| /* Functions to compute SHA256 message digest of files or memory blocks. | 
 |    according to the definition of SHA256 in FIPS 180-2. | 
 |    Copyright (C) 2007 Free Software Foundation, Inc. | 
 |    This file is part of the GNU C Library. | 
 |  | 
 |    The GNU C Library is free software; you can redistribute it and/or | 
 |    modify it under the terms of the GNU Lesser General Public | 
 |    License as published by the Free Software Foundation; either | 
 |    version 2.1 of the License, or (at your option) any later version. | 
 |  | 
 |    The GNU C Library is distributed in the hope that it will be useful, | 
 |    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
 |    Lesser General Public License for more details. | 
 |  | 
 |    You should have received a copy of the GNU Lesser General Public | 
 |    License along with the GNU C Library; if not, write to the Free | 
 |    Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA | 
 |    02111-1307 USA.  */ | 
 |  | 
 | /* Written by Ulrich Drepper <drepper@redhat.com>, 2007.  */ | 
 |  | 
 | #ifdef HAVE_CONFIG_H | 
 | # include <config.h> | 
 | #endif | 
 |  | 
 | #include <endian.h> | 
 | #include <stdlib.h> | 
 | #include <string.h> | 
 | #include <sys/types.h> | 
 |  | 
 | #include "sha256.h" | 
 |  | 
 | #if __BYTE_ORDER == __LITTLE_ENDIAN | 
 | # ifdef _LIBC | 
 | #  include <byteswap.h> | 
 | #  define SWAP(n) bswap_32 (n) | 
 | # else | 
 | #  define SWAP(n) \ | 
 |     (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24)) | 
 | # endif | 
 | #else | 
 | # define SWAP(n) (n) | 
 | #endif | 
 |  | 
 |  | 
 | /* This array contains the bytes used to pad the buffer to the next | 
 |    64-byte boundary.  (FIPS 180-2:5.1.1)  */ | 
 | static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ...  */ }; | 
 |  | 
 |  | 
 | /* Constants for SHA256 from FIPS 180-2:4.2.2.  */ | 
 | static const uint32_t K[64] = | 
 |   { | 
 |     0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, | 
 |     0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, | 
 |     0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, | 
 |     0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, | 
 |     0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, | 
 |     0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, | 
 |     0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, | 
 |     0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, | 
 |     0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, | 
 |     0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, | 
 |     0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, | 
 |     0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, | 
 |     0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, | 
 |     0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, | 
 |     0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, | 
 |     0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 | 
 |   }; | 
 |  | 
 |  | 
 | /* Process LEN bytes of BUFFER, accumulating context into CTX. | 
 |    It is assumed that LEN % 64 == 0.  */ | 
 | static void | 
 | sha256_process_block (const void *buffer, size_t len, struct sha256_ctx *ctx) | 
 | { | 
 |   const uint32_t *words = buffer; | 
 |   size_t nwords = len / sizeof (uint32_t); | 
 |   uint32_t a = ctx->H[0]; | 
 |   uint32_t b = ctx->H[1]; | 
 |   uint32_t c = ctx->H[2]; | 
 |   uint32_t d = ctx->H[3]; | 
 |   uint32_t e = ctx->H[4]; | 
 |   uint32_t f = ctx->H[5]; | 
 |   uint32_t g = ctx->H[6]; | 
 |   uint32_t h = ctx->H[7]; | 
 |  | 
 |   /* First increment the byte count.  FIPS 180-2 specifies the possible | 
 |      length of the file up to 2^64 bits.  Here we only compute the | 
 |      number of bytes.  Do a double word increment.  */ | 
 |   ctx->total[0] += len; | 
 |   if (ctx->total[0] < len) | 
 |     ++ctx->total[1]; | 
 |  | 
 |   /* Process all bytes in the buffer with 64 bytes in each round of | 
 |      the loop.  */ | 
 |   while (nwords > 0) | 
 |     { | 
 |       uint32_t W[64]; | 
 |       uint32_t a_save = a; | 
 |       uint32_t b_save = b; | 
 |       uint32_t c_save = c; | 
 |       uint32_t d_save = d; | 
 |       uint32_t e_save = e; | 
 |       uint32_t f_save = f; | 
 |       uint32_t g_save = g; | 
 |       uint32_t h_save = h; | 
 |  | 
 |       /* Operators defined in FIPS 180-2:4.1.2.  */ | 
 | #define Ch(x, y, z) ((x & y) ^ (~x & z)) | 
 | #define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z)) | 
 | #define S0(x) (CYCLIC (x, 2) ^ CYCLIC (x, 13) ^ CYCLIC (x, 22)) | 
 | #define S1(x) (CYCLIC (x, 6) ^ CYCLIC (x, 11) ^ CYCLIC (x, 25)) | 
 | #define R0(x) (CYCLIC (x, 7) ^ CYCLIC (x, 18) ^ (x >> 3)) | 
 | #define R1(x) (CYCLIC (x, 17) ^ CYCLIC (x, 19) ^ (x >> 10)) | 
 |  | 
 |       /* It is unfortunate that C does not provide an operator for | 
 | 	 cyclic rotation.  Hope the C compiler is smart enough.  */ | 
 | #define CYCLIC(w, s) ((w >> s) | (w << (32 - s))) | 
 |  | 
 |       /* Compute the message schedule according to FIPS 180-2:6.2.2 step 2.  */ | 
 |       for (unsigned int t = 0; t < 16; ++t) | 
 | 	{ | 
 | 	  W[t] = SWAP (*words); | 
 | 	  ++words; | 
 | 	} | 
 |       for (unsigned int t = 16; t < 64; ++t) | 
 | 	W[t] = R1 (W[t - 2]) + W[t - 7] + R0 (W[t - 15]) + W[t - 16]; | 
 |  | 
 |       /* The actual computation according to FIPS 180-2:6.2.2 step 3.  */ | 
 |       for (unsigned int t = 0; t < 64; ++t) | 
 | 	{ | 
 | 	  uint32_t T1 = h + S1 (e) + Ch (e, f, g) + K[t] + W[t]; | 
 | 	  uint32_t T2 = S0 (a) + Maj (a, b, c); | 
 | 	  h = g; | 
 | 	  g = f; | 
 | 	  f = e; | 
 | 	  e = d + T1; | 
 | 	  d = c; | 
 | 	  c = b; | 
 | 	  b = a; | 
 | 	  a = T1 + T2; | 
 | 	} | 
 |  | 
 |       /* Add the starting values of the context according to FIPS 180-2:6.2.2 | 
 | 	 step 4.  */ | 
 |       a += a_save; | 
 |       b += b_save; | 
 |       c += c_save; | 
 |       d += d_save; | 
 |       e += e_save; | 
 |       f += f_save; | 
 |       g += g_save; | 
 |       h += h_save; | 
 |  | 
 |       /* Prepare for the next round.  */ | 
 |       nwords -= 16; | 
 |     } | 
 |  | 
 |   /* Put checksum in context given as argument.  */ | 
 |   ctx->H[0] = a; | 
 |   ctx->H[1] = b; | 
 |   ctx->H[2] = c; | 
 |   ctx->H[3] = d; | 
 |   ctx->H[4] = e; | 
 |   ctx->H[5] = f; | 
 |   ctx->H[6] = g; | 
 |   ctx->H[7] = h; | 
 | } | 
 |  | 
 |  | 
 | /* Initialize structure containing state of computation. | 
 |    (FIPS 180-2:5.3.2)  */ | 
 | void | 
 | __sha256_init_ctx (struct sha256_ctx *ctx) | 
 | { | 
 |   ctx->H[0] = 0x6a09e667; | 
 |   ctx->H[1] = 0xbb67ae85; | 
 |   ctx->H[2] = 0x3c6ef372; | 
 |   ctx->H[3] = 0xa54ff53a; | 
 |   ctx->H[4] = 0x510e527f; | 
 |   ctx->H[5] = 0x9b05688c; | 
 |   ctx->H[6] = 0x1f83d9ab; | 
 |   ctx->H[7] = 0x5be0cd19; | 
 |  | 
 |   ctx->total[0] = ctx->total[1] = 0; | 
 |   ctx->buflen = 0; | 
 | } | 
 |  | 
 |  | 
 | /* Process the remaining bytes in the internal buffer and the usual | 
 |    prolog according to the standard and write the result to RESBUF. | 
 |  | 
 |    IMPORTANT: On some systems it is required that RESBUF is correctly | 
 |    aligned for a 32 bits value.  */ | 
 | void * | 
 | __sha256_finish_ctx (struct sha256_ctx *ctx, void *resbuf) | 
 | { | 
 |   /* Take yet unprocessed bytes into account.  */ | 
 |   uint32_t bytes = ctx->buflen; | 
 |   size_t pad; | 
 |  | 
 |   /* Now count remaining bytes.  */ | 
 |   ctx->total[0] += bytes; | 
 |   if (ctx->total[0] < bytes) | 
 |     ++ctx->total[1]; | 
 |  | 
 |   pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes; | 
 |   memcpy (&ctx->buffer[bytes], fillbuf, pad); | 
 |  | 
 |   /* Put the 64-bit file length in *bits* at the end of the buffer.  */ | 
 |   *(uint32_t *) &ctx->buffer[bytes + pad + 4] = SWAP (ctx->total[0] << 3); | 
 |   *(uint32_t *) &ctx->buffer[bytes + pad] = SWAP ((ctx->total[1] << 3) | | 
 | 						  (ctx->total[0] >> 29)); | 
 |  | 
 |   /* Process last bytes.  */ | 
 |   sha256_process_block (ctx->buffer, bytes + pad + 8, ctx); | 
 |  | 
 |   /* Put result from CTX in first 32 bytes following RESBUF.  */ | 
 |   for (unsigned int i = 0; i < 8; ++i) | 
 |     ((uint32_t *) resbuf)[i] = SWAP (ctx->H[i]); | 
 |  | 
 |   return resbuf; | 
 | } | 
 |  | 
 |  | 
 | void | 
 | __sha256_process_bytes (const void *buffer, size_t len, struct sha256_ctx *ctx) | 
 | { | 
 |   /* When we already have some bits in our internal buffer concatenate | 
 |      both inputs first.  */ | 
 |   if (ctx->buflen != 0) | 
 |     { | 
 |       size_t left_over = ctx->buflen; | 
 |       size_t add = 128 - left_over > len ? len : 128 - left_over; | 
 |  | 
 |       memcpy (&ctx->buffer[left_over], buffer, add); | 
 |       ctx->buflen += add; | 
 |  | 
 |       if (ctx->buflen > 64) | 
 | 	{ | 
 | 	  sha256_process_block (ctx->buffer, ctx->buflen & ~63, ctx); | 
 |  | 
 | 	  ctx->buflen &= 63; | 
 | 	  /* The regions in the following copy operation cannot overlap.  */ | 
 | 	  memcpy (ctx->buffer, &ctx->buffer[(left_over + add) & ~63], | 
 | 		  ctx->buflen); | 
 | 	} | 
 |  | 
 |       buffer = (const char *) buffer + add; | 
 |       len -= add; | 
 |     } | 
 |  | 
 |   /* Process available complete blocks.  */ | 
 |   if (len >= 64) | 
 |     { | 
 | #if __GNUC__ >= 2 | 
 | # define UNALIGNED_P(p) (((uintptr_t) p) % __alignof__ (uint32_t) != 0) | 
 | #else | 
 | # define UNALIGNED_P(p) (((uintptr_t) p) % sizeof (uint32_t) != 0) | 
 | #endif | 
 |       if (UNALIGNED_P (buffer)) | 
 | 	while (len > 64) | 
 | 	  { | 
 | 	    sha256_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx); | 
 | 	    buffer = (const char *) buffer + 64; | 
 | 	    len -= 64; | 
 | 	  } | 
 |       else | 
 | 	{ | 
 | 	  sha256_process_block (buffer, len & ~63, ctx); | 
 | 	  buffer = (const char *) buffer + (len & ~63); | 
 | 	  len &= 63; | 
 | 	} | 
 |     } | 
 |  | 
 |   /* Move remaining bytes into internal buffer.  */ | 
 |   if (len > 0) | 
 |     { | 
 |       size_t left_over = ctx->buflen; | 
 |  | 
 |       memcpy (&ctx->buffer[left_over], buffer, len); | 
 |       left_over += len; | 
 |       if (left_over >= 64) | 
 | 	{ | 
 | 	  sha256_process_block (ctx->buffer, 64, ctx); | 
 | 	  left_over -= 64; | 
 | 	  memcpy (ctx->buffer, &ctx->buffer[64], left_over); | 
 | 	} | 
 |       ctx->buflen = left_over; | 
 |     } | 
 | } |