| rjw | 1f88458 | 2022-01-06 17:20:42 +0800 | [diff] [blame] | 1 | /* |
| 2 | * MTD SPI driver for ST M25Pxx (and similar) serial flash chips |
| 3 | * |
| 4 | * Author: Mike Lavender, mike@steroidmicros.com |
| 5 | * |
| 6 | * Copyright (c) 2005, Intec Automation Inc. |
| 7 | * |
| 8 | * Some parts are based on lart.c by Abraham Van Der Merwe |
| 9 | * |
| 10 | * Cleaned up and generalized based on mtd_dataflash.c |
| 11 | * |
| 12 | * This code is free software; you can redistribute it and/or modify |
| 13 | * it under the terms of the GNU General Public License version 2 as |
| 14 | * published by the Free Software Foundation. |
| 15 | * |
| 16 | */ |
| 17 | |
| 18 | #include <linux/err.h> |
| 19 | #include <linux/errno.h> |
| 20 | #include <linux/module.h> |
| 21 | #include <linux/device.h> |
| 22 | |
| 23 | #include <linux/mtd/mtd.h> |
| 24 | #include <linux/mtd/partitions.h> |
| 25 | |
| 26 | #include <linux/spi/spi.h> |
| 27 | #include <linux/spi/flash.h> |
| 28 | #include <linux/mtd/spi-nor.h> |
| 29 | |
| 30 | #define MAX_CMD_SIZE 6 |
| 31 | struct m25p { |
| 32 | struct spi_device *spi; |
| 33 | struct spi_nor spi_nor; |
| 34 | u8 command[MAX_CMD_SIZE]; |
| 35 | }; |
| 36 | |
| 37 | static int m25p80_read_reg(struct spi_nor *nor, u8 code, u8 *val, int len) |
| 38 | { |
| 39 | struct m25p *flash = nor->priv; |
| 40 | struct spi_device *spi = flash->spi; |
| 41 | int ret; |
| 42 | |
| 43 | ret = spi_write_then_read(spi, &code, 1, val, len); |
| 44 | if (ret < 0) |
| 45 | dev_err(&spi->dev, "error %d reading %x\n", ret, code); |
| 46 | |
| 47 | return ret; |
| 48 | } |
| 49 | |
| 50 | static void m25p_addr2cmd(struct spi_nor *nor, unsigned int addr, u8 *cmd) |
| 51 | { |
| 52 | /* opcode is in cmd[0] */ |
| 53 | cmd[1] = addr >> (nor->addr_width * 8 - 8); |
| 54 | cmd[2] = addr >> (nor->addr_width * 8 - 16); |
| 55 | cmd[3] = addr >> (nor->addr_width * 8 - 24); |
| 56 | cmd[4] = addr >> (nor->addr_width * 8 - 32); |
| 57 | } |
| 58 | |
| 59 | static int m25p_cmdsz(struct spi_nor *nor) |
| 60 | { |
| 61 | return 1 + nor->addr_width; |
| 62 | } |
| 63 | |
| 64 | static int m25p80_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len) |
| 65 | { |
| 66 | struct m25p *flash = nor->priv; |
| 67 | struct spi_device *spi = flash->spi; |
| 68 | |
| 69 | flash->command[0] = opcode; |
| 70 | if (buf) |
| 71 | memcpy(&flash->command[1], buf, len); |
| 72 | |
| 73 | return spi_write(spi, flash->command, len + 1); |
| 74 | } |
| 75 | |
| 76 | static ssize_t m25p80_write(struct spi_nor *nor, loff_t to, size_t len, |
| 77 | const u_char *buf) |
| 78 | { |
| 79 | struct m25p *flash = nor->priv; |
| 80 | struct spi_device *spi = flash->spi; |
| 81 | unsigned int inst_nbits, addr_nbits, data_nbits, data_idx; |
| 82 | struct spi_transfer t[3] = {}; |
| 83 | struct spi_message m; |
| 84 | int cmd_sz = m25p_cmdsz(nor); |
| 85 | ssize_t ret; |
| 86 | |
| 87 | /* get transfer protocols. */ |
| 88 | inst_nbits = spi_nor_get_protocol_inst_nbits(nor->write_proto); |
| 89 | addr_nbits = spi_nor_get_protocol_addr_nbits(nor->write_proto); |
| 90 | data_nbits = spi_nor_get_protocol_data_nbits(nor->write_proto); |
| 91 | |
| 92 | spi_message_init(&m); |
| 93 | |
| 94 | if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second) |
| 95 | cmd_sz = 1; |
| 96 | |
| 97 | flash->command[0] = nor->program_opcode; |
| 98 | m25p_addr2cmd(nor, to, flash->command); |
| 99 | |
| 100 | t[0].tx_buf = flash->command; |
| 101 | t[0].tx_nbits = inst_nbits; |
| 102 | t[0].len = cmd_sz; |
| 103 | spi_message_add_tail(&t[0], &m); |
| 104 | |
| 105 | /* split the op code and address bytes into two transfers if needed. */ |
| 106 | data_idx = 1; |
| 107 | if (addr_nbits != inst_nbits) { |
| 108 | t[0].len = 1; |
| 109 | |
| 110 | t[1].tx_buf = &flash->command[1]; |
| 111 | t[1].tx_nbits = addr_nbits; |
| 112 | t[1].len = cmd_sz - 1; |
| 113 | spi_message_add_tail(&t[1], &m); |
| 114 | |
| 115 | data_idx = 2; |
| 116 | } |
| 117 | |
| 118 | t[data_idx].tx_buf = buf; |
| 119 | t[data_idx].tx_nbits = data_nbits; |
| 120 | t[data_idx].len = len; |
| 121 | spi_message_add_tail(&t[data_idx], &m); |
| 122 | |
| 123 | ret = spi_sync(spi, &m); |
| 124 | if (ret) |
| 125 | return ret; |
| 126 | |
| 127 | ret = m.actual_length - cmd_sz; |
| 128 | if (ret < 0) |
| 129 | return -EIO; |
| 130 | return ret; |
| 131 | } |
| 132 | |
| 133 | /* |
| 134 | * Read an address range from the nor chip. The address range |
| 135 | * may be any size provided it is within the physical boundaries. |
| 136 | */ |
| 137 | static ssize_t m25p80_read(struct spi_nor *nor, loff_t from, size_t len, |
| 138 | u_char *buf) |
| 139 | { |
| 140 | struct m25p *flash = nor->priv; |
| 141 | struct spi_device *spi = flash->spi; |
| 142 | unsigned int inst_nbits, addr_nbits, data_nbits, data_idx; |
| 143 | struct spi_transfer t[3]; |
| 144 | struct spi_message m; |
| 145 | unsigned int dummy = nor->read_dummy; |
| 146 | ssize_t ret; |
| 147 | int cmd_sz; |
| 148 | |
| 149 | /* get transfer protocols. */ |
| 150 | inst_nbits = spi_nor_get_protocol_inst_nbits(nor->read_proto); |
| 151 | addr_nbits = spi_nor_get_protocol_addr_nbits(nor->read_proto); |
| 152 | data_nbits = spi_nor_get_protocol_data_nbits(nor->read_proto); |
| 153 | |
| 154 | /* convert the dummy cycles to the number of bytes */ |
| 155 | dummy = (dummy * addr_nbits) / 8; |
| 156 | |
| 157 | if (spi_flash_read_supported(spi)) { |
| 158 | struct spi_flash_read_message msg; |
| 159 | |
| 160 | memset(&msg, 0, sizeof(msg)); |
| 161 | |
| 162 | msg.buf = buf; |
| 163 | msg.from = from; |
| 164 | msg.len = len; |
| 165 | msg.read_opcode = nor->read_opcode; |
| 166 | msg.addr_width = nor->addr_width; |
| 167 | msg.dummy_bytes = dummy; |
| 168 | msg.opcode_nbits = inst_nbits; |
| 169 | msg.addr_nbits = addr_nbits; |
| 170 | msg.data_nbits = data_nbits; |
| 171 | |
| 172 | ret = spi_flash_read(spi, &msg); |
| 173 | if (ret < 0) |
| 174 | return ret; |
| 175 | return msg.retlen; |
| 176 | } |
| 177 | |
| 178 | spi_message_init(&m); |
| 179 | memset(t, 0, (sizeof t)); |
| 180 | |
| 181 | flash->command[0] = nor->read_opcode; |
| 182 | m25p_addr2cmd(nor, from, flash->command); |
| 183 | |
| 184 | t[0].tx_buf = flash->command; |
| 185 | t[0].tx_nbits = inst_nbits; |
| 186 | t[0].len = m25p_cmdsz(nor) + dummy; |
| 187 | spi_message_add_tail(&t[0], &m); |
| 188 | |
| 189 | /* |
| 190 | * Set all dummy/mode cycle bits to avoid sending some manufacturer |
| 191 | * specific pattern, which might make the memory enter its Continuous |
| 192 | * Read mode by mistake. |
| 193 | * Based on the different mode cycle bit patterns listed and described |
| 194 | * in the JESD216B specification, the 0xff value works for all memories |
| 195 | * and all manufacturers. |
| 196 | */ |
| 197 | cmd_sz = t[0].len; |
| 198 | memset(flash->command + cmd_sz - dummy, 0xff, dummy); |
| 199 | |
| 200 | /* split the op code and address bytes into two transfers if needed. */ |
| 201 | data_idx = 1; |
| 202 | if (addr_nbits != inst_nbits) { |
| 203 | t[0].len = 1; |
| 204 | |
| 205 | t[1].tx_buf = &flash->command[1]; |
| 206 | t[1].tx_nbits = addr_nbits; |
| 207 | t[1].len = cmd_sz - 1; |
| 208 | spi_message_add_tail(&t[1], &m); |
| 209 | |
| 210 | data_idx = 2; |
| 211 | } |
| 212 | |
| 213 | t[data_idx].rx_buf = buf; |
| 214 | t[data_idx].rx_nbits = data_nbits; |
| 215 | t[data_idx].len = min3(len, spi_max_transfer_size(spi), |
| 216 | spi_max_message_size(spi) - cmd_sz); |
| 217 | spi_message_add_tail(&t[data_idx], &m); |
| 218 | |
| 219 | ret = spi_sync(spi, &m); |
| 220 | if (ret) |
| 221 | return ret; |
| 222 | |
| 223 | ret = m.actual_length - cmd_sz; |
| 224 | if (ret < 0) |
| 225 | return -EIO; |
| 226 | return ret; |
| 227 | } |
| 228 | |
| 229 | /* |
| 230 | * board specific setup should have ensured the SPI clock used here |
| 231 | * matches what the READ command supports, at least until this driver |
| 232 | * understands FAST_READ (for clocks over 25 MHz). |
| 233 | */ |
| 234 | static int m25p_probe(struct spi_device *spi) |
| 235 | { |
| 236 | struct flash_platform_data *data; |
| 237 | struct m25p *flash; |
| 238 | struct spi_nor *nor; |
| 239 | struct spi_nor_hwcaps hwcaps = { |
| 240 | .mask = SNOR_HWCAPS_READ | |
| 241 | SNOR_HWCAPS_READ_FAST | |
| 242 | SNOR_HWCAPS_PP, |
| 243 | }; |
| 244 | char *flash_name; |
| 245 | int ret; |
| 246 | |
| 247 | data = dev_get_platdata(&spi->dev); |
| 248 | |
| 249 | flash = devm_kzalloc(&spi->dev, sizeof(*flash), GFP_KERNEL); |
| 250 | if (!flash) |
| 251 | return -ENOMEM; |
| 252 | |
| 253 | nor = &flash->spi_nor; |
| 254 | |
| 255 | /* install the hooks */ |
| 256 | nor->read = m25p80_read; |
| 257 | nor->write = m25p80_write; |
| 258 | nor->write_reg = m25p80_write_reg; |
| 259 | nor->read_reg = m25p80_read_reg; |
| 260 | |
| 261 | nor->dev = &spi->dev; |
| 262 | spi_nor_set_flash_node(nor, spi->dev.of_node); |
| 263 | nor->priv = flash; |
| 264 | |
| 265 | spi_set_drvdata(spi, flash); |
| 266 | flash->spi = spi; |
| 267 | |
| 268 | if (spi->mode & SPI_RX_QUAD) { |
| 269 | hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4; |
| 270 | |
| 271 | if (spi->mode & SPI_TX_QUAD) |
| 272 | hwcaps.mask |= (SNOR_HWCAPS_READ_1_4_4 | |
| 273 | SNOR_HWCAPS_PP_1_1_4 | |
| 274 | SNOR_HWCAPS_PP_1_4_4); |
| 275 | } else if (spi->mode & SPI_RX_DUAL) { |
| 276 | hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2; |
| 277 | |
| 278 | if (spi->mode & SPI_TX_DUAL) |
| 279 | hwcaps.mask |= SNOR_HWCAPS_READ_1_2_2; |
| 280 | } |
| 281 | |
| 282 | if (data && data->name) |
| 283 | nor->mtd.name = data->name; |
| 284 | |
| 285 | /* For some (historical?) reason many platforms provide two different |
| 286 | * names in flash_platform_data: "name" and "type". Quite often name is |
| 287 | * set to "m25p80" and then "type" provides a real chip name. |
| 288 | * If that's the case, respect "type" and ignore a "name". |
| 289 | */ |
| 290 | if (data && data->type) |
| 291 | flash_name = data->type; |
| 292 | else if (!strcmp(spi->modalias, "spi-nor")) |
| 293 | flash_name = NULL; /* auto-detect */ |
| 294 | else |
| 295 | flash_name = spi->modalias; |
| 296 | |
| 297 | ret = spi_nor_scan(nor, flash_name, &hwcaps); |
| 298 | if (ret) |
| 299 | return ret; |
| 300 | |
| 301 | return mtd_device_register(&nor->mtd, data ? data->parts : NULL, |
| 302 | data ? data->nr_parts : 0); |
| 303 | } |
| 304 | |
| 305 | |
| 306 | static int m25p_remove(struct spi_device *spi) |
| 307 | { |
| 308 | struct m25p *flash = spi_get_drvdata(spi); |
| 309 | |
| 310 | /* Clean up MTD stuff. */ |
| 311 | return mtd_device_unregister(&flash->spi_nor.mtd); |
| 312 | } |
| 313 | |
| 314 | /* |
| 315 | * Do NOT add to this array without reading the following: |
| 316 | * |
| 317 | * Historically, many flash devices are bound to this driver by their name. But |
| 318 | * since most of these flash are compatible to some extent, and their |
| 319 | * differences can often be differentiated by the JEDEC read-ID command, we |
| 320 | * encourage new users to add support to the spi-nor library, and simply bind |
| 321 | * against a generic string here (e.g., "jedec,spi-nor"). |
| 322 | * |
| 323 | * Many flash names are kept here in this list (as well as in spi-nor.c) to |
| 324 | * keep them available as module aliases for existing platforms. |
| 325 | */ |
| 326 | static const struct spi_device_id m25p_ids[] = { |
| 327 | /* |
| 328 | * Allow non-DT platform devices to bind to the "spi-nor" modalias, and |
| 329 | * hack around the fact that the SPI core does not provide uevent |
| 330 | * matching for .of_match_table |
| 331 | */ |
| 332 | {"spi-nor"}, |
| 333 | |
| 334 | /* |
| 335 | * Entries not used in DTs that should be safe to drop after replacing |
| 336 | * them with "spi-nor" in platform data. |
| 337 | */ |
| 338 | {"s25sl064a"}, {"w25x16"}, {"m25p10"}, {"m25px64"}, |
| 339 | |
| 340 | /* |
| 341 | * Entries that were used in DTs without "jedec,spi-nor" fallback and |
| 342 | * should be kept for backward compatibility. |
| 343 | */ |
| 344 | {"at25df321a"}, {"at25df641"}, {"at26df081a"}, |
| 345 | {"mx25l4005a"}, {"mx25l1606e"}, {"mx25l6405d"}, {"mx25l12805d"}, |
| 346 | {"mx25l25635e"},{"mx66l51235l"}, |
| 347 | {"n25q064"}, {"n25q128a11"}, {"n25q128a13"}, {"n25q512a"}, |
| 348 | {"s25fl256s1"}, {"s25fl512s"}, {"s25sl12801"}, {"s25fl008k"}, |
| 349 | {"s25fl064k"}, |
| 350 | {"sst25vf040b"},{"sst25vf016b"},{"sst25vf032b"},{"sst25wf040"}, |
| 351 | {"m25p40"}, {"m25p80"}, {"m25p16"}, {"m25p32"}, |
| 352 | {"m25p64"}, {"m25p128"}, |
| 353 | {"w25x80"}, {"w25x32"}, {"w25q32"}, {"w25q32dw"}, |
| 354 | {"w25q80bl"}, {"w25q128"}, {"w25q256"}, |
| 355 | |
| 356 | /* Flashes that can't be detected using JEDEC */ |
| 357 | {"m25p05-nonjedec"}, {"m25p10-nonjedec"}, {"m25p20-nonjedec"}, |
| 358 | {"m25p40-nonjedec"}, {"m25p80-nonjedec"}, {"m25p16-nonjedec"}, |
| 359 | {"m25p32-nonjedec"}, {"m25p64-nonjedec"}, {"m25p128-nonjedec"}, |
| 360 | |
| 361 | /* Everspin MRAMs (non-JEDEC) */ |
| 362 | { "mr25h256" }, /* 256 Kib, 40 MHz */ |
| 363 | { "mr25h10" }, /* 1 Mib, 40 MHz */ |
| 364 | { "mr25h40" }, /* 4 Mib, 40 MHz */ |
| 365 | |
| 366 | { }, |
| 367 | }; |
| 368 | MODULE_DEVICE_TABLE(spi, m25p_ids); |
| 369 | |
| 370 | static const struct of_device_id m25p_of_table[] = { |
| 371 | /* |
| 372 | * Generic compatibility for SPI NOR that can be identified by the |
| 373 | * JEDEC READ ID opcode (0x9F). Use this, if possible. |
| 374 | */ |
| 375 | { .compatible = "jedec,spi-nor" }, |
| 376 | {} |
| 377 | }; |
| 378 | MODULE_DEVICE_TABLE(of, m25p_of_table); |
| 379 | |
| 380 | static struct spi_driver m25p80_driver = { |
| 381 | .driver = { |
| 382 | .name = "m25p80", |
| 383 | .of_match_table = m25p_of_table, |
| 384 | }, |
| 385 | .id_table = m25p_ids, |
| 386 | .probe = m25p_probe, |
| 387 | .remove = m25p_remove, |
| 388 | |
| 389 | /* REVISIT: many of these chips have deep power-down modes, which |
| 390 | * should clearly be entered on suspend() to minimize power use. |
| 391 | * And also when they're otherwise idle... |
| 392 | */ |
| 393 | }; |
| 394 | |
| 395 | module_spi_driver(m25p80_driver); |
| 396 | |
| 397 | MODULE_LICENSE("GPL"); |
| 398 | MODULE_AUTHOR("Mike Lavender"); |
| 399 | MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips"); |