| /* |
| * ==================================================== |
| * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| * |
| * Developed at SunPro, a Sun Microsystems, Inc. business. |
| * Permission to use, copy, modify, and distribute this |
| * software is freely granted, provided that this notice |
| * is preserved. |
| * ==================================================== |
| */ |
| |
| #ifndef _MATH_PRIVATE_H_ |
| #define _MATH_PRIVATE_H_ |
| |
| #include <endian.h> |
| #include <sys/types.h> |
| |
| /* The original fdlibm code used statements like: |
| n0 = ((*(int*)&one)>>29)^1; * index of high word * |
| ix0 = *(n0+(int*)&x); * high word of x * |
| ix1 = *((1-n0)+(int*)&x); * low word of x * |
| to dig two 32 bit words out of the 64 bit IEEE floating point |
| value. That is non-ANSI, and, moreover, the gcc instruction |
| scheduler gets it wrong. We instead use the following macros. |
| Unlike the original code, we determine the endianness at compile |
| time, not at run time; I don't see much benefit to selecting |
| endianness at run time. */ |
| |
| /* A union which permits us to convert between a double and two 32 bit |
| ints. */ |
| |
| /* |
| * Math on arm is special (read: stupid): |
| * For FPA, float words are always big-endian. |
| * For VFP, float words follow the memory system mode. |
| * For Maverick, float words are always little-endian. |
| */ |
| |
| #if !defined(__MAVERICK__) && ((__BYTE_ORDER == __BIG_ENDIAN) || \ |
| (!defined(__VFP_FP__) && (defined(__arm__) || defined(__thumb__)))) |
| |
| typedef union |
| { |
| double value; |
| struct |
| { |
| u_int32_t msw; |
| u_int32_t lsw; |
| } parts; |
| } ieee_double_shape_type; |
| |
| #else |
| |
| typedef union |
| { |
| double value; |
| struct |
| { |
| u_int32_t lsw; |
| u_int32_t msw; |
| } parts; |
| } ieee_double_shape_type; |
| |
| #endif |
| |
| /* Get two 32 bit ints from a double. */ |
| |
| #define EXTRACT_WORDS(ix0,ix1,d) \ |
| do { \ |
| ieee_double_shape_type ew_u; \ |
| ew_u.value = (d); \ |
| (ix0) = ew_u.parts.msw; \ |
| (ix1) = ew_u.parts.lsw; \ |
| } while (0) |
| |
| /* Get the more significant 32 bit int from a double. */ |
| |
| #define GET_HIGH_WORD(i,d) \ |
| do { \ |
| ieee_double_shape_type gh_u; \ |
| gh_u.value = (d); \ |
| (i) = gh_u.parts.msw; \ |
| } while (0) |
| |
| /* Get the less significant 32 bit int from a double. */ |
| |
| #define GET_LOW_WORD(i,d) \ |
| do { \ |
| ieee_double_shape_type gl_u; \ |
| gl_u.value = (d); \ |
| (i) = gl_u.parts.lsw; \ |
| } while (0) |
| |
| /* Set a double from two 32 bit ints. */ |
| |
| #define INSERT_WORDS(d,ix0,ix1) \ |
| do { \ |
| ieee_double_shape_type iw_u; \ |
| iw_u.parts.msw = (ix0); \ |
| iw_u.parts.lsw = (ix1); \ |
| (d) = iw_u.value; \ |
| } while (0) |
| |
| /* Set the more significant 32 bits of a double from an int. */ |
| |
| #define SET_HIGH_WORD(d,v) \ |
| do { \ |
| ieee_double_shape_type sh_u; \ |
| sh_u.value = (d); \ |
| sh_u.parts.msw = (v); \ |
| (d) = sh_u.value; \ |
| } while (0) |
| |
| /* Set the less significant 32 bits of a double from an int. */ |
| |
| #define SET_LOW_WORD(d,v) \ |
| do { \ |
| ieee_double_shape_type sl_u; \ |
| sl_u.value = (d); \ |
| sl_u.parts.lsw = (v); \ |
| (d) = sl_u.value; \ |
| } while (0) |
| |
| /* A union which permits us to convert between a float and a 32 bit |
| int. */ |
| |
| typedef union |
| { |
| float value; |
| u_int32_t word; |
| } ieee_float_shape_type; |
| |
| /* Get a 32 bit int from a float. */ |
| |
| #define GET_FLOAT_WORD(i,d) \ |
| do { \ |
| ieee_float_shape_type gf_u; \ |
| gf_u.value = (d); \ |
| (i) = gf_u.word; \ |
| } while (0) |
| |
| /* Set a float from a 32 bit int. */ |
| |
| #define SET_FLOAT_WORD(d,i) \ |
| do { \ |
| ieee_float_shape_type sf_u; \ |
| sf_u.word = (i); \ |
| (d) = sf_u.value; \ |
| } while (0) |
| |
| /* ieee style elementary functions */ |
| extern double __ieee754_sqrt (double) attribute_hidden; |
| extern double __ieee754_acos (double) attribute_hidden; |
| extern double __ieee754_acosh (double) attribute_hidden; |
| extern double __ieee754_log (double) attribute_hidden; |
| extern double __ieee754_log2 (double) attribute_hidden; |
| extern double __ieee754_atanh (double) attribute_hidden; |
| extern double __ieee754_asin (double) attribute_hidden; |
| extern double __ieee754_atan2 (double,double) attribute_hidden; |
| extern double __ieee754_exp (double) attribute_hidden; |
| extern double __ieee754_cosh (double) attribute_hidden; |
| extern double __ieee754_fmod (double,double) attribute_hidden; |
| extern double __ieee754_pow (double,double) attribute_hidden; |
| extern double __ieee754_lgamma_r (double,int *) attribute_hidden; |
| /*extern double __ieee754_gamma_r (double,int *) attribute_hidden;*/ |
| extern double __ieee754_lgamma (double) attribute_hidden; |
| /*extern double __ieee754_gamma (double) attribute_hidden;*/ |
| extern double __ieee754_log10 (double) attribute_hidden; |
| extern double __ieee754_sinh (double) attribute_hidden; |
| extern double __ieee754_hypot (double,double) attribute_hidden; |
| extern double __ieee754_j0 (double) attribute_hidden; |
| extern double __ieee754_j1 (double) attribute_hidden; |
| extern double __ieee754_y0 (double) attribute_hidden; |
| extern double __ieee754_y1 (double) attribute_hidden; |
| extern double __ieee754_jn (int,double) attribute_hidden; |
| extern double __ieee754_yn (int,double) attribute_hidden; |
| extern double __ieee754_remainder (double,double) attribute_hidden; |
| extern int __ieee754_rem_pio2 (double,double*) attribute_hidden; |
| extern double __ieee754_scalb (double,double) attribute_hidden; |
| |
| /* fdlibm kernel function */ |
| #ifndef _IEEE_LIBM |
| extern double __kernel_standard (double,double,int) attribute_hidden; |
| #endif |
| extern double __kernel_sin (double,double,int) attribute_hidden; |
| extern double __kernel_cos (double,double) attribute_hidden; |
| extern double __kernel_tan (double,double,int) attribute_hidden; |
| extern int __kernel_rem_pio2 (double*,double*,int,int,int,const int*) attribute_hidden; |
| |
| /* |
| * math_opt_barrier(x): safely load x, even if it was manipulated |
| * by non-floationg point operations. This macro returns the value of x. |
| * This ensures compiler does not (ab)use its knowledge about x value |
| * and don't optimize future operations. Example: |
| * float x; |
| * SET_FLOAT_WORD(x, 0x80000001); // sets a bit pattern |
| * y = math_opt_barrier(x); // "compiler, do not cheat!" |
| * y = y * y; // compiler can't optimize, must use real multiply insn |
| * |
| * math_force_eval(x): force expression x to be evaluated. |
| * Useful if otherwise compiler may eliminate the expression |
| * as unused. This macro returns no value. |
| * Example: "void fn(float f) { f = f * f; }" |
| * versus "void fn(float f) { f = f * f; math_force_eval(f); }" |
| * |
| * Currently, math_force_eval(x) stores x into |
| * a floating point register or memory *of the appropriate size*. |
| * There is no guarantee this will not change. |
| */ |
| #if defined(__i386__) |
| #define math_opt_barrier(x) ({ \ |
| __typeof(x) __x = (x); \ |
| /* "t": load x into top-of-stack fpreg */ \ |
| __asm__ ("" : "=t" (__x) : "0" (__x)); \ |
| __x; \ |
| }) |
| #define math_force_eval(x) do { \ |
| __typeof(x) __x = (x); \ |
| if (sizeof(__x) <= sizeof(double)) \ |
| /* "m": store x into a memory location */ \ |
| __asm__ __volatile__ ("" : : "m" (__x)); \ |
| else /* long double */ \ |
| /* "f": load x into (any) fpreg */ \ |
| __asm__ __volatile__ ("" : : "f" (__x)); \ |
| } while (0) |
| #endif |
| |
| #if defined(__x86_64__) |
| #define math_opt_barrier(x) ({ \ |
| __typeof(x) __x = (x); \ |
| if (sizeof(__x) <= sizeof(double)) \ |
| /* "x": load into XMM SSE register */ \ |
| __asm__ ("" : "=x" (__x) : "0" (__x)); \ |
| else /* long double */ \ |
| /* "t": load x into top-of-stack fpreg */ \ |
| __asm__ ("" : "=t" (__x) : "0" (__x)); \ |
| __x; \ |
| }) |
| #define math_force_eval(x) do { \ |
| __typeof(x) __x = (x); \ |
| if (sizeof(__x) <= sizeof(double)) \ |
| /* "x": load into XMM SSE register */ \ |
| __asm__ __volatile__ ("" : : "x" (__x)); \ |
| else /* long double */ \ |
| /* "f": load x into (any) fpreg */ \ |
| __asm__ __volatile__ ("" : : "f" (__x)); \ |
| } while (0) |
| #endif |
| |
| /* Default implementations force store to a memory location */ |
| #ifndef math_opt_barrier |
| #define math_opt_barrier(x) ({ __typeof(x) __x = (x); __asm__ ("" : "+m" (__x)); __x; }) |
| #endif |
| #ifndef math_force_eval |
| #define math_force_eval(x) do { __typeof(x) __x = (x); __asm__ __volatile__ ("" : : "m" (__x)); } while (0) |
| #endif |
| |
| |
| #endif /* _MATH_PRIVATE_H_ */ |