|  | /* | 
|  | *   fs/cifs/cifsacl.c | 
|  | * | 
|  | *   Copyright (C) International Business Machines  Corp., 2007,2008 | 
|  | *   Author(s): Steve French (sfrench@us.ibm.com) | 
|  | * | 
|  | *   Contains the routines for mapping CIFS/NTFS ACLs | 
|  | * | 
|  | *   This library is free software; you can redistribute it and/or modify | 
|  | *   it under the terms of the GNU Lesser General Public License as published | 
|  | *   by the Free Software Foundation; either version 2.1 of the License, or | 
|  | *   (at your option) any later version. | 
|  | * | 
|  | *   This library is distributed in the hope that it will be useful, | 
|  | *   but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See | 
|  | *   the GNU Lesser General Public License for more details. | 
|  | * | 
|  | *   You should have received a copy of the GNU Lesser General Public License | 
|  | *   along with this library; if not, write to the Free Software | 
|  | *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | 
|  | */ | 
|  |  | 
|  | #include <linux/fs.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/keyctl.h> | 
|  | #include <linux/key-type.h> | 
|  | #include <keys/user-type.h> | 
|  | #include "cifspdu.h" | 
|  | #include "cifsglob.h" | 
|  | #include "cifsacl.h" | 
|  | #include "cifsproto.h" | 
|  | #include "cifs_debug.h" | 
|  |  | 
|  | /* security id for everyone/world system group */ | 
|  | static const struct cifs_sid sid_everyone = { | 
|  | 1, 1, {0, 0, 0, 0, 0, 1}, {0} }; | 
|  | /* security id for Authenticated Users system group */ | 
|  | static const struct cifs_sid sid_authusers = { | 
|  | 1, 1, {0, 0, 0, 0, 0, 5}, {__constant_cpu_to_le32(11)} }; | 
|  | /* group users */ | 
|  | static const struct cifs_sid sid_user = {1, 2 , {0, 0, 0, 0, 0, 5}, {} }; | 
|  |  | 
|  | const struct cred *root_cred; | 
|  |  | 
|  | static void | 
|  | shrink_idmap_tree(struct rb_root *root, int nr_to_scan, int *nr_rem, | 
|  | int *nr_del) | 
|  | { | 
|  | struct rb_node *node; | 
|  | struct rb_node *tmp; | 
|  | struct cifs_sid_id *psidid; | 
|  |  | 
|  | node = rb_first(root); | 
|  | while (node) { | 
|  | tmp = node; | 
|  | node = rb_next(tmp); | 
|  | psidid = rb_entry(tmp, struct cifs_sid_id, rbnode); | 
|  | if (nr_to_scan == 0 || *nr_del == nr_to_scan) | 
|  | ++(*nr_rem); | 
|  | else { | 
|  | if (time_after(jiffies, psidid->time + SID_MAP_EXPIRE) | 
|  | && psidid->refcount == 0) { | 
|  | rb_erase(tmp, root); | 
|  | ++(*nr_del); | 
|  | } else | 
|  | ++(*nr_rem); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Run idmap cache shrinker. | 
|  | */ | 
|  | static int | 
|  | cifs_idmap_shrinker(struct shrinker *shrink, struct shrink_control *sc) | 
|  | { | 
|  | int nr_to_scan = sc->nr_to_scan; | 
|  | int nr_del = 0; | 
|  | int nr_rem = 0; | 
|  | struct rb_root *root; | 
|  |  | 
|  | root = &uidtree; | 
|  | spin_lock(&siduidlock); | 
|  | shrink_idmap_tree(root, nr_to_scan, &nr_rem, &nr_del); | 
|  | spin_unlock(&siduidlock); | 
|  |  | 
|  | root = &gidtree; | 
|  | spin_lock(&sidgidlock); | 
|  | shrink_idmap_tree(root, nr_to_scan, &nr_rem, &nr_del); | 
|  | spin_unlock(&sidgidlock); | 
|  |  | 
|  | root = &siduidtree; | 
|  | spin_lock(&uidsidlock); | 
|  | shrink_idmap_tree(root, nr_to_scan, &nr_rem, &nr_del); | 
|  | spin_unlock(&uidsidlock); | 
|  |  | 
|  | root = &sidgidtree; | 
|  | spin_lock(&gidsidlock); | 
|  | shrink_idmap_tree(root, nr_to_scan, &nr_rem, &nr_del); | 
|  | spin_unlock(&gidsidlock); | 
|  |  | 
|  | return nr_rem; | 
|  | } | 
|  |  | 
|  | static void | 
|  | sid_rb_insert(struct rb_root *root, unsigned long cid, | 
|  | struct cifs_sid_id **psidid, char *typestr) | 
|  | { | 
|  | char *strptr; | 
|  | struct rb_node *node = root->rb_node; | 
|  | struct rb_node *parent = NULL; | 
|  | struct rb_node **linkto = &(root->rb_node); | 
|  | struct cifs_sid_id *lsidid; | 
|  |  | 
|  | while (node) { | 
|  | lsidid = rb_entry(node, struct cifs_sid_id, rbnode); | 
|  | parent = node; | 
|  | if (cid > lsidid->id) { | 
|  | linkto = &(node->rb_left); | 
|  | node = node->rb_left; | 
|  | } | 
|  | if (cid < lsidid->id) { | 
|  | linkto = &(node->rb_right); | 
|  | node = node->rb_right; | 
|  | } | 
|  | } | 
|  |  | 
|  | (*psidid)->id = cid; | 
|  | (*psidid)->time = jiffies - (SID_MAP_RETRY + 1); | 
|  | (*psidid)->refcount = 0; | 
|  |  | 
|  | sprintf((*psidid)->sidstr, "%s", typestr); | 
|  | strptr = (*psidid)->sidstr + strlen((*psidid)->sidstr); | 
|  | sprintf(strptr, "%ld", cid); | 
|  |  | 
|  | clear_bit(SID_ID_PENDING, &(*psidid)->state); | 
|  | clear_bit(SID_ID_MAPPED, &(*psidid)->state); | 
|  |  | 
|  | rb_link_node(&(*psidid)->rbnode, parent, linkto); | 
|  | rb_insert_color(&(*psidid)->rbnode, root); | 
|  | } | 
|  |  | 
|  | static struct cifs_sid_id * | 
|  | sid_rb_search(struct rb_root *root, unsigned long cid) | 
|  | { | 
|  | struct rb_node *node = root->rb_node; | 
|  | struct cifs_sid_id *lsidid; | 
|  |  | 
|  | while (node) { | 
|  | lsidid = rb_entry(node, struct cifs_sid_id, rbnode); | 
|  | if (cid > lsidid->id) | 
|  | node = node->rb_left; | 
|  | else if (cid < lsidid->id) | 
|  | node = node->rb_right; | 
|  | else /* node found */ | 
|  | return lsidid; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct shrinker cifs_shrinker = { | 
|  | .shrink = cifs_idmap_shrinker, | 
|  | .seeks = DEFAULT_SEEKS, | 
|  | }; | 
|  |  | 
|  | static int | 
|  | cifs_idmap_key_instantiate(struct key *key, const void *data, size_t datalen) | 
|  | { | 
|  | char *payload; | 
|  |  | 
|  | payload = kmalloc(datalen, GFP_KERNEL); | 
|  | if (!payload) | 
|  | return -ENOMEM; | 
|  |  | 
|  | memcpy(payload, data, datalen); | 
|  | key->payload.data = payload; | 
|  | key->datalen = datalen; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | cifs_idmap_key_destroy(struct key *key) | 
|  | { | 
|  | kfree(key->payload.data); | 
|  | } | 
|  |  | 
|  | struct key_type cifs_idmap_key_type = { | 
|  | .name        = "cifs.idmap", | 
|  | .instantiate = cifs_idmap_key_instantiate, | 
|  | .destroy     = cifs_idmap_key_destroy, | 
|  | .describe    = user_describe, | 
|  | .match       = user_match, | 
|  | }; | 
|  |  | 
|  | static void | 
|  | sid_to_str(struct cifs_sid *sidptr, char *sidstr) | 
|  | { | 
|  | int i; | 
|  | unsigned long saval; | 
|  | char *strptr; | 
|  |  | 
|  | strptr = sidstr; | 
|  |  | 
|  | sprintf(strptr, "%s", "S"); | 
|  | strptr = sidstr + strlen(sidstr); | 
|  |  | 
|  | sprintf(strptr, "-%d", sidptr->revision); | 
|  | strptr = sidstr + strlen(sidstr); | 
|  |  | 
|  | for (i = 0; i < 6; ++i) { | 
|  | if (sidptr->authority[i]) { | 
|  | sprintf(strptr, "-%d", sidptr->authority[i]); | 
|  | strptr = sidstr + strlen(sidstr); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 0; i < sidptr->num_subauth; ++i) { | 
|  | saval = le32_to_cpu(sidptr->sub_auth[i]); | 
|  | sprintf(strptr, "-%ld", saval); | 
|  | strptr = sidstr + strlen(sidstr); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | cifs_copy_sid(struct cifs_sid *dst, const struct cifs_sid *src) | 
|  | { | 
|  | memcpy(dst, src, sizeof(*dst)); | 
|  | dst->num_subauth = min_t(u8, src->num_subauth, NUM_SUBAUTHS); | 
|  | } | 
|  |  | 
|  | static void | 
|  | id_rb_insert(struct rb_root *root, struct cifs_sid *sidptr, | 
|  | struct cifs_sid_id **psidid, char *typestr) | 
|  | { | 
|  | int rc; | 
|  | char *strptr; | 
|  | struct rb_node *node = root->rb_node; | 
|  | struct rb_node *parent = NULL; | 
|  | struct rb_node **linkto = &(root->rb_node); | 
|  | struct cifs_sid_id *lsidid; | 
|  |  | 
|  | while (node) { | 
|  | lsidid = rb_entry(node, struct cifs_sid_id, rbnode); | 
|  | parent = node; | 
|  | rc = compare_sids(sidptr, &((lsidid)->sid)); | 
|  | if (rc > 0) { | 
|  | linkto = &(node->rb_left); | 
|  | node = node->rb_left; | 
|  | } else if (rc < 0) { | 
|  | linkto = &(node->rb_right); | 
|  | node = node->rb_right; | 
|  | } | 
|  | } | 
|  |  | 
|  | cifs_copy_sid(&(*psidid)->sid, sidptr); | 
|  | (*psidid)->time = jiffies - (SID_MAP_RETRY + 1); | 
|  | (*psidid)->refcount = 0; | 
|  |  | 
|  | sprintf((*psidid)->sidstr, "%s", typestr); | 
|  | strptr = (*psidid)->sidstr + strlen((*psidid)->sidstr); | 
|  | sid_to_str(&(*psidid)->sid, strptr); | 
|  |  | 
|  | clear_bit(SID_ID_PENDING, &(*psidid)->state); | 
|  | clear_bit(SID_ID_MAPPED, &(*psidid)->state); | 
|  |  | 
|  | rb_link_node(&(*psidid)->rbnode, parent, linkto); | 
|  | rb_insert_color(&(*psidid)->rbnode, root); | 
|  | } | 
|  |  | 
|  | static struct cifs_sid_id * | 
|  | id_rb_search(struct rb_root *root, struct cifs_sid *sidptr) | 
|  | { | 
|  | int rc; | 
|  | struct rb_node *node = root->rb_node; | 
|  | struct cifs_sid_id *lsidid; | 
|  |  | 
|  | while (node) { | 
|  | lsidid = rb_entry(node, struct cifs_sid_id, rbnode); | 
|  | rc = compare_sids(sidptr, &((lsidid)->sid)); | 
|  | if (rc > 0) { | 
|  | node = node->rb_left; | 
|  | } else if (rc < 0) { | 
|  | node = node->rb_right; | 
|  | } else /* node found */ | 
|  | return lsidid; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int | 
|  | sidid_pending_wait(void *unused) | 
|  | { | 
|  | schedule(); | 
|  | return signal_pending(current) ? -ERESTARTSYS : 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | id_to_sid(unsigned long cid, uint sidtype, struct cifs_sid *ssid) | 
|  | { | 
|  | int rc = 0; | 
|  | struct key *sidkey; | 
|  | const struct cred *saved_cred; | 
|  | struct cifs_sid *lsid; | 
|  | struct cifs_sid_id *psidid, *npsidid; | 
|  | struct rb_root *cidtree; | 
|  | spinlock_t *cidlock; | 
|  |  | 
|  | if (sidtype == SIDOWNER) { | 
|  | cidlock = &siduidlock; | 
|  | cidtree = &uidtree; | 
|  | } else if (sidtype == SIDGROUP) { | 
|  | cidlock = &sidgidlock; | 
|  | cidtree = &gidtree; | 
|  | } else | 
|  | return -EINVAL; | 
|  |  | 
|  | spin_lock(cidlock); | 
|  | psidid = sid_rb_search(cidtree, cid); | 
|  |  | 
|  | if (!psidid) { /* node does not exist, allocate one & attempt adding */ | 
|  | spin_unlock(cidlock); | 
|  | npsidid = kzalloc(sizeof(struct cifs_sid_id), GFP_KERNEL); | 
|  | if (!npsidid) | 
|  | return -ENOMEM; | 
|  |  | 
|  | npsidid->sidstr = kmalloc(SIDLEN, GFP_KERNEL); | 
|  | if (!npsidid->sidstr) { | 
|  | kfree(npsidid); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | spin_lock(cidlock); | 
|  | psidid = sid_rb_search(cidtree, cid); | 
|  | if (psidid) { /* node happened to get inserted meanwhile */ | 
|  | ++psidid->refcount; | 
|  | spin_unlock(cidlock); | 
|  | kfree(npsidid->sidstr); | 
|  | kfree(npsidid); | 
|  | } else { | 
|  | psidid = npsidid; | 
|  | sid_rb_insert(cidtree, cid, &psidid, | 
|  | sidtype == SIDOWNER ? "oi:" : "gi:"); | 
|  | ++psidid->refcount; | 
|  | spin_unlock(cidlock); | 
|  | } | 
|  | } else { | 
|  | ++psidid->refcount; | 
|  | spin_unlock(cidlock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we are here, it is safe to access psidid and its fields | 
|  | * since a reference was taken earlier while holding the spinlock. | 
|  | * A reference on the node is put without holding the spinlock | 
|  | * and it is OK to do so in this case, shrinker will not erase | 
|  | * this node until all references are put and we do not access | 
|  | * any fields of the node after a reference is put . | 
|  | */ | 
|  | if (test_bit(SID_ID_MAPPED, &psidid->state)) { | 
|  | cifs_copy_sid(ssid, &psidid->sid); | 
|  | psidid->time = jiffies; /* update ts for accessing */ | 
|  | goto id_sid_out; | 
|  | } | 
|  |  | 
|  | if (time_after(psidid->time + SID_MAP_RETRY, jiffies)) { | 
|  | rc = -EINVAL; | 
|  | goto id_sid_out; | 
|  | } | 
|  |  | 
|  | if (!test_and_set_bit(SID_ID_PENDING, &psidid->state)) { | 
|  | saved_cred = override_creds(root_cred); | 
|  | sidkey = request_key(&cifs_idmap_key_type, psidid->sidstr, ""); | 
|  | if (IS_ERR(sidkey)) { | 
|  | rc = -EINVAL; | 
|  | cFYI(1, "%s: Can't map and id to a SID", __func__); | 
|  | } else if (sidkey->datalen < sizeof(struct cifs_sid)) { | 
|  | rc = -EIO; | 
|  | cFYI(1, "%s: Downcall contained malformed key " | 
|  | "(datalen=%hu)", __func__, sidkey->datalen); | 
|  | } else { | 
|  | lsid = (struct cifs_sid *)sidkey->payload.data; | 
|  | cifs_copy_sid(&psidid->sid, lsid); | 
|  | cifs_copy_sid(ssid, &psidid->sid); | 
|  | set_bit(SID_ID_MAPPED, &psidid->state); | 
|  | key_put(sidkey); | 
|  | kfree(psidid->sidstr); | 
|  | } | 
|  | psidid->time = jiffies; /* update ts for accessing */ | 
|  | revert_creds(saved_cred); | 
|  | clear_bit(SID_ID_PENDING, &psidid->state); | 
|  | wake_up_bit(&psidid->state, SID_ID_PENDING); | 
|  | } else { | 
|  | rc = wait_on_bit(&psidid->state, SID_ID_PENDING, | 
|  | sidid_pending_wait, TASK_INTERRUPTIBLE); | 
|  | if (rc) { | 
|  | cFYI(1, "%s: sidid_pending_wait interrupted %d", | 
|  | __func__, rc); | 
|  | --psidid->refcount; | 
|  | return rc; | 
|  | } | 
|  | if (test_bit(SID_ID_MAPPED, &psidid->state)) | 
|  | cifs_copy_sid(ssid, &psidid->sid); | 
|  | else | 
|  | rc = -EINVAL; | 
|  | } | 
|  | id_sid_out: | 
|  | --psidid->refcount; | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int | 
|  | sid_to_id(struct cifs_sb_info *cifs_sb, struct cifs_sid *psid, | 
|  | struct cifs_fattr *fattr, uint sidtype) | 
|  | { | 
|  | int rc; | 
|  | unsigned long cid; | 
|  | struct key *idkey; | 
|  | const struct cred *saved_cred; | 
|  | struct cifs_sid_id *psidid, *npsidid; | 
|  | struct rb_root *cidtree; | 
|  | spinlock_t *cidlock; | 
|  |  | 
|  | if (sidtype == SIDOWNER) { | 
|  | cid = cifs_sb->mnt_uid; /* default uid, in case upcall fails */ | 
|  | cidlock = &siduidlock; | 
|  | cidtree = &uidtree; | 
|  | } else if (sidtype == SIDGROUP) { | 
|  | cid = cifs_sb->mnt_gid; /* default gid, in case upcall fails */ | 
|  | cidlock = &sidgidlock; | 
|  | cidtree = &gidtree; | 
|  | } else | 
|  | return -ENOENT; | 
|  |  | 
|  | spin_lock(cidlock); | 
|  | psidid = id_rb_search(cidtree, psid); | 
|  |  | 
|  | if (!psidid) { /* node does not exist, allocate one & attempt adding */ | 
|  | spin_unlock(cidlock); | 
|  | npsidid = kzalloc(sizeof(struct cifs_sid_id), GFP_KERNEL); | 
|  | if (!npsidid) | 
|  | return -ENOMEM; | 
|  |  | 
|  | npsidid->sidstr = kmalloc(SIDLEN, GFP_KERNEL); | 
|  | if (!npsidid->sidstr) { | 
|  | kfree(npsidid); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | spin_lock(cidlock); | 
|  | psidid = id_rb_search(cidtree, psid); | 
|  | if (psidid) { /* node happened to get inserted meanwhile */ | 
|  | ++psidid->refcount; | 
|  | spin_unlock(cidlock); | 
|  | kfree(npsidid->sidstr); | 
|  | kfree(npsidid); | 
|  | } else { | 
|  | psidid = npsidid; | 
|  | id_rb_insert(cidtree, psid, &psidid, | 
|  | sidtype == SIDOWNER ? "os:" : "gs:"); | 
|  | ++psidid->refcount; | 
|  | spin_unlock(cidlock); | 
|  | } | 
|  | } else { | 
|  | ++psidid->refcount; | 
|  | spin_unlock(cidlock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we are here, it is safe to access psidid and its fields | 
|  | * since a reference was taken earlier while holding the spinlock. | 
|  | * A reference on the node is put without holding the spinlock | 
|  | * and it is OK to do so in this case, shrinker will not erase | 
|  | * this node until all references are put and we do not access | 
|  | * any fields of the node after a reference is put . | 
|  | */ | 
|  | if (test_bit(SID_ID_MAPPED, &psidid->state)) { | 
|  | cid = psidid->id; | 
|  | psidid->time = jiffies; /* update ts for accessing */ | 
|  | goto sid_to_id_out; | 
|  | } | 
|  |  | 
|  | if (time_after(psidid->time + SID_MAP_RETRY, jiffies)) | 
|  | goto sid_to_id_out; | 
|  |  | 
|  | if (!test_and_set_bit(SID_ID_PENDING, &psidid->state)) { | 
|  | saved_cred = override_creds(root_cred); | 
|  | idkey = request_key(&cifs_idmap_key_type, psidid->sidstr, ""); | 
|  | if (IS_ERR(idkey)) | 
|  | cFYI(1, "%s: Can't map SID to an id", __func__); | 
|  | else { | 
|  | cid = *(unsigned long *)idkey->payload.value; | 
|  | psidid->id = cid; | 
|  | set_bit(SID_ID_MAPPED, &psidid->state); | 
|  | key_put(idkey); | 
|  | kfree(psidid->sidstr); | 
|  | } | 
|  | revert_creds(saved_cred); | 
|  | psidid->time = jiffies; /* update ts for accessing */ | 
|  | clear_bit(SID_ID_PENDING, &psidid->state); | 
|  | wake_up_bit(&psidid->state, SID_ID_PENDING); | 
|  | } else { | 
|  | rc = wait_on_bit(&psidid->state, SID_ID_PENDING, | 
|  | sidid_pending_wait, TASK_INTERRUPTIBLE); | 
|  | if (rc) { | 
|  | cFYI(1, "%s: sidid_pending_wait interrupted %d", | 
|  | __func__, rc); | 
|  | --psidid->refcount; /* decremented without spinlock */ | 
|  | return rc; | 
|  | } | 
|  | if (test_bit(SID_ID_MAPPED, &psidid->state)) | 
|  | cid = psidid->id; | 
|  | } | 
|  |  | 
|  | sid_to_id_out: | 
|  | --psidid->refcount; /* decremented without spinlock */ | 
|  | if (sidtype == SIDOWNER) | 
|  | fattr->cf_uid = cid; | 
|  | else | 
|  | fattr->cf_gid = cid; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int | 
|  | init_cifs_idmap(void) | 
|  | { | 
|  | struct cred *cred; | 
|  | struct key *keyring; | 
|  | int ret; | 
|  |  | 
|  | cFYI(1, "Registering the %s key type\n", cifs_idmap_key_type.name); | 
|  |  | 
|  | /* create an override credential set with a special thread keyring in | 
|  | * which requests are cached | 
|  | * | 
|  | * this is used to prevent malicious redirections from being installed | 
|  | * with add_key(). | 
|  | */ | 
|  | cred = prepare_kernel_cred(NULL); | 
|  | if (!cred) | 
|  | return -ENOMEM; | 
|  |  | 
|  | keyring = key_alloc(&key_type_keyring, ".cifs_idmap", 0, 0, cred, | 
|  | (KEY_POS_ALL & ~KEY_POS_SETATTR) | | 
|  | KEY_USR_VIEW | KEY_USR_READ, | 
|  | KEY_ALLOC_NOT_IN_QUOTA); | 
|  | if (IS_ERR(keyring)) { | 
|  | ret = PTR_ERR(keyring); | 
|  | goto failed_put_cred; | 
|  | } | 
|  |  | 
|  | ret = key_instantiate_and_link(keyring, NULL, 0, NULL, NULL); | 
|  | if (ret < 0) | 
|  | goto failed_put_key; | 
|  |  | 
|  | ret = register_key_type(&cifs_idmap_key_type); | 
|  | if (ret < 0) | 
|  | goto failed_put_key; | 
|  |  | 
|  | /* instruct request_key() to use this special keyring as a cache for | 
|  | * the results it looks up */ | 
|  | set_bit(KEY_FLAG_ROOT_CAN_CLEAR, &keyring->flags); | 
|  | cred->thread_keyring = keyring; | 
|  | cred->jit_keyring = KEY_REQKEY_DEFL_THREAD_KEYRING; | 
|  | root_cred = cred; | 
|  |  | 
|  | spin_lock_init(&siduidlock); | 
|  | uidtree = RB_ROOT; | 
|  | spin_lock_init(&sidgidlock); | 
|  | gidtree = RB_ROOT; | 
|  |  | 
|  | spin_lock_init(&uidsidlock); | 
|  | siduidtree = RB_ROOT; | 
|  | spin_lock_init(&gidsidlock); | 
|  | sidgidtree = RB_ROOT; | 
|  | register_shrinker(&cifs_shrinker); | 
|  |  | 
|  | cFYI(1, "cifs idmap keyring: %d\n", key_serial(keyring)); | 
|  | return 0; | 
|  |  | 
|  | failed_put_key: | 
|  | key_put(keyring); | 
|  | failed_put_cred: | 
|  | put_cred(cred); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void | 
|  | exit_cifs_idmap(void) | 
|  | { | 
|  | key_revoke(root_cred->thread_keyring); | 
|  | unregister_key_type(&cifs_idmap_key_type); | 
|  | put_cred(root_cred); | 
|  | unregister_shrinker(&cifs_shrinker); | 
|  | cFYI(1, "Unregistered %s key type\n", cifs_idmap_key_type.name); | 
|  | } | 
|  |  | 
|  | void | 
|  | cifs_destroy_idmaptrees(void) | 
|  | { | 
|  | struct rb_root *root; | 
|  | struct rb_node *node; | 
|  |  | 
|  | root = &uidtree; | 
|  | spin_lock(&siduidlock); | 
|  | while ((node = rb_first(root))) | 
|  | rb_erase(node, root); | 
|  | spin_unlock(&siduidlock); | 
|  |  | 
|  | root = &gidtree; | 
|  | spin_lock(&sidgidlock); | 
|  | while ((node = rb_first(root))) | 
|  | rb_erase(node, root); | 
|  | spin_unlock(&sidgidlock); | 
|  |  | 
|  | root = &siduidtree; | 
|  | spin_lock(&uidsidlock); | 
|  | while ((node = rb_first(root))) | 
|  | rb_erase(node, root); | 
|  | spin_unlock(&uidsidlock); | 
|  |  | 
|  | root = &sidgidtree; | 
|  | spin_lock(&gidsidlock); | 
|  | while ((node = rb_first(root))) | 
|  | rb_erase(node, root); | 
|  | spin_unlock(&gidsidlock); | 
|  | } | 
|  |  | 
|  | /* if the two SIDs (roughly equivalent to a UUID for a user or group) are | 
|  | the same returns 1, if they do not match returns 0 */ | 
|  | int compare_sids(const struct cifs_sid *ctsid, const struct cifs_sid *cwsid) | 
|  | { | 
|  | int i; | 
|  | int num_subauth, num_sat, num_saw; | 
|  |  | 
|  | if ((!ctsid) || (!cwsid)) | 
|  | return 1; | 
|  |  | 
|  | /* compare the revision */ | 
|  | if (ctsid->revision != cwsid->revision) { | 
|  | if (ctsid->revision > cwsid->revision) | 
|  | return 1; | 
|  | else | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* compare all of the six auth values */ | 
|  | for (i = 0; i < 6; ++i) { | 
|  | if (ctsid->authority[i] != cwsid->authority[i]) { | 
|  | if (ctsid->authority[i] > cwsid->authority[i]) | 
|  | return 1; | 
|  | else | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* compare all of the subauth values if any */ | 
|  | num_sat = ctsid->num_subauth; | 
|  | num_saw = cwsid->num_subauth; | 
|  | num_subauth = num_sat < num_saw ? num_sat : num_saw; | 
|  | if (num_subauth) { | 
|  | for (i = 0; i < num_subauth; ++i) { | 
|  | if (ctsid->sub_auth[i] != cwsid->sub_auth[i]) { | 
|  | if (le32_to_cpu(ctsid->sub_auth[i]) > | 
|  | le32_to_cpu(cwsid->sub_auth[i])) | 
|  | return 1; | 
|  | else | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; /* sids compare/match */ | 
|  | } | 
|  |  | 
|  |  | 
|  | /* copy ntsd, owner sid, and group sid from a security descriptor to another */ | 
|  | static void copy_sec_desc(const struct cifs_ntsd *pntsd, | 
|  | struct cifs_ntsd *pnntsd, __u32 sidsoffset) | 
|  | { | 
|  | struct cifs_sid *owner_sid_ptr, *group_sid_ptr; | 
|  | struct cifs_sid *nowner_sid_ptr, *ngroup_sid_ptr; | 
|  |  | 
|  | /* copy security descriptor control portion */ | 
|  | pnntsd->revision = pntsd->revision; | 
|  | pnntsd->type = pntsd->type; | 
|  | pnntsd->dacloffset = cpu_to_le32(sizeof(struct cifs_ntsd)); | 
|  | pnntsd->sacloffset = 0; | 
|  | pnntsd->osidoffset = cpu_to_le32(sidsoffset); | 
|  | pnntsd->gsidoffset = cpu_to_le32(sidsoffset + sizeof(struct cifs_sid)); | 
|  |  | 
|  | /* copy owner sid */ | 
|  | owner_sid_ptr = (struct cifs_sid *)((char *)pntsd + | 
|  | le32_to_cpu(pntsd->osidoffset)); | 
|  | nowner_sid_ptr = (struct cifs_sid *)((char *)pnntsd + sidsoffset); | 
|  | cifs_copy_sid(nowner_sid_ptr, owner_sid_ptr); | 
|  |  | 
|  | /* copy group sid */ | 
|  | group_sid_ptr = (struct cifs_sid *)((char *)pntsd + | 
|  | le32_to_cpu(pntsd->gsidoffset)); | 
|  | ngroup_sid_ptr = (struct cifs_sid *)((char *)pnntsd + sidsoffset + | 
|  | sizeof(struct cifs_sid)); | 
|  | cifs_copy_sid(ngroup_sid_ptr, group_sid_ptr); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | change posix mode to reflect permissions | 
|  | pmode is the existing mode (we only want to overwrite part of this | 
|  | bits to set can be: S_IRWXU, S_IRWXG or S_IRWXO ie 00700 or 00070 or 00007 | 
|  | */ | 
|  | static void access_flags_to_mode(__le32 ace_flags, int type, umode_t *pmode, | 
|  | umode_t *pbits_to_set) | 
|  | { | 
|  | __u32 flags = le32_to_cpu(ace_flags); | 
|  | /* the order of ACEs is important.  The canonical order is to begin with | 
|  | DENY entries followed by ALLOW, otherwise an allow entry could be | 
|  | encountered first, making the subsequent deny entry like "dead code" | 
|  | which would be superflous since Windows stops when a match is made | 
|  | for the operation you are trying to perform for your user */ | 
|  |  | 
|  | /* For deny ACEs we change the mask so that subsequent allow access | 
|  | control entries do not turn on the bits we are denying */ | 
|  | if (type == ACCESS_DENIED) { | 
|  | if (flags & GENERIC_ALL) | 
|  | *pbits_to_set &= ~S_IRWXUGO; | 
|  |  | 
|  | if ((flags & GENERIC_WRITE) || | 
|  | ((flags & FILE_WRITE_RIGHTS) == FILE_WRITE_RIGHTS)) | 
|  | *pbits_to_set &= ~S_IWUGO; | 
|  | if ((flags & GENERIC_READ) || | 
|  | ((flags & FILE_READ_RIGHTS) == FILE_READ_RIGHTS)) | 
|  | *pbits_to_set &= ~S_IRUGO; | 
|  | if ((flags & GENERIC_EXECUTE) || | 
|  | ((flags & FILE_EXEC_RIGHTS) == FILE_EXEC_RIGHTS)) | 
|  | *pbits_to_set &= ~S_IXUGO; | 
|  | return; | 
|  | } else if (type != ACCESS_ALLOWED) { | 
|  | cERROR(1, "unknown access control type %d", type); | 
|  | return; | 
|  | } | 
|  | /* else ACCESS_ALLOWED type */ | 
|  |  | 
|  | if (flags & GENERIC_ALL) { | 
|  | *pmode |= (S_IRWXUGO & (*pbits_to_set)); | 
|  | cFYI(DBG2, "all perms"); | 
|  | return; | 
|  | } | 
|  | if ((flags & GENERIC_WRITE) || | 
|  | ((flags & FILE_WRITE_RIGHTS) == FILE_WRITE_RIGHTS)) | 
|  | *pmode |= (S_IWUGO & (*pbits_to_set)); | 
|  | if ((flags & GENERIC_READ) || | 
|  | ((flags & FILE_READ_RIGHTS) == FILE_READ_RIGHTS)) | 
|  | *pmode |= (S_IRUGO & (*pbits_to_set)); | 
|  | if ((flags & GENERIC_EXECUTE) || | 
|  | ((flags & FILE_EXEC_RIGHTS) == FILE_EXEC_RIGHTS)) | 
|  | *pmode |= (S_IXUGO & (*pbits_to_set)); | 
|  |  | 
|  | cFYI(DBG2, "access flags 0x%x mode now 0x%x", flags, *pmode); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | Generate access flags to reflect permissions mode is the existing mode. | 
|  | This function is called for every ACE in the DACL whose SID matches | 
|  | with either owner or group or everyone. | 
|  | */ | 
|  |  | 
|  | static void mode_to_access_flags(umode_t mode, umode_t bits_to_use, | 
|  | __u32 *pace_flags) | 
|  | { | 
|  | /* reset access mask */ | 
|  | *pace_flags = 0x0; | 
|  |  | 
|  | /* bits to use are either S_IRWXU or S_IRWXG or S_IRWXO */ | 
|  | mode &= bits_to_use; | 
|  |  | 
|  | /* check for R/W/X UGO since we do not know whose flags | 
|  | is this but we have cleared all the bits sans RWX for | 
|  | either user or group or other as per bits_to_use */ | 
|  | if (mode & S_IRUGO) | 
|  | *pace_flags |= SET_FILE_READ_RIGHTS; | 
|  | if (mode & S_IWUGO) | 
|  | *pace_flags |= SET_FILE_WRITE_RIGHTS; | 
|  | if (mode & S_IXUGO) | 
|  | *pace_flags |= SET_FILE_EXEC_RIGHTS; | 
|  |  | 
|  | cFYI(DBG2, "mode: 0x%x, access flags now 0x%x", mode, *pace_flags); | 
|  | return; | 
|  | } | 
|  |  | 
|  | static __u16 fill_ace_for_sid(struct cifs_ace *pntace, | 
|  | const struct cifs_sid *psid, __u64 nmode, umode_t bits) | 
|  | { | 
|  | int i; | 
|  | __u16 size = 0; | 
|  | __u32 access_req = 0; | 
|  |  | 
|  | pntace->type = ACCESS_ALLOWED; | 
|  | pntace->flags = 0x0; | 
|  | mode_to_access_flags(nmode, bits, &access_req); | 
|  | if (!access_req) | 
|  | access_req = SET_MINIMUM_RIGHTS; | 
|  | pntace->access_req = cpu_to_le32(access_req); | 
|  |  | 
|  | pntace->sid.revision = psid->revision; | 
|  | pntace->sid.num_subauth = psid->num_subauth; | 
|  | for (i = 0; i < 6; i++) | 
|  | pntace->sid.authority[i] = psid->authority[i]; | 
|  | for (i = 0; i < psid->num_subauth; i++) | 
|  | pntace->sid.sub_auth[i] = psid->sub_auth[i]; | 
|  |  | 
|  | size = 1 + 1 + 2 + 4 + 1 + 1 + 6 + (psid->num_subauth * 4); | 
|  | pntace->size = cpu_to_le16(size); | 
|  |  | 
|  | return size; | 
|  | } | 
|  |  | 
|  |  | 
|  | #ifdef CONFIG_CIFS_DEBUG2 | 
|  | static void dump_ace(struct cifs_ace *pace, char *end_of_acl) | 
|  | { | 
|  | int num_subauth; | 
|  |  | 
|  | /* validate that we do not go past end of acl */ | 
|  |  | 
|  | if (le16_to_cpu(pace->size) < 16) { | 
|  | cERROR(1, "ACE too small %d", le16_to_cpu(pace->size)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (end_of_acl < (char *)pace + le16_to_cpu(pace->size)) { | 
|  | cERROR(1, "ACL too small to parse ACE"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | num_subauth = pace->sid.num_subauth; | 
|  | if (num_subauth) { | 
|  | int i; | 
|  | cFYI(1, "ACE revision %d num_auth %d type %d flags %d size %d", | 
|  | pace->sid.revision, pace->sid.num_subauth, pace->type, | 
|  | pace->flags, le16_to_cpu(pace->size)); | 
|  | for (i = 0; i < num_subauth; ++i) { | 
|  | cFYI(1, "ACE sub_auth[%d]: 0x%x", i, | 
|  | le32_to_cpu(pace->sid.sub_auth[i])); | 
|  | } | 
|  |  | 
|  | /* BB add length check to make sure that we do not have huge | 
|  | num auths and therefore go off the end */ | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | static void parse_dacl(struct cifs_acl *pdacl, char *end_of_acl, | 
|  | struct cifs_sid *pownersid, struct cifs_sid *pgrpsid, | 
|  | struct cifs_fattr *fattr) | 
|  | { | 
|  | int i; | 
|  | int num_aces = 0; | 
|  | int acl_size; | 
|  | char *acl_base; | 
|  | struct cifs_ace **ppace; | 
|  |  | 
|  | /* BB need to add parm so we can store the SID BB */ | 
|  |  | 
|  | if (!pdacl) { | 
|  | /* no DACL in the security descriptor, set | 
|  | all the permissions for user/group/other */ | 
|  | fattr->cf_mode |= S_IRWXUGO; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* validate that we do not go past end of acl */ | 
|  | if (end_of_acl < (char *)pdacl + le16_to_cpu(pdacl->size)) { | 
|  | cERROR(1, "ACL too small to parse DACL"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | cFYI(DBG2, "DACL revision %d size %d num aces %d", | 
|  | le16_to_cpu(pdacl->revision), le16_to_cpu(pdacl->size), | 
|  | le32_to_cpu(pdacl->num_aces)); | 
|  |  | 
|  | /* reset rwx permissions for user/group/other. | 
|  | Also, if num_aces is 0 i.e. DACL has no ACEs, | 
|  | user/group/other have no permissions */ | 
|  | fattr->cf_mode &= ~(S_IRWXUGO); | 
|  |  | 
|  | acl_base = (char *)pdacl; | 
|  | acl_size = sizeof(struct cifs_acl); | 
|  |  | 
|  | num_aces = le32_to_cpu(pdacl->num_aces); | 
|  | if (num_aces > 0) { | 
|  | umode_t user_mask = S_IRWXU; | 
|  | umode_t group_mask = S_IRWXG; | 
|  | umode_t other_mask = S_IRWXU | S_IRWXG | S_IRWXO; | 
|  |  | 
|  | if (num_aces > ULONG_MAX / sizeof(struct cifs_ace *)) | 
|  | return; | 
|  | ppace = kmalloc(num_aces * sizeof(struct cifs_ace *), | 
|  | GFP_KERNEL); | 
|  | if (!ppace) { | 
|  | cERROR(1, "DACL memory allocation error"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < num_aces; ++i) { | 
|  | ppace[i] = (struct cifs_ace *) (acl_base + acl_size); | 
|  | #ifdef CONFIG_CIFS_DEBUG2 | 
|  | dump_ace(ppace[i], end_of_acl); | 
|  | #endif | 
|  | if (compare_sids(&(ppace[i]->sid), pownersid) == 0) | 
|  | access_flags_to_mode(ppace[i]->access_req, | 
|  | ppace[i]->type, | 
|  | &fattr->cf_mode, | 
|  | &user_mask); | 
|  | if (compare_sids(&(ppace[i]->sid), pgrpsid) == 0) | 
|  | access_flags_to_mode(ppace[i]->access_req, | 
|  | ppace[i]->type, | 
|  | &fattr->cf_mode, | 
|  | &group_mask); | 
|  | if (compare_sids(&(ppace[i]->sid), &sid_everyone) == 0) | 
|  | access_flags_to_mode(ppace[i]->access_req, | 
|  | ppace[i]->type, | 
|  | &fattr->cf_mode, | 
|  | &other_mask); | 
|  | if (compare_sids(&(ppace[i]->sid), &sid_authusers) == 0) | 
|  | access_flags_to_mode(ppace[i]->access_req, | 
|  | ppace[i]->type, | 
|  | &fattr->cf_mode, | 
|  | &other_mask); | 
|  |  | 
|  |  | 
|  | /*			memcpy((void *)(&(cifscred->aces[i])), | 
|  | (void *)ppace[i], | 
|  | sizeof(struct cifs_ace)); */ | 
|  |  | 
|  | acl_base = (char *)ppace[i]; | 
|  | acl_size = le16_to_cpu(ppace[i]->size); | 
|  | } | 
|  |  | 
|  | kfree(ppace); | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int set_chmod_dacl(struct cifs_acl *pndacl, struct cifs_sid *pownersid, | 
|  | struct cifs_sid *pgrpsid, __u64 nmode) | 
|  | { | 
|  | u16 size = 0; | 
|  | struct cifs_acl *pnndacl; | 
|  |  | 
|  | pnndacl = (struct cifs_acl *)((char *)pndacl + sizeof(struct cifs_acl)); | 
|  |  | 
|  | size += fill_ace_for_sid((struct cifs_ace *) ((char *)pnndacl + size), | 
|  | pownersid, nmode, S_IRWXU); | 
|  | size += fill_ace_for_sid((struct cifs_ace *)((char *)pnndacl + size), | 
|  | pgrpsid, nmode, S_IRWXG); | 
|  | size += fill_ace_for_sid((struct cifs_ace *)((char *)pnndacl + size), | 
|  | &sid_everyone, nmode, S_IRWXO); | 
|  |  | 
|  | pndacl->size = cpu_to_le16(size + sizeof(struct cifs_acl)); | 
|  | pndacl->num_aces = cpu_to_le32(3); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int parse_sid(struct cifs_sid *psid, char *end_of_acl) | 
|  | { | 
|  | /* BB need to add parm so we can store the SID BB */ | 
|  |  | 
|  | /* validate that we do not go past end of ACL - sid must be at least 8 | 
|  | bytes long (assuming no sub-auths - e.g. the null SID */ | 
|  | if (end_of_acl < (char *)psid + 8) { | 
|  | cERROR(1, "ACL too small to parse SID %p", psid); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (psid->num_subauth) { | 
|  | #ifdef CONFIG_CIFS_DEBUG2 | 
|  | int i; | 
|  | cFYI(1, "SID revision %d num_auth %d", | 
|  | psid->revision, psid->num_subauth); | 
|  |  | 
|  | for (i = 0; i < psid->num_subauth; i++) { | 
|  | cFYI(1, "SID sub_auth[%d]: 0x%x ", i, | 
|  | le32_to_cpu(psid->sub_auth[i])); | 
|  | } | 
|  |  | 
|  | /* BB add length check to make sure that we do not have huge | 
|  | num auths and therefore go off the end */ | 
|  | cFYI(1, "RID 0x%x", | 
|  | le32_to_cpu(psid->sub_auth[psid->num_subauth-1])); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Convert CIFS ACL to POSIX form */ | 
|  | static int parse_sec_desc(struct cifs_sb_info *cifs_sb, | 
|  | struct cifs_ntsd *pntsd, int acl_len, struct cifs_fattr *fattr) | 
|  | { | 
|  | int rc = 0; | 
|  | struct cifs_sid *owner_sid_ptr, *group_sid_ptr; | 
|  | struct cifs_acl *dacl_ptr; /* no need for SACL ptr */ | 
|  | char *end_of_acl = ((char *)pntsd) + acl_len; | 
|  | __u32 dacloffset; | 
|  |  | 
|  | if (pntsd == NULL) | 
|  | return -EIO; | 
|  |  | 
|  | owner_sid_ptr = (struct cifs_sid *)((char *)pntsd + | 
|  | le32_to_cpu(pntsd->osidoffset)); | 
|  | group_sid_ptr = (struct cifs_sid *)((char *)pntsd + | 
|  | le32_to_cpu(pntsd->gsidoffset)); | 
|  | dacloffset = le32_to_cpu(pntsd->dacloffset); | 
|  | dacl_ptr = (struct cifs_acl *)((char *)pntsd + dacloffset); | 
|  | cFYI(DBG2, "revision %d type 0x%x ooffset 0x%x goffset 0x%x " | 
|  | "sacloffset 0x%x dacloffset 0x%x", | 
|  | pntsd->revision, pntsd->type, le32_to_cpu(pntsd->osidoffset), | 
|  | le32_to_cpu(pntsd->gsidoffset), | 
|  | le32_to_cpu(pntsd->sacloffset), dacloffset); | 
|  | /*	cifs_dump_mem("owner_sid: ", owner_sid_ptr, 64); */ | 
|  | rc = parse_sid(owner_sid_ptr, end_of_acl); | 
|  | if (rc) { | 
|  | cFYI(1, "%s: Error %d parsing Owner SID", __func__, rc); | 
|  | return rc; | 
|  | } | 
|  | rc = sid_to_id(cifs_sb, owner_sid_ptr, fattr, SIDOWNER); | 
|  | if (rc) { | 
|  | cFYI(1, "%s: Error %d mapping Owner SID to uid", __func__, rc); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | rc = parse_sid(group_sid_ptr, end_of_acl); | 
|  | if (rc) { | 
|  | cFYI(1, "%s: Error %d mapping Owner SID to gid", __func__, rc); | 
|  | return rc; | 
|  | } | 
|  | rc = sid_to_id(cifs_sb, group_sid_ptr, fattr, SIDGROUP); | 
|  | if (rc) { | 
|  | cFYI(1, "%s: Error %d mapping Group SID to gid", __func__, rc); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | if (dacloffset) | 
|  | parse_dacl(dacl_ptr, end_of_acl, owner_sid_ptr, | 
|  | group_sid_ptr, fattr); | 
|  | else | 
|  | cFYI(1, "no ACL"); /* BB grant all or default perms? */ | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* Convert permission bits from mode to equivalent CIFS ACL */ | 
|  | static int build_sec_desc(struct cifs_ntsd *pntsd, struct cifs_ntsd *pnntsd, | 
|  | __u32 secdesclen, __u64 nmode, uid_t uid, gid_t gid, int *aclflag) | 
|  | { | 
|  | int rc = 0; | 
|  | __u32 dacloffset; | 
|  | __u32 ndacloffset; | 
|  | __u32 sidsoffset; | 
|  | struct cifs_sid *owner_sid_ptr, *group_sid_ptr; | 
|  | struct cifs_sid *nowner_sid_ptr, *ngroup_sid_ptr; | 
|  | struct cifs_acl *dacl_ptr = NULL;  /* no need for SACL ptr */ | 
|  | struct cifs_acl *ndacl_ptr = NULL; /* no need for SACL ptr */ | 
|  |  | 
|  | if (nmode != NO_CHANGE_64) { /* chmod */ | 
|  | owner_sid_ptr = (struct cifs_sid *)((char *)pntsd + | 
|  | le32_to_cpu(pntsd->osidoffset)); | 
|  | group_sid_ptr = (struct cifs_sid *)((char *)pntsd + | 
|  | le32_to_cpu(pntsd->gsidoffset)); | 
|  | dacloffset = le32_to_cpu(pntsd->dacloffset); | 
|  | dacl_ptr = (struct cifs_acl *)((char *)pntsd + dacloffset); | 
|  | ndacloffset = sizeof(struct cifs_ntsd); | 
|  | ndacl_ptr = (struct cifs_acl *)((char *)pnntsd + ndacloffset); | 
|  | ndacl_ptr->revision = dacl_ptr->revision; | 
|  | ndacl_ptr->size = 0; | 
|  | ndacl_ptr->num_aces = 0; | 
|  |  | 
|  | rc = set_chmod_dacl(ndacl_ptr, owner_sid_ptr, group_sid_ptr, | 
|  | nmode); | 
|  | sidsoffset = ndacloffset + le16_to_cpu(ndacl_ptr->size); | 
|  | /* copy sec desc control portion & owner and group sids */ | 
|  | copy_sec_desc(pntsd, pnntsd, sidsoffset); | 
|  | *aclflag = CIFS_ACL_DACL; | 
|  | } else { | 
|  | memcpy(pnntsd, pntsd, secdesclen); | 
|  | if (uid != NO_CHANGE_32) { /* chown */ | 
|  | owner_sid_ptr = (struct cifs_sid *)((char *)pnntsd + | 
|  | le32_to_cpu(pnntsd->osidoffset)); | 
|  | nowner_sid_ptr = kmalloc(sizeof(struct cifs_sid), | 
|  | GFP_KERNEL); | 
|  | if (!nowner_sid_ptr) | 
|  | return -ENOMEM; | 
|  | rc = id_to_sid(uid, SIDOWNER, nowner_sid_ptr); | 
|  | if (rc) { | 
|  | cFYI(1, "%s: Mapping error %d for owner id %d", | 
|  | __func__, rc, uid); | 
|  | kfree(nowner_sid_ptr); | 
|  | return rc; | 
|  | } | 
|  | cifs_copy_sid(owner_sid_ptr, nowner_sid_ptr); | 
|  | kfree(nowner_sid_ptr); | 
|  | *aclflag = CIFS_ACL_OWNER; | 
|  | } | 
|  | if (gid != NO_CHANGE_32) { /* chgrp */ | 
|  | group_sid_ptr = (struct cifs_sid *)((char *)pnntsd + | 
|  | le32_to_cpu(pnntsd->gsidoffset)); | 
|  | ngroup_sid_ptr = kmalloc(sizeof(struct cifs_sid), | 
|  | GFP_KERNEL); | 
|  | if (!ngroup_sid_ptr) | 
|  | return -ENOMEM; | 
|  | rc = id_to_sid(gid, SIDGROUP, ngroup_sid_ptr); | 
|  | if (rc) { | 
|  | cFYI(1, "%s: Mapping error %d for group id %d", | 
|  | __func__, rc, gid); | 
|  | kfree(ngroup_sid_ptr); | 
|  | return rc; | 
|  | } | 
|  | cifs_copy_sid(group_sid_ptr, ngroup_sid_ptr); | 
|  | kfree(ngroup_sid_ptr); | 
|  | *aclflag = CIFS_ACL_GROUP; | 
|  | } | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static struct cifs_ntsd *get_cifs_acl_by_fid(struct cifs_sb_info *cifs_sb, | 
|  | __u16 fid, u32 *pacllen) | 
|  | { | 
|  | struct cifs_ntsd *pntsd = NULL; | 
|  | int xid, rc; | 
|  | struct tcon_link *tlink = cifs_sb_tlink(cifs_sb); | 
|  |  | 
|  | if (IS_ERR(tlink)) | 
|  | return ERR_CAST(tlink); | 
|  |  | 
|  | xid = GetXid(); | 
|  | rc = CIFSSMBGetCIFSACL(xid, tlink_tcon(tlink), fid, &pntsd, pacllen); | 
|  | FreeXid(xid); | 
|  |  | 
|  | cifs_put_tlink(tlink); | 
|  |  | 
|  | cFYI(1, "%s: rc = %d ACL len %d", __func__, rc, *pacllen); | 
|  | if (rc) | 
|  | return ERR_PTR(rc); | 
|  | return pntsd; | 
|  | } | 
|  |  | 
|  | static struct cifs_ntsd *get_cifs_acl_by_path(struct cifs_sb_info *cifs_sb, | 
|  | const char *path, u32 *pacllen) | 
|  | { | 
|  | struct cifs_ntsd *pntsd = NULL; | 
|  | int oplock = 0; | 
|  | int xid, rc, create_options = 0; | 
|  | __u16 fid; | 
|  | struct cifs_tcon *tcon; | 
|  | struct tcon_link *tlink = cifs_sb_tlink(cifs_sb); | 
|  |  | 
|  | if (IS_ERR(tlink)) | 
|  | return ERR_CAST(tlink); | 
|  |  | 
|  | tcon = tlink_tcon(tlink); | 
|  | xid = GetXid(); | 
|  |  | 
|  | if (backup_cred(cifs_sb)) | 
|  | create_options |= CREATE_OPEN_BACKUP_INTENT; | 
|  |  | 
|  | rc = CIFSSMBOpen(xid, tcon, path, FILE_OPEN, READ_CONTROL, | 
|  | create_options, &fid, &oplock, NULL, cifs_sb->local_nls, | 
|  | cifs_sb->mnt_cifs_flags & CIFS_MOUNT_MAP_SPECIAL_CHR); | 
|  | if (!rc) { | 
|  | rc = CIFSSMBGetCIFSACL(xid, tcon, fid, &pntsd, pacllen); | 
|  | CIFSSMBClose(xid, tcon, fid); | 
|  | } | 
|  |  | 
|  | cifs_put_tlink(tlink); | 
|  | FreeXid(xid); | 
|  |  | 
|  | cFYI(1, "%s: rc = %d ACL len %d", __func__, rc, *pacllen); | 
|  | if (rc) | 
|  | return ERR_PTR(rc); | 
|  | return pntsd; | 
|  | } | 
|  |  | 
|  | /* Retrieve an ACL from the server */ | 
|  | struct cifs_ntsd *get_cifs_acl(struct cifs_sb_info *cifs_sb, | 
|  | struct inode *inode, const char *path, | 
|  | u32 *pacllen) | 
|  | { | 
|  | struct cifs_ntsd *pntsd = NULL; | 
|  | struct cifsFileInfo *open_file = NULL; | 
|  |  | 
|  | if (inode) | 
|  | open_file = find_readable_file(CIFS_I(inode), true); | 
|  | if (!open_file) | 
|  | return get_cifs_acl_by_path(cifs_sb, path, pacllen); | 
|  |  | 
|  | pntsd = get_cifs_acl_by_fid(cifs_sb, open_file->netfid, pacllen); | 
|  | cifsFileInfo_put(open_file); | 
|  | return pntsd; | 
|  | } | 
|  |  | 
|  | /* Set an ACL on the server */ | 
|  | int set_cifs_acl(struct cifs_ntsd *pnntsd, __u32 acllen, | 
|  | struct inode *inode, const char *path, int aclflag) | 
|  | { | 
|  | int oplock = 0; | 
|  | int xid, rc, access_flags, create_options = 0; | 
|  | __u16 fid; | 
|  | struct cifs_tcon *tcon; | 
|  | struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb); | 
|  | struct tcon_link *tlink = cifs_sb_tlink(cifs_sb); | 
|  |  | 
|  | if (IS_ERR(tlink)) | 
|  | return PTR_ERR(tlink); | 
|  |  | 
|  | tcon = tlink_tcon(tlink); | 
|  | xid = GetXid(); | 
|  |  | 
|  | if (backup_cred(cifs_sb)) | 
|  | create_options |= CREATE_OPEN_BACKUP_INTENT; | 
|  |  | 
|  | if (aclflag == CIFS_ACL_OWNER || aclflag == CIFS_ACL_GROUP) | 
|  | access_flags = WRITE_OWNER; | 
|  | else | 
|  | access_flags = WRITE_DAC; | 
|  |  | 
|  | rc = CIFSSMBOpen(xid, tcon, path, FILE_OPEN, access_flags, | 
|  | create_options, &fid, &oplock, NULL, cifs_sb->local_nls, | 
|  | cifs_sb->mnt_cifs_flags & CIFS_MOUNT_MAP_SPECIAL_CHR); | 
|  | if (rc) { | 
|  | cERROR(1, "Unable to open file to set ACL"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | rc = CIFSSMBSetCIFSACL(xid, tcon, fid, pnntsd, acllen, aclflag); | 
|  | cFYI(DBG2, "SetCIFSACL rc = %d", rc); | 
|  |  | 
|  | CIFSSMBClose(xid, tcon, fid); | 
|  | out: | 
|  | FreeXid(xid); | 
|  | cifs_put_tlink(tlink); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* Translate the CIFS ACL (simlar to NTFS ACL) for a file into mode bits */ | 
|  | int | 
|  | cifs_acl_to_fattr(struct cifs_sb_info *cifs_sb, struct cifs_fattr *fattr, | 
|  | struct inode *inode, const char *path, const __u16 *pfid) | 
|  | { | 
|  | struct cifs_ntsd *pntsd = NULL; | 
|  | u32 acllen = 0; | 
|  | int rc = 0; | 
|  |  | 
|  | cFYI(DBG2, "converting ACL to mode for %s", path); | 
|  |  | 
|  | if (pfid) | 
|  | pntsd = get_cifs_acl_by_fid(cifs_sb, *pfid, &acllen); | 
|  | else | 
|  | pntsd = get_cifs_acl(cifs_sb, inode, path, &acllen); | 
|  |  | 
|  | /* if we can retrieve the ACL, now parse Access Control Entries, ACEs */ | 
|  | if (IS_ERR(pntsd)) { | 
|  | rc = PTR_ERR(pntsd); | 
|  | cERROR(1, "%s: error %d getting sec desc", __func__, rc); | 
|  | } else { | 
|  | rc = parse_sec_desc(cifs_sb, pntsd, acllen, fattr); | 
|  | kfree(pntsd); | 
|  | if (rc) | 
|  | cERROR(1, "parse sec desc failed rc = %d", rc); | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* Convert mode bits to an ACL so we can update the ACL on the server */ | 
|  | int | 
|  | id_mode_to_cifs_acl(struct inode *inode, const char *path, __u64 nmode, | 
|  | uid_t uid, gid_t gid) | 
|  | { | 
|  | int rc = 0; | 
|  | int aclflag = CIFS_ACL_DACL; /* default flag to set */ | 
|  | __u32 secdesclen = 0; | 
|  | struct cifs_ntsd *pntsd = NULL; /* acl obtained from server */ | 
|  | struct cifs_ntsd *pnntsd = NULL; /* modified acl to be sent to server */ | 
|  |  | 
|  | cFYI(DBG2, "set ACL from mode for %s", path); | 
|  |  | 
|  | /* Get the security descriptor */ | 
|  | pntsd = get_cifs_acl(CIFS_SB(inode->i_sb), inode, path, &secdesclen); | 
|  |  | 
|  | /* Add three ACEs for owner, group, everyone getting rid of | 
|  | other ACEs as chmod disables ACEs and set the security descriptor */ | 
|  |  | 
|  | if (IS_ERR(pntsd)) { | 
|  | rc = PTR_ERR(pntsd); | 
|  | cERROR(1, "%s: error %d getting sec desc", __func__, rc); | 
|  | } else { | 
|  | /* allocate memory for the smb header, | 
|  | set security descriptor request security descriptor | 
|  | parameters, and secuirty descriptor itself */ | 
|  |  | 
|  | secdesclen = secdesclen < DEFSECDESCLEN ? | 
|  | DEFSECDESCLEN : secdesclen; | 
|  | pnntsd = kmalloc(secdesclen, GFP_KERNEL); | 
|  | if (!pnntsd) { | 
|  | cERROR(1, "Unable to allocate security descriptor"); | 
|  | kfree(pntsd); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | rc = build_sec_desc(pntsd, pnntsd, secdesclen, nmode, uid, gid, | 
|  | &aclflag); | 
|  |  | 
|  | cFYI(DBG2, "build_sec_desc rc: %d", rc); | 
|  |  | 
|  | if (!rc) { | 
|  | /* Set the security descriptor */ | 
|  | rc = set_cifs_acl(pnntsd, secdesclen, inode, | 
|  | path, aclflag); | 
|  | cFYI(DBG2, "set_cifs_acl rc: %d", rc); | 
|  | } | 
|  |  | 
|  | kfree(pnntsd); | 
|  | kfree(pntsd); | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | } |