| rjw | 1f88458 | 2022-01-06 17:20:42 +0800 | [diff] [blame] | 1 | /* | 
|  | 2 | * Copyright (c) 2007-2017 Nicira, Inc. | 
|  | 3 | * | 
|  | 4 | * This program is free software; you can redistribute it and/or | 
|  | 5 | * modify it under the terms of version 2 of the GNU General Public | 
|  | 6 | * License as published by the Free Software Foundation. | 
|  | 7 | * | 
|  | 8 | * This program is distributed in the hope that it will be useful, but | 
|  | 9 | * WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | 10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | 
|  | 11 | * General Public License for more details. | 
|  | 12 | * | 
|  | 13 | * You should have received a copy of the GNU General Public License | 
|  | 14 | * along with this program; if not, write to the Free Software | 
|  | 15 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA | 
|  | 16 | * 02110-1301, USA | 
|  | 17 | */ | 
|  | 18 |  | 
|  | 19 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  | 20 |  | 
|  | 21 | #include <linux/skbuff.h> | 
|  | 22 | #include <linux/in.h> | 
|  | 23 | #include <linux/ip.h> | 
|  | 24 | #include <linux/openvswitch.h> | 
|  | 25 | #include <linux/netfilter_ipv6.h> | 
|  | 26 | #include <linux/sctp.h> | 
|  | 27 | #include <linux/tcp.h> | 
|  | 28 | #include <linux/udp.h> | 
|  | 29 | #include <linux/in6.h> | 
|  | 30 | #include <linux/if_arp.h> | 
|  | 31 | #include <linux/if_vlan.h> | 
|  | 32 |  | 
|  | 33 | #include <net/dst.h> | 
|  | 34 | #include <net/ip.h> | 
|  | 35 | #include <net/ipv6.h> | 
|  | 36 | #include <net/ip6_fib.h> | 
|  | 37 | #include <net/checksum.h> | 
|  | 38 | #include <net/dsfield.h> | 
|  | 39 | #include <net/mpls.h> | 
|  | 40 | #include <net/sctp/checksum.h> | 
|  | 41 |  | 
|  | 42 | #include "datapath.h" | 
|  | 43 | #include "flow.h" | 
|  | 44 | #include "conntrack.h" | 
|  | 45 | #include "vport.h" | 
|  | 46 |  | 
|  | 47 | struct deferred_action { | 
|  | 48 | struct sk_buff *skb; | 
|  | 49 | const struct nlattr *actions; | 
|  | 50 | int actions_len; | 
|  | 51 |  | 
|  | 52 | /* Store pkt_key clone when creating deferred action. */ | 
|  | 53 | struct sw_flow_key pkt_key; | 
|  | 54 | }; | 
|  | 55 |  | 
|  | 56 | #define MAX_L2_LEN	(VLAN_ETH_HLEN + 3 * MPLS_HLEN) | 
|  | 57 | struct ovs_frag_data { | 
|  | 58 | unsigned long dst; | 
|  | 59 | struct vport *vport; | 
|  | 60 | struct ovs_skb_cb cb; | 
|  | 61 | __be16 inner_protocol; | 
|  | 62 | u16 network_offset;	/* valid only for MPLS */ | 
|  | 63 | u16 vlan_tci; | 
|  | 64 | __be16 vlan_proto; | 
|  | 65 | unsigned int l2_len; | 
|  | 66 | u8 mac_proto; | 
|  | 67 | u8 l2_data[MAX_L2_LEN]; | 
|  | 68 | }; | 
|  | 69 |  | 
|  | 70 | static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage); | 
|  | 71 |  | 
|  | 72 | #define DEFERRED_ACTION_FIFO_SIZE 10 | 
|  | 73 | #define OVS_RECURSION_LIMIT 5 | 
|  | 74 | #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2) | 
|  | 75 | struct action_fifo { | 
|  | 76 | int head; | 
|  | 77 | int tail; | 
|  | 78 | /* Deferred action fifo queue storage. */ | 
|  | 79 | struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE]; | 
|  | 80 | }; | 
|  | 81 |  | 
|  | 82 | struct action_flow_keys { | 
|  | 83 | struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD]; | 
|  | 84 | }; | 
|  | 85 |  | 
|  | 86 | static struct action_fifo __percpu *action_fifos; | 
|  | 87 | static struct action_flow_keys __percpu *flow_keys; | 
|  | 88 | static DEFINE_PER_CPU(int, exec_actions_level); | 
|  | 89 |  | 
|  | 90 | /* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys' | 
|  | 91 | * space. Return NULL if out of key spaces. | 
|  | 92 | */ | 
|  | 93 | static struct sw_flow_key *clone_key(const struct sw_flow_key *key_) | 
|  | 94 | { | 
|  | 95 | struct action_flow_keys *keys = this_cpu_ptr(flow_keys); | 
|  | 96 | int level = this_cpu_read(exec_actions_level); | 
|  | 97 | struct sw_flow_key *key = NULL; | 
|  | 98 |  | 
|  | 99 | if (level <= OVS_DEFERRED_ACTION_THRESHOLD) { | 
|  | 100 | key = &keys->key[level - 1]; | 
|  | 101 | *key = *key_; | 
|  | 102 | } | 
|  | 103 |  | 
|  | 104 | return key; | 
|  | 105 | } | 
|  | 106 |  | 
|  | 107 | static void action_fifo_init(struct action_fifo *fifo) | 
|  | 108 | { | 
|  | 109 | fifo->head = 0; | 
|  | 110 | fifo->tail = 0; | 
|  | 111 | } | 
|  | 112 |  | 
|  | 113 | static bool action_fifo_is_empty(const struct action_fifo *fifo) | 
|  | 114 | { | 
|  | 115 | return (fifo->head == fifo->tail); | 
|  | 116 | } | 
|  | 117 |  | 
|  | 118 | static struct deferred_action *action_fifo_get(struct action_fifo *fifo) | 
|  | 119 | { | 
|  | 120 | if (action_fifo_is_empty(fifo)) | 
|  | 121 | return NULL; | 
|  | 122 |  | 
|  | 123 | return &fifo->fifo[fifo->tail++]; | 
|  | 124 | } | 
|  | 125 |  | 
|  | 126 | static struct deferred_action *action_fifo_put(struct action_fifo *fifo) | 
|  | 127 | { | 
|  | 128 | if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1) | 
|  | 129 | return NULL; | 
|  | 130 |  | 
|  | 131 | return &fifo->fifo[fifo->head++]; | 
|  | 132 | } | 
|  | 133 |  | 
|  | 134 | /* Return true if fifo is not full */ | 
|  | 135 | static struct deferred_action *add_deferred_actions(struct sk_buff *skb, | 
|  | 136 | const struct sw_flow_key *key, | 
|  | 137 | const struct nlattr *actions, | 
|  | 138 | const int actions_len) | 
|  | 139 | { | 
|  | 140 | struct action_fifo *fifo; | 
|  | 141 | struct deferred_action *da; | 
|  | 142 |  | 
|  | 143 | fifo = this_cpu_ptr(action_fifos); | 
|  | 144 | da = action_fifo_put(fifo); | 
|  | 145 | if (da) { | 
|  | 146 | da->skb = skb; | 
|  | 147 | da->actions = actions; | 
|  | 148 | da->actions_len = actions_len; | 
|  | 149 | da->pkt_key = *key; | 
|  | 150 | } | 
|  | 151 |  | 
|  | 152 | return da; | 
|  | 153 | } | 
|  | 154 |  | 
|  | 155 | static void invalidate_flow_key(struct sw_flow_key *key) | 
|  | 156 | { | 
|  | 157 | key->mac_proto |= SW_FLOW_KEY_INVALID; | 
|  | 158 | } | 
|  | 159 |  | 
|  | 160 | static bool is_flow_key_valid(const struct sw_flow_key *key) | 
|  | 161 | { | 
|  | 162 | return !(key->mac_proto & SW_FLOW_KEY_INVALID); | 
|  | 163 | } | 
|  | 164 |  | 
|  | 165 | static int clone_execute(struct datapath *dp, struct sk_buff *skb, | 
|  | 166 | struct sw_flow_key *key, | 
|  | 167 | u32 recirc_id, | 
|  | 168 | const struct nlattr *actions, int len, | 
|  | 169 | bool last, bool clone_flow_key); | 
|  | 170 |  | 
|  | 171 | static void update_ethertype(struct sk_buff *skb, struct ethhdr *hdr, | 
|  | 172 | __be16 ethertype) | 
|  | 173 | { | 
|  | 174 | if (skb->ip_summed == CHECKSUM_COMPLETE) { | 
|  | 175 | __be16 diff[] = { ~(hdr->h_proto), ethertype }; | 
|  | 176 |  | 
|  | 177 | skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); | 
|  | 178 | } | 
|  | 179 |  | 
|  | 180 | hdr->h_proto = ethertype; | 
|  | 181 | } | 
|  | 182 |  | 
|  | 183 | static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key, | 
|  | 184 | const struct ovs_action_push_mpls *mpls) | 
|  | 185 | { | 
|  | 186 | struct mpls_shim_hdr *new_mpls_lse; | 
|  | 187 |  | 
|  | 188 | /* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */ | 
|  | 189 | if (skb->encapsulation) | 
|  | 190 | return -ENOTSUPP; | 
|  | 191 |  | 
|  | 192 | if (skb_cow_head(skb, MPLS_HLEN) < 0) | 
|  | 193 | return -ENOMEM; | 
|  | 194 |  | 
|  | 195 | if (!skb->inner_protocol) { | 
|  | 196 | skb_set_inner_network_header(skb, skb->mac_len); | 
|  | 197 | skb_set_inner_protocol(skb, skb->protocol); | 
|  | 198 | } | 
|  | 199 |  | 
|  | 200 | skb_push(skb, MPLS_HLEN); | 
|  | 201 | memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), | 
|  | 202 | skb->mac_len); | 
|  | 203 | skb_reset_mac_header(skb); | 
|  | 204 | skb_set_network_header(skb, skb->mac_len); | 
|  | 205 |  | 
|  | 206 | new_mpls_lse = mpls_hdr(skb); | 
|  | 207 | new_mpls_lse->label_stack_entry = mpls->mpls_lse; | 
|  | 208 |  | 
|  | 209 | skb_postpush_rcsum(skb, new_mpls_lse, MPLS_HLEN); | 
|  | 210 |  | 
|  | 211 | if (ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET) | 
|  | 212 | update_ethertype(skb, eth_hdr(skb), mpls->mpls_ethertype); | 
|  | 213 | skb->protocol = mpls->mpls_ethertype; | 
|  | 214 |  | 
|  | 215 | invalidate_flow_key(key); | 
|  | 216 | return 0; | 
|  | 217 | } | 
|  | 218 |  | 
|  | 219 | static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key, | 
|  | 220 | const __be16 ethertype) | 
|  | 221 | { | 
|  | 222 | int err; | 
|  | 223 |  | 
|  | 224 | err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); | 
|  | 225 | if (unlikely(err)) | 
|  | 226 | return err; | 
|  | 227 |  | 
|  | 228 | skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); | 
|  | 229 |  | 
|  | 230 | memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), | 
|  | 231 | skb->mac_len); | 
|  | 232 |  | 
|  | 233 | __skb_pull(skb, MPLS_HLEN); | 
|  | 234 | skb_reset_mac_header(skb); | 
|  | 235 | skb_set_network_header(skb, skb->mac_len); | 
|  | 236 |  | 
|  | 237 | if (ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET) { | 
|  | 238 | struct ethhdr *hdr; | 
|  | 239 |  | 
|  | 240 | /* mpls_hdr() is used to locate the ethertype field correctly in the | 
|  | 241 | * presence of VLAN tags. | 
|  | 242 | */ | 
|  | 243 | hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); | 
|  | 244 | update_ethertype(skb, hdr, ethertype); | 
|  | 245 | } | 
|  | 246 | if (eth_p_mpls(skb->protocol)) | 
|  | 247 | skb->protocol = ethertype; | 
|  | 248 |  | 
|  | 249 | invalidate_flow_key(key); | 
|  | 250 | return 0; | 
|  | 251 | } | 
|  | 252 |  | 
|  | 253 | static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key, | 
|  | 254 | const __be32 *mpls_lse, const __be32 *mask) | 
|  | 255 | { | 
|  | 256 | struct mpls_shim_hdr *stack; | 
|  | 257 | __be32 lse; | 
|  | 258 | int err; | 
|  | 259 |  | 
|  | 260 | err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); | 
|  | 261 | if (unlikely(err)) | 
|  | 262 | return err; | 
|  | 263 |  | 
|  | 264 | stack = mpls_hdr(skb); | 
|  | 265 | lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask); | 
|  | 266 | if (skb->ip_summed == CHECKSUM_COMPLETE) { | 
|  | 267 | __be32 diff[] = { ~(stack->label_stack_entry), lse }; | 
|  | 268 |  | 
|  | 269 | skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); | 
|  | 270 | } | 
|  | 271 |  | 
|  | 272 | stack->label_stack_entry = lse; | 
|  | 273 | flow_key->mpls.top_lse = lse; | 
|  | 274 | return 0; | 
|  | 275 | } | 
|  | 276 |  | 
|  | 277 | static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key) | 
|  | 278 | { | 
|  | 279 | int err; | 
|  | 280 |  | 
|  | 281 | err = skb_vlan_pop(skb); | 
|  | 282 | if (skb_vlan_tag_present(skb)) { | 
|  | 283 | invalidate_flow_key(key); | 
|  | 284 | } else { | 
|  | 285 | key->eth.vlan.tci = 0; | 
|  | 286 | key->eth.vlan.tpid = 0; | 
|  | 287 | } | 
|  | 288 | return err; | 
|  | 289 | } | 
|  | 290 |  | 
|  | 291 | static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key, | 
|  | 292 | const struct ovs_action_push_vlan *vlan) | 
|  | 293 | { | 
|  | 294 | if (skb_vlan_tag_present(skb)) { | 
|  | 295 | invalidate_flow_key(key); | 
|  | 296 | } else { | 
|  | 297 | key->eth.vlan.tci = vlan->vlan_tci; | 
|  | 298 | key->eth.vlan.tpid = vlan->vlan_tpid; | 
|  | 299 | } | 
|  | 300 | return skb_vlan_push(skb, vlan->vlan_tpid, | 
|  | 301 | ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT); | 
|  | 302 | } | 
|  | 303 |  | 
|  | 304 | /* 'src' is already properly masked. */ | 
|  | 305 | static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_) | 
|  | 306 | { | 
|  | 307 | u16 *dst = (u16 *)dst_; | 
|  | 308 | const u16 *src = (const u16 *)src_; | 
|  | 309 | const u16 *mask = (const u16 *)mask_; | 
|  | 310 |  | 
|  | 311 | OVS_SET_MASKED(dst[0], src[0], mask[0]); | 
|  | 312 | OVS_SET_MASKED(dst[1], src[1], mask[1]); | 
|  | 313 | OVS_SET_MASKED(dst[2], src[2], mask[2]); | 
|  | 314 | } | 
|  | 315 |  | 
|  | 316 | static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key, | 
|  | 317 | const struct ovs_key_ethernet *key, | 
|  | 318 | const struct ovs_key_ethernet *mask) | 
|  | 319 | { | 
|  | 320 | int err; | 
|  | 321 |  | 
|  | 322 | err = skb_ensure_writable(skb, ETH_HLEN); | 
|  | 323 | if (unlikely(err)) | 
|  | 324 | return err; | 
|  | 325 |  | 
|  | 326 | skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2); | 
|  | 327 |  | 
|  | 328 | ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src, | 
|  | 329 | mask->eth_src); | 
|  | 330 | ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst, | 
|  | 331 | mask->eth_dst); | 
|  | 332 |  | 
|  | 333 | skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2); | 
|  | 334 |  | 
|  | 335 | ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source); | 
|  | 336 | ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest); | 
|  | 337 | return 0; | 
|  | 338 | } | 
|  | 339 |  | 
|  | 340 | /* pop_eth does not support VLAN packets as this action is never called | 
|  | 341 | * for them. | 
|  | 342 | */ | 
|  | 343 | static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key) | 
|  | 344 | { | 
|  | 345 | skb_pull_rcsum(skb, ETH_HLEN); | 
|  | 346 | skb_reset_mac_header(skb); | 
|  | 347 | skb_reset_mac_len(skb); | 
|  | 348 |  | 
|  | 349 | /* safe right before invalidate_flow_key */ | 
|  | 350 | key->mac_proto = MAC_PROTO_NONE; | 
|  | 351 | invalidate_flow_key(key); | 
|  | 352 | return 0; | 
|  | 353 | } | 
|  | 354 |  | 
|  | 355 | static int push_eth(struct sk_buff *skb, struct sw_flow_key *key, | 
|  | 356 | const struct ovs_action_push_eth *ethh) | 
|  | 357 | { | 
|  | 358 | struct ethhdr *hdr; | 
|  | 359 |  | 
|  | 360 | /* Add the new Ethernet header */ | 
|  | 361 | if (skb_cow_head(skb, ETH_HLEN) < 0) | 
|  | 362 | return -ENOMEM; | 
|  | 363 |  | 
|  | 364 | skb_push(skb, ETH_HLEN); | 
|  | 365 | skb_reset_mac_header(skb); | 
|  | 366 | skb_reset_mac_len(skb); | 
|  | 367 |  | 
|  | 368 | hdr = eth_hdr(skb); | 
|  | 369 | ether_addr_copy(hdr->h_source, ethh->addresses.eth_src); | 
|  | 370 | ether_addr_copy(hdr->h_dest, ethh->addresses.eth_dst); | 
|  | 371 | hdr->h_proto = skb->protocol; | 
|  | 372 |  | 
|  | 373 | skb_postpush_rcsum(skb, hdr, ETH_HLEN); | 
|  | 374 |  | 
|  | 375 | /* safe right before invalidate_flow_key */ | 
|  | 376 | key->mac_proto = MAC_PROTO_ETHERNET; | 
|  | 377 | invalidate_flow_key(key); | 
|  | 378 | return 0; | 
|  | 379 | } | 
|  | 380 |  | 
|  | 381 | static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh, | 
|  | 382 | __be32 addr, __be32 new_addr) | 
|  | 383 | { | 
|  | 384 | int transport_len = skb->len - skb_transport_offset(skb); | 
|  | 385 |  | 
|  | 386 | if (nh->frag_off & htons(IP_OFFSET)) | 
|  | 387 | return; | 
|  | 388 |  | 
|  | 389 | if (nh->protocol == IPPROTO_TCP) { | 
|  | 390 | if (likely(transport_len >= sizeof(struct tcphdr))) | 
|  | 391 | inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb, | 
|  | 392 | addr, new_addr, true); | 
|  | 393 | } else if (nh->protocol == IPPROTO_UDP) { | 
|  | 394 | if (likely(transport_len >= sizeof(struct udphdr))) { | 
|  | 395 | struct udphdr *uh = udp_hdr(skb); | 
|  | 396 |  | 
|  | 397 | if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) { | 
|  | 398 | inet_proto_csum_replace4(&uh->check, skb, | 
|  | 399 | addr, new_addr, true); | 
|  | 400 | if (!uh->check) | 
|  | 401 | uh->check = CSUM_MANGLED_0; | 
|  | 402 | } | 
|  | 403 | } | 
|  | 404 | } | 
|  | 405 | } | 
|  | 406 |  | 
|  | 407 | static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh, | 
|  | 408 | __be32 *addr, __be32 new_addr) | 
|  | 409 | { | 
|  | 410 | update_ip_l4_checksum(skb, nh, *addr, new_addr); | 
|  | 411 | csum_replace4(&nh->check, *addr, new_addr); | 
|  | 412 | skb_clear_hash(skb); | 
|  | 413 | *addr = new_addr; | 
|  | 414 | } | 
|  | 415 |  | 
|  | 416 | static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto, | 
|  | 417 | __be32 addr[4], const __be32 new_addr[4]) | 
|  | 418 | { | 
|  | 419 | int transport_len = skb->len - skb_transport_offset(skb); | 
|  | 420 |  | 
|  | 421 | if (l4_proto == NEXTHDR_TCP) { | 
|  | 422 | if (likely(transport_len >= sizeof(struct tcphdr))) | 
|  | 423 | inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb, | 
|  | 424 | addr, new_addr, true); | 
|  | 425 | } else if (l4_proto == NEXTHDR_UDP) { | 
|  | 426 | if (likely(transport_len >= sizeof(struct udphdr))) { | 
|  | 427 | struct udphdr *uh = udp_hdr(skb); | 
|  | 428 |  | 
|  | 429 | if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) { | 
|  | 430 | inet_proto_csum_replace16(&uh->check, skb, | 
|  | 431 | addr, new_addr, true); | 
|  | 432 | if (!uh->check) | 
|  | 433 | uh->check = CSUM_MANGLED_0; | 
|  | 434 | } | 
|  | 435 | } | 
|  | 436 | } else if (l4_proto == NEXTHDR_ICMP) { | 
|  | 437 | if (likely(transport_len >= sizeof(struct icmp6hdr))) | 
|  | 438 | inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum, | 
|  | 439 | skb, addr, new_addr, true); | 
|  | 440 | } | 
|  | 441 | } | 
|  | 442 |  | 
|  | 443 | static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4], | 
|  | 444 | const __be32 mask[4], __be32 masked[4]) | 
|  | 445 | { | 
|  | 446 | masked[0] = OVS_MASKED(old[0], addr[0], mask[0]); | 
|  | 447 | masked[1] = OVS_MASKED(old[1], addr[1], mask[1]); | 
|  | 448 | masked[2] = OVS_MASKED(old[2], addr[2], mask[2]); | 
|  | 449 | masked[3] = OVS_MASKED(old[3], addr[3], mask[3]); | 
|  | 450 | } | 
|  | 451 |  | 
|  | 452 | static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto, | 
|  | 453 | __be32 addr[4], const __be32 new_addr[4], | 
|  | 454 | bool recalculate_csum) | 
|  | 455 | { | 
|  | 456 | if (recalculate_csum) | 
|  | 457 | update_ipv6_checksum(skb, l4_proto, addr, new_addr); | 
|  | 458 |  | 
|  | 459 | skb_clear_hash(skb); | 
|  | 460 | memcpy(addr, new_addr, sizeof(__be32[4])); | 
|  | 461 | } | 
|  | 462 |  | 
|  | 463 | static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask) | 
|  | 464 | { | 
|  | 465 | /* Bits 21-24 are always unmasked, so this retains their values. */ | 
|  | 466 | OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16)); | 
|  | 467 | OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8)); | 
|  | 468 | OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask); | 
|  | 469 | } | 
|  | 470 |  | 
|  | 471 | static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl, | 
|  | 472 | u8 mask) | 
|  | 473 | { | 
|  | 474 | new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask); | 
|  | 475 |  | 
|  | 476 | csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8)); | 
|  | 477 | nh->ttl = new_ttl; | 
|  | 478 | } | 
|  | 479 |  | 
|  | 480 | static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key, | 
|  | 481 | const struct ovs_key_ipv4 *key, | 
|  | 482 | const struct ovs_key_ipv4 *mask) | 
|  | 483 | { | 
|  | 484 | struct iphdr *nh; | 
|  | 485 | __be32 new_addr; | 
|  | 486 | int err; | 
|  | 487 |  | 
|  | 488 | err = skb_ensure_writable(skb, skb_network_offset(skb) + | 
|  | 489 | sizeof(struct iphdr)); | 
|  | 490 | if (unlikely(err)) | 
|  | 491 | return err; | 
|  | 492 |  | 
|  | 493 | nh = ip_hdr(skb); | 
|  | 494 |  | 
|  | 495 | /* Setting an IP addresses is typically only a side effect of | 
|  | 496 | * matching on them in the current userspace implementation, so it | 
|  | 497 | * makes sense to check if the value actually changed. | 
|  | 498 | */ | 
|  | 499 | if (mask->ipv4_src) { | 
|  | 500 | new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src); | 
|  | 501 |  | 
|  | 502 | if (unlikely(new_addr != nh->saddr)) { | 
|  | 503 | set_ip_addr(skb, nh, &nh->saddr, new_addr); | 
|  | 504 | flow_key->ipv4.addr.src = new_addr; | 
|  | 505 | } | 
|  | 506 | } | 
|  | 507 | if (mask->ipv4_dst) { | 
|  | 508 | new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst); | 
|  | 509 |  | 
|  | 510 | if (unlikely(new_addr != nh->daddr)) { | 
|  | 511 | set_ip_addr(skb, nh, &nh->daddr, new_addr); | 
|  | 512 | flow_key->ipv4.addr.dst = new_addr; | 
|  | 513 | } | 
|  | 514 | } | 
|  | 515 | if (mask->ipv4_tos) { | 
|  | 516 | ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos); | 
|  | 517 | flow_key->ip.tos = nh->tos; | 
|  | 518 | } | 
|  | 519 | if (mask->ipv4_ttl) { | 
|  | 520 | set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl); | 
|  | 521 | flow_key->ip.ttl = nh->ttl; | 
|  | 522 | } | 
|  | 523 |  | 
|  | 524 | return 0; | 
|  | 525 | } | 
|  | 526 |  | 
|  | 527 | static bool is_ipv6_mask_nonzero(const __be32 addr[4]) | 
|  | 528 | { | 
|  | 529 | return !!(addr[0] | addr[1] | addr[2] | addr[3]); | 
|  | 530 | } | 
|  | 531 |  | 
|  | 532 | static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key, | 
|  | 533 | const struct ovs_key_ipv6 *key, | 
|  | 534 | const struct ovs_key_ipv6 *mask) | 
|  | 535 | { | 
|  | 536 | struct ipv6hdr *nh; | 
|  | 537 | int err; | 
|  | 538 |  | 
|  | 539 | err = skb_ensure_writable(skb, skb_network_offset(skb) + | 
|  | 540 | sizeof(struct ipv6hdr)); | 
|  | 541 | if (unlikely(err)) | 
|  | 542 | return err; | 
|  | 543 |  | 
|  | 544 | nh = ipv6_hdr(skb); | 
|  | 545 |  | 
|  | 546 | /* Setting an IP addresses is typically only a side effect of | 
|  | 547 | * matching on them in the current userspace implementation, so it | 
|  | 548 | * makes sense to check if the value actually changed. | 
|  | 549 | */ | 
|  | 550 | if (is_ipv6_mask_nonzero(mask->ipv6_src)) { | 
|  | 551 | __be32 *saddr = (__be32 *)&nh->saddr; | 
|  | 552 | __be32 masked[4]; | 
|  | 553 |  | 
|  | 554 | mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked); | 
|  | 555 |  | 
|  | 556 | if (unlikely(memcmp(saddr, masked, sizeof(masked)))) { | 
|  | 557 | set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked, | 
|  | 558 | true); | 
|  | 559 | memcpy(&flow_key->ipv6.addr.src, masked, | 
|  | 560 | sizeof(flow_key->ipv6.addr.src)); | 
|  | 561 | } | 
|  | 562 | } | 
|  | 563 | if (is_ipv6_mask_nonzero(mask->ipv6_dst)) { | 
|  | 564 | unsigned int offset = 0; | 
|  | 565 | int flags = IP6_FH_F_SKIP_RH; | 
|  | 566 | bool recalc_csum = true; | 
|  | 567 | __be32 *daddr = (__be32 *)&nh->daddr; | 
|  | 568 | __be32 masked[4]; | 
|  | 569 |  | 
|  | 570 | mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked); | 
|  | 571 |  | 
|  | 572 | if (unlikely(memcmp(daddr, masked, sizeof(masked)))) { | 
|  | 573 | if (ipv6_ext_hdr(nh->nexthdr)) | 
|  | 574 | recalc_csum = (ipv6_find_hdr(skb, &offset, | 
|  | 575 | NEXTHDR_ROUTING, | 
|  | 576 | NULL, &flags) | 
|  | 577 | != NEXTHDR_ROUTING); | 
|  | 578 |  | 
|  | 579 | set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked, | 
|  | 580 | recalc_csum); | 
|  | 581 | memcpy(&flow_key->ipv6.addr.dst, masked, | 
|  | 582 | sizeof(flow_key->ipv6.addr.dst)); | 
|  | 583 | } | 
|  | 584 | } | 
|  | 585 | if (mask->ipv6_tclass) { | 
|  | 586 | ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass); | 
|  | 587 | flow_key->ip.tos = ipv6_get_dsfield(nh); | 
|  | 588 | } | 
|  | 589 | if (mask->ipv6_label) { | 
|  | 590 | set_ipv6_fl(nh, ntohl(key->ipv6_label), | 
|  | 591 | ntohl(mask->ipv6_label)); | 
|  | 592 | flow_key->ipv6.label = | 
|  | 593 | *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL); | 
|  | 594 | } | 
|  | 595 | if (mask->ipv6_hlimit) { | 
|  | 596 | OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit, | 
|  | 597 | mask->ipv6_hlimit); | 
|  | 598 | flow_key->ip.ttl = nh->hop_limit; | 
|  | 599 | } | 
|  | 600 | return 0; | 
|  | 601 | } | 
|  | 602 |  | 
|  | 603 | /* Must follow skb_ensure_writable() since that can move the skb data. */ | 
|  | 604 | static void set_tp_port(struct sk_buff *skb, __be16 *port, | 
|  | 605 | __be16 new_port, __sum16 *check) | 
|  | 606 | { | 
|  | 607 | inet_proto_csum_replace2(check, skb, *port, new_port, false); | 
|  | 608 | *port = new_port; | 
|  | 609 | } | 
|  | 610 |  | 
|  | 611 | static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key, | 
|  | 612 | const struct ovs_key_udp *key, | 
|  | 613 | const struct ovs_key_udp *mask) | 
|  | 614 | { | 
|  | 615 | struct udphdr *uh; | 
|  | 616 | __be16 src, dst; | 
|  | 617 | int err; | 
|  | 618 |  | 
|  | 619 | err = skb_ensure_writable(skb, skb_transport_offset(skb) + | 
|  | 620 | sizeof(struct udphdr)); | 
|  | 621 | if (unlikely(err)) | 
|  | 622 | return err; | 
|  | 623 |  | 
|  | 624 | uh = udp_hdr(skb); | 
|  | 625 | /* Either of the masks is non-zero, so do not bother checking them. */ | 
|  | 626 | src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src); | 
|  | 627 | dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst); | 
|  | 628 |  | 
|  | 629 | if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) { | 
|  | 630 | if (likely(src != uh->source)) { | 
|  | 631 | set_tp_port(skb, &uh->source, src, &uh->check); | 
|  | 632 | flow_key->tp.src = src; | 
|  | 633 | } | 
|  | 634 | if (likely(dst != uh->dest)) { | 
|  | 635 | set_tp_port(skb, &uh->dest, dst, &uh->check); | 
|  | 636 | flow_key->tp.dst = dst; | 
|  | 637 | } | 
|  | 638 |  | 
|  | 639 | if (unlikely(!uh->check)) | 
|  | 640 | uh->check = CSUM_MANGLED_0; | 
|  | 641 | } else { | 
|  | 642 | uh->source = src; | 
|  | 643 | uh->dest = dst; | 
|  | 644 | flow_key->tp.src = src; | 
|  | 645 | flow_key->tp.dst = dst; | 
|  | 646 | } | 
|  | 647 |  | 
|  | 648 | skb_clear_hash(skb); | 
|  | 649 |  | 
|  | 650 | return 0; | 
|  | 651 | } | 
|  | 652 |  | 
|  | 653 | static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key, | 
|  | 654 | const struct ovs_key_tcp *key, | 
|  | 655 | const struct ovs_key_tcp *mask) | 
|  | 656 | { | 
|  | 657 | struct tcphdr *th; | 
|  | 658 | __be16 src, dst; | 
|  | 659 | int err; | 
|  | 660 |  | 
|  | 661 | err = skb_ensure_writable(skb, skb_transport_offset(skb) + | 
|  | 662 | sizeof(struct tcphdr)); | 
|  | 663 | if (unlikely(err)) | 
|  | 664 | return err; | 
|  | 665 |  | 
|  | 666 | th = tcp_hdr(skb); | 
|  | 667 | src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src); | 
|  | 668 | if (likely(src != th->source)) { | 
|  | 669 | set_tp_port(skb, &th->source, src, &th->check); | 
|  | 670 | flow_key->tp.src = src; | 
|  | 671 | } | 
|  | 672 | dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst); | 
|  | 673 | if (likely(dst != th->dest)) { | 
|  | 674 | set_tp_port(skb, &th->dest, dst, &th->check); | 
|  | 675 | flow_key->tp.dst = dst; | 
|  | 676 | } | 
|  | 677 | skb_clear_hash(skb); | 
|  | 678 |  | 
|  | 679 | return 0; | 
|  | 680 | } | 
|  | 681 |  | 
|  | 682 | static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key, | 
|  | 683 | const struct ovs_key_sctp *key, | 
|  | 684 | const struct ovs_key_sctp *mask) | 
|  | 685 | { | 
|  | 686 | unsigned int sctphoff = skb_transport_offset(skb); | 
|  | 687 | struct sctphdr *sh; | 
|  | 688 | __le32 old_correct_csum, new_csum, old_csum; | 
|  | 689 | int err; | 
|  | 690 |  | 
|  | 691 | err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr)); | 
|  | 692 | if (unlikely(err)) | 
|  | 693 | return err; | 
|  | 694 |  | 
|  | 695 | sh = sctp_hdr(skb); | 
|  | 696 | old_csum = sh->checksum; | 
|  | 697 | old_correct_csum = sctp_compute_cksum(skb, sctphoff); | 
|  | 698 |  | 
|  | 699 | sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src); | 
|  | 700 | sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst); | 
|  | 701 |  | 
|  | 702 | new_csum = sctp_compute_cksum(skb, sctphoff); | 
|  | 703 |  | 
|  | 704 | /* Carry any checksum errors through. */ | 
|  | 705 | sh->checksum = old_csum ^ old_correct_csum ^ new_csum; | 
|  | 706 |  | 
|  | 707 | skb_clear_hash(skb); | 
|  | 708 | flow_key->tp.src = sh->source; | 
|  | 709 | flow_key->tp.dst = sh->dest; | 
|  | 710 |  | 
|  | 711 | return 0; | 
|  | 712 | } | 
|  | 713 |  | 
|  | 714 | static int ovs_vport_output(struct net *net, struct sock *sk, struct sk_buff *skb) | 
|  | 715 | { | 
|  | 716 | struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage); | 
|  | 717 | struct vport *vport = data->vport; | 
|  | 718 |  | 
|  | 719 | if (skb_cow_head(skb, data->l2_len) < 0) { | 
|  | 720 | kfree_skb(skb); | 
|  | 721 | return -ENOMEM; | 
|  | 722 | } | 
|  | 723 |  | 
|  | 724 | __skb_dst_copy(skb, data->dst); | 
|  | 725 | *OVS_CB(skb) = data->cb; | 
|  | 726 | skb->inner_protocol = data->inner_protocol; | 
|  | 727 | skb->vlan_tci = data->vlan_tci; | 
|  | 728 | skb->vlan_proto = data->vlan_proto; | 
|  | 729 |  | 
|  | 730 | /* Reconstruct the MAC header.  */ | 
|  | 731 | skb_push(skb, data->l2_len); | 
|  | 732 | memcpy(skb->data, &data->l2_data, data->l2_len); | 
|  | 733 | skb_postpush_rcsum(skb, skb->data, data->l2_len); | 
|  | 734 | skb_reset_mac_header(skb); | 
|  | 735 |  | 
|  | 736 | if (eth_p_mpls(skb->protocol)) { | 
|  | 737 | skb->inner_network_header = skb->network_header; | 
|  | 738 | skb_set_network_header(skb, data->network_offset); | 
|  | 739 | skb_reset_mac_len(skb); | 
|  | 740 | } | 
|  | 741 |  | 
|  | 742 | ovs_vport_send(vport, skb, data->mac_proto); | 
|  | 743 | return 0; | 
|  | 744 | } | 
|  | 745 |  | 
|  | 746 | static unsigned int | 
|  | 747 | ovs_dst_get_mtu(const struct dst_entry *dst) | 
|  | 748 | { | 
|  | 749 | return dst->dev->mtu; | 
|  | 750 | } | 
|  | 751 |  | 
|  | 752 | static struct dst_ops ovs_dst_ops = { | 
|  | 753 | .family = AF_UNSPEC, | 
|  | 754 | .mtu = ovs_dst_get_mtu, | 
|  | 755 | }; | 
|  | 756 |  | 
|  | 757 | /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is | 
|  | 758 | * ovs_vport_output(), which is called once per fragmented packet. | 
|  | 759 | */ | 
|  | 760 | static void prepare_frag(struct vport *vport, struct sk_buff *skb, | 
|  | 761 | u16 orig_network_offset, u8 mac_proto) | 
|  | 762 | { | 
|  | 763 | unsigned int hlen = skb_network_offset(skb); | 
|  | 764 | struct ovs_frag_data *data; | 
|  | 765 |  | 
|  | 766 | data = this_cpu_ptr(&ovs_frag_data_storage); | 
|  | 767 | data->dst = skb->_skb_refdst; | 
|  | 768 | data->vport = vport; | 
|  | 769 | data->cb = *OVS_CB(skb); | 
|  | 770 | data->inner_protocol = skb->inner_protocol; | 
|  | 771 | data->network_offset = orig_network_offset; | 
|  | 772 | data->vlan_tci = skb->vlan_tci; | 
|  | 773 | data->vlan_proto = skb->vlan_proto; | 
|  | 774 | data->mac_proto = mac_proto; | 
|  | 775 | data->l2_len = hlen; | 
|  | 776 | memcpy(&data->l2_data, skb->data, hlen); | 
|  | 777 |  | 
|  | 778 | memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); | 
|  | 779 | skb_pull(skb, hlen); | 
|  | 780 | } | 
|  | 781 |  | 
|  | 782 | static void ovs_fragment(struct net *net, struct vport *vport, | 
|  | 783 | struct sk_buff *skb, u16 mru, | 
|  | 784 | struct sw_flow_key *key) | 
|  | 785 | { | 
|  | 786 | u16 orig_network_offset = 0; | 
|  | 787 |  | 
|  | 788 | if (eth_p_mpls(skb->protocol)) { | 
|  | 789 | orig_network_offset = skb_network_offset(skb); | 
|  | 790 | skb->network_header = skb->inner_network_header; | 
|  | 791 | } | 
|  | 792 |  | 
|  | 793 | if (skb_network_offset(skb) > MAX_L2_LEN) { | 
|  | 794 | OVS_NLERR(1, "L2 header too long to fragment"); | 
|  | 795 | goto err; | 
|  | 796 | } | 
|  | 797 |  | 
|  | 798 | if (key->eth.type == htons(ETH_P_IP)) { | 
|  | 799 | struct dst_entry ovs_dst; | 
|  | 800 | unsigned long orig_dst; | 
|  | 801 |  | 
|  | 802 | prepare_frag(vport, skb, orig_network_offset, | 
|  | 803 | ovs_key_mac_proto(key)); | 
|  | 804 | dst_init(&ovs_dst, &ovs_dst_ops, NULL, 1, | 
|  | 805 | DST_OBSOLETE_NONE, DST_NOCOUNT); | 
|  | 806 | ovs_dst.dev = vport->dev; | 
|  | 807 |  | 
|  | 808 | orig_dst = skb->_skb_refdst; | 
|  | 809 | skb_dst_set_noref(skb, &ovs_dst); | 
|  | 810 | IPCB(skb)->frag_max_size = mru; | 
|  | 811 |  | 
|  | 812 | ip_do_fragment(net, skb->sk, skb, ovs_vport_output); | 
|  | 813 | refdst_drop(orig_dst); | 
|  | 814 | } else if (key->eth.type == htons(ETH_P_IPV6)) { | 
|  | 815 | const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops(); | 
|  | 816 | unsigned long orig_dst; | 
|  | 817 | struct rt6_info ovs_rt; | 
|  | 818 |  | 
|  | 819 | if (!v6ops) | 
|  | 820 | goto err; | 
|  | 821 |  | 
|  | 822 | prepare_frag(vport, skb, orig_network_offset, | 
|  | 823 | ovs_key_mac_proto(key)); | 
|  | 824 | memset(&ovs_rt, 0, sizeof(ovs_rt)); | 
|  | 825 | dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1, | 
|  | 826 | DST_OBSOLETE_NONE, DST_NOCOUNT); | 
|  | 827 | ovs_rt.dst.dev = vport->dev; | 
|  | 828 |  | 
|  | 829 | orig_dst = skb->_skb_refdst; | 
|  | 830 | skb_dst_set_noref(skb, &ovs_rt.dst); | 
|  | 831 | IP6CB(skb)->frag_max_size = mru; | 
|  | 832 |  | 
|  | 833 | v6ops->fragment(net, skb->sk, skb, ovs_vport_output); | 
|  | 834 | refdst_drop(orig_dst); | 
|  | 835 | } else { | 
|  | 836 | WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.", | 
|  | 837 | ovs_vport_name(vport), ntohs(key->eth.type), mru, | 
|  | 838 | vport->dev->mtu); | 
|  | 839 | goto err; | 
|  | 840 | } | 
|  | 841 |  | 
|  | 842 | return; | 
|  | 843 | err: | 
|  | 844 | kfree_skb(skb); | 
|  | 845 | } | 
|  | 846 |  | 
|  | 847 | static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port, | 
|  | 848 | struct sw_flow_key *key) | 
|  | 849 | { | 
|  | 850 | struct vport *vport = ovs_vport_rcu(dp, out_port); | 
|  | 851 |  | 
|  | 852 | if (likely(vport)) { | 
|  | 853 | u16 mru = OVS_CB(skb)->mru; | 
|  | 854 | u32 cutlen = OVS_CB(skb)->cutlen; | 
|  | 855 |  | 
|  | 856 | if (unlikely(cutlen > 0)) { | 
|  | 857 | if (skb->len - cutlen > ovs_mac_header_len(key)) | 
|  | 858 | pskb_trim(skb, skb->len - cutlen); | 
|  | 859 | else | 
|  | 860 | pskb_trim(skb, ovs_mac_header_len(key)); | 
|  | 861 | } | 
|  | 862 |  | 
|  | 863 | if (likely(!mru || | 
|  | 864 | (skb->len <= mru + vport->dev->hard_header_len))) { | 
|  | 865 | ovs_vport_send(vport, skb, ovs_key_mac_proto(key)); | 
|  | 866 | } else if (mru <= vport->dev->mtu) { | 
|  | 867 | struct net *net = read_pnet(&dp->net); | 
|  | 868 |  | 
|  | 869 | ovs_fragment(net, vport, skb, mru, key); | 
|  | 870 | } else { | 
|  | 871 | kfree_skb(skb); | 
|  | 872 | } | 
|  | 873 | } else { | 
|  | 874 | kfree_skb(skb); | 
|  | 875 | } | 
|  | 876 | } | 
|  | 877 |  | 
|  | 878 | static int output_userspace(struct datapath *dp, struct sk_buff *skb, | 
|  | 879 | struct sw_flow_key *key, const struct nlattr *attr, | 
|  | 880 | const struct nlattr *actions, int actions_len, | 
|  | 881 | uint32_t cutlen) | 
|  | 882 | { | 
|  | 883 | struct dp_upcall_info upcall; | 
|  | 884 | const struct nlattr *a; | 
|  | 885 | int rem; | 
|  | 886 |  | 
|  | 887 | memset(&upcall, 0, sizeof(upcall)); | 
|  | 888 | upcall.cmd = OVS_PACKET_CMD_ACTION; | 
|  | 889 | upcall.mru = OVS_CB(skb)->mru; | 
|  | 890 |  | 
|  | 891 | for (a = nla_data(attr), rem = nla_len(attr); rem > 0; | 
|  | 892 | a = nla_next(a, &rem)) { | 
|  | 893 | switch (nla_type(a)) { | 
|  | 894 | case OVS_USERSPACE_ATTR_USERDATA: | 
|  | 895 | upcall.userdata = a; | 
|  | 896 | break; | 
|  | 897 |  | 
|  | 898 | case OVS_USERSPACE_ATTR_PID: | 
|  | 899 | upcall.portid = nla_get_u32(a); | 
|  | 900 | break; | 
|  | 901 |  | 
|  | 902 | case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: { | 
|  | 903 | /* Get out tunnel info. */ | 
|  | 904 | struct vport *vport; | 
|  | 905 |  | 
|  | 906 | vport = ovs_vport_rcu(dp, nla_get_u32(a)); | 
|  | 907 | if (vport) { | 
|  | 908 | int err; | 
|  | 909 |  | 
|  | 910 | err = dev_fill_metadata_dst(vport->dev, skb); | 
|  | 911 | if (!err) | 
|  | 912 | upcall.egress_tun_info = skb_tunnel_info(skb); | 
|  | 913 | } | 
|  | 914 |  | 
|  | 915 | break; | 
|  | 916 | } | 
|  | 917 |  | 
|  | 918 | case OVS_USERSPACE_ATTR_ACTIONS: { | 
|  | 919 | /* Include actions. */ | 
|  | 920 | upcall.actions = actions; | 
|  | 921 | upcall.actions_len = actions_len; | 
|  | 922 | break; | 
|  | 923 | } | 
|  | 924 |  | 
|  | 925 | } /* End of switch. */ | 
|  | 926 | } | 
|  | 927 |  | 
|  | 928 | return ovs_dp_upcall(dp, skb, key, &upcall, cutlen); | 
|  | 929 | } | 
|  | 930 |  | 
|  | 931 | /* When 'last' is true, sample() should always consume the 'skb'. | 
|  | 932 | * Otherwise, sample() should keep 'skb' intact regardless what | 
|  | 933 | * actions are executed within sample(). | 
|  | 934 | */ | 
|  | 935 | static int sample(struct datapath *dp, struct sk_buff *skb, | 
|  | 936 | struct sw_flow_key *key, const struct nlattr *attr, | 
|  | 937 | bool last) | 
|  | 938 | { | 
|  | 939 | struct nlattr *actions; | 
|  | 940 | struct nlattr *sample_arg; | 
|  | 941 | int rem = nla_len(attr); | 
|  | 942 | const struct sample_arg *arg; | 
|  | 943 | bool clone_flow_key; | 
|  | 944 |  | 
|  | 945 | /* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */ | 
|  | 946 | sample_arg = nla_data(attr); | 
|  | 947 | arg = nla_data(sample_arg); | 
|  | 948 | actions = nla_next(sample_arg, &rem); | 
|  | 949 |  | 
|  | 950 | if ((arg->probability != U32_MAX) && | 
|  | 951 | (!arg->probability || prandom_u32() > arg->probability)) { | 
|  | 952 | if (last) | 
|  | 953 | consume_skb(skb); | 
|  | 954 | return 0; | 
|  | 955 | } | 
|  | 956 |  | 
|  | 957 | clone_flow_key = !arg->exec; | 
|  | 958 | return clone_execute(dp, skb, key, 0, actions, rem, last, | 
|  | 959 | clone_flow_key); | 
|  | 960 | } | 
|  | 961 |  | 
|  | 962 | static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key, | 
|  | 963 | const struct nlattr *attr) | 
|  | 964 | { | 
|  | 965 | struct ovs_action_hash *hash_act = nla_data(attr); | 
|  | 966 | u32 hash = 0; | 
|  | 967 |  | 
|  | 968 | /* OVS_HASH_ALG_L4 is the only possible hash algorithm.  */ | 
|  | 969 | hash = skb_get_hash(skb); | 
|  | 970 | hash = jhash_1word(hash, hash_act->hash_basis); | 
|  | 971 | if (!hash) | 
|  | 972 | hash = 0x1; | 
|  | 973 |  | 
|  | 974 | key->ovs_flow_hash = hash; | 
|  | 975 | } | 
|  | 976 |  | 
|  | 977 | static int execute_set_action(struct sk_buff *skb, | 
|  | 978 | struct sw_flow_key *flow_key, | 
|  | 979 | const struct nlattr *a) | 
|  | 980 | { | 
|  | 981 | /* Only tunnel set execution is supported without a mask. */ | 
|  | 982 | if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) { | 
|  | 983 | struct ovs_tunnel_info *tun = nla_data(a); | 
|  | 984 |  | 
|  | 985 | skb_dst_drop(skb); | 
|  | 986 | dst_hold((struct dst_entry *)tun->tun_dst); | 
|  | 987 | skb_dst_set(skb, (struct dst_entry *)tun->tun_dst); | 
|  | 988 | return 0; | 
|  | 989 | } | 
|  | 990 |  | 
|  | 991 | return -EINVAL; | 
|  | 992 | } | 
|  | 993 |  | 
|  | 994 | /* Mask is at the midpoint of the data. */ | 
|  | 995 | #define get_mask(a, type) ((const type)nla_data(a) + 1) | 
|  | 996 |  | 
|  | 997 | static int execute_masked_set_action(struct sk_buff *skb, | 
|  | 998 | struct sw_flow_key *flow_key, | 
|  | 999 | const struct nlattr *a) | 
|  | 1000 | { | 
|  | 1001 | int err = 0; | 
|  | 1002 |  | 
|  | 1003 | switch (nla_type(a)) { | 
|  | 1004 | case OVS_KEY_ATTR_PRIORITY: | 
|  | 1005 | OVS_SET_MASKED(skb->priority, nla_get_u32(a), | 
|  | 1006 | *get_mask(a, u32 *)); | 
|  | 1007 | flow_key->phy.priority = skb->priority; | 
|  | 1008 | break; | 
|  | 1009 |  | 
|  | 1010 | case OVS_KEY_ATTR_SKB_MARK: | 
|  | 1011 | OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *)); | 
|  | 1012 | flow_key->phy.skb_mark = skb->mark; | 
|  | 1013 | break; | 
|  | 1014 |  | 
|  | 1015 | case OVS_KEY_ATTR_TUNNEL_INFO: | 
|  | 1016 | /* Masked data not supported for tunnel. */ | 
|  | 1017 | err = -EINVAL; | 
|  | 1018 | break; | 
|  | 1019 |  | 
|  | 1020 | case OVS_KEY_ATTR_ETHERNET: | 
|  | 1021 | err = set_eth_addr(skb, flow_key, nla_data(a), | 
|  | 1022 | get_mask(a, struct ovs_key_ethernet *)); | 
|  | 1023 | break; | 
|  | 1024 |  | 
|  | 1025 | case OVS_KEY_ATTR_IPV4: | 
|  | 1026 | err = set_ipv4(skb, flow_key, nla_data(a), | 
|  | 1027 | get_mask(a, struct ovs_key_ipv4 *)); | 
|  | 1028 | break; | 
|  | 1029 |  | 
|  | 1030 | case OVS_KEY_ATTR_IPV6: | 
|  | 1031 | err = set_ipv6(skb, flow_key, nla_data(a), | 
|  | 1032 | get_mask(a, struct ovs_key_ipv6 *)); | 
|  | 1033 | break; | 
|  | 1034 |  | 
|  | 1035 | case OVS_KEY_ATTR_TCP: | 
|  | 1036 | err = set_tcp(skb, flow_key, nla_data(a), | 
|  | 1037 | get_mask(a, struct ovs_key_tcp *)); | 
|  | 1038 | break; | 
|  | 1039 |  | 
|  | 1040 | case OVS_KEY_ATTR_UDP: | 
|  | 1041 | err = set_udp(skb, flow_key, nla_data(a), | 
|  | 1042 | get_mask(a, struct ovs_key_udp *)); | 
|  | 1043 | break; | 
|  | 1044 |  | 
|  | 1045 | case OVS_KEY_ATTR_SCTP: | 
|  | 1046 | err = set_sctp(skb, flow_key, nla_data(a), | 
|  | 1047 | get_mask(a, struct ovs_key_sctp *)); | 
|  | 1048 | break; | 
|  | 1049 |  | 
|  | 1050 | case OVS_KEY_ATTR_MPLS: | 
|  | 1051 | err = set_mpls(skb, flow_key, nla_data(a), get_mask(a, | 
|  | 1052 | __be32 *)); | 
|  | 1053 | break; | 
|  | 1054 |  | 
|  | 1055 | case OVS_KEY_ATTR_CT_STATE: | 
|  | 1056 | case OVS_KEY_ATTR_CT_ZONE: | 
|  | 1057 | case OVS_KEY_ATTR_CT_MARK: | 
|  | 1058 | case OVS_KEY_ATTR_CT_LABELS: | 
|  | 1059 | case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4: | 
|  | 1060 | case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6: | 
|  | 1061 | err = -EINVAL; | 
|  | 1062 | break; | 
|  | 1063 | } | 
|  | 1064 |  | 
|  | 1065 | return err; | 
|  | 1066 | } | 
|  | 1067 |  | 
|  | 1068 | static int execute_recirc(struct datapath *dp, struct sk_buff *skb, | 
|  | 1069 | struct sw_flow_key *key, | 
|  | 1070 | const struct nlattr *a, bool last) | 
|  | 1071 | { | 
|  | 1072 | u32 recirc_id; | 
|  | 1073 |  | 
|  | 1074 | if (!is_flow_key_valid(key)) { | 
|  | 1075 | int err; | 
|  | 1076 |  | 
|  | 1077 | err = ovs_flow_key_update(skb, key); | 
|  | 1078 | if (err) | 
|  | 1079 | return err; | 
|  | 1080 | } | 
|  | 1081 | BUG_ON(!is_flow_key_valid(key)); | 
|  | 1082 |  | 
|  | 1083 | recirc_id = nla_get_u32(a); | 
|  | 1084 | return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true); | 
|  | 1085 | } | 
|  | 1086 |  | 
|  | 1087 | /* Execute a list of actions against 'skb'. */ | 
|  | 1088 | static int do_execute_actions(struct datapath *dp, struct sk_buff *skb, | 
|  | 1089 | struct sw_flow_key *key, | 
|  | 1090 | const struct nlattr *attr, int len) | 
|  | 1091 | { | 
|  | 1092 | const struct nlattr *a; | 
|  | 1093 | int rem; | 
|  | 1094 |  | 
|  | 1095 | for (a = attr, rem = len; rem > 0; | 
|  | 1096 | a = nla_next(a, &rem)) { | 
|  | 1097 | int err = 0; | 
|  | 1098 |  | 
|  | 1099 | switch (nla_type(a)) { | 
|  | 1100 | case OVS_ACTION_ATTR_OUTPUT: { | 
|  | 1101 | int port = nla_get_u32(a); | 
|  | 1102 | struct sk_buff *clone; | 
|  | 1103 |  | 
|  | 1104 | /* Every output action needs a separate clone | 
|  | 1105 | * of 'skb', In case the output action is the | 
|  | 1106 | * last action, cloning can be avoided. | 
|  | 1107 | */ | 
|  | 1108 | if (nla_is_last(a, rem)) { | 
|  | 1109 | do_output(dp, skb, port, key); | 
|  | 1110 | /* 'skb' has been used for output. | 
|  | 1111 | */ | 
|  | 1112 | return 0; | 
|  | 1113 | } | 
|  | 1114 |  | 
|  | 1115 | clone = skb_clone(skb, GFP_ATOMIC); | 
|  | 1116 | if (clone) | 
|  | 1117 | do_output(dp, clone, port, key); | 
|  | 1118 | OVS_CB(skb)->cutlen = 0; | 
|  | 1119 | break; | 
|  | 1120 | } | 
|  | 1121 |  | 
|  | 1122 | case OVS_ACTION_ATTR_TRUNC: { | 
|  | 1123 | struct ovs_action_trunc *trunc = nla_data(a); | 
|  | 1124 |  | 
|  | 1125 | if (skb->len > trunc->max_len) | 
|  | 1126 | OVS_CB(skb)->cutlen = skb->len - trunc->max_len; | 
|  | 1127 | break; | 
|  | 1128 | } | 
|  | 1129 |  | 
|  | 1130 | case OVS_ACTION_ATTR_USERSPACE: | 
|  | 1131 | output_userspace(dp, skb, key, a, attr, | 
|  | 1132 | len, OVS_CB(skb)->cutlen); | 
|  | 1133 | OVS_CB(skb)->cutlen = 0; | 
|  | 1134 | break; | 
|  | 1135 |  | 
|  | 1136 | case OVS_ACTION_ATTR_HASH: | 
|  | 1137 | execute_hash(skb, key, a); | 
|  | 1138 | break; | 
|  | 1139 |  | 
|  | 1140 | case OVS_ACTION_ATTR_PUSH_MPLS: | 
|  | 1141 | err = push_mpls(skb, key, nla_data(a)); | 
|  | 1142 | break; | 
|  | 1143 |  | 
|  | 1144 | case OVS_ACTION_ATTR_POP_MPLS: | 
|  | 1145 | err = pop_mpls(skb, key, nla_get_be16(a)); | 
|  | 1146 | break; | 
|  | 1147 |  | 
|  | 1148 | case OVS_ACTION_ATTR_PUSH_VLAN: | 
|  | 1149 | err = push_vlan(skb, key, nla_data(a)); | 
|  | 1150 | break; | 
|  | 1151 |  | 
|  | 1152 | case OVS_ACTION_ATTR_POP_VLAN: | 
|  | 1153 | err = pop_vlan(skb, key); | 
|  | 1154 | break; | 
|  | 1155 |  | 
|  | 1156 | case OVS_ACTION_ATTR_RECIRC: { | 
|  | 1157 | bool last = nla_is_last(a, rem); | 
|  | 1158 |  | 
|  | 1159 | err = execute_recirc(dp, skb, key, a, last); | 
|  | 1160 | if (last) { | 
|  | 1161 | /* If this is the last action, the skb has | 
|  | 1162 | * been consumed or freed. | 
|  | 1163 | * Return immediately. | 
|  | 1164 | */ | 
|  | 1165 | return err; | 
|  | 1166 | } | 
|  | 1167 | break; | 
|  | 1168 | } | 
|  | 1169 |  | 
|  | 1170 | case OVS_ACTION_ATTR_SET: | 
|  | 1171 | err = execute_set_action(skb, key, nla_data(a)); | 
|  | 1172 | break; | 
|  | 1173 |  | 
|  | 1174 | case OVS_ACTION_ATTR_SET_MASKED: | 
|  | 1175 | case OVS_ACTION_ATTR_SET_TO_MASKED: | 
|  | 1176 | err = execute_masked_set_action(skb, key, nla_data(a)); | 
|  | 1177 | break; | 
|  | 1178 |  | 
|  | 1179 | case OVS_ACTION_ATTR_SAMPLE: { | 
|  | 1180 | bool last = nla_is_last(a, rem); | 
|  | 1181 |  | 
|  | 1182 | err = sample(dp, skb, key, a, last); | 
|  | 1183 | if (last) | 
|  | 1184 | return err; | 
|  | 1185 |  | 
|  | 1186 | break; | 
|  | 1187 | } | 
|  | 1188 |  | 
|  | 1189 | case OVS_ACTION_ATTR_CT: | 
|  | 1190 | if (!is_flow_key_valid(key)) { | 
|  | 1191 | err = ovs_flow_key_update(skb, key); | 
|  | 1192 | if (err) | 
|  | 1193 | return err; | 
|  | 1194 | } | 
|  | 1195 |  | 
|  | 1196 | err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key, | 
|  | 1197 | nla_data(a)); | 
|  | 1198 |  | 
|  | 1199 | /* Hide stolen IP fragments from user space. */ | 
|  | 1200 | if (err) | 
|  | 1201 | return err == -EINPROGRESS ? 0 : err; | 
|  | 1202 | break; | 
|  | 1203 |  | 
|  | 1204 | case OVS_ACTION_ATTR_PUSH_ETH: | 
|  | 1205 | err = push_eth(skb, key, nla_data(a)); | 
|  | 1206 | break; | 
|  | 1207 |  | 
|  | 1208 | case OVS_ACTION_ATTR_POP_ETH: | 
|  | 1209 | err = pop_eth(skb, key); | 
|  | 1210 | break; | 
|  | 1211 | } | 
|  | 1212 |  | 
|  | 1213 | if (unlikely(err)) { | 
|  | 1214 | kfree_skb(skb); | 
|  | 1215 | return err; | 
|  | 1216 | } | 
|  | 1217 | } | 
|  | 1218 |  | 
|  | 1219 | consume_skb(skb); | 
|  | 1220 | return 0; | 
|  | 1221 | } | 
|  | 1222 |  | 
|  | 1223 | /* Execute the actions on the clone of the packet. The effect of the | 
|  | 1224 | * execution does not affect the original 'skb' nor the original 'key'. | 
|  | 1225 | * | 
|  | 1226 | * The execution may be deferred in case the actions can not be executed | 
|  | 1227 | * immediately. | 
|  | 1228 | */ | 
|  | 1229 | static int clone_execute(struct datapath *dp, struct sk_buff *skb, | 
|  | 1230 | struct sw_flow_key *key, u32 recirc_id, | 
|  | 1231 | const struct nlattr *actions, int len, | 
|  | 1232 | bool last, bool clone_flow_key) | 
|  | 1233 | { | 
|  | 1234 | struct deferred_action *da; | 
|  | 1235 | struct sw_flow_key *clone; | 
|  | 1236 |  | 
|  | 1237 | skb = last ? skb : skb_clone(skb, GFP_ATOMIC); | 
|  | 1238 | if (!skb) { | 
|  | 1239 | /* Out of memory, skip this action. | 
|  | 1240 | */ | 
|  | 1241 | return 0; | 
|  | 1242 | } | 
|  | 1243 |  | 
|  | 1244 | /* When clone_flow_key is false, the 'key' will not be change | 
|  | 1245 | * by the actions, then the 'key' can be used directly. | 
|  | 1246 | * Otherwise, try to clone key from the next recursion level of | 
|  | 1247 | * 'flow_keys'. If clone is successful, execute the actions | 
|  | 1248 | * without deferring. | 
|  | 1249 | */ | 
|  | 1250 | clone = clone_flow_key ? clone_key(key) : key; | 
|  | 1251 | if (clone) { | 
|  | 1252 | int err = 0; | 
|  | 1253 |  | 
|  | 1254 | if (actions) { /* Sample action */ | 
|  | 1255 | if (clone_flow_key) | 
|  | 1256 | __this_cpu_inc(exec_actions_level); | 
|  | 1257 |  | 
|  | 1258 | err = do_execute_actions(dp, skb, clone, | 
|  | 1259 | actions, len); | 
|  | 1260 |  | 
|  | 1261 | if (clone_flow_key) | 
|  | 1262 | __this_cpu_dec(exec_actions_level); | 
|  | 1263 | } else { /* Recirc action */ | 
|  | 1264 | clone->recirc_id = recirc_id; | 
|  | 1265 | ovs_dp_process_packet(skb, clone); | 
|  | 1266 | } | 
|  | 1267 | return err; | 
|  | 1268 | } | 
|  | 1269 |  | 
|  | 1270 | /* Out of 'flow_keys' space. Defer actions */ | 
|  | 1271 | da = add_deferred_actions(skb, key, actions, len); | 
|  | 1272 | if (da) { | 
|  | 1273 | if (!actions) { /* Recirc action */ | 
|  | 1274 | key = &da->pkt_key; | 
|  | 1275 | key->recirc_id = recirc_id; | 
|  | 1276 | } | 
|  | 1277 | } else { | 
|  | 1278 | /* Out of per CPU action FIFO space. Drop the 'skb' and | 
|  | 1279 | * log an error. | 
|  | 1280 | */ | 
|  | 1281 | kfree_skb(skb); | 
|  | 1282 |  | 
|  | 1283 | if (net_ratelimit()) { | 
|  | 1284 | if (actions) { /* Sample action */ | 
|  | 1285 | pr_warn("%s: deferred action limit reached, drop sample action\n", | 
|  | 1286 | ovs_dp_name(dp)); | 
|  | 1287 | } else {  /* Recirc action */ | 
|  | 1288 | pr_warn("%s: deferred action limit reached, drop recirc action\n", | 
|  | 1289 | ovs_dp_name(dp)); | 
|  | 1290 | } | 
|  | 1291 | } | 
|  | 1292 | } | 
|  | 1293 | return 0; | 
|  | 1294 | } | 
|  | 1295 |  | 
|  | 1296 | static void process_deferred_actions(struct datapath *dp) | 
|  | 1297 | { | 
|  | 1298 | struct action_fifo *fifo = this_cpu_ptr(action_fifos); | 
|  | 1299 |  | 
|  | 1300 | /* Do not touch the FIFO in case there is no deferred actions. */ | 
|  | 1301 | if (action_fifo_is_empty(fifo)) | 
|  | 1302 | return; | 
|  | 1303 |  | 
|  | 1304 | /* Finishing executing all deferred actions. */ | 
|  | 1305 | do { | 
|  | 1306 | struct deferred_action *da = action_fifo_get(fifo); | 
|  | 1307 | struct sk_buff *skb = da->skb; | 
|  | 1308 | struct sw_flow_key *key = &da->pkt_key; | 
|  | 1309 | const struct nlattr *actions = da->actions; | 
|  | 1310 | int actions_len = da->actions_len; | 
|  | 1311 |  | 
|  | 1312 | if (actions) | 
|  | 1313 | do_execute_actions(dp, skb, key, actions, actions_len); | 
|  | 1314 | else | 
|  | 1315 | ovs_dp_process_packet(skb, key); | 
|  | 1316 | } while (!action_fifo_is_empty(fifo)); | 
|  | 1317 |  | 
|  | 1318 | /* Reset FIFO for the next packet.  */ | 
|  | 1319 | action_fifo_init(fifo); | 
|  | 1320 | } | 
|  | 1321 |  | 
|  | 1322 | /* Execute a list of actions against 'skb'. */ | 
|  | 1323 | int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb, | 
|  | 1324 | const struct sw_flow_actions *acts, | 
|  | 1325 | struct sw_flow_key *key) | 
|  | 1326 | { | 
|  | 1327 | int err, level; | 
|  | 1328 |  | 
|  | 1329 | level = __this_cpu_inc_return(exec_actions_level); | 
|  | 1330 | if (unlikely(level > OVS_RECURSION_LIMIT)) { | 
|  | 1331 | net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n", | 
|  | 1332 | ovs_dp_name(dp)); | 
|  | 1333 | kfree_skb(skb); | 
|  | 1334 | err = -ENETDOWN; | 
|  | 1335 | goto out; | 
|  | 1336 | } | 
|  | 1337 |  | 
|  | 1338 | OVS_CB(skb)->acts_origlen = acts->orig_len; | 
|  | 1339 | err = do_execute_actions(dp, skb, key, | 
|  | 1340 | acts->actions, acts->actions_len); | 
|  | 1341 |  | 
|  | 1342 | if (level == 1) | 
|  | 1343 | process_deferred_actions(dp); | 
|  | 1344 |  | 
|  | 1345 | out: | 
|  | 1346 | __this_cpu_dec(exec_actions_level); | 
|  | 1347 | return err; | 
|  | 1348 | } | 
|  | 1349 |  | 
|  | 1350 | int action_fifos_init(void) | 
|  | 1351 | { | 
|  | 1352 | action_fifos = alloc_percpu(struct action_fifo); | 
|  | 1353 | if (!action_fifos) | 
|  | 1354 | return -ENOMEM; | 
|  | 1355 |  | 
|  | 1356 | flow_keys = alloc_percpu(struct action_flow_keys); | 
|  | 1357 | if (!flow_keys) { | 
|  | 1358 | free_percpu(action_fifos); | 
|  | 1359 | return -ENOMEM; | 
|  | 1360 | } | 
|  | 1361 |  | 
|  | 1362 | return 0; | 
|  | 1363 | } | 
|  | 1364 |  | 
|  | 1365 | void action_fifos_exit(void) | 
|  | 1366 | { | 
|  | 1367 | free_percpu(action_fifos); | 
|  | 1368 | free_percpu(flow_keys); | 
|  | 1369 | } |