  | 1862 | if (!cc->cipher_tfm.tfms) | 
|  | 1863 | return; | 
|  | 1864 |  | 
|  | 1865 | for (i = 0; i < cc->tfms_count; i++) | 
|  | 1866 | if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) { | 
|  | 1867 | crypto_free_skcipher(cc->cipher_tfm.tfms[i]); | 
|  | 1868 | cc->cipher_tfm.tfms[i] = NULL; | 
|  | 1869 | } | 
|  | 1870 |  | 
|  | 1871 | kfree(cc->cipher_tfm.tfms); | 
|  | 1872 | cc->cipher_tfm.tfms = NULL; | 
|  | 1873 | } | 
|  | 1874 |  | 
|  | 1875 | static void crypt_free_tfms(struct crypt_config *cc) | 
|  | 1876 | { | 
|  | 1877 | if (crypt_integrity_aead(cc)) | 
|  | 1878 | crypt_free_tfms_aead(cc); | 
|  | 1879 | else | 
|  | 1880 | crypt_free_tfms_skcipher(cc); | 
|  | 1881 | } | 
|  | 1882 |  | 
|  | 1883 | static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode) | 
|  | 1884 | { | 
|  | 1885 | unsigned i; | 
|  | 1886 | int err; | 
|  | 1887 |  | 
|  | 1888 | cc->cipher_tfm.tfms = kzalloc(cc->tfms_count * | 
|  | 1889 | sizeof(struct crypto_skcipher *), GFP_KERNEL); | 
|  | 1890 | if (!cc->cipher_tfm.tfms) | 
|  | 1891 | return -ENOMEM; | 
|  | 1892 |  | 
|  | 1893 | for (i = 0; i < cc->tfms_count; i++) { | 
|  | 1894 | cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 0); | 
|  | 1895 | if (IS_ERR(cc->cipher_tfm.tfms[i])) { | 
|  | 1896 | err = PTR_ERR(cc->cipher_tfm.tfms[i]); | 
|  | 1897 | crypt_free_tfms(cc); | 
|  | 1898 | return err; | 
|  | 1899 | } | 
|  | 1900 | } | 
|  | 1901 |  | 
|  | 1902 | return 0; | 
|  | 1903 | } | 
|  | 1904 |  | 
|  | 1905 | static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode) | 
|  | 1906 | { | 
|  | 1907 | int err; | 
|  | 1908 |  | 
|  | 1909 | cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL); | 
|  | 1910 | if (!cc->cipher_tfm.tfms) | 
|  | 1911 | return -ENOMEM; | 
|  | 1912 |  | 
|  | 1913 | cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0, 0); | 
|  | 1914 | if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) { | 
|  | 1915 | err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]); | 
|  | 1916 | crypt_free_tfms(cc); | 
|  | 1917 | return err; | 
|  | 1918 | } | 
|  | 1919 |  | 
|  | 1920 | return 0; | 
|  | 1921 | } | 
|  | 1922 |  | 
|  | 1923 | static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode) | 
|  | 1924 | { | 
|  | 1925 | if (crypt_integrity_aead(cc)) | 
|  | 1926 | return crypt_alloc_tfms_aead(cc, ciphermode); | 
|  | 1927 | else | 
|  | 1928 | return crypt_alloc_tfms_skcipher(cc, ciphermode); | 
|  | 1929 | } | 
|  | 1930 |  | 
|  | 1931 | static unsigned crypt_subkey_size(struct crypt_config *cc) | 
|  | 1932 | { | 
|  | 1933 | return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count); | 
|  | 1934 | } | 
|  | 1935 |  | 
|  | 1936 | static unsigned crypt_authenckey_size(struct crypt_config *cc) | 
|  | 1937 | { | 
|  | 1938 | return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param)); | 
|  | 1939 | } | 
|  | 1940 |  | 
|  | 1941 | /* | 
|  | 1942 | * If AEAD is composed like authenc(hmac(sha256),xts(aes)), | 
|  | 1943 | * the key must be for some reason in special format. | 
|  | 1944 | * This funcion converts cc->key to this special format. | 
|  | 1945 | */ | 
|  | 1946 | static void crypt_copy_authenckey(char *p, const void *key, | 
|  | 1947 | unsigned enckeylen, unsigned authkeylen) | 
|  | 1948 | { | 
|  | 1949 | struct crypto_authenc_key_param *param; | 
|  | 1950 | struct rtattr *rta; | 
|  | 1951 |  | 
|  | 1952 | rta = (struct rtattr *)p; | 
|  | 1953 | param = RTA_DATA(rta); | 
|  | 1954 | param->enckeylen = cpu_to_be32(enckeylen); | 
|  | 1955 | rta->rta_len = RTA_LENGTH(sizeof(*param)); | 
|  | 1956 | rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM; | 
|  | 1957 | p += RTA_SPACE(sizeof(*param)); | 
|  | 1958 | memcpy(p, key + enckeylen, authkeylen); | 
|  | 1959 | p += authkeylen; | 
|  | 1960 | memcpy(p, key, enckeylen); | 
|  | 1961 | } | 
|  | 1962 |  | 
|  | 1963 | static int crypt_setkey(struct crypt_config *cc) | 
|  | 1964 | { | 
|  | 1965 | unsigned subkey_size; | 
|  | 1966 | int err = 0, i, r; | 
|  | 1967 |  | 
|  | 1968 | /* Ignore extra keys (which are used for IV etc) */ | 
|  | 1969 | subkey_size = crypt_subkey_size(cc); | 
|  | 1970 |  | 
|  | 1971 | if (crypt_integrity_hmac(cc)) { | 
|  | 1972 | if (subkey_size < cc->key_mac_size) | 
|  | 1973 | return -EINVAL; | 
|  | 1974 |  | 
|  | 1975 | crypt_copy_authenckey(cc->authenc_key, cc->key, | 
|  | 1976 | subkey_size - cc->key_mac_size, | 
|  | 1977 | cc->key_mac_size); | 
|  | 1978 | } | 
|  | 1979 |  | 
|  | 1980 | for (i = 0; i < cc->tfms_count; i++) { | 
|  | 1981 | if (crypt_integrity_hmac(cc)) | 
|  | 1982 | r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i], | 
|  | 1983 | cc->authenc_key, crypt_authenckey_size(cc)); | 
|  | 1984 | else if (crypt_integrity_aead(cc)) | 
|  | 1985 | r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i], | 
|  | 1986 | cc->key + (i * subkey_size), | 
|  | 1987 | subkey_size); | 
|  | 1988 | else | 
|  | 1989 | r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i], | 
|  | 1990 | cc->key + (i * subkey_size), | 
|  | 1991 | subkey_size); | 
|  | 1992 | if (r) | 
|  | 1993 | err = r; | 
|  | 1994 | } | 
|  | 1995 |  | 
|  | 1996 | if (crypt_integrity_hmac(cc)) | 
|  | 1997 | memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc)); | 
|  | 1998 |  | 
|  | 1999 | return err; | 
|  | 2000 | } | 
|  | 2001 |  | 
|  | 2002 | #ifdef CONFIG_KEYS | 
|  | 2003 |  | 
|  | 2004 | static bool contains_whitespace(const char *str) | 
|  | 2005 | { | 
|  | 2006 | while (*str) | 
|  | 2007 | if (isspace(*str++)) | 
|  | 2008 | return true; | 
|  | 2009 | return false; | 
|  | 2010 | } | 
|  | 2011 |  | 
|  | 2012 | static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string) | 
|  | 2013 | { | 
|  | 2014 | char *new_key_string, *key_desc; | 
|  | 2015 | int ret; | 
|  | 2016 | struct key *key; | 
|  | 2017 | const struct user_key_payload *ukp; | 
|  | 2018 |  | 
|  | 2019 | /* | 
|  | 2020 | * Reject key_string with whitespace. dm core currently lacks code for | 
|  | 2021 | * proper whitespace escaping in arguments on DM_TABLE_STATUS path. | 
|  | 2022 | */ | 
|  | 2023 | if (contains_whitespace(key_string)) { | 
|  | 2024 | DMERR("whitespace chars not allowed in key string"); | 
|  | 2025 | return -EINVAL; | 
|  | 2026 | } | 
|  | 2027 |  | 
|  | 2028 | /* look for next ':' separating key_type from key_description */ | 
|  | 2029 | key_desc = strpbrk(key_string, ":"); | 
|  | 2030 | if (!key_desc || key_desc == key_string || !strlen(key_desc + 1)) | 
|  | 2031 | return -EINVAL; | 
|  | 2032 |  | 
|  | 2033 | if (strncmp(key_string, "logon:", key_desc - key_string + 1) && | 
|  | 2034 | strncmp(key_string, "user:", key_desc - key_string + 1)) | 
|  | 2035 | return -EINVAL; | 
|  | 2036 |  | 
|  | 2037 | new_key_string = kstrdup(key_string, GFP_KERNEL); | 
|  | 2038 | if (!new_key_string) | 
|  | 2039 | return -ENOMEM; | 
|  | 2040 |  | 
|  | 2041 | key = request_key(key_string[0] == 'l' ? &key_type_logon : &key_type_user, | 
|  | 2042 | key_desc + 1, NULL); | 
|  | 2043 | if (IS_ERR(key)) { | 
|  | 2044 | kzfree(new_key_string); | 
|  | 2045 | return PTR_ERR(key); | 
|  | 2046 | } | 
|  | 2047 |  | 
|  | 2048 | down_read(&key->sem); | 
|  | 2049 |  | 
|  | 2050 | ukp = user_key_payload_locked(key); | 
|  | 2051 | if (!ukp) { | 
|  | 2052 | up_read(&key->sem); | 
|  | 2053 | key_put(key); | 
|  | 2054 | kzfree(new_key_string); | 
|  | 2055 | return -EKEYREVOKED; | 
|  | 2056 | } | 
|  | 2057 |  | 
|  | 2058 | if (cc->key_size != ukp->datalen) { | 
|  | 2059 | up_read(&key->sem); | 
|  | 2060 | key_put(key); | 
|  | 2061 | kzfree(new_key_string); | 
|  | 2062 | return -EINVAL; | 
|  | 2063 | } | 
|  | 2064 |  | 
|  | 2065 | memcpy(cc->key, ukp->data, cc->key_size); | 
|  | 2066 |  | 
|  | 2067 | up_read(&key->sem); | 
|  | 2068 | key_put(key); | 
|  | 2069 |  | 
|  | 2070 | /* clear the flag since following operations may invalidate previously valid key */ | 
|  | 2071 | clear_bit(DM_CRYPT_KEY_VALID, &cc->flags); | 
|  | 2072 |  | 
|  | 2073 | ret = crypt_setkey(cc); | 
|  | 2074 |  | 
|  | 2075 | if (!ret) { | 
|  | 2076 | set_bit(DM_CRYPT_KEY_VALID, &cc->flags); | 
|  | 2077 | kzfree(cc->key_string); | 
|  | 2078 | cc->key_string = new_key_string; | 
|  | 2079 | } else | 
|  | 2080 | kzfree(new_key_string); | 
|  | 2081 |  | 
|  | 2082 | return ret; | 
|  | 2083 | } | 
|  | 2084 |  | 
|  | 2085 | static int get_key_size(char **key_string) | 
|  | 2086 | { | 
|  | 2087 | char *colon, dummy; | 
|  | 2088 | int ret; | 
|  | 2089 |  | 
|  | 2090 | if (*key_string[0] != ':') | 
|  | 2091 | return strlen(*key_string) >> 1; | 
|  | 2092 |  | 
|  | 2093 | /* look for next ':' in key string */ | 
|  | 2094 | colon = strpbrk(*key_string + 1, ":"); | 
|  | 2095 | if (!colon) | 
|  | 2096 | return -EINVAL; | 
|  | 2097 |  | 
|  | 2098 | if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':') | 
|  | 2099 | return -EINVAL; | 
|  | 2100 |  | 
|  | 2101 | *key_string = colon; | 
|  | 2102 |  | 
|  | 2103 | /* remaining key string should be :<logon|user>:<key_desc> */ | 
|  | 2104 |  | 
|  | 2105 | return ret; | 
|  | 2106 | } | 
|  | 2107 |  | 
|  | 2108 | #else | 
|  | 2109 |  | 
|  | 2110 | static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string) | 
|  | 2111 | { | 
|  | 2112 | return -EINVAL; | 
|  | 2113 | } | 
|  | 2114 |  | 
|  | 2115 | static int get_key_size(char **key_string) | 
|  | 2116 | { | 
|  | 2117 | return (*key_string[0] == ':') ? -EINVAL : strlen(*key_string) >> 1; | 
|  | 2118 | } | 
|  | 2119 |  | 
|  | 2120 | #endif | 
|  | 2121 |  | 
|  | 2122 | static int crypt_set_key(struct crypt_config *cc, char *key) | 
|  | 2123 | { | 
|  | 2124 | int r = -EINVAL; | 
|  | 2125 | int key_string_len = strlen(key); | 
|  | 2126 |  | 
|  | 2127 | /* Hyphen (which gives a key_size of zero) means there is no key. */ | 
|  | 2128 | if (!cc->key_size && strcmp(key, "-")) | 
|  | 2129 | goto out; | 
|  | 2130 |  | 
|  | 2131 | /* ':' means the key is in kernel keyring, short-circuit normal key processing */ | 
|  | 2132 | if (key[0] == ':') { | 
|  | 2133 | r = crypt_set_keyring_key(cc, key + 1); | 
|  | 2134 | goto out; | 
|  | 2135 | } | 
|  | 2136 |  | 
|  | 2137 | /* clear the flag since following operations may invalidate previously valid key */ | 
|  | 2138 | clear_bit(DM_CRYPT_KEY_VALID, &cc->flags); | 
|  | 2139 |  | 
|  | 2140 | /* wipe references to any kernel keyring key */ | 
|  | 2141 | kzfree(cc->key_string); | 
|  | 2142 | cc->key_string = NULL; | 
|  | 2143 |  | 
|  | 2144 | /* Decode key from its hex representation. */ | 
|  | 2145 | if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0) | 
|  | 2146 | goto out; | 
|  | 2147 |  | 
|  | 2148 | r = crypt_setkey(cc); | 
|  | 2149 | if (!r) | 
|  | 2150 | set_bit(DM_CRYPT_KEY_VALID, &cc->flags); | 
|  | 2151 |  | 
|  | 2152 | out: | 
|  | 2153 | /* Hex key string not needed after here, so wipe it. */ | 
|  | 2154 | memset(key, '0', key_string_len); | 
|  | 2155 |  | 
|  | 2156 | return r; | 
|  | 2157 | } | 
|  | 2158 |  | 
|  | 2159 | static int crypt_wipe_key(struct crypt_config *cc) | 
|  | 2160 | { | 
|  | 2161 | int r; | 
|  | 2162 |  | 
|  | 2163 | clear_bit(DM_CRYPT_KEY_VALID, &cc->flags); | 
|  | 2164 | get_random_bytes(&cc->key, cc->key_size); | 
|  | 2165 | kzfree(cc->key_string); | 
|  | 2166 | cc->key_string = NULL; | 
|  | 2167 | r = crypt_setkey(cc); | 
|  | 2168 | memset(&cc->key, 0, cc->key_size * sizeof(u8)); | 
|  | 2169 |  | 
|  | 2170 | return r; | 
|  | 2171 | } | 
|  | 2172 |  | 
|  | 2173 | static void crypt_calculate_pages_per_client(void) | 
|  | 2174 | { | 
|  | 2175 | unsigned long pages = (totalram_pages - totalhigh_pages) * DM_CRYPT_MEMORY_PERCENT / 100; | 
|  | 2176 |  | 
|  | 2177 | if (!dm_crypt_clients_n) | 
|  | 2178 | return; | 
|  | 2179 |  | 
|  | 2180 | pages /= dm_crypt_clients_n; | 
|  | 2181 | if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT) | 
|  | 2182 | pages = DM_CRYPT_MIN_PAGES_PER_CLIENT; | 
|  | 2183 | dm_crypt_pages_per_client = pages; | 
|  | 2184 | } | 
|  | 2185 |  | 
|  | 2186 | static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data) | 
|  | 2187 | { | 
|  | 2188 | struct crypt_config *cc = pool_data; | 
|  | 2189 | struct page *page; | 
|  | 2190 |  | 
|  | 2191 | if (unlikely(percpu_counter_compare(&cc->n_allocated_pages, dm_crypt_pages_per_client) >= 0) && | 
|  | 2192 | likely(gfp_mask & __GFP_NORETRY)) | 
|  | 2193 | return NULL; | 
|  | 2194 |  | 
|  | 2195 | page = alloc_page(gfp_mask); | 
|  | 2196 | if (likely(page != NULL)) | 
|  | 2197 | percpu_counter_add(&cc->n_allocated_pages, 1); | 
|  | 2198 |  | 
|  | 2199 | return page; | 
|  | 2200 | } | 
|  | 2201 |  | 
|  | 2202 | static void crypt_page_free(void *page, void *pool_data) | 
|  | 2203 | { | 
|  | 2204 | struct crypt_config *cc = pool_data; | 
|  | 2205 |  | 
|  | 2206 | __free_page(page); | 
|  | 2207 | percpu_counter_sub(&cc->n_allocated_pages, 1); | 
|  | 2208 | } | 
|  | 2209 |  | 
|  | 2210 | static void crypt_dtr(struct dm_target *ti) | 
|  | 2211 | { | 
|  | 2212 | struct crypt_config *cc = ti->private; | 
|  | 2213 |  | 
|  | 2214 | ti->private = NULL; | 
|  | 2215 |  | 
|  | 2216 | if (!cc) | 
|  | 2217 | return; | 
|  | 2218 |  | 
|  | 2219 | if (cc->write_thread) | 
|  | 2220 | kthread_stop(cc->write_thread); | 
|  | 2221 |  | 
|  | 2222 | if (cc->io_queue) | 
|  | 2223 | destroy_workqueue(cc->io_queue); | 
|  | 2224 | if (cc->crypt_queue) | 
|  | 2225 | destroy_workqueue(cc->crypt_queue); | 
|  | 2226 |  | 
|  | 2227 | crypt_free_tfms(cc); | 
|  | 2228 |  | 
|  | 2229 | if (cc->bs) | 
|  | 2230 | bioset_free(cc->bs); | 
|  | 2231 |  | 
|  | 2232 | mempool_destroy(cc->page_pool); | 
|  | 2233 | mempool_destroy(cc->req_pool); | 
|  | 2234 | mempool_destroy(cc->tag_pool); | 
|  | 2235 |  | 
|  | 2236 | if (cc->page_pool) | 
|  | 2237 | WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0); | 
|  | 2238 | percpu_counter_destroy(&cc->n_allocated_pages); | 
|  | 2239 |  | 
|  | 2240 | if (cc->iv_gen_ops && cc->iv_gen_ops->dtr) | 
|  | 2241 | cc->iv_gen_ops->dtr(cc); | 
|  | 2242 |  | 
|  | 2243 | if (cc->dev) | 
|  | 2244 | dm_put_device(ti, cc->dev); | 
|  | 2245 |  | 
|  | 2246 | kzfree(cc->cipher); | 
|  | 2247 | kzfree(cc->cipher_string); | 
|  | 2248 | kzfree(cc->key_string); | 
|  | 2249 | kzfree(cc->cipher_auth); | 
|  | 2250 | kzfree(cc->authenc_key); | 
|  | 2251 |  | 
|  | 2252 | /* Must zero key material before freeing */ | 
|  | 2253 | kzfree(cc); | 
|  | 2254 |  | 
|  | 2255 | spin_lock(&dm_crypt_clients_lock); | 
|  | 2256 | WARN_ON(!dm_crypt_clients_n); | 
|  | 2257 | dm_crypt_clients_n--; | 
|  | 2258 | crypt_calculate_pages_per_client(); | 
|  | 2259 | spin_unlock(&dm_crypt_clients_lock); | 
|  | 2260 | } | 
|  | 2261 |  | 
|  | 2262 | static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode) | 
|  | 2263 | { | 
|  | 2264 | struct crypt_config *cc = ti->private; | 
|  | 2265 |  | 
|  | 2266 | if (crypt_integrity_aead(cc)) | 
|  | 2267 | cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc)); | 
|  | 2268 | else | 
|  | 2269 | cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc)); | 
|  | 2270 |  | 
|  | 2271 | if (cc->iv_size) | 
|  | 2272 | /* at least a 64 bit sector number should fit in our buffer */ | 
|  | 2273 | cc->iv_size = max(cc->iv_size, | 
|  | 2274 | (unsigned int)(sizeof(u64) / sizeof(u8))); | 
|  | 2275 | else if (ivmode) { | 
|  | 2276 | DMWARN("Selected cipher does not support IVs"); | 
|  | 2277 | ivmode = NULL; | 
|  | 2278 | } | 
|  | 2279 |  | 
|  | 2280 | /* Choose ivmode, see comments at iv code. */ | 
|  | 2281 | if (ivmode == NULL) | 
|  | 2282 | cc->iv_gen_ops = NULL; | 
|  | 2283 | else if (strcmp(ivmode, "plain") == 0) | 
|  | 2284 | cc->iv_gen_ops = &crypt_iv_plain_ops; | 
|  | 2285 | else if (strcmp(ivmode, "plain64") == 0) | 
|  | 2286 | cc->iv_gen_ops = &crypt_iv_plain64_ops; | 
|  | 2287 | else if (strcmp(ivmode, "plain64be") == 0) | 
|  | 2288 | cc->iv_gen_ops = &crypt_iv_plain64be_ops; | 
|  | 2289 | else if (strcmp(ivmode, "essiv") == 0) | 
|  | 2290 | cc->iv_gen_ops = &crypt_iv_essiv_ops; | 
|  | 2291 | else if (strcmp(ivmode, "benbi") == 0) | 
|  | 2292 | cc->iv_gen_ops = &crypt_iv_benbi_ops; | 
|  | 2293 | else if (strcmp(ivmode, "null") == 0) | 
|  | 2294 | cc->iv_gen_ops = &crypt_iv_null_ops; | 
|  | 2295 | else if (strcmp(ivmode, "lmk") == 0) { | 
|  | 2296 | cc->iv_gen_ops = &crypt_iv_lmk_ops; | 
|  | 2297 | /* | 
|  | 2298 | * Version 2 and 3 is recognised according | 
|  | 2299 | * to length of provided multi-key string. | 
|  | 2300 | * If present (version 3), last key is used as IV seed. | 
|  | 2301 | * All keys (including IV seed) are always the same size. | 
|  | 2302 | */ | 
|  | 2303 | if (cc->key_size % cc->key_parts) { | 
|  | 2304 | cc->key_parts++; | 
|  | 2305 | cc->key_extra_size = cc->key_size / cc->key_parts; | 
|  | 2306 | } | 
|  | 2307 | } else if (strcmp(ivmode, "tcw") == 0) { | 
|  | 2308 | cc->iv_gen_ops = &crypt_iv_tcw_ops; | 
|  | 2309 | cc->key_parts += 2; /* IV + whitening */ | 
|  | 2310 | cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE; | 
|  | 2311 | } else if (strcmp(ivmode, "random") == 0) { | 
|  | 2312 | cc->iv_gen_ops = &crypt_iv_random_ops; | 
|  | 2313 | /* Need storage space in integrity fields. */ | 
|  | 2314 | cc->integrity_iv_size = cc->iv_size; | 
|  | 2315 | } else { | 
|  | 2316 | ti->error = "Invalid IV mode"; | 
|  | 2317 | return -EINVAL; | 
|  | 2318 | } | 
|  | 2319 |  | 
|  | 2320 | return 0; | 
|  | 2321 | } | 
|  | 2322 |  | 
|  | 2323 | /* | 
|  | 2324 | * Workaround to parse cipher algorithm from crypto API spec. | 
|  | 2325 | * The cc->cipher is currently used only in ESSIV. | 
|  | 2326 | * This should be probably done by crypto-api calls (once available...) | 
|  | 2327 | */ | 
|  | 2328 | static int crypt_ctr_blkdev_cipher(struct crypt_config *cc) | 
|  | 2329 | { | 
|  | 2330 | const char *alg_name = NULL; | 
|  | 2331 | char *start, *end; | 
|  | 2332 |  | 
|  | 2333 | if (crypt_integrity_aead(cc)) { | 
|  | 2334 | alg_name = crypto_tfm_alg_name(crypto_aead_tfm(any_tfm_aead(cc))); | 
|  | 2335 | if (!alg_name) | 
|  | 2336 | return -EINVAL; | 
|  | 2337 | if (crypt_integrity_hmac(cc)) { | 
|  | 2338 | alg_name = strchr(alg_name, ','); | 
|  | 2339 | if (!alg_name) | 
|  | 2340 | return -EINVAL; | 
|  | 2341 | } | 
|  | 2342 | alg_name++; | 
|  | 2343 | } else { | 
|  | 2344 | alg_name = crypto_tfm_alg_name(crypto_skcipher_tfm(any_tfm(cc))); | 
|  | 2345 | if (!alg_name) | 
|  | 2346 | return -EINVAL; | 
|  | 2347 | } | 
|  | 2348 |  | 
|  | 2349 | start = strchr(alg_name, '('); | 
|  | 2350 | end = strchr(alg_name, ')'); | 
|  | 2351 |  | 
|  | 2352 | if (!start && !end) { | 
|  | 2353 | cc->cipher = kstrdup(alg_name, GFP_KERNEL); | 
|  | 2354 | return cc->cipher ? 0 : -ENOMEM; | 
|  | 2355 | } | 
|  | 2356 |  | 
|  | 2357 | if (!start || !end || ++start >= end) | 
|  | 2358 | return -EINVAL; | 
|  | 2359 |  | 
|  | 2360 | cc->cipher = kzalloc(end - start + 1, GFP_KERNEL); | 
|  | 2361 | if (!cc->cipher) | 
|  | 2362 | return -ENOMEM; | 
|  | 2363 |  | 
|  | 2364 | strncpy(cc->cipher, start, end - start); | 
|  | 2365 |  | 
|  | 2366 | return 0; | 
|  | 2367 | } | 
|  | 2368 |  | 
|  | 2369 | /* | 
|  | 2370 | * Workaround to parse HMAC algorithm from AEAD crypto API spec. | 
|  | 2371 | * The HMAC is needed to calculate tag size (HMAC digest size). | 
|  | 2372 | * This should be probably done by crypto-api calls (once available...) | 
|  | 2373 | */ | 
|  | 2374 | static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api) | 
|  | 2375 | { | 
|  | 2376 | char *start, *end, *mac_alg = NULL; | 
|  | 2377 | struct crypto_ahash *mac; | 
|  | 2378 |  | 
|  | 2379 | if (!strstarts(cipher_api, "authenc(")) | 
|  | 2380 | return 0; | 
|  | 2381 |  | 
|  | 2382 | start = strchr(cipher_api, '('); | 
|  | 2383 | end = strchr(cipher_api, ','); | 
|  | 2384 | if (!start || !end || ++start > end) | 
|  | 2385 | return -EINVAL; | 
|  | 2386 |  | 
|  | 2387 | mac_alg = kzalloc(end - start + 1, GFP_KERNEL); | 
|  | 2388 | if (!mac_alg) | 
|  | 2389 | return -ENOMEM; | 
|  | 2390 | strncpy(mac_alg, start, end - start); | 
|  | 2391 |  | 
|  | 2392 | mac = crypto_alloc_ahash(mac_alg, 0, 0); | 
|  | 2393 | kfree(mac_alg); | 
|  | 2394 |  | 
|  | 2395 | if (IS_ERR(mac)) | 
|  | 2396 | return PTR_ERR(mac); | 
|  | 2397 |  | 
|  | 2398 | cc->key_mac_size = crypto_ahash_digestsize(mac); | 
|  | 2399 | crypto_free_ahash(mac); | 
|  | 2400 |  | 
|  | 2401 | cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL); | 
|  | 2402 | if (!cc->authenc_key) | 
|  | 2403 | return -ENOMEM; | 
|  | 2404 |  | 
|  | 2405 | return 0; | 
|  | 2406 | } | 
|  | 2407 |  | 
|  | 2408 | static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key, | 
|  | 2409 | char **ivmode, char **ivopts) | 
|  | 2410 | { | 
|  | 2411 | struct crypt_config *cc = ti->private; | 
|  | 2412 | char *tmp, *cipher_api; | 
|  | 2413 | int ret = -EINVAL; | 
|  | 2414 |  | 
|  | 2415 | cc->tfms_count = 1; | 
|  | 2416 |  | 
|  | 2417 | /* | 
|  | 2418 | * New format (capi: prefix) | 
|  | 2419 | * capi:cipher_api_spec-iv:ivopts | 
|  | 2420 | */ | 
|  | 2421 | tmp = &cipher_in[strlen("capi:")]; | 
|  | 2422 |  | 
|  | 2423 | /* Separate IV options if present, it can contain another '-' in hash name */ | 
|  | 2424 | *ivopts = strrchr(tmp, ':'); | 
|  | 2425 | if (*ivopts) { | 
|  | 2426 | **ivopts = '\0'; | 
|  | 2427 | (*ivopts)++; | 
|  | 2428 | } | 
|  | 2429 | /* Parse IV mode */ | 
|  | 2430 | *ivmode = strrchr(tmp, '-'); | 
|  | 2431 | if (*ivmode) { | 
|  | 2432 | **ivmode = '\0'; | 
|  | 2433 | (*ivmode)++; | 
|  | 2434 | } | 
|  | 2435 | /* The rest is crypto API spec */ | 
|  | 2436 | cipher_api = tmp; | 
|  | 2437 |  | 
|  | 2438 | if (*ivmode && !strcmp(*ivmode, "lmk")) | 
|  | 2439 | cc->tfms_count = 64; | 
|  | 2440 |  | 
|  | 2441 | cc->key_parts = cc->tfms_count; | 
|  | 2442 |  | 
|  | 2443 | /* Allocate cipher */ | 
|  | 2444 | ret = crypt_alloc_tfms(cc, cipher_api); | 
|  | 2445 | if (ret < 0) { | 
|  | 2446 | ti->error = "Error allocating crypto tfm"; | 
|  | 2447 | return ret; | 
|  | 2448 | } | 
|  | 2449 |  | 
|  | 2450 | /* Alloc AEAD, can be used only in new format. */ | 
|  | 2451 | if (crypt_integrity_aead(cc)) { | 
|  | 2452 | ret = crypt_ctr_auth_cipher(cc, cipher_api); | 
|  | 2453 | if (ret < 0) { | 
|  | 2454 | ti->error = "Invalid AEAD cipher spec"; | 
|  | 2455 | return -ENOMEM; | 
|  | 2456 | } | 
|  | 2457 | cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc)); | 
|  | 2458 | } else | 
|  | 2459 | cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc)); | 
|  | 2460 |  | 
|  | 2461 | ret = crypt_ctr_blkdev_cipher(cc); | 
|  | 2462 | if (ret < 0) { | 
|  | 2463 | ti->error = "Cannot allocate cipher string"; | 
|  | 2464 | return -ENOMEM; | 
|  | 2465 | } | 
|  | 2466 |  | 
|  | 2467 | return 0; | 
|  | 2468 | } | 
|  | 2469 |  | 
|  | 2470 | static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key, | 
|  | 2471 | char **ivmode, char **ivopts) | 
|  | 2472 | { | 
|  | 2473 | struct crypt_config *cc = ti->private; | 
|  | 2474 | char *tmp, *cipher, *chainmode, *keycount; | 
|  | 2475 | char *cipher_api = NULL; | 
|  | 2476 | int ret = -EINVAL; | 
|  | 2477 | char dummy; | 
|  | 2478 |  | 
|  | 2479 | if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) { | 
|  | 2480 | ti->error = "Bad cipher specification"; | 
|  | 2481 | return -EINVAL; | 
|  | 2482 | } | 
|  | 2483 |  | 
|  | 2484 | /* | 
|  | 2485 | * Legacy dm-crypt cipher specification | 
|  | 2486 | * cipher[:keycount]-mode-iv:ivopts | 
|  | 2487 | */ | 
|  | 2488 | tmp = cipher_in; | 
|  | 2489 | keycount = strsep(&tmp, "-"); | 
|  | 2490 | cipher = strsep(&keycount, ":"); | 
|  | 2491 |  | 
|  | 2492 | if (!keycount) | 
|  | 2493 | cc->tfms_count = 1; | 
|  | 2494 | else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 || | 
|  | 2495 | !is_power_of_2(cc->tfms_count)) { | 
|  | 2496 | ti->error = "Bad cipher key count specification"; | 
|  | 2497 | return -EINVAL; | 
|  | 2498 | } | 
|  | 2499 | cc->key_parts = cc->tfms_count; | 
|  | 2500 |  | 
|  | 2501 | cc->cipher = kstrdup(cipher, GFP_KERNEL); | 
|  | 2502 | if (!cc->cipher) | 
|  | 2503 | goto bad_mem; | 
|  | 2504 |  | 
|  | 2505 | chainmode = strsep(&tmp, "-"); | 
|  | 2506 | *ivmode = strsep(&tmp, ":"); | 
|  | 2507 | *ivopts = tmp; | 
|  | 2508 |  | 
|  | 2509 | /* | 
|  | 2510 | * For compatibility with the original dm-crypt mapping format, if | 
|  | 2511 | * only the cipher name is supplied, use cbc-plain. | 
|  | 2512 | */ | 
|  | 2513 | if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) { | 
|  | 2514 | chainmode = "cbc"; | 
|  | 2515 | *ivmode = "plain"; | 
|  | 2516 | } | 
|  | 2517 |  | 
|  | 2518 | if (strcmp(chainmode, "ecb") && !*ivmode) { | 
|  | 2519 | ti->error = "IV mechanism required"; | 
|  | 2520 | return -EINVAL; | 
|  | 2521 | } | 
|  | 2522 |  | 
|  | 2523 | cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL); | 
|  | 2524 | if (!cipher_api) | 
|  | 2525 | goto bad_mem; | 
|  | 2526 |  | 
|  | 2527 | ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME, | 
|  | 2528 | "%s(%s)", chainmode, cipher); | 
|  | 2529 | if (ret < 0) { | 
|  | 2530 | kfree(cipher_api); | 
|  | 2531 | goto bad_mem; | 
|  | 2532 | } | 
|  | 2533 |  | 
|  | 2534 | /* Allocate cipher */ | 
|  | 2535 | ret = crypt_alloc_tfms(cc, cipher_api); | 
|  | 2536 | if (ret < 0) { | 
|  | 2537 | ti->error = "Error allocating crypto tfm"; | 
|  | 2538 | kfree(cipher_api); | 
|  | 2539 | return ret; | 
|  | 2540 | } | 
|  | 2541 | kfree(cipher_api); | 
|  | 2542 |  | 
|  | 2543 | return 0; | 
|  | 2544 | bad_mem: | 
|  | 2545 | ti->error = "Cannot allocate cipher strings"; | 
|  | 2546 | return -ENOMEM; | 
|  | 2547 | } | 
|  | 2548 |  | 
|  | 2549 | static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key) | 
|  | 2550 | { | 
|  | 2551 | struct crypt_config *cc = ti->private; | 
|  | 2552 | char *ivmode = NULL, *ivopts = NULL; | 
|  | 2553 | int ret; | 
|  | 2554 |  | 
|  | 2555 | cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL); | 
|  | 2556 | if (!cc->cipher_string) { | 
|  | 2557 | ti->error = "Cannot allocate cipher strings"; | 
|  | 2558 | return -ENOMEM; | 
|  | 2559 | } | 
|  | 2560 |  | 
|  | 2561 | if (strstarts(cipher_in, "capi:")) | 
|  | 2562 | ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts); | 
|  | 2563 | else | 
|  | 2564 | ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts); | 
|  | 2565 | if (ret) | 
|  | 2566 | return ret; | 
|  | 2567 |  | 
|  | 2568 | /* Initialize IV */ | 
|  | 2569 | ret = crypt_ctr_ivmode(ti, ivmode); | 
|  | 2570 | if (ret < 0) | 
|  | 2571 | return ret; | 
|  | 2572 |  | 
|  | 2573 | /* Initialize and set key */ | 
|  | 2574 | ret = crypt_set_key(cc, key); | 
|  | 2575 | if (ret < 0) { | 
|  | 2576 | ti->error = "Error decoding and setting key"; | 
|  | 2577 | return ret; | 
|  | 2578 | } | 
|  | 2579 |  | 
|  | 2580 | /* Allocate IV */ | 
|  | 2581 | if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) { | 
|  | 2582 | ret = cc->iv_gen_ops->ctr(cc, ti, ivopts); | 
|  | 2583 | if (ret < 0) { | 
|  | 2584 | ti->error = "Error creating IV"; | 
|  | 2585 | return ret; | 
|  | 2586 | } | 
|  | 2587 | } | 
|  | 2588 |  | 
|  | 2589 | /* Initialize IV (set keys for ESSIV etc) */ | 
|  | 2590 | if (cc->iv_gen_ops && cc->iv_gen_ops->init) { | 
|  | 2591 | ret = cc->iv_gen_ops->init(cc); | 
|  | 2592 | if (ret < 0) { | 
|  | 2593 | ti->error = "Error initialising IV"; | 
|  | 2594 | return ret; | 
|  | 2595 | } | 
|  | 2596 | } | 
|  | 2597 |  | 
|  | 2598 | /* wipe the kernel key payload copy */ | 
|  | 2599 | if (cc->key_string) | 
|  | 2600 | memset(cc->key, 0, cc->key_size * sizeof(u8)); | 
|  | 2601 |  | 
|  | 2602 | return ret; | 
|  | 2603 | } | 
|  | 2604 |  | 
|  | 2605 | static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv) | 
|  | 2606 | { | 
|  | 2607 | struct crypt_config *cc = ti->private; | 
|  | 2608 | struct dm_arg_set as; | 
|  | 2609 | static const struct dm_arg _args[] = { | 
|  | 2610 | {0, 6, "Invalid number of feature args"}, | 
|  | 2611 | }; | 
|  | 2612 | unsigned int opt_params, val; | 
|  | 2613 | const char *opt_string, *sval; | 
|  | 2614 | char dummy; | 
|  | 2615 | int ret; | 
|  | 2616 |  | 
|  | 2617 | /* Optional parameters */ | 
|  | 2618 | as.argc = argc; | 
|  | 2619 | as.argv = argv; | 
|  | 2620 |  | 
|  | 2621 | ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error); | 
|  | 2622 | if (ret) | 
|  | 2623 | return ret; | 
|  | 2624 |  | 
|  | 2625 | while (opt_params--) { | 
|  | 2626 | opt_string = dm_shift_arg(&as); | 
|  | 2627 | if (!opt_string) { | 
|  | 2628 | ti->error = "Not enough feature arguments"; | 
|  | 2629 | return -EINVAL; | 
|  | 2630 | } | 
|  | 2631 |  | 
|  | 2632 | if (!strcasecmp(opt_string, "allow_discards")) | 
|  | 2633 | ti->num_discard_bios = 1; | 
|  | 2634 |  | 
|  | 2635 | else if (!strcasecmp(opt_string, "same_cpu_crypt")) | 
|  | 2636 | set_bit(DM_CRYPT_SAME_CPU, &cc->flags); | 
|  | 2637 |  | 
|  | 2638 | else if (!strcasecmp(opt_string, "submit_from_crypt_cpus")) | 
|  | 2639 | set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags); | 
|  | 2640 | else if (sscanf(opt_string, "integrity:%u:", &val) == 1) { | 
|  | 2641 | if (val == 0 || val > MAX_TAG_SIZE) { | 
|  | 2642 | ti->error = "Invalid integrity arguments"; | 
|  | 2643 | return -EINVAL; | 
|  | 2644 | } | 
|  | 2645 | cc->on_disk_tag_size = val; | 
|  | 2646 | sval = strchr(opt_string + strlen("integrity:"), ':') + 1; | 
|  | 2647 | if (!strcasecmp(sval, "aead")) { | 
|  | 2648 | set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags); | 
|  | 2649 | } else  if (strcasecmp(sval, "none")) { | 
|  | 2650 | ti->error = "Unknown integrity profile"; | 
|  | 2651 | return -EINVAL; | 
|  | 2652 | } | 
|  | 2653 |  | 
|  | 2654 | cc->cipher_auth = kstrdup(sval, GFP_KERNEL); | 
|  | 2655 | if (!cc->cipher_auth) | 
|  | 2656 | return -ENOMEM; | 
|  | 2657 | } else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) { | 
|  | 2658 | if (cc->sector_size < (1 << SECTOR_SHIFT) || | 
|  | 2659 | cc->sector_size > 4096 || | 
|  | 2660 | (cc->sector_size & (cc->sector_size - 1))) { | 
|  | 2661 | ti->error = "Invalid feature value for sector_size"; | 
|  | 2662 | return -EINVAL; | 
|  | 2663 | } | 
|  | 2664 | if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) { | 
|  | 2665 | ti->error = "Device size is not multiple of sector_size feature"; | 
|  | 2666 | return -EINVAL; | 
|  | 2667 | } | 
|  | 2668 | cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT; | 
|  | 2669 | } else if (!strcasecmp(opt_string, "iv_large_sectors")) | 
|  | 2670 | set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags); | 
|  | 2671 | else { | 
|  | 2672 | ti->error = "Invalid feature arguments"; | 
|  | 2673 | return -EINVAL; | 
|  | 2674 | } | 
|  | 2675 | } | 
|  | 2676 |  | 
|  | 2677 | return 0; | 
|  | 2678 | } | 
|  | 2679 |  | 
|  | 2680 | /* | 
|  | 2681 | * Construct an encryption mapping: | 
|  | 2682 | * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start> | 
|  | 2683 | */ | 
|  | 2684 | static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv) | 
|  | 2685 | { | 
|  | 2686 | struct crypt_config *cc; | 
|  | 2687 | int key_size; | 
|  | 2688 | unsigned int align_mask; | 
|  | 2689 | unsigned long long tmpll; | 
|  | 2690 | int ret; | 
|  | 2691 | size_t iv_size_padding, additional_req_size; | 
|  | 2692 | char dummy; | 
|  | 2693 |  | 
|  | 2694 | if (argc < 5) { | 
|  | 2695 | ti->error = "Not enough arguments"; | 
|  | 2696 | return -EINVAL; | 
|  | 2697 | } | 
|  | 2698 |  | 
|  | 2699 | key_size = get_key_size(&argv[1]); | 
|  | 2700 | if (key_size < 0) { | 
|  | 2701 | ti->error = "Cannot parse key size"; | 
|  | 2702 | return -EINVAL; | 
|  | 2703 | } | 
|  | 2704 |  | 
|  | 2705 | cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL); | 
|  | 2706 | if (!cc) { | 
|  | 2707 | ti->error = "Cannot allocate encryption context"; | 
|  | 2708 | return -ENOMEM; | 
|  | 2709 | } | 
|  | 2710 | cc->key_size = key_size; | 
|  | 2711 | cc->sector_size = (1 << SECTOR_SHIFT); | 
|  | 2712 | cc->sector_shift = 0; | 
|  | 2713 |  | 
|  | 2714 | ti->private = cc; | 
|  | 2715 |  | 
|  | 2716 | spin_lock(&dm_crypt_clients_lock); | 
|  | 2717 | dm_crypt_clients_n++; | 
|  | 2718 | crypt_calculate_pages_per_client(); | 
|  | 2719 | spin_unlock(&dm_crypt_clients_lock); | 
|  | 2720 |  | 
|  | 2721 | ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL); | 
|  | 2722 | if (ret < 0) | 
|  | 2723 | goto bad; | 
|  | 2724 |  | 
|  | 2725 | /* Optional parameters need to be read before cipher constructor */ | 
|  | 2726 | if (argc > 5) { | 
|  | 2727 | ret = crypt_ctr_optional(ti, argc - 5, &argv[5]); | 
|  | 2728 | if (ret) | 
|  | 2729 | goto bad; | 
|  | 2730 | } | 
|  | 2731 |  | 
|  | 2732 | ret = crypt_ctr_cipher(ti, argv[0], argv[1]); | 
|  | 2733 | if (ret < 0) | 
|  | 2734 | goto bad; | 
|  | 2735 |  | 
|  | 2736 | if (crypt_integrity_aead(cc)) { | 
|  | 2737 | cc->dmreq_start = sizeof(struct aead_request); | 
|  | 2738 | cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc)); | 
|  | 2739 | align_mask = crypto_aead_alignmask(any_tfm_aead(cc)); | 
|  | 2740 | } else { | 
|  | 2741 | cc->dmreq_start = sizeof(struct skcipher_request); | 
|  | 2742 | cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc)); | 
|  | 2743 | align_mask = crypto_skcipher_alignmask(any_tfm(cc)); | 
|  | 2744 | } | 
|  | 2745 | cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request)); | 
|  | 2746 |  | 
|  | 2747 | if (align_mask < CRYPTO_MINALIGN) { | 
|  | 2748 | /* Allocate the padding exactly */ | 
|  | 2749 | iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request)) | 
|  | 2750 | & align_mask; | 
|  | 2751 | } else { | 
|  | 2752 | /* | 
|  | 2753 | * If the cipher requires greater alignment than kmalloc | 
|  | 2754 | * alignment, we don't know the exact position of the | 
|  | 2755 | * initialization vector. We must assume worst case. | 
|  | 2756 | */ | 
|  | 2757 | iv_size_padding = align_mask; | 
|  | 2758 | } | 
|  | 2759 |  | 
|  | 2760 | ret = -ENOMEM; | 
|  | 2761 |  | 
|  | 2762 | /*  ...| IV + padding | original IV | original sec. number | bio tag offset | */ | 
|  | 2763 | additional_req_size = sizeof(struct dm_crypt_request) + | 
|  | 2764 | iv_size_padding + cc->iv_size + | 
|  | 2765 | cc->iv_size + | 
|  | 2766 | sizeof(uint64_t) + | 
|  | 2767 | sizeof(unsigned int); | 
|  | 2768 |  | 
|  | 2769 | cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start + additional_req_size); | 
|  | 2770 | if (!cc->req_pool) { | 
|  | 2771 | ti->error = "Cannot allocate crypt request mempool"; | 
|  | 2772 | goto bad; | 
|  | 2773 | } | 
|  | 2774 |  | 
|  | 2775 | cc->per_bio_data_size = ti->per_io_data_size = | 
|  | 2776 | ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size, | 
|  | 2777 | ARCH_KMALLOC_MINALIGN); | 
|  | 2778 |  | 
|  | 2779 | cc->page_pool = mempool_create(BIO_MAX_PAGES, crypt_page_alloc, crypt_page_free, cc); | 
|  | 2780 | if (!cc->page_pool) { | 
|  | 2781 | ti->error = "Cannot allocate page mempool"; | 
|  | 2782 | goto bad; | 
|  | 2783 | } | 
|  | 2784 |  | 
|  | 2785 | cc->bs = bioset_create(MIN_IOS, 0, (BIOSET_NEED_BVECS | | 
|  | 2786 | BIOSET_NEED_RESCUER)); | 
|  | 2787 | if (!cc->bs) { | 
|  | 2788 | ti->error = "Cannot allocate crypt bioset"; | 
|  | 2789 | goto bad; | 
|  | 2790 | } | 
|  | 2791 |  | 
|  | 2792 | mutex_init(&cc->bio_alloc_lock); | 
|  | 2793 |  | 
|  | 2794 | ret = -EINVAL; | 
|  | 2795 | if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) || | 
|  | 2796 | (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) { | 
|  | 2797 | ti->error = "Invalid iv_offset sector"; | 
|  | 2798 | goto bad; | 
|  | 2799 | } | 
|  | 2800 | cc->iv_offset = tmpll; | 
|  | 2801 |  | 
|  | 2802 | ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev); | 
|  | 2803 | if (ret) { | 
|  | 2804 | ti->error = "Device lookup failed"; | 
|  | 2805 | goto bad; | 
|  | 2806 | } | 
|  | 2807 |  | 
|  | 2808 | ret = -EINVAL; | 
|  | 2809 | if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) { | 
|  | 2810 | ti->error = "Invalid device sector"; | 
|  | 2811 | goto bad; | 
|  | 2812 | } | 
|  | 2813 | cc->start = tmpll; | 
|  | 2814 |  | 
|  | 2815 | if (crypt_integrity_aead(cc) || cc->integrity_iv_size) { | 
|  | 2816 | ret = crypt_integrity_ctr(cc, ti); | 
|  | 2817 | if (ret) | 
|  | 2818 | goto bad; | 
|  | 2819 |  | 
|  | 2820 | cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size; | 
|  | 2821 | if (!cc->tag_pool_max_sectors) | 
|  | 2822 | cc->tag_pool_max_sectors = 1; | 
|  | 2823 |  | 
|  | 2824 | cc->tag_pool = mempool_create_kmalloc_pool(MIN_IOS, | 
|  | 2825 | cc->tag_pool_max_sectors * cc->on_disk_tag_size); | 
|  | 2826 | if (!cc->tag_pool) { | 
|  | 2827 | ti->error = "Cannot allocate integrity tags mempool"; | 
|  | 2828 | ret = -ENOMEM; | 
|  | 2829 | goto bad; | 
|  | 2830 | } | 
|  | 2831 |  | 
|  | 2832 | cc->tag_pool_max_sectors <<= cc->sector_shift; | 
|  | 2833 | } | 
|  | 2834 |  | 
|  | 2835 | ret = -ENOMEM; | 
|  | 2836 | cc->io_queue = alloc_workqueue("kcryptd_io", WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1); | 
|  | 2837 | if (!cc->io_queue) { | 
|  | 2838 | ti->error = "Couldn't create kcryptd io queue"; | 
|  | 2839 | goto bad; | 
|  | 2840 | } | 
|  | 2841 |  | 
|  | 2842 | if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags)) | 
|  | 2843 | cc->crypt_queue = alloc_workqueue("kcryptd", WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1); | 
|  | 2844 | else | 
|  | 2845 | cc->crypt_queue = alloc_workqueue("kcryptd", | 
|  | 2846 | WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, | 
|  | 2847 | num_online_cpus()); | 
|  | 2848 | if (!cc->crypt_queue) { | 
|  | 2849 | ti->error = "Couldn't create kcryptd queue"; | 
|  | 2850 | goto bad; | 
|  | 2851 | } | 
|  | 2852 |  | 
|  | 2853 | init_waitqueue_head(&cc->write_thread_wait); | 
|  | 2854 | cc->write_tree = RB_ROOT; | 
|  | 2855 |  | 
|  | 2856 | cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write"); | 
|  | 2857 | if (IS_ERR(cc->write_thread)) { | 
|  | 2858 | ret = PTR_ERR(cc->write_thread); | 
|  | 2859 | cc->write_thread = NULL; | 
|  | 2860 | ti->error = "Couldn't spawn write thread"; | 
|  | 2861 | goto bad; | 
|  | 2862 | } | 
|  | 2863 | wake_up_process(cc->write_thread); | 
|  | 2864 |  | 
|  | 2865 | ti->num_flush_bios = 1; | 
|  | 2866 |  | 
|  | 2867 | return 0; | 
|  | 2868 |  | 
|  | 2869 | bad: | 
|  | 2870 | crypt_dtr(ti); | 
|  | 2871 | return ret; | 
|  | 2872 | } | 
|  | 2873 |  | 
|  | 2874 | static int crypt_map(struct dm_target *ti, struct bio *bio) | 
|  | 2875 | { | 
|  | 2876 | struct dm_crypt_io *io; | 
|  | 2877 | struct crypt_config *cc = ti->private; | 
|  | 2878 |  | 
|  | 2879 | /* | 
|  | 2880 | * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues. | 
|  | 2881 | * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight | 
|  | 2882 | * - for REQ_OP_DISCARD caller must use flush if IO ordering matters | 
|  | 2883 | */ | 
|  | 2884 | if (unlikely(bio->bi_opf & REQ_PREFLUSH || | 
|  | 2885 | bio_op(bio) == REQ_OP_DISCARD)) { | 
|  | 2886 | bio_set_dev(bio, cc->dev->bdev); | 
|  | 2887 | if (bio_sectors(bio)) | 
|  | 2888 | bio->bi_iter.bi_sector = cc->start + | 
|  | 2889 | dm_target_offset(ti, bio->bi_iter.bi_sector); | 
|  | 2890 | return DM_MAPIO_REMAPPED; | 
|  | 2891 | } | 
|  | 2892 |  | 
|  | 2893 | /* | 
|  | 2894 | * Check if bio is too large, split as needed. | 
|  | 2895 | */ | 
|  | 2896 | if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_PAGES << PAGE_SHIFT)) && | 
|  | 2897 | (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size)) | 
|  | 2898 | dm_accept_partial_bio(bio, ((BIO_MAX_PAGES << PAGE_SHIFT) >> SECTOR_SHIFT)); | 
|  | 2899 |  | 
|  | 2900 | /* | 
|  | 2901 | * Ensure that bio is a multiple of internal sector encryption size | 
|  | 2902 | * and is aligned to this size as defined in IO hints. | 
|  | 2903 | */ | 
|  | 2904 | if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0)) | 
|  | 2905 | return DM_MAPIO_KILL; | 
|  | 2906 |  | 
|  | 2907 | if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1))) | 
|  | 2908 | return DM_MAPIO_KILL; | 
|  | 2909 |  | 
|  | 2910 | io = dm_per_bio_data(bio, cc->per_bio_data_size); | 
|  | 2911 | crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector)); | 
|  | 2912 |  | 
|  | 2913 | if (cc->on_disk_tag_size) { | 
|  | 2914 | unsigned tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift); | 
|  | 2915 |  | 
|  | 2916 | if (unlikely(tag_len > KMALLOC_MAX_SIZE) || | 
|  | 2917 | unlikely(!(io->integrity_metadata = kmalloc(tag_len, | 
|  | 2918 | GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN)))) { | 
|  | 2919 | if (bio_sectors(bio) > cc->tag_pool_max_sectors) | 
|  | 2920 | dm_accept_partial_bio(bio, cc->tag_pool_max_sectors); | 
|  | 2921 | io->integrity_metadata = mempool_alloc(cc->tag_pool, GFP_NOIO); | 
|  | 2922 | io->integrity_metadata_from_pool = true; | 
|  | 2923 | } | 
|  | 2924 | } | 
|  | 2925 |  | 
|  | 2926 | if (crypt_integrity_aead(cc)) | 
|  | 2927 | io->ctx.r.req_aead = (struct aead_request *)(io + 1); | 
|  | 2928 | else | 
|  | 2929 | io->ctx.r.req = (struct skcipher_request *)(io + 1); | 
|  | 2930 |  | 
|  | 2931 | if (bio_data_dir(io->base_bio) == READ) { | 
|  | 2932 | if (kcryptd_io_read(io, GFP_NOWAIT)) | 
|  | 2933 | kcryptd_queue_read(io); | 
|  | 2934 | } else | 
|  | 2935 | kcryptd_queue_crypt(io); | 
|  | 2936 |  | 
|  | 2937 | return DM_MAPIO_SUBMITTED; | 
|  | 2938 | } | 
|  | 2939 |  | 
|  | 2940 | static void crypt_status(struct dm_target *ti, status_type_t type, | 
|  | 2941 | unsigned status_flags, char *result, unsigned maxlen) | 
|  | 2942 | { | 
|  | 2943 | struct crypt_config *cc = ti->private; | 
|  | 2944 | unsigned i, sz = 0; | 
|  | 2945 | int num_feature_args = 0; | 
|  | 2946 |  | 
|  | 2947 | switch (type) { | 
|  | 2948 | case STATUSTYPE_INFO: | 
|  | 2949 | result[0] = '\0'; | 
|  | 2950 | break; | 
|  | 2951 |  | 
|  | 2952 | case STATUSTYPE_TABLE: | 
|  | 2953 | DMEMIT("%s ", cc->cipher_string); | 
|  | 2954 |  | 
|  | 2955 | if (cc->key_size > 0) { | 
|  | 2956 | if (cc->key_string) | 
|  | 2957 | DMEMIT(":%u:%s", cc->key_size, cc->key_string); | 
|  | 2958 | else | 
|  | 2959 | for (i = 0; i < cc->key_size; i++) | 
|  | 2960 | DMEMIT("%02x", cc->key[i]); | 
|  | 2961 | } else | 
|  | 2962 | DMEMIT("-"); | 
|  | 2963 |  | 
|  | 2964 | DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset, | 
|  | 2965 | cc->dev->name, (unsigned long long)cc->start); | 
|  | 2966 |  | 
|  | 2967 | num_feature_args += !!ti->num_discard_bios; | 
|  | 2968 | num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags); | 
|  | 2969 | num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags); | 
|  | 2970 | num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT); | 
|  | 2971 | num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags); | 
|  | 2972 | if (cc->on_disk_tag_size) | 
|  | 2973 | num_feature_args++; | 
|  | 2974 | if (num_feature_args) { | 
|  | 2975 | DMEMIT(" %d", num_feature_args); | 
|  | 2976 | if (ti->num_discard_bios) | 
|  | 2977 | DMEMIT(" allow_discards"); | 
|  | 2978 | if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags)) | 
|  | 2979 | DMEMIT(" same_cpu_crypt"); | 
|  | 2980 | if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) | 
|  | 2981 | DMEMIT(" submit_from_crypt_cpus"); | 
|  | 2982 | if (cc->on_disk_tag_size) | 
|  | 2983 | DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth); | 
|  | 2984 | if (cc->sector_size != (1 << SECTOR_SHIFT)) | 
|  | 2985 | DMEMIT(" sector_size:%d", cc->sector_size); | 
|  | 2986 | if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags)) | 
|  | 2987 | DMEMIT(" iv_large_sectors"); | 
|  | 2988 | } | 
|  | 2989 |  | 
|  | 2990 | break; | 
|  | 2991 | } | 
|  | 2992 | } | 
|  | 2993 |  | 
|  | 2994 | static void crypt_postsuspend(struct dm_target *ti) | 
|  | 2995 | { | 
|  | 2996 | struct crypt_config *cc = ti->private; | 
|  | 2997 |  | 
|  | 2998 | set_bit(DM_CRYPT_SUSPENDED, &cc->flags); | 
|  | 2999 | } | 
|  | 3000 |  | 
|  | 3001 | static int crypt_preresume(struct dm_target *ti) | 
|  | 3002 | { | 
|  | 3003 | struct crypt_config *cc = ti->private; | 
|  | 3004 |  | 
|  | 3005 | if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) { | 
|  | 3006 | DMERR("aborting resume - crypt key is not set."); | 
|  | 3007 | return -EAGAIN; | 
|  | 3008 | } | 
|  | 3009 |  | 
|  | 3010 | return 0; | 
|  | 3011 | } | 
|  | 3012 |  | 
|  | 3013 | static void crypt_resume(struct dm_target *ti) | 
|  | 3014 | { | 
|  | 3015 | struct crypt_config *cc = ti->private; | 
|  | 3016 |  | 
|  | 3017 | clear_bit(DM_CRYPT_SUSPENDED, &cc->flags); | 
|  | 3018 | } | 
|  | 3019 |  | 
|  | 3020 | /* Message interface | 
|  | 3021 | *	key set <key> | 
|  | 3022 | *	key wipe | 
|  | 3023 | */ | 
|  | 3024 | static int crypt_message(struct dm_target *ti, unsigned argc, char **argv) | 
|  | 3025 | { | 
|  | 3026 | struct crypt_config *cc = ti->private; | 
|  | 3027 | int key_size, ret = -EINVAL; | 
|  | 3028 |  | 
|  | 3029 | if (argc < 2) | 
|  | 3030 | goto error; | 
|  | 3031 |  | 
|  | 3032 | if (!strcasecmp(argv[0], "key")) { | 
|  | 3033 | if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) { | 
|  | 3034 | DMWARN("not suspended during key manipulation."); | 
|  | 3035 | return -EINVAL; | 
|  | 3036 | } | 
|  | 3037 | if (argc == 3 && !strcasecmp(argv[1], "set")) { | 
|  | 3038 | /* The key size may not be changed. */ | 
|  | 3039 | key_size = get_key_size(&argv[2]); | 
|  | 3040 | if (key_size < 0 || cc->key_size != key_size) { | 
|  | 3041 | memset(argv[2], '0', strlen(argv[2])); | 
|  | 3042 | return -EINVAL; | 
|  | 3043 | } | 
|  | 3044 |  | 
|  | 3045 | ret = crypt_set_key(cc, argv[2]); | 
|  | 3046 | if (ret) | 
|  | 3047 | return ret; | 
|  | 3048 | if (cc->iv_gen_ops && cc->iv_gen_ops->init) | 
|  | 3049 | ret = cc->iv_gen_ops->init(cc); | 
|  | 3050 | /* wipe the kernel key payload copy */ | 
|  | 3051 | if (cc->key_string) | 
|  | 3052 | memset(cc->key, 0, cc->key_size * sizeof(u8)); | 
|  | 3053 | return ret; | 
|  | 3054 | } | 
|  | 3055 | if (argc == 2 && !strcasecmp(argv[1], "wipe")) { | 
|  | 3056 | if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) { | 
|  | 3057 | ret = cc->iv_gen_ops->wipe(cc); | 
|  | 3058 | if (ret) | 
|  | 3059 | return ret; | 
|  | 3060 | } | 
|  | 3061 | return crypt_wipe_key(cc); | 
|  | 3062 | } | 
|  | 3063 | } | 
|  | 3064 |  | 
|  | 3065 | error: | 
|  | 3066 | DMWARN("unrecognised message received."); | 
|  | 3067 | return -EINVAL; | 
|  | 3068 | } | 
|  | 3069 |  | 
|  | 3070 | static int crypt_iterate_devices(struct dm_target *ti, | 
|  | 3071 | iterate_devices_callout_fn fn, void *data) | 
|  | 3072 | { | 
|  | 3073 | struct crypt_config *cc = ti->private; | 
|  | 3074 |  | 
|  | 3075 | return fn(ti, cc->dev, cc->start, ti->len, data); | 
|  | 3076 | } | 
|  | 3077 |  | 
|  | 3078 | static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits) | 
|  | 3079 | { | 
|  | 3080 | struct crypt_config *cc = ti->private; | 
|  | 3081 |  | 
|  | 3082 | /* | 
|  | 3083 | * Unfortunate constraint that is required to avoid the potential | 
|  | 3084 | * for exceeding underlying device's max_segments limits -- due to | 
|  | 3085 | * crypt_alloc_buffer() possibly allocating pages for the encryption | 
|  | 3086 | * bio that are not as physically contiguous as the original bio. | 
|  | 3087 | */ | 
|  | 3088 | limits->max_segment_size = PAGE_SIZE; | 
|  | 3089 |  | 
|  | 3090 | limits->logical_block_size = | 
|  | 3091 | max_t(unsigned, limits->logical_block_size, cc->sector_size); | 
|  | 3092 | limits->physical_block_size = | 
|  | 3093 | max_t(unsigned, limits->physical_block_size, cc->sector_size); | 
|  | 3094 | limits->io_min = max_t(unsigned, limits->io_min, cc->sector_size); | 
|  | 3095 | } | 
|  | 3096 |  | 
|  | 3097 | static struct target_type crypt_target = { | 
|  | 3098 | .name   = "crypt", | 
|  | 3099 | .version = {1, 18, 1}, | 
|  | 3100 | .module = THIS_MODULE, | 
|  | 3101 | .ctr    = crypt_ctr, | 
|  | 3102 | .dtr    = crypt_dtr, | 
|  | 3103 | .map    = crypt_map, | 
|  | 3104 | .status = crypt_status, | 
|  | 3105 | .postsuspend = crypt_postsuspend, | 
|  | 3106 | .preresume = crypt_preresume, | 
|  | 3107 | .resume = crypt_resume, | 
|  | 3108 | .message = crypt_message, | 
|  | 3109 | .iterate_devices = crypt_iterate_devices, | 
|  | 3110 | .io_hints = crypt_io_hints, | 
|  | 3111 | }; | 
|  | 3112 |  | 
|  | 3113 | static int __init dm_crypt_init(void) | 
|  | 3114 | { | 
|  | 3115 | int r; | 
|  | 3116 |  | 
|  | 3117 | r = dm_register_target(&crypt_target); | 
|  | 3118 | if (r < 0) | 
|  | 3119 | DMERR("register failed %d", r); | 
|  | 3120 |  | 
|  | 3121 | return r; | 
|  | 3122 | } | 
|  | 3123 |  | 
|  | 3124 | static void __exit dm_crypt_exit(void) | 
|  | 3125 | { | 
|  | 3126 | dm_unregister_target(&crypt_target); | 
|  | 3127 | } | 
|  | 3128 |  | 
|  | 3129 | module_init(dm_crypt_init); | 
|  | 3130 | module_exit(dm_crypt_exit); | 
|  | 3131 |  | 
|  | 3132 | MODULE_AUTHOR("Jana Saout <jana@saout.de>"); | 
|  | 3133 | MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption"); | 
|  | 3134 | MODULE_LICENSE("GPL"); |