|  | /* | 
|  | *  linux/kernel/time/timekeeping.c | 
|  | * | 
|  | *  Kernel timekeeping code and accessor functions | 
|  | * | 
|  | *  This code was moved from linux/kernel/timer.c. | 
|  | *  Please see that file for copyright and history logs. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/syscore_ops.h> | 
|  | #include <linux/clocksource.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/tick.h> | 
|  | #include <linux/stop_machine.h> | 
|  |  | 
|  | /* Structure holding internal timekeeping values. */ | 
|  | struct timekeeper { | 
|  | /* Current clocksource used for timekeeping. */ | 
|  | struct clocksource *clock; | 
|  | /* NTP adjusted clock multiplier */ | 
|  | u32	mult; | 
|  | /* The shift value of the current clocksource. */ | 
|  | int	shift; | 
|  |  | 
|  | /* Number of clock cycles in one NTP interval. */ | 
|  | cycle_t cycle_interval; | 
|  | /* Number of clock shifted nano seconds in one NTP interval. */ | 
|  | u64	xtime_interval; | 
|  | /* shifted nano seconds left over when rounding cycle_interval */ | 
|  | s64	xtime_remainder; | 
|  | /* Raw nano seconds accumulated per NTP interval. */ | 
|  | u32	raw_interval; | 
|  |  | 
|  | /* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */ | 
|  | u64	xtime_nsec; | 
|  | /* Difference between accumulated time and NTP time in ntp | 
|  | * shifted nano seconds. */ | 
|  | s64	ntp_error; | 
|  | /* Shift conversion between clock shifted nano seconds and | 
|  | * ntp shifted nano seconds. */ | 
|  | int	ntp_error_shift; | 
|  |  | 
|  | /* The current time */ | 
|  | struct timespec xtime; | 
|  | /* | 
|  | * wall_to_monotonic is what we need to add to xtime (or xtime corrected | 
|  | * for sub jiffie times) to get to monotonic time.  Monotonic is pegged | 
|  | * at zero at system boot time, so wall_to_monotonic will be negative, | 
|  | * however, we will ALWAYS keep the tv_nsec part positive so we can use | 
|  | * the usual normalization. | 
|  | * | 
|  | * wall_to_monotonic is moved after resume from suspend for the | 
|  | * monotonic time not to jump. We need to add total_sleep_time to | 
|  | * wall_to_monotonic to get the real boot based time offset. | 
|  | * | 
|  | * - wall_to_monotonic is no longer the boot time, getboottime must be | 
|  | * used instead. | 
|  | */ | 
|  | struct timespec wall_to_monotonic; | 
|  | /* time spent in suspend */ | 
|  | struct timespec total_sleep_time; | 
|  | /* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. */ | 
|  | struct timespec raw_time; | 
|  |  | 
|  | /* Offset clock monotonic -> clock realtime */ | 
|  | ktime_t offs_real; | 
|  |  | 
|  | /* Offset clock monotonic -> clock boottime */ | 
|  | ktime_t offs_boot; | 
|  |  | 
|  | /* Open coded seqlock for all timekeeper values */ | 
|  | seqcount_t seq; | 
|  | raw_spinlock_t lock; | 
|  | }; | 
|  |  | 
|  | static struct timekeeper timekeeper; | 
|  |  | 
|  | /* | 
|  | * This read-write spinlock protects us from races in SMP while | 
|  | * playing with xtime. | 
|  | */ | 
|  | __cacheline_aligned_in_smp DEFINE_RAW_SPINLOCK(xtime_lock); | 
|  | seqcount_t xtime_seq; | 
|  |  | 
|  |  | 
|  | /* flag for if timekeeping is suspended */ | 
|  | int __read_mostly timekeeping_suspended; | 
|  |  | 
|  |  | 
|  |  | 
|  | /** | 
|  | * timekeeper_setup_internals - Set up internals to use clocksource clock. | 
|  | * | 
|  | * @clock:		Pointer to clocksource. | 
|  | * | 
|  | * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment | 
|  | * pair and interval request. | 
|  | * | 
|  | * Unless you're the timekeeping code, you should not be using this! | 
|  | */ | 
|  | static void timekeeper_setup_internals(struct clocksource *clock) | 
|  | { | 
|  | cycle_t interval; | 
|  | u64 tmp, ntpinterval; | 
|  |  | 
|  | timekeeper.clock = clock; | 
|  | clock->cycle_last = clock->read(clock); | 
|  |  | 
|  | /* Do the ns -> cycle conversion first, using original mult */ | 
|  | tmp = NTP_INTERVAL_LENGTH; | 
|  | tmp <<= clock->shift; | 
|  | ntpinterval = tmp; | 
|  | tmp += clock->mult/2; | 
|  | do_div(tmp, clock->mult); | 
|  | if (tmp == 0) | 
|  | tmp = 1; | 
|  |  | 
|  | interval = (cycle_t) tmp; | 
|  | timekeeper.cycle_interval = interval; | 
|  |  | 
|  | /* Go back from cycles -> shifted ns */ | 
|  | timekeeper.xtime_interval = (u64) interval * clock->mult; | 
|  | timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval; | 
|  | timekeeper.raw_interval = | 
|  | ((u64) interval * clock->mult) >> clock->shift; | 
|  |  | 
|  | timekeeper.xtime_nsec = 0; | 
|  | timekeeper.shift = clock->shift; | 
|  |  | 
|  | timekeeper.ntp_error = 0; | 
|  | timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; | 
|  |  | 
|  | /* | 
|  | * The timekeeper keeps its own mult values for the currently | 
|  | * active clocksource. These value will be adjusted via NTP | 
|  | * to counteract clock drifting. | 
|  | */ | 
|  | timekeeper.mult = clock->mult; | 
|  | } | 
|  |  | 
|  | /* Timekeeper helper functions. */ | 
|  | static inline s64 timekeeping_get_ns(void) | 
|  | { | 
|  | cycle_t cycle_now, cycle_delta; | 
|  | struct clocksource *clock; | 
|  |  | 
|  | /* read clocksource: */ | 
|  | clock = timekeeper.clock; | 
|  | cycle_now = clock->read(clock); | 
|  |  | 
|  | /* calculate the delta since the last update_wall_time: */ | 
|  | cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; | 
|  |  | 
|  | /* return delta convert to nanoseconds using ntp adjusted mult. */ | 
|  | return clocksource_cyc2ns(cycle_delta, timekeeper.mult, | 
|  | timekeeper.shift); | 
|  | } | 
|  |  | 
|  | static inline s64 timekeeping_get_ns_raw(void) | 
|  | { | 
|  | cycle_t cycle_now, cycle_delta; | 
|  | struct clocksource *clock; | 
|  |  | 
|  | /* read clocksource: */ | 
|  | clock = timekeeper.clock; | 
|  | cycle_now = clock->read(clock); | 
|  |  | 
|  | /* calculate the delta since the last update_wall_time: */ | 
|  | cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; | 
|  |  | 
|  | /* return delta convert to nanoseconds. */ | 
|  | return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift); | 
|  | } | 
|  |  | 
|  | static void update_rt_offset(void) | 
|  | { | 
|  | struct timespec tmp, *wtm = &timekeeper.wall_to_monotonic; | 
|  |  | 
|  | set_normalized_timespec(&tmp, -wtm->tv_sec, -wtm->tv_nsec); | 
|  | timekeeper.offs_real = timespec_to_ktime(tmp); | 
|  | } | 
|  |  | 
|  | /* must hold write on timekeeper.lock */ | 
|  | static void timekeeping_update(bool clearntp) | 
|  | { | 
|  | if (clearntp) { | 
|  | timekeeper.ntp_error = 0; | 
|  | ntp_clear(); | 
|  | } | 
|  | update_rt_offset(); | 
|  | update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic, | 
|  | timekeeper.clock, timekeeper.mult); | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * timekeeping_forward_now - update clock to the current time | 
|  | * | 
|  | * Forward the current clock to update its state since the last call to | 
|  | * update_wall_time(). This is useful before significant clock changes, | 
|  | * as it avoids having to deal with this time offset explicitly. | 
|  | */ | 
|  | static void timekeeping_forward_now(void) | 
|  | { | 
|  | cycle_t cycle_now, cycle_delta; | 
|  | struct clocksource *clock; | 
|  | s64 nsec; | 
|  |  | 
|  | clock = timekeeper.clock; | 
|  | cycle_now = clock->read(clock); | 
|  | cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; | 
|  | clock->cycle_last = cycle_now; | 
|  |  | 
|  | nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult, | 
|  | timekeeper.shift); | 
|  |  | 
|  | /* If arch requires, add in gettimeoffset() */ | 
|  | nsec += arch_gettimeoffset(); | 
|  |  | 
|  | timespec_add_ns(&timekeeper.xtime, nsec); | 
|  |  | 
|  | nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift); | 
|  | timespec_add_ns(&timekeeper.raw_time, nsec); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * getnstimeofday - Returns the time of day in a timespec | 
|  | * @ts:		pointer to the timespec to be set | 
|  | * | 
|  | * Returns the time of day in a timespec. | 
|  | */ | 
|  | void getnstimeofday(struct timespec *ts) | 
|  | { | 
|  | unsigned long seq; | 
|  | s64 nsecs; | 
|  |  | 
|  | WARN_ON(timekeeping_suspended); | 
|  |  | 
|  | do { | 
|  | seq = read_seqcount_begin(&timekeeper.seq); | 
|  |  | 
|  | *ts = timekeeper.xtime; | 
|  | nsecs = timekeeping_get_ns(); | 
|  |  | 
|  | /* If arch requires, add in gettimeoffset() */ | 
|  | nsecs += arch_gettimeoffset(); | 
|  |  | 
|  | } while (read_seqcount_retry(&timekeeper.seq, seq)); | 
|  |  | 
|  | timespec_add_ns(ts, nsecs); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(getnstimeofday); | 
|  |  | 
|  | ktime_t ktime_get(void) | 
|  | { | 
|  | unsigned int seq; | 
|  | s64 secs, nsecs; | 
|  |  | 
|  | WARN_ON(timekeeping_suspended); | 
|  |  | 
|  | do { | 
|  | seq = read_seqcount_begin(&timekeeper.seq); | 
|  | secs = timekeeper.xtime.tv_sec + | 
|  | timekeeper.wall_to_monotonic.tv_sec; | 
|  | nsecs = timekeeper.xtime.tv_nsec + | 
|  | timekeeper.wall_to_monotonic.tv_nsec; | 
|  | nsecs += timekeeping_get_ns(); | 
|  | /* If arch requires, add in gettimeoffset() */ | 
|  | nsecs += arch_gettimeoffset(); | 
|  |  | 
|  | } while (read_seqcount_retry(&timekeeper.seq, seq)); | 
|  | /* | 
|  | * Use ktime_set/ktime_add_ns to create a proper ktime on | 
|  | * 32-bit architectures without CONFIG_KTIME_SCALAR. | 
|  | */ | 
|  | return ktime_add_ns(ktime_set(secs, 0), nsecs); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ktime_get); | 
|  |  | 
|  | /** | 
|  | * ktime_get_ts - get the monotonic clock in timespec format | 
|  | * @ts:		pointer to timespec variable | 
|  | * | 
|  | * The function calculates the monotonic clock from the realtime | 
|  | * clock and the wall_to_monotonic offset and stores the result | 
|  | * in normalized timespec format in the variable pointed to by @ts. | 
|  | */ | 
|  | void ktime_get_ts(struct timespec *ts) | 
|  | { | 
|  | struct timespec tomono; | 
|  | unsigned int seq; | 
|  | s64 nsecs; | 
|  |  | 
|  | WARN_ON(timekeeping_suspended); | 
|  |  | 
|  | do { | 
|  | seq = read_seqcount_begin(&timekeeper.seq); | 
|  | *ts = timekeeper.xtime; | 
|  | tomono = timekeeper.wall_to_monotonic; | 
|  | nsecs = timekeeping_get_ns(); | 
|  | /* If arch requires, add in gettimeoffset() */ | 
|  | nsecs += arch_gettimeoffset(); | 
|  |  | 
|  | } while (read_seqcount_retry(&timekeeper.seq, seq)); | 
|  |  | 
|  | set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec, | 
|  | ts->tv_nsec + tomono.tv_nsec + nsecs); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ktime_get_ts); | 
|  |  | 
|  | #ifdef CONFIG_NTP_PPS | 
|  |  | 
|  | /** | 
|  | * getnstime_raw_and_real - get day and raw monotonic time in timespec format | 
|  | * @ts_raw:	pointer to the timespec to be set to raw monotonic time | 
|  | * @ts_real:	pointer to the timespec to be set to the time of day | 
|  | * | 
|  | * This function reads both the time of day and raw monotonic time at the | 
|  | * same time atomically and stores the resulting timestamps in timespec | 
|  | * format. | 
|  | */ | 
|  | void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real) | 
|  | { | 
|  | unsigned long seq; | 
|  | s64 nsecs_raw, nsecs_real; | 
|  |  | 
|  | WARN_ON_ONCE(timekeeping_suspended); | 
|  |  | 
|  | do { | 
|  | u32 arch_offset; | 
|  |  | 
|  | seq = read_seqcount_begin(&timekeeper.seq); | 
|  |  | 
|  | *ts_raw = timekeeper.raw_time; | 
|  | *ts_real = timekeeper.xtime; | 
|  |  | 
|  | nsecs_raw = timekeeping_get_ns_raw(); | 
|  | nsecs_real = timekeeping_get_ns(); | 
|  |  | 
|  | /* If arch requires, add in gettimeoffset() */ | 
|  | arch_offset = arch_gettimeoffset(); | 
|  | nsecs_raw += arch_offset; | 
|  | nsecs_real += arch_offset; | 
|  |  | 
|  | } while (read_seqcount_retry(&timekeeper.seq, seq)); | 
|  |  | 
|  | timespec_add_ns(ts_raw, nsecs_raw); | 
|  | timespec_add_ns(ts_real, nsecs_real); | 
|  | } | 
|  | EXPORT_SYMBOL(getnstime_raw_and_real); | 
|  |  | 
|  | #endif /* CONFIG_NTP_PPS */ | 
|  |  | 
|  | /** | 
|  | * do_gettimeofday - Returns the time of day in a timeval | 
|  | * @tv:		pointer to the timeval to be set | 
|  | * | 
|  | * NOTE: Users should be converted to using getnstimeofday() | 
|  | */ | 
|  | void do_gettimeofday(struct timeval *tv) | 
|  | { | 
|  | struct timespec now; | 
|  |  | 
|  | getnstimeofday(&now); | 
|  | tv->tv_sec = now.tv_sec; | 
|  | tv->tv_usec = now.tv_nsec/1000; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(do_gettimeofday); | 
|  | /** | 
|  | * do_settimeofday - Sets the time of day | 
|  | * @tv:		pointer to the timespec variable containing the new time | 
|  | * | 
|  | * Sets the time of day to the new time and update NTP and notify hrtimers | 
|  | */ | 
|  | int do_settimeofday(const struct timespec *tv) | 
|  | { | 
|  | struct timespec ts_delta; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!timespec_valid_strict(tv)) | 
|  | return -EINVAL; | 
|  |  | 
|  | raw_spin_lock_irqsave(&timekeeper.lock, flags); | 
|  | write_seqcount_begin(&timekeeper.seq); | 
|  |  | 
|  | timekeeping_forward_now(); | 
|  |  | 
|  | ts_delta.tv_sec = tv->tv_sec - timekeeper.xtime.tv_sec; | 
|  | ts_delta.tv_nsec = tv->tv_nsec - timekeeper.xtime.tv_nsec; | 
|  | timekeeper.wall_to_monotonic = | 
|  | timespec_sub(timekeeper.wall_to_monotonic, ts_delta); | 
|  |  | 
|  | timekeeper.xtime = *tv; | 
|  | timekeeping_update(true); | 
|  |  | 
|  | write_seqcount_end(&timekeeper.seq); | 
|  | raw_spin_unlock_irqrestore(&timekeeper.lock, flags); | 
|  |  | 
|  | /* signal hrtimers about time change */ | 
|  | clock_was_set(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(do_settimeofday); | 
|  |  | 
|  |  | 
|  | /** | 
|  | * timekeeping_inject_offset - Adds or subtracts from the current time. | 
|  | * @tv:		pointer to the timespec variable containing the offset | 
|  | * | 
|  | * Adds or subtracts an offset value from the current time. | 
|  | */ | 
|  | int timekeeping_inject_offset(struct timespec *ts) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct timespec tmp; | 
|  | int ret = 0; | 
|  |  | 
|  | if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC) | 
|  | return -EINVAL; | 
|  |  | 
|  | raw_spin_lock_irqsave(&timekeeper.lock, flags); | 
|  | write_seqcount_begin(&timekeeper.seq); | 
|  |  | 
|  | timekeeping_forward_now(); | 
|  |  | 
|  | tmp = timespec_add(timekeeper.xtime,  *ts); | 
|  | if (!timespec_valid_strict(&tmp)) { | 
|  | ret = -EINVAL; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | timekeeper.xtime = timespec_add(timekeeper.xtime, *ts); | 
|  | timekeeper.wall_to_monotonic = | 
|  | timespec_sub(timekeeper.wall_to_monotonic, *ts); | 
|  |  | 
|  | error: /* even if we error out, we forwarded the time, so call update */ | 
|  | timekeeping_update(true); | 
|  |  | 
|  | write_seqcount_end(&timekeeper.seq); | 
|  | raw_spin_unlock_irqrestore(&timekeeper.lock, flags); | 
|  |  | 
|  | /* signal hrtimers about time change */ | 
|  | clock_was_set(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(timekeeping_inject_offset); | 
|  |  | 
|  | /** | 
|  | * change_clocksource - Swaps clocksources if a new one is available | 
|  | * | 
|  | * Accumulates current time interval and initializes new clocksource | 
|  | */ | 
|  | static int change_clocksource(void *data) | 
|  | { | 
|  | struct clocksource *new, *old; | 
|  | unsigned long flags; | 
|  |  | 
|  | new = (struct clocksource *) data; | 
|  |  | 
|  | raw_spin_lock_irqsave(&timekeeper.lock, flags); | 
|  | write_seqcount_begin(&timekeeper.seq); | 
|  |  | 
|  | timekeeping_forward_now(); | 
|  | if (!new->enable || new->enable(new) == 0) { | 
|  | old = timekeeper.clock; | 
|  | timekeeper_setup_internals(new); | 
|  | if (old->disable) | 
|  | old->disable(old); | 
|  | } | 
|  | timekeeping_update(true); | 
|  |  | 
|  | write_seqcount_end(&timekeeper.seq); | 
|  | raw_spin_unlock_irqrestore(&timekeeper.lock, flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * timekeeping_notify - Install a new clock source | 
|  | * @clock:		pointer to the clock source | 
|  | * | 
|  | * This function is called from clocksource.c after a new, better clock | 
|  | * source has been registered. The caller holds the clocksource_mutex. | 
|  | */ | 
|  | void timekeeping_notify(struct clocksource *clock) | 
|  | { | 
|  | if (timekeeper.clock == clock) | 
|  | return; | 
|  | stop_machine(change_clocksource, clock, NULL); | 
|  | tick_clock_notify(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ktime_get_real - get the real (wall-) time in ktime_t format | 
|  | * | 
|  | * returns the time in ktime_t format | 
|  | */ | 
|  | ktime_t ktime_get_real(void) | 
|  | { | 
|  | struct timespec now; | 
|  |  | 
|  | getnstimeofday(&now); | 
|  |  | 
|  | return timespec_to_ktime(now); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ktime_get_real); | 
|  |  | 
|  | /** | 
|  | * getrawmonotonic - Returns the raw monotonic time in a timespec | 
|  | * @ts:		pointer to the timespec to be set | 
|  | * | 
|  | * Returns the raw monotonic time (completely un-modified by ntp) | 
|  | */ | 
|  | void getrawmonotonic(struct timespec *ts) | 
|  | { | 
|  | unsigned long seq; | 
|  | s64 nsecs; | 
|  |  | 
|  | do { | 
|  | seq = read_seqcount_begin(&timekeeper.seq); | 
|  | nsecs = timekeeping_get_ns_raw(); | 
|  | *ts = timekeeper.raw_time; | 
|  |  | 
|  | } while (read_seqcount_retry(&timekeeper.seq, seq)); | 
|  |  | 
|  | timespec_add_ns(ts, nsecs); | 
|  | } | 
|  | EXPORT_SYMBOL(getrawmonotonic); | 
|  |  | 
|  |  | 
|  | /** | 
|  | * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres | 
|  | */ | 
|  | int timekeeping_valid_for_hres(void) | 
|  | { | 
|  | unsigned long seq; | 
|  | int ret; | 
|  |  | 
|  | do { | 
|  | seq = read_seqcount_begin(&timekeeper.seq); | 
|  |  | 
|  | ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; | 
|  |  | 
|  | } while (read_seqcount_retry(&timekeeper.seq, seq)); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * timekeeping_max_deferment - Returns max time the clocksource can be deferred | 
|  | */ | 
|  | u64 timekeeping_max_deferment(void) | 
|  | { | 
|  | unsigned long seq; | 
|  | u64 ret; | 
|  | do { | 
|  | seq = read_seqcount_begin(&timekeeper.seq); | 
|  |  | 
|  | ret = timekeeper.clock->max_idle_ns; | 
|  |  | 
|  | } while (read_seqcount_retry(&timekeeper.seq, seq)); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * read_persistent_clock -  Return time from the persistent clock. | 
|  | * | 
|  | * Weak dummy function for arches that do not yet support it. | 
|  | * Reads the time from the battery backed persistent clock. | 
|  | * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. | 
|  | * | 
|  | *  XXX - Do be sure to remove it once all arches implement it. | 
|  | */ | 
|  | void __attribute__((weak)) read_persistent_clock(struct timespec *ts) | 
|  | { | 
|  | ts->tv_sec = 0; | 
|  | ts->tv_nsec = 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * read_boot_clock -  Return time of the system start. | 
|  | * | 
|  | * Weak dummy function for arches that do not yet support it. | 
|  | * Function to read the exact time the system has been started. | 
|  | * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. | 
|  | * | 
|  | *  XXX - Do be sure to remove it once all arches implement it. | 
|  | */ | 
|  | void __attribute__((weak)) read_boot_clock(struct timespec *ts) | 
|  | { | 
|  | ts->tv_sec = 0; | 
|  | ts->tv_nsec = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * timekeeping_init - Initializes the clocksource and common timekeeping values | 
|  | */ | 
|  | void __init timekeeping_init(void) | 
|  | { | 
|  | struct clocksource *clock; | 
|  | unsigned long flags; | 
|  | struct timespec now, boot; | 
|  |  | 
|  | read_persistent_clock(&now); | 
|  | if (!timespec_valid_strict(&now)) { | 
|  | pr_warn("WARNING: Persistent clock returned invalid value!\n" | 
|  | "         Check your CMOS/BIOS settings.\n"); | 
|  | now.tv_sec = 0; | 
|  | now.tv_nsec = 0; | 
|  | } | 
|  |  | 
|  | read_boot_clock(&boot); | 
|  | if (!timespec_valid_strict(&boot)) { | 
|  | pr_warn("WARNING: Boot clock returned invalid value!\n" | 
|  | "         Check your CMOS/BIOS settings.\n"); | 
|  | boot.tv_sec = 0; | 
|  | boot.tv_nsec = 0; | 
|  | } | 
|  |  | 
|  | raw_spin_lock_init(&timekeeper.lock); | 
|  | seqcount_init(&timekeeper.seq); | 
|  |  | 
|  | ntp_init(); | 
|  |  | 
|  | raw_spin_lock_irqsave(&timekeeper.lock, flags); | 
|  | write_seqcount_begin(&timekeeper.seq); | 
|  | clock = clocksource_default_clock(); | 
|  | if (clock->enable) | 
|  | clock->enable(clock); | 
|  | timekeeper_setup_internals(clock); | 
|  |  | 
|  | timekeeper.xtime.tv_sec = now.tv_sec; | 
|  | timekeeper.xtime.tv_nsec = now.tv_nsec; | 
|  | timekeeper.raw_time.tv_sec = 0; | 
|  | timekeeper.raw_time.tv_nsec = 0; | 
|  | if (boot.tv_sec == 0 && boot.tv_nsec == 0) { | 
|  | boot.tv_sec = timekeeper.xtime.tv_sec; | 
|  | boot.tv_nsec = timekeeper.xtime.tv_nsec; | 
|  | } | 
|  | set_normalized_timespec(&timekeeper.wall_to_monotonic, | 
|  | -boot.tv_sec, -boot.tv_nsec); | 
|  | update_rt_offset(); | 
|  | timekeeper.total_sleep_time.tv_sec = 0; | 
|  | timekeeper.total_sleep_time.tv_nsec = 0; | 
|  | write_seqcount_end(&timekeeper.seq); | 
|  | raw_spin_unlock_irqrestore(&timekeeper.lock, flags); | 
|  | } | 
|  |  | 
|  | /* time in seconds when suspend began */ | 
|  | static struct timespec timekeeping_suspend_time; | 
|  |  | 
|  | static void update_sleep_time(struct timespec t) | 
|  | { | 
|  | timekeeper.total_sleep_time = t; | 
|  | timekeeper.offs_boot = timespec_to_ktime(t); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __timekeeping_inject_sleeptime - Internal function to add sleep interval | 
|  | * @delta: pointer to a timespec delta value | 
|  | * | 
|  | * Takes a timespec offset measuring a suspend interval and properly | 
|  | * adds the sleep offset to the timekeeping variables. | 
|  | */ | 
|  | static void __timekeeping_inject_sleeptime(struct timespec *delta) | 
|  | { | 
|  | if (!timespec_valid_strict(delta)) { | 
|  | printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid " | 
|  | "sleep delta value!\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | timekeeper.xtime = timespec_add(timekeeper.xtime, *delta); | 
|  | timekeeper.wall_to_monotonic = | 
|  | timespec_sub(timekeeper.wall_to_monotonic, *delta); | 
|  | update_sleep_time(timespec_add(timekeeper.total_sleep_time, *delta)); | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values | 
|  | * @delta: pointer to a timespec delta value | 
|  | * | 
|  | * This hook is for architectures that cannot support read_persistent_clock | 
|  | * because their RTC/persistent clock is only accessible when irqs are enabled. | 
|  | * | 
|  | * This function should only be called by rtc_resume(), and allows | 
|  | * a suspend offset to be injected into the timekeeping values. | 
|  | */ | 
|  | void timekeeping_inject_sleeptime(struct timespec *delta) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct timespec ts; | 
|  |  | 
|  | /* Make sure we don't set the clock twice */ | 
|  | read_persistent_clock(&ts); | 
|  | if (!(ts.tv_sec == 0 && ts.tv_nsec == 0)) | 
|  | return; | 
|  |  | 
|  | raw_spin_lock_irqsave(&timekeeper.lock, flags); | 
|  | write_seqcount_begin(&timekeeper.seq); | 
|  |  | 
|  | timekeeping_forward_now(); | 
|  |  | 
|  | __timekeeping_inject_sleeptime(delta); | 
|  |  | 
|  | timekeeping_update(true); | 
|  |  | 
|  | write_seqcount_end(&timekeeper.seq); | 
|  | raw_spin_unlock_irqrestore(&timekeeper.lock, flags); | 
|  |  | 
|  | /* signal hrtimers about time change */ | 
|  | clock_was_set(); | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * timekeeping_resume - Resumes the generic timekeeping subsystem. | 
|  | * | 
|  | * This is for the generic clocksource timekeeping. | 
|  | * xtime/wall_to_monotonic/jiffies/etc are | 
|  | * still managed by arch specific suspend/resume code. | 
|  | */ | 
|  | static void timekeeping_resume(void) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct timespec ts; | 
|  |  | 
|  | read_persistent_clock(&ts); | 
|  |  | 
|  | clocksource_resume(); | 
|  |  | 
|  | raw_spin_lock_irqsave(&timekeeper.lock, flags); | 
|  | write_seqcount_begin(&timekeeper.seq); | 
|  |  | 
|  | if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) { | 
|  | ts = timespec_sub(ts, timekeeping_suspend_time); | 
|  | __timekeeping_inject_sleeptime(&ts); | 
|  | } | 
|  | /* re-base the last cycle value */ | 
|  | timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock); | 
|  | timekeeper.ntp_error = 0; | 
|  | timekeeping_suspended = 0; | 
|  | timekeeping_update(false); | 
|  | write_seqcount_end(&timekeeper.seq); | 
|  | raw_spin_unlock_irqrestore(&timekeeper.lock, flags); | 
|  |  | 
|  | touch_softlockup_watchdog(); | 
|  |  | 
|  | clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL); | 
|  |  | 
|  | /* Resume hrtimers */ | 
|  | hrtimers_resume(); | 
|  | } | 
|  |  | 
|  | static int timekeeping_suspend(void) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct timespec		delta, delta_delta; | 
|  | static struct timespec	old_delta; | 
|  |  | 
|  | read_persistent_clock(&timekeeping_suspend_time); | 
|  |  | 
|  | raw_spin_lock_irqsave(&timekeeper.lock, flags); | 
|  | write_seqcount_begin(&timekeeper.seq); | 
|  | timekeeping_forward_now(); | 
|  | timekeeping_suspended = 1; | 
|  |  | 
|  | /* | 
|  | * To avoid drift caused by repeated suspend/resumes, | 
|  | * which each can add ~1 second drift error, | 
|  | * try to compensate so the difference in system time | 
|  | * and persistent_clock time stays close to constant. | 
|  | */ | 
|  | delta = timespec_sub(timekeeper.xtime, timekeeping_suspend_time); | 
|  | delta_delta = timespec_sub(delta, old_delta); | 
|  | if (abs(delta_delta.tv_sec)  >= 2) { | 
|  | /* | 
|  | * if delta_delta is too large, assume time correction | 
|  | * has occured and set old_delta to the current delta. | 
|  | */ | 
|  | old_delta = delta; | 
|  | } else { | 
|  | /* Otherwise try to adjust old_system to compensate */ | 
|  | timekeeping_suspend_time = | 
|  | timespec_add(timekeeping_suspend_time, delta_delta); | 
|  | } | 
|  | write_seqcount_end(&timekeeper.seq); | 
|  | raw_spin_unlock_irqrestore(&timekeeper.lock, flags); | 
|  |  | 
|  | clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL); | 
|  | clocksource_suspend(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* sysfs resume/suspend bits for timekeeping */ | 
|  | static struct syscore_ops timekeeping_syscore_ops = { | 
|  | .resume		= timekeeping_resume, | 
|  | .suspend	= timekeeping_suspend, | 
|  | }; | 
|  |  | 
|  | static int __init timekeeping_init_ops(void) | 
|  | { | 
|  | register_syscore_ops(&timekeeping_syscore_ops); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | device_initcall(timekeeping_init_ops); | 
|  |  | 
|  | /* | 
|  | * If the error is already larger, we look ahead even further | 
|  | * to compensate for late or lost adjustments. | 
|  | */ | 
|  | static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval, | 
|  | s64 *offset) | 
|  | { | 
|  | s64 tick_error, i; | 
|  | u32 look_ahead, adj; | 
|  | s32 error2, mult; | 
|  |  | 
|  | /* | 
|  | * Use the current error value to determine how much to look ahead. | 
|  | * The larger the error the slower we adjust for it to avoid problems | 
|  | * with losing too many ticks, otherwise we would overadjust and | 
|  | * produce an even larger error.  The smaller the adjustment the | 
|  | * faster we try to adjust for it, as lost ticks can do less harm | 
|  | * here.  This is tuned so that an error of about 1 msec is adjusted | 
|  | * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks). | 
|  | */ | 
|  | error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ); | 
|  | error2 = abs(error2); | 
|  | for (look_ahead = 0; error2 > 0; look_ahead++) | 
|  | error2 >>= 2; | 
|  |  | 
|  | /* | 
|  | * Now calculate the error in (1 << look_ahead) ticks, but first | 
|  | * remove the single look ahead already included in the error. | 
|  | */ | 
|  | tick_error = ntp_tick_length() >> (timekeeper.ntp_error_shift + 1); | 
|  | tick_error -= timekeeper.xtime_interval >> 1; | 
|  | error = ((error - tick_error) >> look_ahead) + tick_error; | 
|  |  | 
|  | /* Finally calculate the adjustment shift value.  */ | 
|  | i = *interval; | 
|  | mult = 1; | 
|  | if (error < 0) { | 
|  | error = -error; | 
|  | *interval = -*interval; | 
|  | *offset = -*offset; | 
|  | mult = -1; | 
|  | } | 
|  | for (adj = 0; error > i; adj++) | 
|  | error >>= 1; | 
|  |  | 
|  | *interval <<= adj; | 
|  | *offset <<= adj; | 
|  | return mult << adj; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Adjust the multiplier to reduce the error value, | 
|  | * this is optimized for the most common adjustments of -1,0,1, | 
|  | * for other values we can do a bit more work. | 
|  | */ | 
|  | static void timekeeping_adjust(s64 offset) | 
|  | { | 
|  | s64 error, interval = timekeeper.cycle_interval; | 
|  | int adj; | 
|  |  | 
|  | /* | 
|  | * The point of this is to check if the error is greater than half | 
|  | * an interval. | 
|  | * | 
|  | * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs. | 
|  | * | 
|  | * Note we subtract one in the shift, so that error is really error*2. | 
|  | * This "saves" dividing(shifting) interval twice, but keeps the | 
|  | * (error > interval) comparison as still measuring if error is | 
|  | * larger than half an interval. | 
|  | * | 
|  | * Note: It does not "save" on aggravation when reading the code. | 
|  | */ | 
|  | error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1); | 
|  | if (error > interval) { | 
|  | /* | 
|  | * We now divide error by 4(via shift), which checks if | 
|  | * the error is greater than twice the interval. | 
|  | * If it is greater, we need a bigadjust, if its smaller, | 
|  | * we can adjust by 1. | 
|  | */ | 
|  | error >>= 2; | 
|  | /* | 
|  | * XXX - In update_wall_time, we round up to the next | 
|  | * nanosecond, and store the amount rounded up into | 
|  | * the error. This causes the likely below to be unlikely. | 
|  | * | 
|  | * The proper fix is to avoid rounding up by using | 
|  | * the high precision timekeeper.xtime_nsec instead of | 
|  | * xtime.tv_nsec everywhere. Fixing this will take some | 
|  | * time. | 
|  | */ | 
|  | if (likely(error <= interval)) | 
|  | adj = 1; | 
|  | else | 
|  | adj = timekeeping_bigadjust(error, &interval, &offset); | 
|  | } else if (error < -interval) { | 
|  | /* See comment above, this is just switched for the negative */ | 
|  | error >>= 2; | 
|  | if (likely(error >= -interval)) { | 
|  | adj = -1; | 
|  | interval = -interval; | 
|  | offset = -offset; | 
|  | } else | 
|  | adj = timekeeping_bigadjust(error, &interval, &offset); | 
|  | } else /* No adjustment needed */ | 
|  | return; | 
|  |  | 
|  | if (unlikely(timekeeper.clock->maxadj && | 
|  | (timekeeper.mult + adj > | 
|  | timekeeper.clock->mult + timekeeper.clock->maxadj))) { | 
|  | printk_once(KERN_WARNING | 
|  | "Adjusting %s more than 11%% (%ld vs %ld)\n", | 
|  | timekeeper.clock->name, (long)timekeeper.mult + adj, | 
|  | (long)timekeeper.clock->mult + | 
|  | timekeeper.clock->maxadj); | 
|  | } | 
|  | /* | 
|  | * So the following can be confusing. | 
|  | * | 
|  | * To keep things simple, lets assume adj == 1 for now. | 
|  | * | 
|  | * When adj != 1, remember that the interval and offset values | 
|  | * have been appropriately scaled so the math is the same. | 
|  | * | 
|  | * The basic idea here is that we're increasing the multiplier | 
|  | * by one, this causes the xtime_interval to be incremented by | 
|  | * one cycle_interval. This is because: | 
|  | *	xtime_interval = cycle_interval * mult | 
|  | * So if mult is being incremented by one: | 
|  | *	xtime_interval = cycle_interval * (mult + 1) | 
|  | * Its the same as: | 
|  | *	xtime_interval = (cycle_interval * mult) + cycle_interval | 
|  | * Which can be shortened to: | 
|  | *	xtime_interval += cycle_interval | 
|  | * | 
|  | * So offset stores the non-accumulated cycles. Thus the current | 
|  | * time (in shifted nanoseconds) is: | 
|  | *	now = (offset * adj) + xtime_nsec | 
|  | * Now, even though we're adjusting the clock frequency, we have | 
|  | * to keep time consistent. In other words, we can't jump back | 
|  | * in time, and we also want to avoid jumping forward in time. | 
|  | * | 
|  | * So given the same offset value, we need the time to be the same | 
|  | * both before and after the freq adjustment. | 
|  | *	now = (offset * adj_1) + xtime_nsec_1 | 
|  | *	now = (offset * adj_2) + xtime_nsec_2 | 
|  | * So: | 
|  | *	(offset * adj_1) + xtime_nsec_1 = | 
|  | *		(offset * adj_2) + xtime_nsec_2 | 
|  | * And we know: | 
|  | *	adj_2 = adj_1 + 1 | 
|  | * So: | 
|  | *	(offset * adj_1) + xtime_nsec_1 = | 
|  | *		(offset * (adj_1+1)) + xtime_nsec_2 | 
|  | *	(offset * adj_1) + xtime_nsec_1 = | 
|  | *		(offset * adj_1) + offset + xtime_nsec_2 | 
|  | * Canceling the sides: | 
|  | *	xtime_nsec_1 = offset + xtime_nsec_2 | 
|  | * Which gives us: | 
|  | *	xtime_nsec_2 = xtime_nsec_1 - offset | 
|  | * Which simplfies to: | 
|  | *	xtime_nsec -= offset | 
|  | * | 
|  | * XXX - TODO: Doc ntp_error calculation. | 
|  | */ | 
|  | timekeeper.mult += adj; | 
|  | timekeeper.xtime_interval += interval; | 
|  | timekeeper.xtime_nsec -= offset; | 
|  | timekeeper.ntp_error -= (interval - offset) << | 
|  | timekeeper.ntp_error_shift; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * logarithmic_accumulation - shifted accumulation of cycles | 
|  | * | 
|  | * This functions accumulates a shifted interval of cycles into | 
|  | * into a shifted interval nanoseconds. Allows for O(log) accumulation | 
|  | * loop. | 
|  | * | 
|  | * Returns the unconsumed cycles. | 
|  | */ | 
|  | static cycle_t logarithmic_accumulation(cycle_t offset, int shift, | 
|  | unsigned int *clock_set) | 
|  | { | 
|  | u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift; | 
|  | u64 raw_nsecs; | 
|  |  | 
|  | /* If the offset is smaller than a shifted interval, do nothing */ | 
|  | if (offset < timekeeper.cycle_interval<<shift) | 
|  | return offset; | 
|  |  | 
|  | /* Accumulate one shifted interval */ | 
|  | offset -= timekeeper.cycle_interval << shift; | 
|  | timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift; | 
|  |  | 
|  | timekeeper.xtime_nsec += timekeeper.xtime_interval << shift; | 
|  | while (timekeeper.xtime_nsec >= nsecps) { | 
|  | int leap; | 
|  | timekeeper.xtime_nsec -= nsecps; | 
|  | timekeeper.xtime.tv_sec++; | 
|  | leap = second_overflow(timekeeper.xtime.tv_sec); | 
|  | timekeeper.xtime.tv_sec += leap; | 
|  | timekeeper.wall_to_monotonic.tv_sec -= leap; | 
|  | if (leap) | 
|  | *clock_set = 1; | 
|  | } | 
|  |  | 
|  | /* Accumulate raw time */ | 
|  | raw_nsecs = (u64)timekeeper.raw_interval << shift; | 
|  | raw_nsecs += timekeeper.raw_time.tv_nsec; | 
|  | if (raw_nsecs >= NSEC_PER_SEC) { | 
|  | u64 raw_secs = raw_nsecs; | 
|  | raw_nsecs = do_div(raw_secs, NSEC_PER_SEC); | 
|  | timekeeper.raw_time.tv_sec += raw_secs; | 
|  | } | 
|  | timekeeper.raw_time.tv_nsec = raw_nsecs; | 
|  |  | 
|  | /* Accumulate error between NTP and clock interval */ | 
|  | timekeeper.ntp_error += ntp_tick_length() << shift; | 
|  | timekeeper.ntp_error -= | 
|  | (timekeeper.xtime_interval + timekeeper.xtime_remainder) << | 
|  | (timekeeper.ntp_error_shift + shift); | 
|  |  | 
|  | return offset; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * update_wall_time - Uses the current clocksource to increment the wall time | 
|  | * | 
|  | */ | 
|  | static void update_wall_time(void) | 
|  | { | 
|  | struct clocksource *clock; | 
|  | cycle_t offset; | 
|  | int shift = 0, maxshift; | 
|  | unsigned int clock_set = 0; | 
|  | unsigned long flags; | 
|  |  | 
|  | raw_spin_lock_irqsave(&timekeeper.lock, flags); | 
|  | write_seqcount_begin(&timekeeper.seq); | 
|  |  | 
|  | /* Make sure we're fully resumed: */ | 
|  | if (unlikely(timekeeping_suspended)) | 
|  | goto out; | 
|  |  | 
|  | clock = timekeeper.clock; | 
|  |  | 
|  | #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET | 
|  | offset = timekeeper.cycle_interval; | 
|  | #else | 
|  | offset = (clock->read(clock) - clock->cycle_last) & clock->mask; | 
|  | #endif | 
|  | /* Check if there's really nothing to do */ | 
|  | if (offset < timekeeper.cycle_interval) | 
|  | goto out; | 
|  |  | 
|  | timekeeper.xtime_nsec = (s64)timekeeper.xtime.tv_nsec << | 
|  | timekeeper.shift; | 
|  | /* | 
|  | * With NO_HZ we may have to accumulate many cycle_intervals | 
|  | * (think "ticks") worth of time at once. To do this efficiently, | 
|  | * we calculate the largest doubling multiple of cycle_intervals | 
|  | * that is smaller than the offset.  We then accumulate that | 
|  | * chunk in one go, and then try to consume the next smaller | 
|  | * doubled multiple. | 
|  | */ | 
|  | shift = ilog2(offset) - ilog2(timekeeper.cycle_interval); | 
|  | shift = max(0, shift); | 
|  | /* Bound shift to one less than what overflows tick_length */ | 
|  | maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; | 
|  | shift = min(shift, maxshift); | 
|  | while (offset >= timekeeper.cycle_interval) { | 
|  | offset = logarithmic_accumulation(offset, shift, &clock_set); | 
|  | if(offset < timekeeper.cycle_interval<<shift) | 
|  | shift--; | 
|  | } | 
|  |  | 
|  | /* correct the clock when NTP error is too big */ | 
|  | timekeeping_adjust(offset); | 
|  |  | 
|  | /* | 
|  | * Since in the loop above, we accumulate any amount of time | 
|  | * in xtime_nsec over a second into xtime.tv_sec, its possible for | 
|  | * xtime_nsec to be fairly small after the loop. Further, if we're | 
|  | * slightly speeding the clocksource up in timekeeping_adjust(), | 
|  | * its possible the required corrective factor to xtime_nsec could | 
|  | * cause it to underflow. | 
|  | * | 
|  | * Now, we cannot simply roll the accumulated second back, since | 
|  | * the NTP subsystem has been notified via second_overflow. So | 
|  | * instead we push xtime_nsec forward by the amount we underflowed, | 
|  | * and add that amount into the error. | 
|  | * | 
|  | * We'll correct this error next time through this function, when | 
|  | * xtime_nsec is not as small. | 
|  | */ | 
|  | if (unlikely((s64)timekeeper.xtime_nsec < 0)) { | 
|  | s64 neg = -(s64)timekeeper.xtime_nsec; | 
|  | timekeeper.xtime_nsec = 0; | 
|  | timekeeper.ntp_error += neg << timekeeper.ntp_error_shift; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Store full nanoseconds into xtime after rounding it up and | 
|  | * add the remainder to the error difference. | 
|  | */ | 
|  | timekeeper.xtime.tv_nsec = ((s64)timekeeper.xtime_nsec >> | 
|  | timekeeper.shift) + 1; | 
|  | timekeeper.xtime_nsec -= (s64)timekeeper.xtime.tv_nsec << | 
|  | timekeeper.shift; | 
|  | timekeeper.ntp_error +=	timekeeper.xtime_nsec << | 
|  | timekeeper.ntp_error_shift; | 
|  |  | 
|  | /* | 
|  | * Finally, make sure that after the rounding | 
|  | * xtime.tv_nsec isn't larger than NSEC_PER_SEC | 
|  | */ | 
|  | if (unlikely(timekeeper.xtime.tv_nsec >= NSEC_PER_SEC)) { | 
|  | int leap; | 
|  | timekeeper.xtime.tv_nsec -= NSEC_PER_SEC; | 
|  | timekeeper.xtime.tv_sec++; | 
|  | leap = second_overflow(timekeeper.xtime.tv_sec); | 
|  | timekeeper.xtime.tv_sec += leap; | 
|  | timekeeper.wall_to_monotonic.tv_sec -= leap; | 
|  | if (leap) | 
|  | clock_set = 1; | 
|  | } | 
|  |  | 
|  | timekeeping_update(false); | 
|  |  | 
|  | out: | 
|  | write_seqcount_end(&timekeeper.seq); | 
|  | raw_spin_unlock_irqrestore(&timekeeper.lock, flags); | 
|  |  | 
|  | if (clock_set) | 
|  | clock_was_set_delayed(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * getboottime - Return the real time of system boot. | 
|  | * @ts:		pointer to the timespec to be set | 
|  | * | 
|  | * Returns the wall-time of boot in a timespec. | 
|  | * | 
|  | * This is based on the wall_to_monotonic offset and the total suspend | 
|  | * time. Calls to settimeofday will affect the value returned (which | 
|  | * basically means that however wrong your real time clock is at boot time, | 
|  | * you get the right time here). | 
|  | */ | 
|  | void getboottime(struct timespec *ts) | 
|  | { | 
|  | struct timespec boottime = { | 
|  | .tv_sec = timekeeper.wall_to_monotonic.tv_sec + | 
|  | timekeeper.total_sleep_time.tv_sec, | 
|  | .tv_nsec = timekeeper.wall_to_monotonic.tv_nsec + | 
|  | timekeeper.total_sleep_time.tv_nsec | 
|  | }; | 
|  |  | 
|  | set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(getboottime); | 
|  |  | 
|  |  | 
|  | /** | 
|  | * get_monotonic_boottime - Returns monotonic time since boot | 
|  | * @ts:		pointer to the timespec to be set | 
|  | * | 
|  | * Returns the monotonic time since boot in a timespec. | 
|  | * | 
|  | * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also | 
|  | * includes the time spent in suspend. | 
|  | */ | 
|  | void get_monotonic_boottime(struct timespec *ts) | 
|  | { | 
|  | struct timespec tomono, sleep; | 
|  | unsigned int seq; | 
|  | s64 nsecs; | 
|  |  | 
|  | WARN_ON(timekeeping_suspended); | 
|  |  | 
|  | do { | 
|  | seq = read_seqcount_begin(&timekeeper.seq); | 
|  | *ts = timekeeper.xtime; | 
|  | tomono = timekeeper.wall_to_monotonic; | 
|  | sleep = timekeeper.total_sleep_time; | 
|  | nsecs = timekeeping_get_ns(); | 
|  |  | 
|  | } while (read_seqcount_retry(&timekeeper.seq, seq)); | 
|  |  | 
|  | set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec, | 
|  | (s64)ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec + nsecs); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(get_monotonic_boottime); | 
|  |  | 
|  | /** | 
|  | * ktime_get_boottime - Returns monotonic time since boot in a ktime | 
|  | * | 
|  | * Returns the monotonic time since boot in a ktime | 
|  | * | 
|  | * This is similar to CLOCK_MONTONIC/ktime_get, but also | 
|  | * includes the time spent in suspend. | 
|  | */ | 
|  | ktime_t ktime_get_boottime(void) | 
|  | { | 
|  | struct timespec ts; | 
|  |  | 
|  | get_monotonic_boottime(&ts); | 
|  | return timespec_to_ktime(ts); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ktime_get_boottime); | 
|  |  | 
|  | /** | 
|  | * monotonic_to_bootbased - Convert the monotonic time to boot based. | 
|  | * @ts:		pointer to the timespec to be converted | 
|  | */ | 
|  | void monotonic_to_bootbased(struct timespec *ts) | 
|  | { | 
|  | *ts = timespec_add(*ts, timekeeper.total_sleep_time); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(monotonic_to_bootbased); | 
|  |  | 
|  | unsigned long get_seconds(void) | 
|  | { | 
|  | return timekeeper.xtime.tv_sec; | 
|  | } | 
|  | EXPORT_SYMBOL(get_seconds); | 
|  |  | 
|  | struct timespec __current_kernel_time(void) | 
|  | { | 
|  | return timekeeper.xtime; | 
|  | } | 
|  |  | 
|  | struct timespec current_kernel_time(void) | 
|  | { | 
|  | struct timespec now; | 
|  | unsigned long seq; | 
|  |  | 
|  | do { | 
|  | seq = read_seqcount_begin(&timekeeper.seq); | 
|  |  | 
|  | now = timekeeper.xtime; | 
|  | } while (read_seqcount_retry(&timekeeper.seq, seq)); | 
|  |  | 
|  | return now; | 
|  | } | 
|  | EXPORT_SYMBOL(current_kernel_time); | 
|  |  | 
|  | struct timespec get_monotonic_coarse(void) | 
|  | { | 
|  | struct timespec now, mono; | 
|  | unsigned long seq; | 
|  |  | 
|  | do { | 
|  | seq = read_seqcount_begin(&timekeeper.seq); | 
|  |  | 
|  | now = timekeeper.xtime; | 
|  | mono = timekeeper.wall_to_monotonic; | 
|  | } while (read_seqcount_retry(&timekeeper.seq, seq)); | 
|  |  | 
|  | set_normalized_timespec(&now, now.tv_sec + mono.tv_sec, | 
|  | now.tv_nsec + mono.tv_nsec); | 
|  | return now; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The 64-bit jiffies value is not atomic - you MUST NOT read it | 
|  | * without sampling the sequence number in xtime_lock. | 
|  | * jiffies is defined in the linker script... | 
|  | */ | 
|  | void do_timer(unsigned long ticks) | 
|  | { | 
|  | jiffies_64 += ticks; | 
|  | update_wall_time(); | 
|  | calc_global_load(ticks); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic, | 
|  | *    and sleep offsets. | 
|  | * @xtim:	pointer to timespec to be set with xtime | 
|  | * @wtom:	pointer to timespec to be set with wall_to_monotonic | 
|  | * @sleep:	pointer to timespec to be set with time in suspend | 
|  | */ | 
|  | void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim, | 
|  | struct timespec *wtom, struct timespec *sleep) | 
|  | { | 
|  | unsigned long seq; | 
|  |  | 
|  | do { | 
|  | seq = read_seqcount_begin(&timekeeper.seq); | 
|  | *xtim = timekeeper.xtime; | 
|  | *wtom = timekeeper.wall_to_monotonic; | 
|  | *sleep = timekeeper.total_sleep_time; | 
|  | } while (read_seqcount_retry(&timekeeper.seq, seq)); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HIGH_RES_TIMERS | 
|  | /** | 
|  | * ktime_get_update_offsets - hrtimer helper | 
|  | * @offs_real:	pointer to storage for monotonic -> realtime offset | 
|  | * @offs_boot:	pointer to storage for monotonic -> boottime offset | 
|  | * | 
|  | * Returns current monotonic time and updates the offsets | 
|  | * Called from hrtimer_interupt() or retrigger_next_event() | 
|  | */ | 
|  | ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot) | 
|  | { | 
|  | ktime_t now; | 
|  | unsigned int seq; | 
|  | u64 secs, nsecs; | 
|  |  | 
|  | do { | 
|  | seq = read_seqcount_begin(&timekeeper.seq); | 
|  |  | 
|  | secs = timekeeper.xtime.tv_sec; | 
|  | nsecs = timekeeper.xtime.tv_nsec; | 
|  | nsecs += timekeeping_get_ns(); | 
|  | /* If arch requires, add in gettimeoffset() */ | 
|  | nsecs += arch_gettimeoffset(); | 
|  |  | 
|  | *offs_real = timekeeper.offs_real; | 
|  | *offs_boot = timekeeper.offs_boot; | 
|  | } while (read_seqcount_retry(&timekeeper.seq, seq)); | 
|  |  | 
|  | now = ktime_add_ns(ktime_set(secs, 0), nsecs); | 
|  | now = ktime_sub(now, *offs_real); | 
|  | return now; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format | 
|  | */ | 
|  | ktime_t ktime_get_monotonic_offset(void) | 
|  | { | 
|  | unsigned long seq; | 
|  | struct timespec wtom; | 
|  |  | 
|  | do { | 
|  | seq = read_seqcount_begin(&timekeeper.seq); | 
|  | wtom = timekeeper.wall_to_monotonic; | 
|  | } while (read_seqcount_retry(&timekeeper.seq, seq)); | 
|  |  | 
|  | return timespec_to_ktime(wtom); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset); | 
|  |  | 
|  |  | 
|  | /** | 
|  | * xtime_update() - advances the timekeeping infrastructure | 
|  | * @ticks:	number of ticks, that have elapsed since the last call. | 
|  | * | 
|  | * Must be called with interrupts disabled. | 
|  | */ | 
|  | void xtime_update(unsigned long ticks) | 
|  | { | 
|  | raw_spin_lock(&xtime_lock); | 
|  | write_seqcount_begin(&xtime_seq); | 
|  | do_timer(ticks); | 
|  | write_seqcount_end(&xtime_seq); | 
|  | raw_spin_unlock(&xtime_lock); | 
|  | } |