| rjw | 1f88458 | 2022-01-06 17:20:42 +0800 | [diff] [blame] | 1 | /* | 
 | 2 |  * fs/f2fs/gc.c | 
 | 3 |  * | 
 | 4 |  * Copyright (c) 2012 Samsung Electronics Co., Ltd. | 
 | 5 |  *             http://www.samsung.com/ | 
 | 6 |  * | 
 | 7 |  * This program is free software; you can redistribute it and/or modify | 
 | 8 |  * it under the terms of the GNU General Public License version 2 as | 
 | 9 |  * published by the Free Software Foundation. | 
 | 10 |  */ | 
 | 11 | #include <linux/fs.h> | 
 | 12 | #include <linux/module.h> | 
 | 13 | #include <linux/backing-dev.h> | 
 | 14 | #include <linux/init.h> | 
 | 15 | #include <linux/f2fs_fs.h> | 
 | 16 | #include <linux/kthread.h> | 
 | 17 | #include <linux/delay.h> | 
 | 18 | #include <linux/freezer.h> | 
 | 19 |  | 
 | 20 | #include "f2fs.h" | 
 | 21 | #include "node.h" | 
 | 22 | #include "segment.h" | 
 | 23 | #include "gc.h" | 
 | 24 | #include <trace/events/f2fs.h> | 
 | 25 |  | 
 | 26 | static int gc_thread_func(void *data) | 
 | 27 | { | 
 | 28 | 	struct f2fs_sb_info *sbi = data; | 
 | 29 | 	struct f2fs_gc_kthread *gc_th = sbi->gc_thread; | 
 | 30 | 	wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head; | 
 | 31 | 	unsigned int wait_ms; | 
 | 32 |  | 
 | 33 | 	wait_ms = gc_th->min_sleep_time; | 
 | 34 |  | 
 | 35 | 	set_freezable(); | 
 | 36 | 	do { | 
 | 37 | 		wait_event_interruptible_timeout(*wq, | 
 | 38 | 				kthread_should_stop() || freezing(current) || | 
 | 39 | 				gc_th->gc_wake, | 
 | 40 | 				msecs_to_jiffies(wait_ms)); | 
 | 41 |  | 
 | 42 | 		/* give it a try one time */ | 
 | 43 | 		if (gc_th->gc_wake) | 
 | 44 | 			gc_th->gc_wake = 0; | 
 | 45 |  | 
 | 46 | 		if (try_to_freeze()) | 
 | 47 | 			continue; | 
 | 48 | 		if (kthread_should_stop()) | 
 | 49 | 			break; | 
 | 50 |  | 
 | 51 | 		if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) { | 
 | 52 | 			increase_sleep_time(gc_th, &wait_ms); | 
 | 53 | 			continue; | 
 | 54 | 		} | 
 | 55 |  | 
 | 56 | #ifdef CONFIG_F2FS_FAULT_INJECTION | 
 | 57 | 		if (time_to_inject(sbi, FAULT_CHECKPOINT)) { | 
 | 58 | 			f2fs_show_injection_info(FAULT_CHECKPOINT); | 
 | 59 | 			f2fs_stop_checkpoint(sbi, false); | 
 | 60 | 		} | 
 | 61 | #endif | 
 | 62 |  | 
 | 63 | 		if (!sb_start_write_trylock(sbi->sb)) | 
 | 64 | 			continue; | 
 | 65 |  | 
 | 66 | 		/* | 
 | 67 | 		 * [GC triggering condition] | 
 | 68 | 		 * 0. GC is not conducted currently. | 
 | 69 | 		 * 1. There are enough dirty segments. | 
 | 70 | 		 * 2. IO subsystem is idle by checking the # of writeback pages. | 
 | 71 | 		 * 3. IO subsystem is idle by checking the # of requests in | 
 | 72 | 		 *    bdev's request list. | 
 | 73 | 		 * | 
 | 74 | 		 * Note) We have to avoid triggering GCs frequently. | 
 | 75 | 		 * Because it is possible that some segments can be | 
 | 76 | 		 * invalidated soon after by user update or deletion. | 
 | 77 | 		 * So, I'd like to wait some time to collect dirty segments. | 
 | 78 | 		 */ | 
 | 79 | 		if (gc_th->gc_urgent) { | 
 | 80 | 			wait_ms = gc_th->urgent_sleep_time; | 
 | 81 | 			mutex_lock(&sbi->gc_mutex); | 
 | 82 | 			goto do_gc; | 
 | 83 | 		} | 
 | 84 |  | 
 | 85 | 		if (!mutex_trylock(&sbi->gc_mutex)) | 
 | 86 | 			goto next; | 
 | 87 |  | 
 | 88 | 		if (!is_idle(sbi)) { | 
 | 89 | 			increase_sleep_time(gc_th, &wait_ms); | 
 | 90 | 			mutex_unlock(&sbi->gc_mutex); | 
 | 91 | 			goto next; | 
 | 92 | 		} | 
 | 93 |  | 
 | 94 | 		if (has_enough_invalid_blocks(sbi)) | 
 | 95 | 			decrease_sleep_time(gc_th, &wait_ms); | 
 | 96 | 		else | 
 | 97 | 			increase_sleep_time(gc_th, &wait_ms); | 
 | 98 | do_gc: | 
 | 99 | 		stat_inc_bggc_count(sbi); | 
 | 100 |  | 
 | 101 | 		/* if return value is not zero, no victim was selected */ | 
 | 102 | 		if (f2fs_gc(sbi, test_opt(sbi, FORCE_FG_GC), true, NULL_SEGNO)) | 
 | 103 | 			wait_ms = gc_th->no_gc_sleep_time; | 
 | 104 |  | 
 | 105 | 		trace_f2fs_background_gc(sbi->sb, wait_ms, | 
 | 106 | 				prefree_segments(sbi), free_segments(sbi)); | 
 | 107 |  | 
 | 108 | 		/* balancing f2fs's metadata periodically */ | 
 | 109 | 		f2fs_balance_fs_bg(sbi); | 
 | 110 | next: | 
 | 111 | 		sb_end_write(sbi->sb); | 
 | 112 |  | 
 | 113 | 	} while (!kthread_should_stop()); | 
 | 114 | 	return 0; | 
 | 115 | } | 
 | 116 |  | 
 | 117 | int start_gc_thread(struct f2fs_sb_info *sbi) | 
 | 118 | { | 
 | 119 | 	struct f2fs_gc_kthread *gc_th; | 
 | 120 | 	dev_t dev = sbi->sb->s_bdev->bd_dev; | 
 | 121 | 	int err = 0; | 
 | 122 |  | 
 | 123 | 	gc_th = f2fs_kmalloc(sbi, sizeof(struct f2fs_gc_kthread), GFP_KERNEL); | 
 | 124 | 	if (!gc_th) { | 
 | 125 | 		err = -ENOMEM; | 
 | 126 | 		goto out; | 
 | 127 | 	} | 
 | 128 |  | 
 | 129 | 	gc_th->urgent_sleep_time = DEF_GC_THREAD_URGENT_SLEEP_TIME; | 
 | 130 | 	gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME; | 
 | 131 | 	gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME; | 
 | 132 | 	gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME; | 
 | 133 |  | 
 | 134 | 	gc_th->gc_idle = 0; | 
 | 135 | 	gc_th->gc_urgent = 0; | 
 | 136 | 	gc_th->gc_wake= 0; | 
 | 137 |  | 
 | 138 | 	sbi->gc_thread = gc_th; | 
 | 139 | 	init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head); | 
 | 140 | 	sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi, | 
 | 141 | 			"f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev)); | 
 | 142 | 	if (IS_ERR(gc_th->f2fs_gc_task)) { | 
 | 143 | 		err = PTR_ERR(gc_th->f2fs_gc_task); | 
 | 144 | 		kfree(gc_th); | 
 | 145 | 		sbi->gc_thread = NULL; | 
 | 146 | 	} | 
 | 147 | out: | 
 | 148 | 	return err; | 
 | 149 | } | 
 | 150 |  | 
 | 151 | void stop_gc_thread(struct f2fs_sb_info *sbi) | 
 | 152 | { | 
 | 153 | 	struct f2fs_gc_kthread *gc_th = sbi->gc_thread; | 
 | 154 | 	if (!gc_th) | 
 | 155 | 		return; | 
 | 156 | 	kthread_stop(gc_th->f2fs_gc_task); | 
 | 157 | 	kfree(gc_th); | 
 | 158 | 	sbi->gc_thread = NULL; | 
 | 159 | } | 
 | 160 |  | 
 | 161 | static int select_gc_type(struct f2fs_gc_kthread *gc_th, int gc_type) | 
 | 162 | { | 
 | 163 | 	int gc_mode = (gc_type == BG_GC) ? GC_CB : GC_GREEDY; | 
 | 164 |  | 
 | 165 | 	if (!gc_th) | 
 | 166 | 		return gc_mode; | 
 | 167 |  | 
 | 168 | 	if (gc_th->gc_idle) { | 
 | 169 | 		if (gc_th->gc_idle == 1) | 
 | 170 | 			gc_mode = GC_CB; | 
 | 171 | 		else if (gc_th->gc_idle == 2) | 
 | 172 | 			gc_mode = GC_GREEDY; | 
 | 173 | 	} | 
 | 174 | 	if (gc_th->gc_urgent) | 
 | 175 | 		gc_mode = GC_GREEDY; | 
 | 176 | 	return gc_mode; | 
 | 177 | } | 
 | 178 |  | 
 | 179 | static void select_policy(struct f2fs_sb_info *sbi, int gc_type, | 
 | 180 | 			int type, struct victim_sel_policy *p) | 
 | 181 | { | 
 | 182 | 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | 
 | 183 |  | 
 | 184 | 	if (p->alloc_mode == SSR) { | 
 | 185 | 		p->gc_mode = GC_GREEDY; | 
 | 186 | 		p->dirty_segmap = dirty_i->dirty_segmap[type]; | 
 | 187 | 		p->max_search = dirty_i->nr_dirty[type]; | 
 | 188 | 		p->ofs_unit = 1; | 
 | 189 | 	} else { | 
 | 190 | 		p->gc_mode = select_gc_type(sbi->gc_thread, gc_type); | 
 | 191 | 		p->dirty_segmap = dirty_i->dirty_segmap[DIRTY]; | 
 | 192 | 		p->max_search = dirty_i->nr_dirty[DIRTY]; | 
 | 193 | 		p->ofs_unit = sbi->segs_per_sec; | 
 | 194 | 	} | 
 | 195 |  | 
 | 196 | 	/* we need to check every dirty segments in the FG_GC case */ | 
 | 197 | 	if (gc_type != FG_GC && | 
 | 198 | 			(sbi->gc_thread && !sbi->gc_thread->gc_urgent) && | 
 | 199 | 			p->max_search > sbi->max_victim_search) | 
 | 200 | 		p->max_search = sbi->max_victim_search; | 
 | 201 |  | 
 | 202 | 	/* let's select beginning hot/small space first in no_heap mode*/ | 
 | 203 | 	if (test_opt(sbi, NOHEAP) && | 
 | 204 | 		(type == CURSEG_HOT_DATA || IS_NODESEG(type))) | 
 | 205 | 		p->offset = 0; | 
 | 206 | 	else | 
 | 207 | 		p->offset = SIT_I(sbi)->last_victim[p->gc_mode]; | 
 | 208 | } | 
 | 209 |  | 
 | 210 | static unsigned int get_max_cost(struct f2fs_sb_info *sbi, | 
 | 211 | 				struct victim_sel_policy *p) | 
 | 212 | { | 
 | 213 | 	/* SSR allocates in a segment unit */ | 
 | 214 | 	if (p->alloc_mode == SSR) | 
 | 215 | 		return sbi->blocks_per_seg; | 
 | 216 | 	if (p->gc_mode == GC_GREEDY) | 
 | 217 | 		return 2 * sbi->blocks_per_seg * p->ofs_unit; | 
 | 218 | 	else if (p->gc_mode == GC_CB) | 
 | 219 | 		return UINT_MAX; | 
 | 220 | 	else /* No other gc_mode */ | 
 | 221 | 		return 0; | 
 | 222 | } | 
 | 223 |  | 
 | 224 | static unsigned int check_bg_victims(struct f2fs_sb_info *sbi) | 
 | 225 | { | 
 | 226 | 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | 
 | 227 | 	unsigned int secno; | 
 | 228 |  | 
 | 229 | 	/* | 
 | 230 | 	 * If the gc_type is FG_GC, we can select victim segments | 
 | 231 | 	 * selected by background GC before. | 
 | 232 | 	 * Those segments guarantee they have small valid blocks. | 
 | 233 | 	 */ | 
 | 234 | 	for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) { | 
 | 235 | 		if (sec_usage_check(sbi, secno)) | 
 | 236 | 			continue; | 
 | 237 |  | 
 | 238 | 		if (no_fggc_candidate(sbi, secno)) | 
 | 239 | 			continue; | 
 | 240 |  | 
 | 241 | 		clear_bit(secno, dirty_i->victim_secmap); | 
 | 242 | 		return GET_SEG_FROM_SEC(sbi, secno); | 
 | 243 | 	} | 
 | 244 | 	return NULL_SEGNO; | 
 | 245 | } | 
 | 246 |  | 
 | 247 | static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno) | 
 | 248 | { | 
 | 249 | 	struct sit_info *sit_i = SIT_I(sbi); | 
 | 250 | 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); | 
 | 251 | 	unsigned int start = GET_SEG_FROM_SEC(sbi, secno); | 
 | 252 | 	unsigned long long mtime = 0; | 
 | 253 | 	unsigned int vblocks; | 
 | 254 | 	unsigned char age = 0; | 
 | 255 | 	unsigned char u; | 
 | 256 | 	unsigned int i; | 
 | 257 |  | 
 | 258 | 	for (i = 0; i < sbi->segs_per_sec; i++) | 
 | 259 | 		mtime += get_seg_entry(sbi, start + i)->mtime; | 
 | 260 | 	vblocks = get_valid_blocks(sbi, segno, true); | 
 | 261 |  | 
 | 262 | 	mtime = div_u64(mtime, sbi->segs_per_sec); | 
 | 263 | 	vblocks = div_u64(vblocks, sbi->segs_per_sec); | 
 | 264 |  | 
 | 265 | 	u = (vblocks * 100) >> sbi->log_blocks_per_seg; | 
 | 266 |  | 
 | 267 | 	/* Handle if the system time has changed by the user */ | 
 | 268 | 	if (mtime < sit_i->min_mtime) | 
 | 269 | 		sit_i->min_mtime = mtime; | 
 | 270 | 	if (mtime > sit_i->max_mtime) | 
 | 271 | 		sit_i->max_mtime = mtime; | 
 | 272 | 	if (sit_i->max_mtime != sit_i->min_mtime) | 
 | 273 | 		age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime), | 
 | 274 | 				sit_i->max_mtime - sit_i->min_mtime); | 
 | 275 |  | 
 | 276 | 	return UINT_MAX - ((100 * (100 - u) * age) / (100 + u)); | 
 | 277 | } | 
 | 278 |  | 
 | 279 | static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi, | 
 | 280 | 			unsigned int segno, struct victim_sel_policy *p) | 
 | 281 | { | 
 | 282 | 	if (p->alloc_mode == SSR) | 
 | 283 | 		return get_seg_entry(sbi, segno)->ckpt_valid_blocks; | 
 | 284 |  | 
 | 285 | 	/* alloc_mode == LFS */ | 
 | 286 | 	if (p->gc_mode == GC_GREEDY) | 
 | 287 | 		return get_valid_blocks(sbi, segno, true); | 
 | 288 | 	else | 
 | 289 | 		return get_cb_cost(sbi, segno); | 
 | 290 | } | 
 | 291 |  | 
 | 292 | static unsigned int count_bits(const unsigned long *addr, | 
 | 293 | 				unsigned int offset, unsigned int len) | 
 | 294 | { | 
 | 295 | 	unsigned int end = offset + len, sum = 0; | 
 | 296 |  | 
 | 297 | 	while (offset < end) { | 
 | 298 | 		if (test_bit(offset++, addr)) | 
 | 299 | 			++sum; | 
 | 300 | 	} | 
 | 301 | 	return sum; | 
 | 302 | } | 
 | 303 |  | 
 | 304 | /* | 
 | 305 |  * This function is called from two paths. | 
 | 306 |  * One is garbage collection and the other is SSR segment selection. | 
 | 307 |  * When it is called during GC, it just gets a victim segment | 
 | 308 |  * and it does not remove it from dirty seglist. | 
 | 309 |  * When it is called from SSR segment selection, it finds a segment | 
 | 310 |  * which has minimum valid blocks and removes it from dirty seglist. | 
 | 311 |  */ | 
 | 312 | static int get_victim_by_default(struct f2fs_sb_info *sbi, | 
 | 313 | 		unsigned int *result, int gc_type, int type, char alloc_mode) | 
 | 314 | { | 
 | 315 | 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | 
 | 316 | 	struct sit_info *sm = SIT_I(sbi); | 
 | 317 | 	struct victim_sel_policy p; | 
 | 318 | 	unsigned int secno, last_victim; | 
 | 319 | 	unsigned int last_segment = MAIN_SEGS(sbi); | 
 | 320 | 	unsigned int nsearched = 0; | 
 | 321 |  | 
 | 322 | 	mutex_lock(&dirty_i->seglist_lock); | 
 | 323 |  | 
 | 324 | 	p.alloc_mode = alloc_mode; | 
 | 325 | 	select_policy(sbi, gc_type, type, &p); | 
 | 326 |  | 
 | 327 | 	p.min_segno = NULL_SEGNO; | 
 | 328 | 	p.min_cost = get_max_cost(sbi, &p); | 
 | 329 |  | 
 | 330 | 	if (*result != NULL_SEGNO) { | 
 | 331 | 		if (get_valid_blocks(sbi, *result, false) && | 
 | 332 | 			!sec_usage_check(sbi, GET_SEC_FROM_SEG(sbi, *result))) | 
 | 333 | 			p.min_segno = *result; | 
 | 334 | 		goto out; | 
 | 335 | 	} | 
 | 336 |  | 
 | 337 | 	if (p.max_search == 0) | 
 | 338 | 		goto out; | 
 | 339 |  | 
 | 340 | 	last_victim = sm->last_victim[p.gc_mode]; | 
 | 341 | 	if (p.alloc_mode == LFS && gc_type == FG_GC) { | 
 | 342 | 		p.min_segno = check_bg_victims(sbi); | 
 | 343 | 		if (p.min_segno != NULL_SEGNO) | 
 | 344 | 			goto got_it; | 
 | 345 | 	} | 
 | 346 |  | 
 | 347 | 	while (1) { | 
 | 348 | 		unsigned long cost; | 
 | 349 | 		unsigned int segno; | 
 | 350 |  | 
 | 351 | 		segno = find_next_bit(p.dirty_segmap, last_segment, p.offset); | 
 | 352 | 		if (segno >= last_segment) { | 
 | 353 | 			if (sm->last_victim[p.gc_mode]) { | 
 | 354 | 				last_segment = | 
 | 355 | 					sm->last_victim[p.gc_mode]; | 
 | 356 | 				sm->last_victim[p.gc_mode] = 0; | 
 | 357 | 				p.offset = 0; | 
 | 358 | 				continue; | 
 | 359 | 			} | 
 | 360 | 			break; | 
 | 361 | 		} | 
 | 362 |  | 
 | 363 | 		p.offset = segno + p.ofs_unit; | 
 | 364 | 		if (p.ofs_unit > 1) { | 
 | 365 | 			p.offset -= segno % p.ofs_unit; | 
 | 366 | 			nsearched += count_bits(p.dirty_segmap, | 
 | 367 | 						p.offset - p.ofs_unit, | 
 | 368 | 						p.ofs_unit); | 
 | 369 | 		} else { | 
 | 370 | 			nsearched++; | 
 | 371 | 		} | 
 | 372 |  | 
 | 373 | 		secno = GET_SEC_FROM_SEG(sbi, segno); | 
 | 374 |  | 
 | 375 | 		if (sec_usage_check(sbi, secno)) | 
 | 376 | 			goto next; | 
 | 377 | 		if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap)) | 
 | 378 | 			goto next; | 
 | 379 | 		if (gc_type == FG_GC && p.alloc_mode == LFS && | 
 | 380 | 					no_fggc_candidate(sbi, secno)) | 
 | 381 | 			goto next; | 
 | 382 |  | 
 | 383 | 		cost = get_gc_cost(sbi, segno, &p); | 
 | 384 |  | 
 | 385 | 		if (p.min_cost > cost) { | 
 | 386 | 			p.min_segno = segno; | 
 | 387 | 			p.min_cost = cost; | 
 | 388 | 		} | 
 | 389 | next: | 
 | 390 | 		if (nsearched >= p.max_search) { | 
 | 391 | 			if (!sm->last_victim[p.gc_mode] && segno <= last_victim) | 
 | 392 | 				sm->last_victim[p.gc_mode] = last_victim + 1; | 
 | 393 | 			else | 
 | 394 | 				sm->last_victim[p.gc_mode] = segno + 1; | 
 | 395 | 			sm->last_victim[p.gc_mode] %= MAIN_SEGS(sbi); | 
 | 396 | 			break; | 
 | 397 | 		} | 
 | 398 | 	} | 
 | 399 | 	if (p.min_segno != NULL_SEGNO) { | 
 | 400 | got_it: | 
 | 401 | 		if (p.alloc_mode == LFS) { | 
 | 402 | 			secno = GET_SEC_FROM_SEG(sbi, p.min_segno); | 
 | 403 | 			if (gc_type == FG_GC) | 
 | 404 | 				sbi->cur_victim_sec = secno; | 
 | 405 | 			else | 
 | 406 | 				set_bit(secno, dirty_i->victim_secmap); | 
 | 407 | 		} | 
 | 408 | 		*result = (p.min_segno / p.ofs_unit) * p.ofs_unit; | 
 | 409 |  | 
 | 410 | 		trace_f2fs_get_victim(sbi->sb, type, gc_type, &p, | 
 | 411 | 				sbi->cur_victim_sec, | 
 | 412 | 				prefree_segments(sbi), free_segments(sbi)); | 
 | 413 | 	} | 
 | 414 | out: | 
 | 415 | 	mutex_unlock(&dirty_i->seglist_lock); | 
 | 416 |  | 
 | 417 | 	return (p.min_segno == NULL_SEGNO) ? 0 : 1; | 
 | 418 | } | 
 | 419 |  | 
 | 420 | static const struct victim_selection default_v_ops = { | 
 | 421 | 	.get_victim = get_victim_by_default, | 
 | 422 | }; | 
 | 423 |  | 
 | 424 | static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino) | 
 | 425 | { | 
 | 426 | 	struct inode_entry *ie; | 
 | 427 |  | 
 | 428 | 	ie = radix_tree_lookup(&gc_list->iroot, ino); | 
 | 429 | 	if (ie) | 
 | 430 | 		return ie->inode; | 
 | 431 | 	return NULL; | 
 | 432 | } | 
 | 433 |  | 
 | 434 | static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode) | 
 | 435 | { | 
 | 436 | 	struct inode_entry *new_ie; | 
 | 437 |  | 
 | 438 | 	if (inode == find_gc_inode(gc_list, inode->i_ino)) { | 
 | 439 | 		iput(inode); | 
 | 440 | 		return; | 
 | 441 | 	} | 
 | 442 | 	new_ie = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS); | 
 | 443 | 	new_ie->inode = inode; | 
 | 444 |  | 
 | 445 | 	f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie); | 
 | 446 | 	list_add_tail(&new_ie->list, &gc_list->ilist); | 
 | 447 | } | 
 | 448 |  | 
 | 449 | static void put_gc_inode(struct gc_inode_list *gc_list) | 
 | 450 | { | 
 | 451 | 	struct inode_entry *ie, *next_ie; | 
 | 452 | 	list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) { | 
 | 453 | 		radix_tree_delete(&gc_list->iroot, ie->inode->i_ino); | 
 | 454 | 		iput(ie->inode); | 
 | 455 | 		list_del(&ie->list); | 
 | 456 | 		kmem_cache_free(inode_entry_slab, ie); | 
 | 457 | 	} | 
 | 458 | } | 
 | 459 |  | 
 | 460 | static int check_valid_map(struct f2fs_sb_info *sbi, | 
 | 461 | 				unsigned int segno, int offset) | 
 | 462 | { | 
 | 463 | 	struct sit_info *sit_i = SIT_I(sbi); | 
 | 464 | 	struct seg_entry *sentry; | 
 | 465 | 	int ret; | 
 | 466 |  | 
 | 467 | 	down_read(&sit_i->sentry_lock); | 
 | 468 | 	sentry = get_seg_entry(sbi, segno); | 
 | 469 | 	ret = f2fs_test_bit(offset, sentry->cur_valid_map); | 
 | 470 | 	up_read(&sit_i->sentry_lock); | 
 | 471 | 	return ret; | 
 | 472 | } | 
 | 473 |  | 
 | 474 | /* | 
 | 475 |  * This function compares node address got in summary with that in NAT. | 
 | 476 |  * On validity, copy that node with cold status, otherwise (invalid node) | 
 | 477 |  * ignore that. | 
 | 478 |  */ | 
 | 479 | static void gc_node_segment(struct f2fs_sb_info *sbi, | 
 | 480 | 		struct f2fs_summary *sum, unsigned int segno, int gc_type) | 
 | 481 | { | 
 | 482 | 	struct f2fs_summary *entry; | 
 | 483 | 	block_t start_addr; | 
 | 484 | 	int off; | 
 | 485 | 	int phase = 0; | 
 | 486 |  | 
 | 487 | 	start_addr = START_BLOCK(sbi, segno); | 
 | 488 |  | 
 | 489 | next_step: | 
 | 490 | 	entry = sum; | 
 | 491 |  | 
 | 492 | 	for (off = 0; off < sbi->blocks_per_seg; off++, entry++) { | 
 | 493 | 		nid_t nid = le32_to_cpu(entry->nid); | 
 | 494 | 		struct page *node_page; | 
 | 495 | 		struct node_info ni; | 
 | 496 |  | 
 | 497 | 		/* stop BG_GC if there is not enough free sections. */ | 
 | 498 | 		if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) | 
 | 499 | 			return; | 
 | 500 |  | 
 | 501 | 		if (check_valid_map(sbi, segno, off) == 0) | 
 | 502 | 			continue; | 
 | 503 |  | 
 | 504 | 		if (phase == 0) { | 
 | 505 | 			ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1, | 
 | 506 | 							META_NAT, true); | 
 | 507 | 			continue; | 
 | 508 | 		} | 
 | 509 |  | 
 | 510 | 		if (phase == 1) { | 
 | 511 | 			ra_node_page(sbi, nid); | 
 | 512 | 			continue; | 
 | 513 | 		} | 
 | 514 |  | 
 | 515 | 		/* phase == 2 */ | 
 | 516 | 		node_page = get_node_page(sbi, nid); | 
 | 517 | 		if (IS_ERR(node_page)) | 
 | 518 | 			continue; | 
 | 519 |  | 
 | 520 | 		/* block may become invalid during get_node_page */ | 
 | 521 | 		if (check_valid_map(sbi, segno, off) == 0) { | 
 | 522 | 			f2fs_put_page(node_page, 1); | 
 | 523 | 			continue; | 
 | 524 | 		} | 
 | 525 |  | 
 | 526 | 		get_node_info(sbi, nid, &ni); | 
 | 527 | 		if (ni.blk_addr != start_addr + off) { | 
 | 528 | 			f2fs_put_page(node_page, 1); | 
 | 529 | 			continue; | 
 | 530 | 		} | 
 | 531 |  | 
 | 532 | 		move_node_page(node_page, gc_type); | 
 | 533 | 		stat_inc_node_blk_count(sbi, 1, gc_type); | 
 | 534 | 	} | 
 | 535 |  | 
 | 536 | 	if (++phase < 3) | 
 | 537 | 		goto next_step; | 
 | 538 | } | 
 | 539 |  | 
 | 540 | /* | 
 | 541 |  * Calculate start block index indicating the given node offset. | 
 | 542 |  * Be careful, caller should give this node offset only indicating direct node | 
 | 543 |  * blocks. If any node offsets, which point the other types of node blocks such | 
 | 544 |  * as indirect or double indirect node blocks, are given, it must be a caller's | 
 | 545 |  * bug. | 
 | 546 |  */ | 
 | 547 | block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode) | 
 | 548 | { | 
 | 549 | 	unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4; | 
 | 550 | 	unsigned int bidx; | 
 | 551 |  | 
 | 552 | 	if (node_ofs == 0) | 
 | 553 | 		return 0; | 
 | 554 |  | 
 | 555 | 	if (node_ofs <= 2) { | 
 | 556 | 		bidx = node_ofs - 1; | 
 | 557 | 	} else if (node_ofs <= indirect_blks) { | 
 | 558 | 		int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1); | 
 | 559 | 		bidx = node_ofs - 2 - dec; | 
 | 560 | 	} else { | 
 | 561 | 		int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1); | 
 | 562 | 		bidx = node_ofs - 5 - dec; | 
 | 563 | 	} | 
 | 564 | 	return bidx * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode); | 
 | 565 | } | 
 | 566 |  | 
 | 567 | static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, | 
 | 568 | 		struct node_info *dni, block_t blkaddr, unsigned int *nofs) | 
 | 569 | { | 
 | 570 | 	struct page *node_page; | 
 | 571 | 	nid_t nid; | 
 | 572 | 	unsigned int ofs_in_node; | 
 | 573 | 	block_t source_blkaddr; | 
 | 574 |  | 
 | 575 | 	nid = le32_to_cpu(sum->nid); | 
 | 576 | 	ofs_in_node = le16_to_cpu(sum->ofs_in_node); | 
 | 577 |  | 
 | 578 | 	node_page = get_node_page(sbi, nid); | 
 | 579 | 	if (IS_ERR(node_page)) | 
 | 580 | 		return false; | 
 | 581 |  | 
 | 582 | 	get_node_info(sbi, nid, dni); | 
 | 583 |  | 
 | 584 | 	if (sum->version != dni->version) { | 
 | 585 | 		f2fs_msg(sbi->sb, KERN_WARNING, | 
 | 586 | 				"%s: valid data with mismatched node version.", | 
 | 587 | 				__func__); | 
 | 588 | 		set_sbi_flag(sbi, SBI_NEED_FSCK); | 
 | 589 | 	} | 
 | 590 |  | 
 | 591 | 	*nofs = ofs_of_node(node_page); | 
 | 592 | 	source_blkaddr = datablock_addr(NULL, node_page, ofs_in_node); | 
 | 593 | 	f2fs_put_page(node_page, 1); | 
 | 594 |  | 
 | 595 | 	if (source_blkaddr != blkaddr) | 
 | 596 | 		return false; | 
 | 597 | 	return true; | 
 | 598 | } | 
 | 599 |  | 
 | 600 | /* | 
 | 601 |  * Move data block via META_MAPPING while keeping locked data page. | 
 | 602 |  * This can be used to move blocks, aka LBAs, directly on disk. | 
 | 603 |  */ | 
 | 604 | static void move_data_block(struct inode *inode, block_t bidx, | 
 | 605 | 					unsigned int segno, int off) | 
 | 606 | { | 
 | 607 | 	struct f2fs_io_info fio = { | 
 | 608 | 		.sbi = F2FS_I_SB(inode), | 
 | 609 | 		.ino = inode->i_ino, | 
 | 610 | 		.type = DATA, | 
 | 611 | 		.temp = COLD, | 
 | 612 | 		.op = REQ_OP_READ, | 
 | 613 | 		.op_flags = 0, | 
 | 614 | 		.encrypted_page = NULL, | 
 | 615 | 		.in_list = false, | 
 | 616 | 	}; | 
 | 617 | 	struct dnode_of_data dn; | 
 | 618 | 	struct f2fs_summary sum; | 
 | 619 | 	struct node_info ni; | 
 | 620 | 	struct page *page; | 
 | 621 | 	block_t newaddr; | 
 | 622 | 	int err; | 
 | 623 |  | 
 | 624 | 	/* do not read out */ | 
 | 625 | 	page = f2fs_grab_cache_page(inode->i_mapping, bidx, false); | 
 | 626 | 	if (!page) | 
 | 627 | 		return; | 
 | 628 |  | 
 | 629 | 	if (!check_valid_map(F2FS_I_SB(inode), segno, off)) | 
 | 630 | 		goto out; | 
 | 631 |  | 
 | 632 | 	if (f2fs_is_atomic_file(inode)) | 
 | 633 | 		goto out; | 
 | 634 |  | 
 | 635 | 	if (f2fs_is_pinned_file(inode)) { | 
 | 636 | 		f2fs_pin_file_control(inode, true); | 
 | 637 | 		goto out; | 
 | 638 | 	} | 
 | 639 |  | 
 | 640 | 	set_new_dnode(&dn, inode, NULL, NULL, 0); | 
 | 641 | 	err = get_dnode_of_data(&dn, bidx, LOOKUP_NODE); | 
 | 642 | 	if (err) | 
 | 643 | 		goto out; | 
 | 644 |  | 
 | 645 | 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) { | 
 | 646 | 		ClearPageUptodate(page); | 
 | 647 | 		goto put_out; | 
 | 648 | 	} | 
 | 649 |  | 
 | 650 | 	/* | 
 | 651 | 	 * don't cache encrypted data into meta inode until previous dirty | 
 | 652 | 	 * data were writebacked to avoid racing between GC and flush. | 
 | 653 | 	 */ | 
 | 654 | 	f2fs_wait_on_page_writeback(page, DATA, true); | 
 | 655 |  | 
 | 656 | 	get_node_info(fio.sbi, dn.nid, &ni); | 
 | 657 | 	set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version); | 
 | 658 |  | 
 | 659 | 	/* read page */ | 
 | 660 | 	fio.page = page; | 
 | 661 | 	fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; | 
 | 662 |  | 
 | 663 | 	allocate_data_block(fio.sbi, NULL, fio.old_blkaddr, &newaddr, | 
 | 664 | 					&sum, CURSEG_COLD_DATA, NULL, false); | 
 | 665 |  | 
 | 666 | 	fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(fio.sbi), | 
 | 667 | 				newaddr, FGP_LOCK | FGP_CREAT, GFP_NOFS); | 
 | 668 | 	if (!fio.encrypted_page) { | 
 | 669 | 		err = -ENOMEM; | 
 | 670 | 		goto recover_block; | 
 | 671 | 	} | 
 | 672 |  | 
 | 673 | 	err = f2fs_submit_page_bio(&fio); | 
 | 674 | 	if (err) | 
 | 675 | 		goto put_page_out; | 
 | 676 |  | 
 | 677 | 	/* write page */ | 
 | 678 | 	lock_page(fio.encrypted_page); | 
 | 679 |  | 
 | 680 | 	if (unlikely(fio.encrypted_page->mapping != META_MAPPING(fio.sbi))) { | 
 | 681 | 		err = -EIO; | 
 | 682 | 		goto put_page_out; | 
 | 683 | 	} | 
 | 684 | 	if (unlikely(!PageUptodate(fio.encrypted_page))) { | 
 | 685 | 		err = -EIO; | 
 | 686 | 		goto put_page_out; | 
 | 687 | 	} | 
 | 688 |  | 
 | 689 | 	set_page_dirty(fio.encrypted_page); | 
 | 690 | 	f2fs_wait_on_page_writeback(fio.encrypted_page, DATA, true); | 
 | 691 | 	if (clear_page_dirty_for_io(fio.encrypted_page)) | 
 | 692 | 		dec_page_count(fio.sbi, F2FS_DIRTY_META); | 
 | 693 |  | 
 | 694 | 	set_page_writeback(fio.encrypted_page); | 
 | 695 | 	ClearPageError(page); | 
 | 696 |  | 
 | 697 | 	/* allocate block address */ | 
 | 698 | 	f2fs_wait_on_page_writeback(dn.node_page, NODE, true); | 
 | 699 |  | 
 | 700 | 	fio.op = REQ_OP_WRITE; | 
 | 701 | 	fio.op_flags = REQ_SYNC; | 
 | 702 | 	fio.new_blkaddr = newaddr; | 
 | 703 | 	err = f2fs_submit_page_write(&fio); | 
 | 704 | 	if (err) { | 
 | 705 | 		if (PageWriteback(fio.encrypted_page)) | 
 | 706 | 			end_page_writeback(fio.encrypted_page); | 
 | 707 | 		goto put_page_out; | 
 | 708 | 	} | 
 | 709 |  | 
 | 710 | 	f2fs_update_iostat(fio.sbi, FS_GC_DATA_IO, F2FS_BLKSIZE); | 
 | 711 |  | 
 | 712 | 	f2fs_update_data_blkaddr(&dn, newaddr); | 
 | 713 | 	set_inode_flag(inode, FI_APPEND_WRITE); | 
 | 714 | 	if (page->index == 0) | 
 | 715 | 		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); | 
 | 716 | put_page_out: | 
 | 717 | 	f2fs_put_page(fio.encrypted_page, 1); | 
 | 718 | recover_block: | 
 | 719 | 	if (err) | 
 | 720 | 		__f2fs_replace_block(fio.sbi, &sum, newaddr, fio.old_blkaddr, | 
 | 721 | 								true, true); | 
 | 722 | put_out: | 
 | 723 | 	f2fs_put_dnode(&dn); | 
 | 724 | out: | 
 | 725 | 	f2fs_put_page(page, 1); | 
 | 726 | } | 
 | 727 |  | 
 | 728 | static void move_data_page(struct inode *inode, block_t bidx, int gc_type, | 
 | 729 | 							unsigned int segno, int off) | 
 | 730 | { | 
 | 731 | 	struct page *page; | 
 | 732 |  | 
 | 733 | 	page = get_lock_data_page(inode, bidx, true); | 
 | 734 | 	if (IS_ERR(page)) | 
 | 735 | 		return; | 
 | 736 |  | 
 | 737 | 	if (!check_valid_map(F2FS_I_SB(inode), segno, off)) | 
 | 738 | 		goto out; | 
 | 739 |  | 
 | 740 | 	if (f2fs_is_atomic_file(inode)) | 
 | 741 | 		goto out; | 
 | 742 | 	if (f2fs_is_pinned_file(inode)) { | 
 | 743 | 		if (gc_type == FG_GC) | 
 | 744 | 			f2fs_pin_file_control(inode, true); | 
 | 745 | 		goto out; | 
 | 746 | 	} | 
 | 747 |  | 
 | 748 | 	if (gc_type == BG_GC) { | 
 | 749 | 		if (PageWriteback(page)) | 
 | 750 | 			goto out; | 
 | 751 | 		set_page_dirty(page); | 
 | 752 | 		set_cold_data(page); | 
 | 753 | 	} else { | 
 | 754 | 		struct f2fs_io_info fio = { | 
 | 755 | 			.sbi = F2FS_I_SB(inode), | 
 | 756 | 			.ino = inode->i_ino, | 
 | 757 | 			.type = DATA, | 
 | 758 | 			.temp = COLD, | 
 | 759 | 			.op = REQ_OP_WRITE, | 
 | 760 | 			.op_flags = REQ_SYNC, | 
 | 761 | 			.old_blkaddr = NULL_ADDR, | 
 | 762 | 			.page = page, | 
 | 763 | 			.encrypted_page = NULL, | 
 | 764 | 			.need_lock = LOCK_REQ, | 
 | 765 | 			.io_type = FS_GC_DATA_IO, | 
 | 766 | 		}; | 
 | 767 | 		bool is_dirty = PageDirty(page); | 
 | 768 | 		int err; | 
 | 769 |  | 
 | 770 | retry: | 
 | 771 | 		set_page_dirty(page); | 
 | 772 | 		f2fs_wait_on_page_writeback(page, DATA, true); | 
 | 773 | 		if (clear_page_dirty_for_io(page)) { | 
 | 774 | 			inode_dec_dirty_pages(inode); | 
 | 775 | 			remove_dirty_inode(inode); | 
 | 776 | 		} | 
 | 777 |  | 
 | 778 | 		set_cold_data(page); | 
 | 779 |  | 
 | 780 | 		err = do_write_data_page(&fio); | 
 | 781 | 		if (err) { | 
 | 782 | 			clear_cold_data(page); | 
 | 783 | 			if (err == -ENOMEM) { | 
 | 784 | 				congestion_wait(BLK_RW_ASYNC, HZ/50); | 
 | 785 | 				goto retry; | 
 | 786 | 			} | 
 | 787 | 			if (is_dirty) | 
 | 788 | 				set_page_dirty(page); | 
 | 789 | 		} | 
 | 790 | 	} | 
 | 791 | out: | 
 | 792 | 	f2fs_put_page(page, 1); | 
 | 793 | } | 
 | 794 |  | 
 | 795 | /* | 
 | 796 |  * This function tries to get parent node of victim data block, and identifies | 
 | 797 |  * data block validity. If the block is valid, copy that with cold status and | 
 | 798 |  * modify parent node. | 
 | 799 |  * If the parent node is not valid or the data block address is different, | 
 | 800 |  * the victim data block is ignored. | 
 | 801 |  */ | 
 | 802 | static void gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, | 
 | 803 | 		struct gc_inode_list *gc_list, unsigned int segno, int gc_type) | 
 | 804 | { | 
 | 805 | 	struct super_block *sb = sbi->sb; | 
 | 806 | 	struct f2fs_summary *entry; | 
 | 807 | 	block_t start_addr; | 
 | 808 | 	int off; | 
 | 809 | 	int phase = 0; | 
 | 810 |  | 
 | 811 | 	start_addr = START_BLOCK(sbi, segno); | 
 | 812 |  | 
 | 813 | next_step: | 
 | 814 | 	entry = sum; | 
 | 815 |  | 
 | 816 | 	for (off = 0; off < sbi->blocks_per_seg; off++, entry++) { | 
 | 817 | 		struct page *data_page; | 
 | 818 | 		struct inode *inode; | 
 | 819 | 		struct node_info dni; /* dnode info for the data */ | 
 | 820 | 		unsigned int ofs_in_node, nofs; | 
 | 821 | 		block_t start_bidx; | 
 | 822 | 		nid_t nid = le32_to_cpu(entry->nid); | 
 | 823 |  | 
 | 824 | 		/* stop BG_GC if there is not enough free sections. */ | 
 | 825 | 		if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) | 
 | 826 | 			return; | 
 | 827 |  | 
 | 828 | 		if (check_valid_map(sbi, segno, off) == 0) | 
 | 829 | 			continue; | 
 | 830 |  | 
 | 831 | 		if (phase == 0) { | 
 | 832 | 			ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1, | 
 | 833 | 							META_NAT, true); | 
 | 834 | 			continue; | 
 | 835 | 		} | 
 | 836 |  | 
 | 837 | 		if (phase == 1) { | 
 | 838 | 			ra_node_page(sbi, nid); | 
 | 839 | 			continue; | 
 | 840 | 		} | 
 | 841 |  | 
 | 842 | 		/* Get an inode by ino with checking validity */ | 
 | 843 | 		if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs)) | 
 | 844 | 			continue; | 
 | 845 |  | 
 | 846 | 		if (phase == 2) { | 
 | 847 | 			ra_node_page(sbi, dni.ino); | 
 | 848 | 			continue; | 
 | 849 | 		} | 
 | 850 |  | 
 | 851 | 		ofs_in_node = le16_to_cpu(entry->ofs_in_node); | 
 | 852 |  | 
 | 853 | 		if (phase == 3) { | 
 | 854 | 			inode = f2fs_iget(sb, dni.ino); | 
 | 855 | 			if (IS_ERR(inode) || is_bad_inode(inode)) | 
 | 856 | 				continue; | 
 | 857 |  | 
 | 858 | 			/* if inode uses special I/O path, let's go phase 3 */ | 
 | 859 | 			if (f2fs_post_read_required(inode)) { | 
 | 860 | 				add_gc_inode(gc_list, inode); | 
 | 861 | 				continue; | 
 | 862 | 			} | 
 | 863 |  | 
 | 864 | 			if (!down_write_trylock( | 
 | 865 | 				&F2FS_I(inode)->dio_rwsem[WRITE])) { | 
 | 866 | 				iput(inode); | 
 | 867 | 				continue; | 
 | 868 | 			} | 
 | 869 |  | 
 | 870 | 			start_bidx = start_bidx_of_node(nofs, inode); | 
 | 871 | 			data_page = get_read_data_page(inode, | 
 | 872 | 					start_bidx + ofs_in_node, REQ_RAHEAD, | 
 | 873 | 					true); | 
 | 874 | 			up_write(&F2FS_I(inode)->dio_rwsem[WRITE]); | 
 | 875 | 			if (IS_ERR(data_page)) { | 
 | 876 | 				iput(inode); | 
 | 877 | 				continue; | 
 | 878 | 			} | 
 | 879 |  | 
 | 880 | 			f2fs_put_page(data_page, 0); | 
 | 881 | 			add_gc_inode(gc_list, inode); | 
 | 882 | 			continue; | 
 | 883 | 		} | 
 | 884 |  | 
 | 885 | 		/* phase 4 */ | 
 | 886 | 		inode = find_gc_inode(gc_list, dni.ino); | 
 | 887 | 		if (inode) { | 
 | 888 | 			struct f2fs_inode_info *fi = F2FS_I(inode); | 
 | 889 | 			bool locked = false; | 
 | 890 |  | 
 | 891 | 			if (S_ISREG(inode->i_mode)) { | 
 | 892 | 				if (!down_write_trylock(&fi->dio_rwsem[READ])) | 
 | 893 | 					continue; | 
 | 894 | 				if (!down_write_trylock( | 
 | 895 | 						&fi->dio_rwsem[WRITE])) { | 
 | 896 | 					up_write(&fi->dio_rwsem[READ]); | 
 | 897 | 					continue; | 
 | 898 | 				} | 
 | 899 | 				locked = true; | 
 | 900 |  | 
 | 901 | 				/* wait for all inflight aio data */ | 
 | 902 | 				inode_dio_wait(inode); | 
 | 903 | 			} | 
 | 904 |  | 
 | 905 | 			start_bidx = start_bidx_of_node(nofs, inode) | 
 | 906 | 								+ ofs_in_node; | 
 | 907 | 			if (f2fs_post_read_required(inode)) | 
 | 908 | 				move_data_block(inode, start_bidx, segno, off); | 
 | 909 | 			else | 
 | 910 | 				move_data_page(inode, start_bidx, gc_type, | 
 | 911 | 								segno, off); | 
 | 912 |  | 
 | 913 | 			if (locked) { | 
 | 914 | 				up_write(&fi->dio_rwsem[WRITE]); | 
 | 915 | 				up_write(&fi->dio_rwsem[READ]); | 
 | 916 | 			} | 
 | 917 |  | 
 | 918 | 			stat_inc_data_blk_count(sbi, 1, gc_type); | 
 | 919 | 		} | 
 | 920 | 	} | 
 | 921 |  | 
 | 922 | 	if (++phase < 5) | 
 | 923 | 		goto next_step; | 
 | 924 | } | 
 | 925 |  | 
 | 926 | static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim, | 
 | 927 | 			int gc_type) | 
 | 928 | { | 
 | 929 | 	struct sit_info *sit_i = SIT_I(sbi); | 
 | 930 | 	int ret; | 
 | 931 |  | 
 | 932 | 	down_write(&sit_i->sentry_lock); | 
 | 933 | 	ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type, | 
 | 934 | 					      NO_CHECK_TYPE, LFS); | 
 | 935 | 	up_write(&sit_i->sentry_lock); | 
 | 936 | 	return ret; | 
 | 937 | } | 
 | 938 |  | 
 | 939 | static int do_garbage_collect(struct f2fs_sb_info *sbi, | 
 | 940 | 				unsigned int start_segno, | 
 | 941 | 				struct gc_inode_list *gc_list, int gc_type) | 
 | 942 | { | 
 | 943 | 	struct page *sum_page; | 
 | 944 | 	struct f2fs_summary_block *sum; | 
 | 945 | 	struct blk_plug plug; | 
 | 946 | 	unsigned int segno = start_segno; | 
 | 947 | 	unsigned int end_segno = start_segno + sbi->segs_per_sec; | 
 | 948 | 	int seg_freed = 0; | 
 | 949 | 	unsigned char type = IS_DATASEG(get_seg_entry(sbi, segno)->type) ? | 
 | 950 | 						SUM_TYPE_DATA : SUM_TYPE_NODE; | 
 | 951 |  | 
 | 952 | 	/* readahead multi ssa blocks those have contiguous address */ | 
 | 953 | 	if (sbi->segs_per_sec > 1) | 
 | 954 | 		ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno), | 
 | 955 | 					sbi->segs_per_sec, META_SSA, true); | 
 | 956 |  | 
 | 957 | 	/* reference all summary page */ | 
 | 958 | 	while (segno < end_segno) { | 
 | 959 | 		sum_page = get_sum_page(sbi, segno++); | 
 | 960 | 		unlock_page(sum_page); | 
 | 961 | 	} | 
 | 962 |  | 
 | 963 | 	blk_start_plug(&plug); | 
 | 964 |  | 
 | 965 | 	for (segno = start_segno; segno < end_segno; segno++) { | 
 | 966 |  | 
 | 967 | 		/* find segment summary of victim */ | 
 | 968 | 		sum_page = find_get_page(META_MAPPING(sbi), | 
 | 969 | 					GET_SUM_BLOCK(sbi, segno)); | 
 | 970 | 		f2fs_put_page(sum_page, 0); | 
 | 971 |  | 
 | 972 | 		if (get_valid_blocks(sbi, segno, false) == 0) | 
 | 973 | 			goto freed; | 
 | 974 | 		if (!PageUptodate(sum_page) || unlikely(f2fs_cp_error(sbi))) | 
 | 975 | 			goto next; | 
 | 976 |  | 
 | 977 | 		sum = page_address(sum_page); | 
 | 978 | 		if (type != GET_SUM_TYPE((&sum->footer))) { | 
 | 979 | 			f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent segment (%u) " | 
 | 980 | 				"type [%d, %d] in SSA and SIT", | 
 | 981 | 				segno, type, GET_SUM_TYPE((&sum->footer))); | 
 | 982 | 			set_sbi_flag(sbi, SBI_NEED_FSCK); | 
 | 983 | 			goto next; | 
 | 984 | 		} | 
 | 985 |  | 
 | 986 | 		/* | 
 | 987 | 		 * this is to avoid deadlock: | 
 | 988 | 		 * - lock_page(sum_page)         - f2fs_replace_block | 
 | 989 | 		 *  - check_valid_map()            - down_write(sentry_lock) | 
 | 990 | 		 *   - down_read(sentry_lock)     - change_curseg() | 
 | 991 | 		 *                                  - lock_page(sum_page) | 
 | 992 | 		 */ | 
 | 993 | 		if (type == SUM_TYPE_NODE) | 
 | 994 | 			gc_node_segment(sbi, sum->entries, segno, gc_type); | 
 | 995 | 		else | 
 | 996 | 			gc_data_segment(sbi, sum->entries, gc_list, segno, | 
 | 997 | 								gc_type); | 
 | 998 |  | 
 | 999 | 		stat_inc_seg_count(sbi, type, gc_type); | 
 | 1000 |  | 
 | 1001 | freed: | 
 | 1002 | 		if (gc_type == FG_GC && | 
 | 1003 | 				get_valid_blocks(sbi, segno, false) == 0) | 
 | 1004 | 			seg_freed++; | 
 | 1005 | next: | 
 | 1006 | 		f2fs_put_page(sum_page, 0); | 
 | 1007 | 	} | 
 | 1008 |  | 
 | 1009 | 	if (gc_type == FG_GC) | 
 | 1010 | 		f2fs_submit_merged_write(sbi, | 
 | 1011 | 				(type == SUM_TYPE_NODE) ? NODE : DATA); | 
 | 1012 |  | 
 | 1013 | 	blk_finish_plug(&plug); | 
 | 1014 |  | 
 | 1015 | 	stat_inc_call_count(sbi->stat_info); | 
 | 1016 |  | 
 | 1017 | 	return seg_freed; | 
 | 1018 | } | 
 | 1019 |  | 
 | 1020 | int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, | 
 | 1021 | 			bool background, unsigned int segno) | 
 | 1022 | { | 
 | 1023 | 	int gc_type = sync ? FG_GC : BG_GC; | 
 | 1024 | 	int sec_freed = 0, seg_freed = 0, total_freed = 0; | 
 | 1025 | 	int ret = 0; | 
 | 1026 | 	struct cp_control cpc; | 
 | 1027 | 	unsigned int init_segno = segno; | 
 | 1028 | 	struct gc_inode_list gc_list = { | 
 | 1029 | 		.ilist = LIST_HEAD_INIT(gc_list.ilist), | 
 | 1030 | 		.iroot = RADIX_TREE_INIT(GFP_NOFS), | 
 | 1031 | 	}; | 
 | 1032 |  | 
 | 1033 | 	trace_f2fs_gc_begin(sbi->sb, sync, background, | 
 | 1034 | 				get_pages(sbi, F2FS_DIRTY_NODES), | 
 | 1035 | 				get_pages(sbi, F2FS_DIRTY_DENTS), | 
 | 1036 | 				get_pages(sbi, F2FS_DIRTY_IMETA), | 
 | 1037 | 				free_sections(sbi), | 
 | 1038 | 				free_segments(sbi), | 
 | 1039 | 				reserved_segments(sbi), | 
 | 1040 | 				prefree_segments(sbi)); | 
 | 1041 |  | 
 | 1042 | 	cpc.reason = __get_cp_reason(sbi); | 
 | 1043 | gc_more: | 
 | 1044 | 	if (unlikely(!(sbi->sb->s_flags & MS_ACTIVE))) { | 
 | 1045 | 		ret = -EINVAL; | 
 | 1046 | 		goto stop; | 
 | 1047 | 	} | 
 | 1048 | 	if (unlikely(f2fs_cp_error(sbi))) { | 
 | 1049 | 		ret = -EIO; | 
 | 1050 | 		goto stop; | 
 | 1051 | 	} | 
 | 1052 |  | 
 | 1053 | 	if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) { | 
 | 1054 | 		/* | 
 | 1055 | 		 * For example, if there are many prefree_segments below given | 
 | 1056 | 		 * threshold, we can make them free by checkpoint. Then, we | 
 | 1057 | 		 * secure free segments which doesn't need fggc any more. | 
 | 1058 | 		 */ | 
 | 1059 | 		if (prefree_segments(sbi)) { | 
 | 1060 | 			ret = write_checkpoint(sbi, &cpc); | 
 | 1061 | 			if (ret) | 
 | 1062 | 				goto stop; | 
 | 1063 | 		} | 
 | 1064 | 		if (has_not_enough_free_secs(sbi, 0, 0)) | 
 | 1065 | 			gc_type = FG_GC; | 
 | 1066 | 	} | 
 | 1067 |  | 
 | 1068 | 	/* f2fs_balance_fs doesn't need to do BG_GC in critical path. */ | 
 | 1069 | 	if (gc_type == BG_GC && !background) { | 
 | 1070 | 		ret = -EINVAL; | 
 | 1071 | 		goto stop; | 
 | 1072 | 	} | 
 | 1073 | 	if (!__get_victim(sbi, &segno, gc_type)) { | 
 | 1074 | 		ret = -ENODATA; | 
 | 1075 | 		goto stop; | 
 | 1076 | 	} | 
 | 1077 |  | 
 | 1078 | 	seg_freed = do_garbage_collect(sbi, segno, &gc_list, gc_type); | 
 | 1079 | 	if (gc_type == FG_GC && seg_freed == sbi->segs_per_sec) | 
 | 1080 | 		sec_freed++; | 
 | 1081 | 	total_freed += seg_freed; | 
 | 1082 |  | 
 | 1083 | 	if (gc_type == FG_GC) | 
 | 1084 | 		sbi->cur_victim_sec = NULL_SEGNO; | 
 | 1085 |  | 
 | 1086 | 	if (!sync) { | 
 | 1087 | 		if (has_not_enough_free_secs(sbi, sec_freed, 0)) { | 
 | 1088 | 			segno = NULL_SEGNO; | 
 | 1089 | 			goto gc_more; | 
 | 1090 | 		} | 
 | 1091 |  | 
 | 1092 | 		if (gc_type == FG_GC) | 
 | 1093 | 			ret = write_checkpoint(sbi, &cpc); | 
 | 1094 | 	} | 
 | 1095 | stop: | 
 | 1096 | 	SIT_I(sbi)->last_victim[ALLOC_NEXT] = 0; | 
 | 1097 | 	SIT_I(sbi)->last_victim[FLUSH_DEVICE] = init_segno; | 
 | 1098 |  | 
 | 1099 | 	trace_f2fs_gc_end(sbi->sb, ret, total_freed, sec_freed, | 
 | 1100 | 				get_pages(sbi, F2FS_DIRTY_NODES), | 
 | 1101 | 				get_pages(sbi, F2FS_DIRTY_DENTS), | 
 | 1102 | 				get_pages(sbi, F2FS_DIRTY_IMETA), | 
 | 1103 | 				free_sections(sbi), | 
 | 1104 | 				free_segments(sbi), | 
 | 1105 | 				reserved_segments(sbi), | 
 | 1106 | 				prefree_segments(sbi)); | 
 | 1107 |  | 
 | 1108 | 	mutex_unlock(&sbi->gc_mutex); | 
 | 1109 |  | 
 | 1110 | 	put_gc_inode(&gc_list); | 
 | 1111 |  | 
 | 1112 | 	if (sync && !ret) | 
 | 1113 | 		ret = sec_freed ? 0 : -EAGAIN; | 
 | 1114 | 	return ret; | 
 | 1115 | } | 
 | 1116 |  | 
 | 1117 | void build_gc_manager(struct f2fs_sb_info *sbi) | 
 | 1118 | { | 
 | 1119 | 	u64 main_count, resv_count, ovp_count; | 
 | 1120 |  | 
 | 1121 | 	DIRTY_I(sbi)->v_ops = &default_v_ops; | 
 | 1122 |  | 
 | 1123 | 	/* threshold of # of valid blocks in a section for victims of FG_GC */ | 
 | 1124 | 	main_count = SM_I(sbi)->main_segments << sbi->log_blocks_per_seg; | 
 | 1125 | 	resv_count = SM_I(sbi)->reserved_segments << sbi->log_blocks_per_seg; | 
 | 1126 | 	ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg; | 
 | 1127 |  | 
 | 1128 | 	sbi->fggc_threshold = div64_u64((main_count - ovp_count) * | 
 | 1129 | 				BLKS_PER_SEC(sbi), (main_count - resv_count)); | 
 | 1130 | 	sbi->gc_pin_file_threshold = DEF_GC_FAILED_PINNED_FILES; | 
 | 1131 |  | 
 | 1132 | 	/* give warm/cold data area from slower device */ | 
 | 1133 | 	if (f2fs_is_multi_device(sbi) && sbi->segs_per_sec == 1) | 
 | 1134 | 		SIT_I(sbi)->last_victim[ALLOC_NEXT] = | 
 | 1135 | 				GET_SEGNO(sbi, FDEV(0).end_blk) + 1; | 
 | 1136 | } |