blob: 5a348efb91adae6d065f7735e76967d3b9ba8cc1 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/* ePAPR hypervisor byte channel device driver
2 *
3 * Copyright 2009-2011 Freescale Semiconductor, Inc.
4 *
5 * Author: Timur Tabi <timur@freescale.com>
6 *
7 * This file is licensed under the terms of the GNU General Public License
8 * version 2. This program is licensed "as is" without any warranty of any
9 * kind, whether express or implied.
10 *
11 * This driver support three distinct interfaces, all of which are related to
12 * ePAPR hypervisor byte channels.
13 *
14 * 1) An early-console (udbg) driver. This provides early console output
15 * through a byte channel. The byte channel handle must be specified in a
16 * Kconfig option.
17 *
18 * 2) A normal console driver. Output is sent to the byte channel designated
19 * for stdout in the device tree. The console driver is for handling kernel
20 * printk calls.
21 *
22 * 3) A tty driver, which is used to handle user-space input and output. The
23 * byte channel used for the console is designated as the default tty.
24 */
25
26#include <linux/init.h>
27#include <linux/slab.h>
28#include <linux/err.h>
29#include <linux/interrupt.h>
30#include <linux/fs.h>
31#include <linux/poll.h>
32#include <asm/epapr_hcalls.h>
33#include <linux/of.h>
34#include <linux/of_irq.h>
35#include <linux/platform_device.h>
36#include <linux/cdev.h>
37#include <linux/console.h>
38#include <linux/tty.h>
39#include <linux/tty_flip.h>
40#include <linux/circ_buf.h>
41#include <asm/udbg.h>
42
43/* The size of the transmit circular buffer. This must be a power of two. */
44#define BUF_SIZE 2048
45
46/* Per-byte channel private data */
47struct ehv_bc_data {
48 struct device *dev;
49 struct tty_port port;
50 uint32_t handle;
51 unsigned int rx_irq;
52 unsigned int tx_irq;
53
54 spinlock_t lock; /* lock for transmit buffer */
55 unsigned char buf[BUF_SIZE]; /* transmit circular buffer */
56 unsigned int head; /* circular buffer head */
57 unsigned int tail; /* circular buffer tail */
58
59 int tx_irq_enabled; /* true == TX interrupt is enabled */
60};
61
62/* Array of byte channel objects */
63static struct ehv_bc_data *bcs;
64
65/* Byte channel handle for stdout (and stdin), taken from device tree */
66static unsigned int stdout_bc;
67
68/* Virtual IRQ for the byte channel handle for stdin, taken from device tree */
69static unsigned int stdout_irq;
70
71/**************************** SUPPORT FUNCTIONS ****************************/
72
73/*
74 * Enable the transmit interrupt
75 *
76 * Unlike a serial device, byte channels have no mechanism for disabling their
77 * own receive or transmit interrupts. To emulate that feature, we toggle
78 * the IRQ in the kernel.
79 *
80 * We cannot just blindly call enable_irq() or disable_irq(), because these
81 * calls are reference counted. This means that we cannot call enable_irq()
82 * if interrupts are already enabled. This can happen in two situations:
83 *
84 * 1. The tty layer makes two back-to-back calls to ehv_bc_tty_write()
85 * 2. A transmit interrupt occurs while executing ehv_bc_tx_dequeue()
86 *
87 * To work around this, we keep a flag to tell us if the IRQ is enabled or not.
88 */
89static void enable_tx_interrupt(struct ehv_bc_data *bc)
90{
91 if (!bc->tx_irq_enabled) {
92 enable_irq(bc->tx_irq);
93 bc->tx_irq_enabled = 1;
94 }
95}
96
97static void disable_tx_interrupt(struct ehv_bc_data *bc)
98{
99 if (bc->tx_irq_enabled) {
100 disable_irq_nosync(bc->tx_irq);
101 bc->tx_irq_enabled = 0;
102 }
103}
104
105/*
106 * find the byte channel handle to use for the console
107 *
108 * The byte channel to be used for the console is specified via a "stdout"
109 * property in the /chosen node.
110 */
111static int find_console_handle(void)
112{
113 struct device_node *np = of_stdout;
114 const uint32_t *iprop;
115
116 /* We don't care what the aliased node is actually called. We only
117 * care if it's compatible with "epapr,hv-byte-channel", because that
118 * indicates that it's a byte channel node.
119 */
120 if (!np || !of_device_is_compatible(np, "epapr,hv-byte-channel"))
121 return 0;
122
123 stdout_irq = irq_of_parse_and_map(np, 0);
124 if (stdout_irq == NO_IRQ) {
125 pr_err("ehv-bc: no 'interrupts' property in %pOF node\n", np);
126 return 0;
127 }
128
129 /*
130 * The 'hv-handle' property contains the handle for this byte channel.
131 */
132 iprop = of_get_property(np, "hv-handle", NULL);
133 if (!iprop) {
134 pr_err("ehv-bc: no 'hv-handle' property in %s node\n",
135 np->name);
136 return 0;
137 }
138 stdout_bc = be32_to_cpu(*iprop);
139 return 1;
140}
141
142static unsigned int local_ev_byte_channel_send(unsigned int handle,
143 unsigned int *count,
144 const char *p)
145{
146 char buffer[EV_BYTE_CHANNEL_MAX_BYTES];
147 unsigned int c = *count;
148
149 if (c < sizeof(buffer)) {
150 memcpy(buffer, p, c);
151 memset(&buffer[c], 0, sizeof(buffer) - c);
152 p = buffer;
153 }
154 return ev_byte_channel_send(handle, count, p);
155}
156
157/*************************** EARLY CONSOLE DRIVER ***************************/
158
159#ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC
160
161/*
162 * send a byte to a byte channel, wait if necessary
163 *
164 * This function sends a byte to a byte channel, and it waits and
165 * retries if the byte channel is full. It returns if the character
166 * has been sent, or if some error has occurred.
167 *
168 */
169static void byte_channel_spin_send(const char data)
170{
171 int ret, count;
172
173 do {
174 count = 1;
175 ret = local_ev_byte_channel_send(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE,
176 &count, &data);
177 } while (ret == EV_EAGAIN);
178}
179
180/*
181 * The udbg subsystem calls this function to display a single character.
182 * We convert CR to a CR/LF.
183 */
184static void ehv_bc_udbg_putc(char c)
185{
186 if (c == '\n')
187 byte_channel_spin_send('\r');
188
189 byte_channel_spin_send(c);
190}
191
192/*
193 * early console initialization
194 *
195 * PowerPC kernels support an early printk console, also known as udbg.
196 * This function must be called via the ppc_md.init_early function pointer.
197 * At this point, the device tree has been unflattened, so we can obtain the
198 * byte channel handle for stdout.
199 *
200 * We only support displaying of characters (putc). We do not support
201 * keyboard input.
202 */
203void __init udbg_init_ehv_bc(void)
204{
205 unsigned int rx_count, tx_count;
206 unsigned int ret;
207
208 /* Verify the byte channel handle */
209 ret = ev_byte_channel_poll(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE,
210 &rx_count, &tx_count);
211 if (ret)
212 return;
213
214 udbg_putc = ehv_bc_udbg_putc;
215 register_early_udbg_console();
216
217 udbg_printf("ehv-bc: early console using byte channel handle %u\n",
218 CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE);
219}
220
221#endif
222
223/****************************** CONSOLE DRIVER ******************************/
224
225static struct tty_driver *ehv_bc_driver;
226
227/*
228 * Byte channel console sending worker function.
229 *
230 * For consoles, if the output buffer is full, we should just spin until it
231 * clears.
232 */
233static int ehv_bc_console_byte_channel_send(unsigned int handle, const char *s,
234 unsigned int count)
235{
236 unsigned int len;
237 int ret = 0;
238
239 while (count) {
240 len = min_t(unsigned int, count, EV_BYTE_CHANNEL_MAX_BYTES);
241 do {
242 ret = local_ev_byte_channel_send(handle, &len, s);
243 } while (ret == EV_EAGAIN);
244 count -= len;
245 s += len;
246 }
247
248 return ret;
249}
250
251/*
252 * write a string to the console
253 *
254 * This function gets called to write a string from the kernel, typically from
255 * a printk(). This function spins until all data is written.
256 *
257 * We copy the data to a temporary buffer because we need to insert a \r in
258 * front of every \n. It's more efficient to copy the data to the buffer than
259 * it is to make multiple hcalls for each character or each newline.
260 */
261static void ehv_bc_console_write(struct console *co, const char *s,
262 unsigned int count)
263{
264 char s2[EV_BYTE_CHANNEL_MAX_BYTES];
265 unsigned int i, j = 0;
266 char c;
267
268 for (i = 0; i < count; i++) {
269 c = *s++;
270
271 if (c == '\n')
272 s2[j++] = '\r';
273
274 s2[j++] = c;
275 if (j >= (EV_BYTE_CHANNEL_MAX_BYTES - 1)) {
276 if (ehv_bc_console_byte_channel_send(stdout_bc, s2, j))
277 return;
278 j = 0;
279 }
280 }
281
282 if (j)
283 ehv_bc_console_byte_channel_send(stdout_bc, s2, j);
284}
285
286/*
287 * When /dev/console is opened, the kernel iterates the console list looking
288 * for one with ->device and then calls that method. On success, it expects
289 * the passed-in int* to contain the minor number to use.
290 */
291static struct tty_driver *ehv_bc_console_device(struct console *co, int *index)
292{
293 *index = co->index;
294
295 return ehv_bc_driver;
296}
297
298static struct console ehv_bc_console = {
299 .name = "ttyEHV",
300 .write = ehv_bc_console_write,
301 .device = ehv_bc_console_device,
302 .flags = CON_PRINTBUFFER | CON_ENABLED,
303};
304
305/*
306 * Console initialization
307 *
308 * This is the first function that is called after the device tree is
309 * available, so here is where we determine the byte channel handle and IRQ for
310 * stdout/stdin, even though that information is used by the tty and character
311 * drivers.
312 */
313static int __init ehv_bc_console_init(void)
314{
315 if (!find_console_handle()) {
316 pr_debug("ehv-bc: stdout is not a byte channel\n");
317 return -ENODEV;
318 }
319
320#ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC
321 /* Print a friendly warning if the user chose the wrong byte channel
322 * handle for udbg.
323 */
324 if (stdout_bc != CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE)
325 pr_warn("ehv-bc: udbg handle %u is not the stdout handle\n",
326 CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE);
327#endif
328
329 /* add_preferred_console() must be called before register_console(),
330 otherwise it won't work. However, we don't want to enumerate all the
331 byte channels here, either, since we only care about one. */
332
333 add_preferred_console(ehv_bc_console.name, ehv_bc_console.index, NULL);
334 register_console(&ehv_bc_console);
335
336 pr_info("ehv-bc: registered console driver for byte channel %u\n",
337 stdout_bc);
338
339 return 0;
340}
341console_initcall(ehv_bc_console_init);
342
343/******************************** TTY DRIVER ********************************/
344
345/*
346 * byte channel receive interupt handler
347 *
348 * This ISR is called whenever data is available on a byte channel.
349 */
350static irqreturn_t ehv_bc_tty_rx_isr(int irq, void *data)
351{
352 struct ehv_bc_data *bc = data;
353 unsigned int rx_count, tx_count, len;
354 int count;
355 char buffer[EV_BYTE_CHANNEL_MAX_BYTES];
356 int ret;
357
358 /* Find out how much data needs to be read, and then ask the TTY layer
359 * if it can handle that much. We want to ensure that every byte we
360 * read from the byte channel will be accepted by the TTY layer.
361 */
362 ev_byte_channel_poll(bc->handle, &rx_count, &tx_count);
363 count = tty_buffer_request_room(&bc->port, rx_count);
364
365 /* 'count' is the maximum amount of data the TTY layer can accept at
366 * this time. However, during testing, I was never able to get 'count'
367 * to be less than 'rx_count'. I'm not sure whether I'm calling it
368 * correctly.
369 */
370
371 while (count > 0) {
372 len = min_t(unsigned int, count, sizeof(buffer));
373
374 /* Read some data from the byte channel. This function will
375 * never return more than EV_BYTE_CHANNEL_MAX_BYTES bytes.
376 */
377 ev_byte_channel_receive(bc->handle, &len, buffer);
378
379 /* 'len' is now the amount of data that's been received. 'len'
380 * can't be zero, and most likely it's equal to one.
381 */
382
383 /* Pass the received data to the tty layer. */
384 ret = tty_insert_flip_string(&bc->port, buffer, len);
385
386 /* 'ret' is the number of bytes that the TTY layer accepted.
387 * If it's not equal to 'len', then it means the buffer is
388 * full, which should never happen. If it does happen, we can
389 * exit gracefully, but we drop the last 'len - ret' characters
390 * that we read from the byte channel.
391 */
392 if (ret != len)
393 break;
394
395 count -= len;
396 }
397
398 /* Tell the tty layer that we're done. */
399 tty_flip_buffer_push(&bc->port);
400
401 return IRQ_HANDLED;
402}
403
404/*
405 * dequeue the transmit buffer to the hypervisor
406 *
407 * This function, which can be called in interrupt context, dequeues as much
408 * data as possible from the transmit buffer to the byte channel.
409 */
410static void ehv_bc_tx_dequeue(struct ehv_bc_data *bc)
411{
412 unsigned int count;
413 unsigned int len, ret;
414 unsigned long flags;
415
416 do {
417 spin_lock_irqsave(&bc->lock, flags);
418 len = min_t(unsigned int,
419 CIRC_CNT_TO_END(bc->head, bc->tail, BUF_SIZE),
420 EV_BYTE_CHANNEL_MAX_BYTES);
421
422 ret = local_ev_byte_channel_send(bc->handle, &len, bc->buf + bc->tail);
423
424 /* 'len' is valid only if the return code is 0 or EV_EAGAIN */
425 if (!ret || (ret == EV_EAGAIN))
426 bc->tail = (bc->tail + len) & (BUF_SIZE - 1);
427
428 count = CIRC_CNT(bc->head, bc->tail, BUF_SIZE);
429 spin_unlock_irqrestore(&bc->lock, flags);
430 } while (count && !ret);
431
432 spin_lock_irqsave(&bc->lock, flags);
433 if (CIRC_CNT(bc->head, bc->tail, BUF_SIZE))
434 /*
435 * If we haven't emptied the buffer, then enable the TX IRQ.
436 * We'll get an interrupt when there's more room in the
437 * hypervisor's output buffer.
438 */
439 enable_tx_interrupt(bc);
440 else
441 disable_tx_interrupt(bc);
442 spin_unlock_irqrestore(&bc->lock, flags);
443}
444
445/*
446 * byte channel transmit interupt handler
447 *
448 * This ISR is called whenever space becomes available for transmitting
449 * characters on a byte channel.
450 */
451static irqreturn_t ehv_bc_tty_tx_isr(int irq, void *data)
452{
453 struct ehv_bc_data *bc = data;
454
455 ehv_bc_tx_dequeue(bc);
456 tty_port_tty_wakeup(&bc->port);
457
458 return IRQ_HANDLED;
459}
460
461/*
462 * This function is called when the tty layer has data for us send. We store
463 * the data first in a circular buffer, and then dequeue as much of that data
464 * as possible.
465 *
466 * We don't need to worry about whether there is enough room in the buffer for
467 * all the data. The purpose of ehv_bc_tty_write_room() is to tell the tty
468 * layer how much data it can safely send to us. We guarantee that
469 * ehv_bc_tty_write_room() will never lie, so the tty layer will never send us
470 * too much data.
471 */
472static int ehv_bc_tty_write(struct tty_struct *ttys, const unsigned char *s,
473 int count)
474{
475 struct ehv_bc_data *bc = ttys->driver_data;
476 unsigned long flags;
477 unsigned int len;
478 unsigned int written = 0;
479
480 while (1) {
481 spin_lock_irqsave(&bc->lock, flags);
482 len = CIRC_SPACE_TO_END(bc->head, bc->tail, BUF_SIZE);
483 if (count < len)
484 len = count;
485 if (len) {
486 memcpy(bc->buf + bc->head, s, len);
487 bc->head = (bc->head + len) & (BUF_SIZE - 1);
488 }
489 spin_unlock_irqrestore(&bc->lock, flags);
490 if (!len)
491 break;
492
493 s += len;
494 count -= len;
495 written += len;
496 }
497
498 ehv_bc_tx_dequeue(bc);
499
500 return written;
501}
502
503/*
504 * This function can be called multiple times for a given tty_struct, which is
505 * why we initialize bc->ttys in ehv_bc_tty_port_activate() instead.
506 *
507 * The tty layer will still call this function even if the device was not
508 * registered (i.e. tty_register_device() was not called). This happens
509 * because tty_register_device() is optional and some legacy drivers don't
510 * use it. So we need to check for that.
511 */
512static int ehv_bc_tty_open(struct tty_struct *ttys, struct file *filp)
513{
514 struct ehv_bc_data *bc = &bcs[ttys->index];
515
516 if (!bc->dev)
517 return -ENODEV;
518
519 return tty_port_open(&bc->port, ttys, filp);
520}
521
522/*
523 * Amazingly, if ehv_bc_tty_open() returns an error code, the tty layer will
524 * still call this function to close the tty device. So we can't assume that
525 * the tty port has been initialized.
526 */
527static void ehv_bc_tty_close(struct tty_struct *ttys, struct file *filp)
528{
529 struct ehv_bc_data *bc = &bcs[ttys->index];
530
531 if (bc->dev)
532 tty_port_close(&bc->port, ttys, filp);
533}
534
535/*
536 * Return the amount of space in the output buffer
537 *
538 * This is actually a contract between the driver and the tty layer outlining
539 * how much write room the driver can guarantee will be sent OR BUFFERED. This
540 * driver MUST honor the return value.
541 */
542static int ehv_bc_tty_write_room(struct tty_struct *ttys)
543{
544 struct ehv_bc_data *bc = ttys->driver_data;
545 unsigned long flags;
546 int count;
547
548 spin_lock_irqsave(&bc->lock, flags);
549 count = CIRC_SPACE(bc->head, bc->tail, BUF_SIZE);
550 spin_unlock_irqrestore(&bc->lock, flags);
551
552 return count;
553}
554
555/*
556 * Stop sending data to the tty layer
557 *
558 * This function is called when the tty layer's input buffers are getting full,
559 * so the driver should stop sending it data. The easiest way to do this is to
560 * disable the RX IRQ, which will prevent ehv_bc_tty_rx_isr() from being
561 * called.
562 *
563 * The hypervisor will continue to queue up any incoming data. If there is any
564 * data in the queue when the RX interrupt is enabled, we'll immediately get an
565 * RX interrupt.
566 */
567static void ehv_bc_tty_throttle(struct tty_struct *ttys)
568{
569 struct ehv_bc_data *bc = ttys->driver_data;
570
571 disable_irq(bc->rx_irq);
572}
573
574/*
575 * Resume sending data to the tty layer
576 *
577 * This function is called after previously calling ehv_bc_tty_throttle(). The
578 * tty layer's input buffers now have more room, so the driver can resume
579 * sending it data.
580 */
581static void ehv_bc_tty_unthrottle(struct tty_struct *ttys)
582{
583 struct ehv_bc_data *bc = ttys->driver_data;
584
585 /* If there is any data in the queue when the RX interrupt is enabled,
586 * we'll immediately get an RX interrupt.
587 */
588 enable_irq(bc->rx_irq);
589}
590
591static void ehv_bc_tty_hangup(struct tty_struct *ttys)
592{
593 struct ehv_bc_data *bc = ttys->driver_data;
594
595 ehv_bc_tx_dequeue(bc);
596 tty_port_hangup(&bc->port);
597}
598
599/*
600 * TTY driver operations
601 *
602 * If we could ask the hypervisor how much data is still in the TX buffer, or
603 * at least how big the TX buffers are, then we could implement the
604 * .wait_until_sent and .chars_in_buffer functions.
605 */
606static const struct tty_operations ehv_bc_ops = {
607 .open = ehv_bc_tty_open,
608 .close = ehv_bc_tty_close,
609 .write = ehv_bc_tty_write,
610 .write_room = ehv_bc_tty_write_room,
611 .throttle = ehv_bc_tty_throttle,
612 .unthrottle = ehv_bc_tty_unthrottle,
613 .hangup = ehv_bc_tty_hangup,
614};
615
616/*
617 * initialize the TTY port
618 *
619 * This function will only be called once, no matter how many times
620 * ehv_bc_tty_open() is called. That's why we register the ISR here, and also
621 * why we initialize tty_struct-related variables here.
622 */
623static int ehv_bc_tty_port_activate(struct tty_port *port,
624 struct tty_struct *ttys)
625{
626 struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port);
627 int ret;
628
629 ttys->driver_data = bc;
630
631 ret = request_irq(bc->rx_irq, ehv_bc_tty_rx_isr, 0, "ehv-bc", bc);
632 if (ret < 0) {
633 dev_err(bc->dev, "could not request rx irq %u (ret=%i)\n",
634 bc->rx_irq, ret);
635 return ret;
636 }
637
638 /* request_irq also enables the IRQ */
639 bc->tx_irq_enabled = 1;
640
641 ret = request_irq(bc->tx_irq, ehv_bc_tty_tx_isr, 0, "ehv-bc", bc);
642 if (ret < 0) {
643 dev_err(bc->dev, "could not request tx irq %u (ret=%i)\n",
644 bc->tx_irq, ret);
645 free_irq(bc->rx_irq, bc);
646 return ret;
647 }
648
649 /* The TX IRQ is enabled only when we can't write all the data to the
650 * byte channel at once, so by default it's disabled.
651 */
652 disable_tx_interrupt(bc);
653
654 return 0;
655}
656
657static void ehv_bc_tty_port_shutdown(struct tty_port *port)
658{
659 struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port);
660
661 free_irq(bc->tx_irq, bc);
662 free_irq(bc->rx_irq, bc);
663}
664
665static const struct tty_port_operations ehv_bc_tty_port_ops = {
666 .activate = ehv_bc_tty_port_activate,
667 .shutdown = ehv_bc_tty_port_shutdown,
668};
669
670static int ehv_bc_tty_probe(struct platform_device *pdev)
671{
672 struct device_node *np = pdev->dev.of_node;
673 struct ehv_bc_data *bc;
674 const uint32_t *iprop;
675 unsigned int handle;
676 int ret;
677 static unsigned int index = 1;
678 unsigned int i;
679
680 iprop = of_get_property(np, "hv-handle", NULL);
681 if (!iprop) {
682 dev_err(&pdev->dev, "no 'hv-handle' property in %s node\n",
683 np->name);
684 return -ENODEV;
685 }
686
687 /* We already told the console layer that the index for the console
688 * device is zero, so we need to make sure that we use that index when
689 * we probe the console byte channel node.
690 */
691 handle = be32_to_cpu(*iprop);
692 i = (handle == stdout_bc) ? 0 : index++;
693 bc = &bcs[i];
694
695 bc->handle = handle;
696 bc->head = 0;
697 bc->tail = 0;
698 spin_lock_init(&bc->lock);
699
700 bc->rx_irq = irq_of_parse_and_map(np, 0);
701 bc->tx_irq = irq_of_parse_and_map(np, 1);
702 if ((bc->rx_irq == NO_IRQ) || (bc->tx_irq == NO_IRQ)) {
703 dev_err(&pdev->dev, "no 'interrupts' property in %s node\n",
704 np->name);
705 ret = -ENODEV;
706 goto error;
707 }
708
709 tty_port_init(&bc->port);
710 bc->port.ops = &ehv_bc_tty_port_ops;
711
712 bc->dev = tty_port_register_device(&bc->port, ehv_bc_driver, i,
713 &pdev->dev);
714 if (IS_ERR(bc->dev)) {
715 ret = PTR_ERR(bc->dev);
716 dev_err(&pdev->dev, "could not register tty (ret=%i)\n", ret);
717 goto error;
718 }
719
720 dev_set_drvdata(&pdev->dev, bc);
721
722 dev_info(&pdev->dev, "registered /dev/%s%u for byte channel %u\n",
723 ehv_bc_driver->name, i, bc->handle);
724
725 return 0;
726
727error:
728 tty_port_destroy(&bc->port);
729 irq_dispose_mapping(bc->tx_irq);
730 irq_dispose_mapping(bc->rx_irq);
731
732 memset(bc, 0, sizeof(struct ehv_bc_data));
733 return ret;
734}
735
736static const struct of_device_id ehv_bc_tty_of_ids[] = {
737 { .compatible = "epapr,hv-byte-channel" },
738 {}
739};
740
741static struct platform_driver ehv_bc_tty_driver = {
742 .driver = {
743 .name = "ehv-bc",
744 .of_match_table = ehv_bc_tty_of_ids,
745 .suppress_bind_attrs = true,
746 },
747 .probe = ehv_bc_tty_probe,
748};
749
750/**
751 * ehv_bc_init - ePAPR hypervisor byte channel driver initialization
752 *
753 * This function is called when this driver is loaded.
754 */
755static int __init ehv_bc_init(void)
756{
757 struct device_node *np;
758 unsigned int count = 0; /* Number of elements in bcs[] */
759 int ret;
760
761 pr_info("ePAPR hypervisor byte channel driver\n");
762
763 /* Count the number of byte channels */
764 for_each_compatible_node(np, NULL, "epapr,hv-byte-channel")
765 count++;
766
767 if (!count)
768 return -ENODEV;
769
770 /* The array index of an element in bcs[] is the same as the tty index
771 * for that element. If you know the address of an element in the
772 * array, then you can use pointer math (e.g. "bc - bcs") to get its
773 * tty index.
774 */
775 bcs = kzalloc(count * sizeof(struct ehv_bc_data), GFP_KERNEL);
776 if (!bcs)
777 return -ENOMEM;
778
779 ehv_bc_driver = alloc_tty_driver(count);
780 if (!ehv_bc_driver) {
781 ret = -ENOMEM;
782 goto err_free_bcs;
783 }
784
785 ehv_bc_driver->driver_name = "ehv-bc";
786 ehv_bc_driver->name = ehv_bc_console.name;
787 ehv_bc_driver->type = TTY_DRIVER_TYPE_CONSOLE;
788 ehv_bc_driver->subtype = SYSTEM_TYPE_CONSOLE;
789 ehv_bc_driver->init_termios = tty_std_termios;
790 ehv_bc_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
791 tty_set_operations(ehv_bc_driver, &ehv_bc_ops);
792
793 ret = tty_register_driver(ehv_bc_driver);
794 if (ret) {
795 pr_err("ehv-bc: could not register tty driver (ret=%i)\n", ret);
796 goto err_put_tty_driver;
797 }
798
799 ret = platform_driver_register(&ehv_bc_tty_driver);
800 if (ret) {
801 pr_err("ehv-bc: could not register platform driver (ret=%i)\n",
802 ret);
803 goto err_deregister_tty_driver;
804 }
805
806 return 0;
807
808err_deregister_tty_driver:
809 tty_unregister_driver(ehv_bc_driver);
810err_put_tty_driver:
811 put_tty_driver(ehv_bc_driver);
812err_free_bcs:
813 kfree(bcs);
814
815 return ret;
816}
817device_initcall(ehv_bc_init);