| /* | 
 |  * drivers/crypto/tegra-aes.c | 
 |  * | 
 |  * Driver for NVIDIA Tegra AES hardware engine residing inside the | 
 |  * Bit Stream Engine for Video (BSEV) hardware block. | 
 |  * | 
 |  * The programming sequence for this engine is with the help | 
 |  * of commands which travel via a command queue residing between the | 
 |  * CPU and the BSEV block. The BSEV engine has an internal RAM (VRAM) | 
 |  * where the final input plaintext, keys and the IV have to be copied | 
 |  * before starting the encrypt/decrypt operation. | 
 |  * | 
 |  * Copyright (c) 2010, NVIDIA Corporation. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation; either version 2 of the License, or | 
 |  * (at your option) any later version. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, but WITHOUT | 
 |  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
 |  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
 |  * more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License along | 
 |  * with this program; if not, write to the Free Software Foundation, Inc., | 
 |  * 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA. | 
 |  */ | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/init.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/clk.h> | 
 | #include <linux/platform_device.h> | 
 | #include <linux/scatterlist.h> | 
 | #include <linux/dma-mapping.h> | 
 | #include <linux/io.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/completion.h> | 
 | #include <linux/workqueue.h> | 
 |  | 
 | #include <mach/clk.h> | 
 |  | 
 | #include <crypto/scatterwalk.h> | 
 | #include <crypto/aes.h> | 
 | #include <crypto/internal/rng.h> | 
 |  | 
 | #include "tegra-aes.h" | 
 |  | 
 | #define FLAGS_MODE_MASK			0x00FF | 
 | #define FLAGS_ENCRYPT			BIT(0) | 
 | #define FLAGS_CBC			BIT(1) | 
 | #define FLAGS_GIV			BIT(2) | 
 | #define FLAGS_RNG			BIT(3) | 
 | #define FLAGS_OFB			BIT(4) | 
 | #define FLAGS_NEW_KEY			BIT(5) | 
 | #define FLAGS_NEW_IV			BIT(6) | 
 | #define FLAGS_INIT			BIT(7) | 
 | #define FLAGS_FAST			BIT(8) | 
 | #define FLAGS_BUSY			9 | 
 |  | 
 | /* | 
 |  * Defines AES engine Max process bytes size in one go, which takes 1 msec. | 
 |  * AES engine spends about 176 cycles/16-bytes or 11 cycles/byte | 
 |  * The duration CPU can use the BSE to 1 msec, then the number of available | 
 |  * cycles of AVP/BSE is 216K. In this duration, AES can process 216/11 ~= 19KB | 
 |  * Based on this AES_HW_DMA_BUFFER_SIZE_BYTES is configured to 16KB. | 
 |  */ | 
 | #define AES_HW_DMA_BUFFER_SIZE_BYTES 0x4000 | 
 |  | 
 | /* | 
 |  * The key table length is 64 bytes | 
 |  * (This includes first upto 32 bytes key + 16 bytes original initial vector | 
 |  * and 16 bytes updated initial vector) | 
 |  */ | 
 | #define AES_HW_KEY_TABLE_LENGTH_BYTES 64 | 
 |  | 
 | /* | 
 |  * The memory being used is divides as follows: | 
 |  * 1. Key - 32 bytes | 
 |  * 2. Original IV - 16 bytes | 
 |  * 3. Updated IV - 16 bytes | 
 |  * 4. Key schedule - 256 bytes | 
 |  * | 
 |  * 1+2+3 constitute the hw key table. | 
 |  */ | 
 | #define AES_HW_IV_SIZE 16 | 
 | #define AES_HW_KEYSCHEDULE_LEN 256 | 
 | #define AES_IVKEY_SIZE (AES_HW_KEY_TABLE_LENGTH_BYTES + AES_HW_KEYSCHEDULE_LEN) | 
 |  | 
 | /* Define commands required for AES operation */ | 
 | enum { | 
 | 	CMD_BLKSTARTENGINE = 0x0E, | 
 | 	CMD_DMASETUP = 0x10, | 
 | 	CMD_DMACOMPLETE = 0x11, | 
 | 	CMD_SETTABLE = 0x15, | 
 | 	CMD_MEMDMAVD = 0x22, | 
 | }; | 
 |  | 
 | /* Define sub-commands */ | 
 | enum { | 
 | 	SUBCMD_VRAM_SEL = 0x1, | 
 | 	SUBCMD_CRYPTO_TABLE_SEL = 0x3, | 
 | 	SUBCMD_KEY_TABLE_SEL = 0x8, | 
 | }; | 
 |  | 
 | /* memdma_vd command */ | 
 | #define MEMDMA_DIR_DTOVRAM		0 /* sdram -> vram */ | 
 | #define MEMDMA_DIR_VTODRAM		1 /* vram -> sdram */ | 
 | #define MEMDMA_DIR_SHIFT		25 | 
 | #define MEMDMA_NUM_WORDS_SHIFT		12 | 
 |  | 
 | /* command queue bit shifts */ | 
 | enum { | 
 | 	CMDQ_KEYTABLEADDR_SHIFT = 0, | 
 | 	CMDQ_KEYTABLEID_SHIFT = 17, | 
 | 	CMDQ_VRAMSEL_SHIFT = 23, | 
 | 	CMDQ_TABLESEL_SHIFT = 24, | 
 | 	CMDQ_OPCODE_SHIFT = 26, | 
 | }; | 
 |  | 
 | /* | 
 |  * The secure key slot contains a unique secure key generated | 
 |  * and loaded by the bootloader. This slot is marked as non-accessible | 
 |  * to the kernel. | 
 |  */ | 
 | #define SSK_SLOT_NUM		4 | 
 |  | 
 | #define AES_NR_KEYSLOTS		8 | 
 | #define TEGRA_AES_QUEUE_LENGTH	50 | 
 | #define DEFAULT_RNG_BLK_SZ	16 | 
 |  | 
 | /* The command queue depth */ | 
 | #define AES_HW_MAX_ICQ_LENGTH	5 | 
 |  | 
 | struct tegra_aes_slot { | 
 | 	struct list_head node; | 
 | 	int slot_num; | 
 | }; | 
 |  | 
 | static struct tegra_aes_slot ssk = { | 
 | 	.slot_num = SSK_SLOT_NUM, | 
 | }; | 
 |  | 
 | struct tegra_aes_reqctx { | 
 | 	unsigned long mode; | 
 | }; | 
 |  | 
 | struct tegra_aes_dev { | 
 | 	struct device *dev; | 
 | 	void __iomem *io_base; | 
 | 	dma_addr_t ivkey_phys_base; | 
 | 	void __iomem *ivkey_base; | 
 | 	struct clk *aes_clk; | 
 | 	struct tegra_aes_ctx *ctx; | 
 | 	int irq; | 
 | 	unsigned long flags; | 
 | 	struct completion op_complete; | 
 | 	u32 *buf_in; | 
 | 	dma_addr_t dma_buf_in; | 
 | 	u32 *buf_out; | 
 | 	dma_addr_t dma_buf_out; | 
 | 	u8 *iv; | 
 | 	u8 dt[DEFAULT_RNG_BLK_SZ]; | 
 | 	int ivlen; | 
 | 	u64 ctr; | 
 | 	spinlock_t lock; | 
 | 	struct crypto_queue queue; | 
 | 	struct tegra_aes_slot *slots; | 
 | 	struct ablkcipher_request *req; | 
 | 	size_t total; | 
 | 	struct scatterlist *in_sg; | 
 | 	size_t in_offset; | 
 | 	struct scatterlist *out_sg; | 
 | 	size_t out_offset; | 
 | }; | 
 |  | 
 | static struct tegra_aes_dev *aes_dev; | 
 |  | 
 | struct tegra_aes_ctx { | 
 | 	struct tegra_aes_dev *dd; | 
 | 	unsigned long flags; | 
 | 	struct tegra_aes_slot *slot; | 
 | 	u8 key[AES_MAX_KEY_SIZE]; | 
 | 	size_t keylen; | 
 | }; | 
 |  | 
 | static struct tegra_aes_ctx rng_ctx = { | 
 | 	.flags = FLAGS_NEW_KEY, | 
 | 	.keylen = AES_KEYSIZE_128, | 
 | }; | 
 |  | 
 | /* keep registered devices data here */ | 
 | static struct list_head dev_list; | 
 | static DEFINE_SPINLOCK(list_lock); | 
 | static DEFINE_MUTEX(aes_lock); | 
 |  | 
 | static void aes_workqueue_handler(struct work_struct *work); | 
 | static DECLARE_WORK(aes_work, aes_workqueue_handler); | 
 | static struct workqueue_struct *aes_wq; | 
 |  | 
 | extern unsigned long long tegra_chip_uid(void); | 
 |  | 
 | static inline u32 aes_readl(struct tegra_aes_dev *dd, u32 offset) | 
 | { | 
 | 	return readl(dd->io_base + offset); | 
 | } | 
 |  | 
 | static inline void aes_writel(struct tegra_aes_dev *dd, u32 val, u32 offset) | 
 | { | 
 | 	writel(val, dd->io_base + offset); | 
 | } | 
 |  | 
 | static int aes_start_crypt(struct tegra_aes_dev *dd, u32 in_addr, u32 out_addr, | 
 | 	int nblocks, int mode, bool upd_iv) | 
 | { | 
 | 	u32 cmdq[AES_HW_MAX_ICQ_LENGTH]; | 
 | 	int i, eng_busy, icq_empty, ret; | 
 | 	u32 value; | 
 |  | 
 | 	/* reset all the interrupt bits */ | 
 | 	aes_writel(dd, 0xFFFFFFFF, TEGRA_AES_INTR_STATUS); | 
 |  | 
 | 	/* enable error, dma xfer complete interrupts */ | 
 | 	aes_writel(dd, 0x33, TEGRA_AES_INT_ENB); | 
 |  | 
 | 	cmdq[0] = CMD_DMASETUP << CMDQ_OPCODE_SHIFT; | 
 | 	cmdq[1] = in_addr; | 
 | 	cmdq[2] = CMD_BLKSTARTENGINE << CMDQ_OPCODE_SHIFT | (nblocks-1); | 
 | 	cmdq[3] = CMD_DMACOMPLETE << CMDQ_OPCODE_SHIFT; | 
 |  | 
 | 	value = aes_readl(dd, TEGRA_AES_CMDQUE_CONTROL); | 
 | 	/* access SDRAM through AHB */ | 
 | 	value &= ~TEGRA_AES_CMDQ_CTRL_SRC_STM_SEL_FIELD; | 
 | 	value &= ~TEGRA_AES_CMDQ_CTRL_DST_STM_SEL_FIELD; | 
 | 	value |= TEGRA_AES_CMDQ_CTRL_SRC_STM_SEL_FIELD | | 
 | 		 TEGRA_AES_CMDQ_CTRL_DST_STM_SEL_FIELD | | 
 | 		 TEGRA_AES_CMDQ_CTRL_ICMDQEN_FIELD; | 
 | 	aes_writel(dd, value, TEGRA_AES_CMDQUE_CONTROL); | 
 | 	dev_dbg(dd->dev, "cmd_q_ctrl=0x%x", value); | 
 |  | 
 | 	value = (0x1 << TEGRA_AES_SECURE_INPUT_ALG_SEL_SHIFT) | | 
 | 		((dd->ctx->keylen * 8) << | 
 | 			TEGRA_AES_SECURE_INPUT_KEY_LEN_SHIFT) | | 
 | 		((u32)upd_iv << TEGRA_AES_SECURE_IV_SELECT_SHIFT); | 
 |  | 
 | 	if (mode & FLAGS_CBC) { | 
 | 		value |= ((((mode & FLAGS_ENCRYPT) ? 2 : 3) | 
 | 				<< TEGRA_AES_SECURE_XOR_POS_SHIFT) | | 
 | 			(((mode & FLAGS_ENCRYPT) ? 2 : 3) | 
 | 				<< TEGRA_AES_SECURE_VCTRAM_SEL_SHIFT) | | 
 | 			((mode & FLAGS_ENCRYPT) ? 1 : 0) | 
 | 				<< TEGRA_AES_SECURE_CORE_SEL_SHIFT); | 
 | 	} else if (mode & FLAGS_OFB) { | 
 | 		value |= ((TEGRA_AES_SECURE_XOR_POS_FIELD) | | 
 | 			(2 << TEGRA_AES_SECURE_INPUT_SEL_SHIFT) | | 
 | 			(TEGRA_AES_SECURE_CORE_SEL_FIELD)); | 
 | 	} else if (mode & FLAGS_RNG) { | 
 | 		value |= (((mode & FLAGS_ENCRYPT) ? 1 : 0) | 
 | 				<< TEGRA_AES_SECURE_CORE_SEL_SHIFT | | 
 | 			  TEGRA_AES_SECURE_RNG_ENB_FIELD); | 
 | 	} else { | 
 | 		value |= (((mode & FLAGS_ENCRYPT) ? 1 : 0) | 
 | 				<< TEGRA_AES_SECURE_CORE_SEL_SHIFT); | 
 | 	} | 
 |  | 
 | 	dev_dbg(dd->dev, "secure_in_sel=0x%x", value); | 
 | 	aes_writel(dd, value, TEGRA_AES_SECURE_INPUT_SELECT); | 
 |  | 
 | 	aes_writel(dd, out_addr, TEGRA_AES_SECURE_DEST_ADDR); | 
 | 	INIT_COMPLETION(dd->op_complete); | 
 |  | 
 | 	for (i = 0; i < AES_HW_MAX_ICQ_LENGTH - 1; i++) { | 
 | 		do { | 
 | 			value = aes_readl(dd, TEGRA_AES_INTR_STATUS); | 
 | 			eng_busy = value & TEGRA_AES_ENGINE_BUSY_FIELD; | 
 | 			icq_empty = value & TEGRA_AES_ICQ_EMPTY_FIELD; | 
 | 		} while (eng_busy & (!icq_empty)); | 
 | 		aes_writel(dd, cmdq[i], TEGRA_AES_ICMDQUE_WR); | 
 | 	} | 
 |  | 
 | 	ret = wait_for_completion_timeout(&dd->op_complete, | 
 | 					  msecs_to_jiffies(150)); | 
 | 	if (ret == 0) { | 
 | 		dev_err(dd->dev, "timed out (0x%x)\n", | 
 | 			aes_readl(dd, TEGRA_AES_INTR_STATUS)); | 
 | 		return -ETIMEDOUT; | 
 | 	} | 
 |  | 
 | 	aes_writel(dd, cmdq[AES_HW_MAX_ICQ_LENGTH - 1], TEGRA_AES_ICMDQUE_WR); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void aes_release_key_slot(struct tegra_aes_slot *slot) | 
 | { | 
 | 	if (slot->slot_num == SSK_SLOT_NUM) | 
 | 		return; | 
 |  | 
 | 	spin_lock(&list_lock); | 
 | 	list_add_tail(&slot->node, &dev_list); | 
 | 	slot = NULL; | 
 | 	spin_unlock(&list_lock); | 
 | } | 
 |  | 
 | static struct tegra_aes_slot *aes_find_key_slot(void) | 
 | { | 
 | 	struct tegra_aes_slot *slot = NULL; | 
 | 	struct list_head *new_head; | 
 | 	int empty; | 
 |  | 
 | 	spin_lock(&list_lock); | 
 | 	empty = list_empty(&dev_list); | 
 | 	if (!empty) { | 
 | 		slot = list_entry(&dev_list, struct tegra_aes_slot, node); | 
 | 		new_head = dev_list.next; | 
 | 		list_del(&dev_list); | 
 | 		dev_list.next = new_head->next; | 
 | 		dev_list.prev = NULL; | 
 | 	} | 
 | 	spin_unlock(&list_lock); | 
 |  | 
 | 	return slot; | 
 | } | 
 |  | 
 | static int aes_set_key(struct tegra_aes_dev *dd) | 
 | { | 
 | 	u32 value, cmdq[2]; | 
 | 	struct tegra_aes_ctx *ctx = dd->ctx; | 
 | 	int eng_busy, icq_empty, dma_busy; | 
 | 	bool use_ssk = false; | 
 |  | 
 | 	/* use ssk? */ | 
 | 	if (!dd->ctx->slot) { | 
 | 		dev_dbg(dd->dev, "using ssk"); | 
 | 		dd->ctx->slot = &ssk; | 
 | 		use_ssk = true; | 
 | 	} | 
 |  | 
 | 	/* enable key schedule generation in hardware */ | 
 | 	value = aes_readl(dd, TEGRA_AES_SECURE_CONFIG_EXT); | 
 | 	value &= ~TEGRA_AES_SECURE_KEY_SCH_DIS_FIELD; | 
 | 	aes_writel(dd, value, TEGRA_AES_SECURE_CONFIG_EXT); | 
 |  | 
 | 	/* select the key slot */ | 
 | 	value = aes_readl(dd, TEGRA_AES_SECURE_CONFIG); | 
 | 	value &= ~TEGRA_AES_SECURE_KEY_INDEX_FIELD; | 
 | 	value |= (ctx->slot->slot_num << TEGRA_AES_SECURE_KEY_INDEX_SHIFT); | 
 | 	aes_writel(dd, value, TEGRA_AES_SECURE_CONFIG); | 
 |  | 
 | 	if (use_ssk) | 
 | 		return 0; | 
 |  | 
 | 	/* copy the key table from sdram to vram */ | 
 | 	cmdq[0] = CMD_MEMDMAVD << CMDQ_OPCODE_SHIFT | | 
 | 		MEMDMA_DIR_DTOVRAM << MEMDMA_DIR_SHIFT | | 
 | 		AES_HW_KEY_TABLE_LENGTH_BYTES / sizeof(u32) << | 
 | 			MEMDMA_NUM_WORDS_SHIFT; | 
 | 	cmdq[1] = (u32)dd->ivkey_phys_base; | 
 |  | 
 | 	aes_writel(dd, cmdq[0], TEGRA_AES_ICMDQUE_WR); | 
 | 	aes_writel(dd, cmdq[1], TEGRA_AES_ICMDQUE_WR); | 
 |  | 
 | 	do { | 
 | 		value = aes_readl(dd, TEGRA_AES_INTR_STATUS); | 
 | 		eng_busy = value & TEGRA_AES_ENGINE_BUSY_FIELD; | 
 | 		icq_empty = value & TEGRA_AES_ICQ_EMPTY_FIELD; | 
 | 		dma_busy = value & TEGRA_AES_DMA_BUSY_FIELD; | 
 | 	} while (eng_busy & (!icq_empty) & dma_busy); | 
 |  | 
 | 	/* settable command to get key into internal registers */ | 
 | 	value = CMD_SETTABLE << CMDQ_OPCODE_SHIFT | | 
 | 		SUBCMD_CRYPTO_TABLE_SEL << CMDQ_TABLESEL_SHIFT | | 
 | 		SUBCMD_VRAM_SEL << CMDQ_VRAMSEL_SHIFT | | 
 | 		(SUBCMD_KEY_TABLE_SEL | ctx->slot->slot_num) << | 
 | 			CMDQ_KEYTABLEID_SHIFT; | 
 | 	aes_writel(dd, value, TEGRA_AES_ICMDQUE_WR); | 
 |  | 
 | 	do { | 
 | 		value = aes_readl(dd, TEGRA_AES_INTR_STATUS); | 
 | 		eng_busy = value & TEGRA_AES_ENGINE_BUSY_FIELD; | 
 | 		icq_empty = value & TEGRA_AES_ICQ_EMPTY_FIELD; | 
 | 	} while (eng_busy & (!icq_empty)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int tegra_aes_handle_req(struct tegra_aes_dev *dd) | 
 | { | 
 | 	struct crypto_async_request *async_req, *backlog; | 
 | 	struct crypto_ablkcipher *tfm; | 
 | 	struct tegra_aes_ctx *ctx; | 
 | 	struct tegra_aes_reqctx *rctx; | 
 | 	struct ablkcipher_request *req; | 
 | 	unsigned long flags; | 
 | 	int dma_max = AES_HW_DMA_BUFFER_SIZE_BYTES; | 
 | 	int ret = 0, nblocks, total; | 
 | 	int count = 0; | 
 | 	dma_addr_t addr_in, addr_out; | 
 | 	struct scatterlist *in_sg, *out_sg; | 
 |  | 
 | 	if (!dd) | 
 | 		return -EINVAL; | 
 |  | 
 | 	spin_lock_irqsave(&dd->lock, flags); | 
 | 	backlog = crypto_get_backlog(&dd->queue); | 
 | 	async_req = crypto_dequeue_request(&dd->queue); | 
 | 	if (!async_req) | 
 | 		clear_bit(FLAGS_BUSY, &dd->flags); | 
 | 	spin_unlock_irqrestore(&dd->lock, flags); | 
 |  | 
 | 	if (!async_req) | 
 | 		return -ENODATA; | 
 |  | 
 | 	if (backlog) | 
 | 		backlog->complete(backlog, -EINPROGRESS); | 
 |  | 
 | 	req = ablkcipher_request_cast(async_req); | 
 |  | 
 | 	dev_dbg(dd->dev, "%s: get new req\n", __func__); | 
 |  | 
 | 	if (!req->src || !req->dst) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* take mutex to access the aes hw */ | 
 | 	mutex_lock(&aes_lock); | 
 |  | 
 | 	/* assign new request to device */ | 
 | 	dd->req = req; | 
 | 	dd->total = req->nbytes; | 
 | 	dd->in_offset = 0; | 
 | 	dd->in_sg = req->src; | 
 | 	dd->out_offset = 0; | 
 | 	dd->out_sg = req->dst; | 
 |  | 
 | 	in_sg = dd->in_sg; | 
 | 	out_sg = dd->out_sg; | 
 |  | 
 | 	total = dd->total; | 
 |  | 
 | 	tfm = crypto_ablkcipher_reqtfm(req); | 
 | 	rctx = ablkcipher_request_ctx(req); | 
 | 	ctx = crypto_ablkcipher_ctx(tfm); | 
 | 	rctx->mode &= FLAGS_MODE_MASK; | 
 | 	dd->flags = (dd->flags & ~FLAGS_MODE_MASK) | rctx->mode; | 
 |  | 
 | 	dd->iv = (u8 *)req->info; | 
 | 	dd->ivlen = crypto_ablkcipher_ivsize(tfm); | 
 |  | 
 | 	/* assign new context to device */ | 
 | 	ctx->dd = dd; | 
 | 	dd->ctx = ctx; | 
 |  | 
 | 	if (ctx->flags & FLAGS_NEW_KEY) { | 
 | 		/* copy the key */ | 
 | 		memcpy(dd->ivkey_base, ctx->key, ctx->keylen); | 
 | 		memset(dd->ivkey_base + ctx->keylen, 0, AES_HW_KEY_TABLE_LENGTH_BYTES - ctx->keylen); | 
 | 		aes_set_key(dd); | 
 | 		ctx->flags &= ~FLAGS_NEW_KEY; | 
 | 	} | 
 |  | 
 | 	if (((dd->flags & FLAGS_CBC) || (dd->flags & FLAGS_OFB)) && dd->iv) { | 
 | 		/* set iv to the aes hw slot | 
 | 		 * Hw generates updated iv only after iv is set in slot. | 
 | 		 * So key and iv is passed asynchronously. | 
 | 		 */ | 
 | 		memcpy(dd->buf_in, dd->iv, dd->ivlen); | 
 |  | 
 | 		ret = aes_start_crypt(dd, (u32)dd->dma_buf_in, | 
 | 				      dd->dma_buf_out, 1, FLAGS_CBC, false); | 
 | 		if (ret < 0) { | 
 | 			dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret); | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	while (total) { | 
 | 		dev_dbg(dd->dev, "remain: %d\n", total); | 
 | 		ret = dma_map_sg(dd->dev, in_sg, 1, DMA_TO_DEVICE); | 
 | 		if (!ret) { | 
 | 			dev_err(dd->dev, "dma_map_sg() error\n"); | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		ret = dma_map_sg(dd->dev, out_sg, 1, DMA_FROM_DEVICE); | 
 | 		if (!ret) { | 
 | 			dev_err(dd->dev, "dma_map_sg() error\n"); | 
 | 			dma_unmap_sg(dd->dev, dd->in_sg, | 
 | 				1, DMA_TO_DEVICE); | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		addr_in = sg_dma_address(in_sg); | 
 | 		addr_out = sg_dma_address(out_sg); | 
 | 		dd->flags |= FLAGS_FAST; | 
 | 		count = min_t(int, sg_dma_len(in_sg), dma_max); | 
 | 		WARN_ON(sg_dma_len(in_sg) != sg_dma_len(out_sg)); | 
 | 		nblocks = DIV_ROUND_UP(count, AES_BLOCK_SIZE); | 
 |  | 
 | 		ret = aes_start_crypt(dd, addr_in, addr_out, nblocks, | 
 | 			dd->flags, true); | 
 |  | 
 | 		dma_unmap_sg(dd->dev, out_sg, 1, DMA_FROM_DEVICE); | 
 | 		dma_unmap_sg(dd->dev, in_sg, 1, DMA_TO_DEVICE); | 
 |  | 
 | 		if (ret < 0) { | 
 | 			dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret); | 
 | 			goto out; | 
 | 		} | 
 | 		dd->flags &= ~FLAGS_FAST; | 
 |  | 
 | 		dev_dbg(dd->dev, "out: copied %d\n", count); | 
 | 		total -= count; | 
 | 		in_sg = sg_next(in_sg); | 
 | 		out_sg = sg_next(out_sg); | 
 | 		WARN_ON(((total != 0) && (!in_sg || !out_sg))); | 
 | 	} | 
 |  | 
 | out: | 
 | 	mutex_unlock(&aes_lock); | 
 |  | 
 | 	dd->total = total; | 
 |  | 
 | 	if (dd->req->base.complete) | 
 | 		dd->req->base.complete(&dd->req->base, ret); | 
 |  | 
 | 	dev_dbg(dd->dev, "%s: exit\n", __func__); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int tegra_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key, | 
 | 			    unsigned int keylen) | 
 | { | 
 | 	struct tegra_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm); | 
 | 	struct tegra_aes_dev *dd = aes_dev; | 
 | 	struct tegra_aes_slot *key_slot; | 
 |  | 
 | 	if ((keylen != AES_KEYSIZE_128) && (keylen != AES_KEYSIZE_192) && | 
 | 		(keylen != AES_KEYSIZE_256)) { | 
 | 		dev_err(dd->dev, "unsupported key size\n"); | 
 | 		crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	dev_dbg(dd->dev, "keylen: %d\n", keylen); | 
 |  | 
 | 	ctx->dd = dd; | 
 |  | 
 | 	if (key) { | 
 | 		if (!ctx->slot) { | 
 | 			key_slot = aes_find_key_slot(); | 
 | 			if (!key_slot) { | 
 | 				dev_err(dd->dev, "no empty slot\n"); | 
 | 				return -ENOMEM; | 
 | 			} | 
 |  | 
 | 			ctx->slot = key_slot; | 
 | 		} | 
 |  | 
 | 		memcpy(ctx->key, key, keylen); | 
 | 		ctx->keylen = keylen; | 
 | 	} | 
 |  | 
 | 	ctx->flags |= FLAGS_NEW_KEY; | 
 | 	dev_dbg(dd->dev, "done\n"); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void aes_workqueue_handler(struct work_struct *work) | 
 | { | 
 | 	struct tegra_aes_dev *dd = aes_dev; | 
 | 	int ret; | 
 |  | 
 | 	ret = clk_enable(dd->aes_clk); | 
 | 	if (ret) | 
 | 		BUG_ON("clock enable failed"); | 
 |  | 
 | 	/* empty the crypto queue and then return */ | 
 | 	do { | 
 | 		ret = tegra_aes_handle_req(dd); | 
 | 	} while (!ret); | 
 |  | 
 | 	clk_disable(dd->aes_clk); | 
 | } | 
 |  | 
 | static irqreturn_t aes_irq(int irq, void *dev_id) | 
 | { | 
 | 	struct tegra_aes_dev *dd = (struct tegra_aes_dev *)dev_id; | 
 | 	u32 value = aes_readl(dd, TEGRA_AES_INTR_STATUS); | 
 | 	int busy = test_bit(FLAGS_BUSY, &dd->flags); | 
 |  | 
 | 	if (!busy) { | 
 | 		dev_dbg(dd->dev, "spurious interrupt\n"); | 
 | 		return IRQ_NONE; | 
 | 	} | 
 |  | 
 | 	dev_dbg(dd->dev, "irq_stat: 0x%x\n", value); | 
 | 	if (value & TEGRA_AES_INT_ERROR_MASK) | 
 | 		aes_writel(dd, TEGRA_AES_INT_ERROR_MASK, TEGRA_AES_INTR_STATUS); | 
 |  | 
 | 	if (!(value & TEGRA_AES_ENGINE_BUSY_FIELD)) | 
 | 		complete(&dd->op_complete); | 
 | 	else | 
 | 		return IRQ_NONE; | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | static int tegra_aes_crypt(struct ablkcipher_request *req, unsigned long mode) | 
 | { | 
 | 	struct tegra_aes_reqctx *rctx = ablkcipher_request_ctx(req); | 
 | 	struct tegra_aes_dev *dd = aes_dev; | 
 | 	unsigned long flags; | 
 | 	int err = 0; | 
 | 	int busy; | 
 |  | 
 | 	dev_dbg(dd->dev, "nbytes: %d, enc: %d, cbc: %d, ofb: %d\n", | 
 | 		req->nbytes, !!(mode & FLAGS_ENCRYPT), | 
 | 		!!(mode & FLAGS_CBC), !!(mode & FLAGS_OFB)); | 
 |  | 
 | 	rctx->mode = mode; | 
 |  | 
 | 	spin_lock_irqsave(&dd->lock, flags); | 
 | 	err = ablkcipher_enqueue_request(&dd->queue, req); | 
 | 	busy = test_and_set_bit(FLAGS_BUSY, &dd->flags); | 
 | 	spin_unlock_irqrestore(&dd->lock, flags); | 
 |  | 
 | 	if (!busy) | 
 | 		queue_work(aes_wq, &aes_work); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static int tegra_aes_ecb_encrypt(struct ablkcipher_request *req) | 
 | { | 
 | 	return tegra_aes_crypt(req, FLAGS_ENCRYPT); | 
 | } | 
 |  | 
 | static int tegra_aes_ecb_decrypt(struct ablkcipher_request *req) | 
 | { | 
 | 	return tegra_aes_crypt(req, 0); | 
 | } | 
 |  | 
 | static int tegra_aes_cbc_encrypt(struct ablkcipher_request *req) | 
 | { | 
 | 	return tegra_aes_crypt(req, FLAGS_ENCRYPT | FLAGS_CBC); | 
 | } | 
 |  | 
 | static int tegra_aes_cbc_decrypt(struct ablkcipher_request *req) | 
 | { | 
 | 	return tegra_aes_crypt(req, FLAGS_CBC); | 
 | } | 
 |  | 
 | static int tegra_aes_ofb_encrypt(struct ablkcipher_request *req) | 
 | { | 
 | 	return tegra_aes_crypt(req, FLAGS_ENCRYPT | FLAGS_OFB); | 
 | } | 
 |  | 
 | static int tegra_aes_ofb_decrypt(struct ablkcipher_request *req) | 
 | { | 
 | 	return tegra_aes_crypt(req, FLAGS_OFB); | 
 | } | 
 |  | 
 | static int tegra_aes_get_random(struct crypto_rng *tfm, u8 *rdata, | 
 | 				unsigned int dlen) | 
 | { | 
 | 	struct tegra_aes_dev *dd = aes_dev; | 
 | 	struct tegra_aes_ctx *ctx = &rng_ctx; | 
 | 	int ret, i; | 
 | 	u8 *dest = rdata, *dt = dd->dt; | 
 |  | 
 | 	/* take mutex to access the aes hw */ | 
 | 	mutex_lock(&aes_lock); | 
 |  | 
 | 	ret = clk_enable(dd->aes_clk); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ctx->dd = dd; | 
 | 	dd->ctx = ctx; | 
 | 	dd->flags = FLAGS_ENCRYPT | FLAGS_RNG; | 
 |  | 
 | 	memcpy(dd->buf_in, dt, DEFAULT_RNG_BLK_SZ); | 
 |  | 
 | 	ret = aes_start_crypt(dd, (u32)dd->dma_buf_in, | 
 | 			      (u32)dd->dma_buf_out, 1, dd->flags, true); | 
 | 	if (ret < 0) { | 
 | 		dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret); | 
 | 		dlen = ret; | 
 | 		goto out; | 
 | 	} | 
 | 	memcpy(dest, dd->buf_out, dlen); | 
 |  | 
 | 	/* update the DT */ | 
 | 	for (i = DEFAULT_RNG_BLK_SZ - 1; i >= 0; i--) { | 
 | 		dt[i] += 1; | 
 | 		if (dt[i] != 0) | 
 | 			break; | 
 | 	} | 
 |  | 
 | out: | 
 | 	clk_disable(dd->aes_clk); | 
 | 	mutex_unlock(&aes_lock); | 
 |  | 
 | 	dev_dbg(dd->dev, "%s: done\n", __func__); | 
 | 	return dlen; | 
 | } | 
 |  | 
 | static int tegra_aes_rng_reset(struct crypto_rng *tfm, u8 *seed, | 
 | 			       unsigned int slen) | 
 | { | 
 | 	struct tegra_aes_dev *dd = aes_dev; | 
 | 	struct tegra_aes_ctx *ctx = &rng_ctx; | 
 | 	struct tegra_aes_slot *key_slot; | 
 | 	struct timespec ts; | 
 | 	int ret = 0; | 
 | 	u64 nsec, tmp[2]; | 
 | 	u8 *dt; | 
 |  | 
 | 	if (!ctx || !dd) { | 
 | 		dev_err(dd->dev, "ctx=0x%x, dd=0x%x\n", | 
 | 			(unsigned int)ctx, (unsigned int)dd); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (slen < (DEFAULT_RNG_BLK_SZ + AES_KEYSIZE_128)) { | 
 | 		dev_err(dd->dev, "seed size invalid"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	/* take mutex to access the aes hw */ | 
 | 	mutex_lock(&aes_lock); | 
 |  | 
 | 	if (!ctx->slot) { | 
 | 		key_slot = aes_find_key_slot(); | 
 | 		if (!key_slot) { | 
 | 			dev_err(dd->dev, "no empty slot\n"); | 
 | 			mutex_unlock(&aes_lock); | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 		ctx->slot = key_slot; | 
 | 	} | 
 |  | 
 | 	ctx->dd = dd; | 
 | 	dd->ctx = ctx; | 
 | 	dd->ctr = 0; | 
 |  | 
 | 	ctx->keylen = AES_KEYSIZE_128; | 
 | 	ctx->flags |= FLAGS_NEW_KEY; | 
 |  | 
 | 	/* copy the key to the key slot */ | 
 | 	memcpy(dd->ivkey_base, seed + DEFAULT_RNG_BLK_SZ, AES_KEYSIZE_128); | 
 | 	memset(dd->ivkey_base + AES_KEYSIZE_128, 0, AES_HW_KEY_TABLE_LENGTH_BYTES - AES_KEYSIZE_128); | 
 |  | 
 | 	dd->iv = seed; | 
 | 	dd->ivlen = slen; | 
 |  | 
 | 	dd->flags = FLAGS_ENCRYPT | FLAGS_RNG; | 
 |  | 
 | 	ret = clk_enable(dd->aes_clk); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	aes_set_key(dd); | 
 |  | 
 | 	/* set seed to the aes hw slot */ | 
 | 	memcpy(dd->buf_in, dd->iv, DEFAULT_RNG_BLK_SZ); | 
 | 	ret = aes_start_crypt(dd, (u32)dd->dma_buf_in, | 
 | 			      dd->dma_buf_out, 1, FLAGS_CBC, false); | 
 | 	if (ret < 0) { | 
 | 		dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (dd->ivlen >= (2 * DEFAULT_RNG_BLK_SZ + AES_KEYSIZE_128)) { | 
 | 		dt = dd->iv + DEFAULT_RNG_BLK_SZ + AES_KEYSIZE_128; | 
 | 	} else { | 
 | 		getnstimeofday(&ts); | 
 | 		nsec = timespec_to_ns(&ts); | 
 | 		do_div(nsec, 1000); | 
 | 		nsec ^= dd->ctr << 56; | 
 | 		dd->ctr++; | 
 | 		tmp[0] = nsec; | 
 | 		tmp[1] = tegra_chip_uid(); | 
 | 		dt = (u8 *)tmp; | 
 | 	} | 
 | 	memcpy(dd->dt, dt, DEFAULT_RNG_BLK_SZ); | 
 |  | 
 | out: | 
 | 	clk_disable(dd->aes_clk); | 
 | 	mutex_unlock(&aes_lock); | 
 |  | 
 | 	dev_dbg(dd->dev, "%s: done\n", __func__); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int tegra_aes_cra_init(struct crypto_tfm *tfm) | 
 | { | 
 | 	tfm->crt_ablkcipher.reqsize = sizeof(struct tegra_aes_reqctx); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void tegra_aes_cra_exit(struct crypto_tfm *tfm) | 
 | { | 
 | 	struct tegra_aes_ctx *ctx = | 
 | 		crypto_ablkcipher_ctx((struct crypto_ablkcipher *)tfm); | 
 |  | 
 | 	if (ctx && ctx->slot) | 
 | 		aes_release_key_slot(ctx->slot); | 
 | } | 
 |  | 
 | static struct crypto_alg algs[] = { | 
 | 	{ | 
 | 		.cra_name = "ecb(aes)", | 
 | 		.cra_driver_name = "ecb-aes-tegra", | 
 | 		.cra_priority = 300, | 
 | 		.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, | 
 | 		.cra_blocksize = AES_BLOCK_SIZE, | 
 | 		.cra_alignmask = 3, | 
 | 		.cra_type = &crypto_ablkcipher_type, | 
 | 		.cra_u.ablkcipher = { | 
 | 			.min_keysize = AES_MIN_KEY_SIZE, | 
 | 			.max_keysize = AES_MAX_KEY_SIZE, | 
 | 			.setkey = tegra_aes_setkey, | 
 | 			.encrypt = tegra_aes_ecb_encrypt, | 
 | 			.decrypt = tegra_aes_ecb_decrypt, | 
 | 		}, | 
 | 	}, { | 
 | 		.cra_name = "cbc(aes)", | 
 | 		.cra_driver_name = "cbc-aes-tegra", | 
 | 		.cra_priority = 300, | 
 | 		.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, | 
 | 		.cra_blocksize = AES_BLOCK_SIZE, | 
 | 		.cra_alignmask = 3, | 
 | 		.cra_type = &crypto_ablkcipher_type, | 
 | 		.cra_u.ablkcipher = { | 
 | 			.min_keysize = AES_MIN_KEY_SIZE, | 
 | 			.max_keysize = AES_MAX_KEY_SIZE, | 
 | 			.ivsize = AES_MIN_KEY_SIZE, | 
 | 			.setkey = tegra_aes_setkey, | 
 | 			.encrypt = tegra_aes_cbc_encrypt, | 
 | 			.decrypt = tegra_aes_cbc_decrypt, | 
 | 		} | 
 | 	}, { | 
 | 		.cra_name = "ofb(aes)", | 
 | 		.cra_driver_name = "ofb-aes-tegra", | 
 | 		.cra_priority = 300, | 
 | 		.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, | 
 | 		.cra_blocksize = AES_BLOCK_SIZE, | 
 | 		.cra_alignmask = 3, | 
 | 		.cra_type = &crypto_ablkcipher_type, | 
 | 		.cra_u.ablkcipher = { | 
 | 			.min_keysize = AES_MIN_KEY_SIZE, | 
 | 			.max_keysize = AES_MAX_KEY_SIZE, | 
 | 			.ivsize = AES_MIN_KEY_SIZE, | 
 | 			.setkey = tegra_aes_setkey, | 
 | 			.encrypt = tegra_aes_ofb_encrypt, | 
 | 			.decrypt = tegra_aes_ofb_decrypt, | 
 | 		} | 
 | 	}, { | 
 | 		.cra_name = "ansi_cprng", | 
 | 		.cra_driver_name = "rng-aes-tegra", | 
 | 		.cra_flags = CRYPTO_ALG_TYPE_RNG, | 
 | 		.cra_ctxsize = sizeof(struct tegra_aes_ctx), | 
 | 		.cra_type = &crypto_rng_type, | 
 | 		.cra_u.rng = { | 
 | 			.rng_make_random = tegra_aes_get_random, | 
 | 			.rng_reset = tegra_aes_rng_reset, | 
 | 			.seedsize = AES_KEYSIZE_128 + (2 * DEFAULT_RNG_BLK_SZ), | 
 | 		} | 
 | 	} | 
 | }; | 
 |  | 
 | static int tegra_aes_probe(struct platform_device *pdev) | 
 | { | 
 | 	struct device *dev = &pdev->dev; | 
 | 	struct tegra_aes_dev *dd; | 
 | 	struct resource *res; | 
 | 	int err = -ENOMEM, i = 0, j; | 
 |  | 
 | 	dd = devm_kzalloc(dev, sizeof(struct tegra_aes_dev), GFP_KERNEL); | 
 | 	if (dd == NULL) { | 
 | 		dev_err(dev, "unable to alloc data struct.\n"); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	dd->dev = dev; | 
 | 	platform_set_drvdata(pdev, dd); | 
 |  | 
 | 	dd->slots = devm_kzalloc(dev, sizeof(struct tegra_aes_slot) * | 
 | 				 AES_NR_KEYSLOTS, GFP_KERNEL); | 
 | 	if (dd->slots == NULL) { | 
 | 		dev_err(dev, "unable to alloc slot struct.\n"); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	spin_lock_init(&dd->lock); | 
 | 	crypto_init_queue(&dd->queue, TEGRA_AES_QUEUE_LENGTH); | 
 |  | 
 | 	/* Get the module base address */ | 
 | 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0); | 
 | 	if (!res) { | 
 | 		dev_err(dev, "invalid resource type: base\n"); | 
 | 		err = -ENODEV; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (!devm_request_mem_region(&pdev->dev, res->start, | 
 | 				     resource_size(res), | 
 | 				     dev_name(&pdev->dev))) { | 
 | 		dev_err(&pdev->dev, "Couldn't request MEM resource\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	dd->io_base = devm_ioremap(dev, res->start, resource_size(res)); | 
 | 	if (!dd->io_base) { | 
 | 		dev_err(dev, "can't ioremap register space\n"); | 
 | 		err = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Initialize the vde clock */ | 
 | 	dd->aes_clk = clk_get(dev, "vde"); | 
 | 	if (IS_ERR(dd->aes_clk)) { | 
 | 		dev_err(dev, "iclock intialization failed.\n"); | 
 | 		err = -ENODEV; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	err = clk_set_rate(dd->aes_clk, ULONG_MAX); | 
 | 	if (err) { | 
 | 		dev_err(dd->dev, "iclk set_rate fail(%d)\n", err); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * the foll contiguous memory is allocated as follows - | 
 | 	 * - hardware key table | 
 | 	 * - key schedule | 
 | 	 */ | 
 | 	dd->ivkey_base = dma_alloc_coherent(dev, AES_HW_KEY_TABLE_LENGTH_BYTES, | 
 | 					    &dd->ivkey_phys_base, | 
 | 		GFP_KERNEL); | 
 | 	if (!dd->ivkey_base) { | 
 | 		dev_err(dev, "can not allocate iv/key buffer\n"); | 
 | 		err = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	dd->buf_in = dma_alloc_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES, | 
 | 					&dd->dma_buf_in, GFP_KERNEL); | 
 | 	if (!dd->buf_in) { | 
 | 		dev_err(dev, "can not allocate dma-in buffer\n"); | 
 | 		err = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	dd->buf_out = dma_alloc_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES, | 
 | 					 &dd->dma_buf_out, GFP_KERNEL); | 
 | 	if (!dd->buf_out) { | 
 | 		dev_err(dev, "can not allocate dma-out buffer\n"); | 
 | 		err = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	init_completion(&dd->op_complete); | 
 | 	aes_wq = alloc_workqueue("tegra_aes_wq", WQ_HIGHPRI | WQ_UNBOUND, 1); | 
 | 	if (!aes_wq) { | 
 | 		dev_err(dev, "alloc_workqueue failed\n"); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* get the irq */ | 
 | 	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); | 
 | 	if (!res) { | 
 | 		dev_err(dev, "invalid resource type: base\n"); | 
 | 		err = -ENODEV; | 
 | 		goto out; | 
 | 	} | 
 | 	dd->irq = res->start; | 
 |  | 
 | 	err = devm_request_irq(dev, dd->irq, aes_irq, IRQF_TRIGGER_HIGH | | 
 | 				IRQF_SHARED, "tegra-aes", dd); | 
 | 	if (err) { | 
 | 		dev_err(dev, "request_irq failed\n"); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	mutex_init(&aes_lock); | 
 | 	INIT_LIST_HEAD(&dev_list); | 
 |  | 
 | 	spin_lock_init(&list_lock); | 
 | 	spin_lock(&list_lock); | 
 | 	for (i = 0; i < AES_NR_KEYSLOTS; i++) { | 
 | 		if (i == SSK_SLOT_NUM) | 
 | 			continue; | 
 | 		dd->slots[i].slot_num = i; | 
 | 		INIT_LIST_HEAD(&dd->slots[i].node); | 
 | 		list_add_tail(&dd->slots[i].node, &dev_list); | 
 | 	} | 
 | 	spin_unlock(&list_lock); | 
 |  | 
 | 	aes_dev = dd; | 
 | 	for (i = 0; i < ARRAY_SIZE(algs); i++) { | 
 | 		INIT_LIST_HEAD(&algs[i].cra_list); | 
 |  | 
 | 		algs[i].cra_priority = 300; | 
 | 		algs[i].cra_ctxsize = sizeof(struct tegra_aes_ctx); | 
 | 		algs[i].cra_module = THIS_MODULE; | 
 | 		algs[i].cra_init = tegra_aes_cra_init; | 
 | 		algs[i].cra_exit = tegra_aes_cra_exit; | 
 |  | 
 | 		err = crypto_register_alg(&algs[i]); | 
 | 		if (err) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	dev_info(dev, "registered"); | 
 | 	return 0; | 
 |  | 
 | out: | 
 | 	for (j = 0; j < i; j++) | 
 | 		crypto_unregister_alg(&algs[j]); | 
 | 	if (dd->ivkey_base) | 
 | 		dma_free_coherent(dev, AES_HW_KEY_TABLE_LENGTH_BYTES, | 
 | 			dd->ivkey_base, dd->ivkey_phys_base); | 
 | 	if (dd->buf_in) | 
 | 		dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES, | 
 | 			dd->buf_in, dd->dma_buf_in); | 
 | 	if (dd->buf_out) | 
 | 		dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES, | 
 | 			dd->buf_out, dd->dma_buf_out); | 
 | 	if (IS_ERR(dd->aes_clk)) | 
 | 		clk_put(dd->aes_clk); | 
 | 	if (aes_wq) | 
 | 		destroy_workqueue(aes_wq); | 
 | 	spin_lock(&list_lock); | 
 | 	list_del(&dev_list); | 
 | 	spin_unlock(&list_lock); | 
 |  | 
 | 	aes_dev = NULL; | 
 |  | 
 | 	dev_err(dev, "%s: initialization failed.\n", __func__); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int __devexit tegra_aes_remove(struct platform_device *pdev) | 
 | { | 
 | 	struct device *dev = &pdev->dev; | 
 | 	struct tegra_aes_dev *dd = platform_get_drvdata(pdev); | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(algs); i++) | 
 | 		crypto_unregister_alg(&algs[i]); | 
 |  | 
 | 	cancel_work_sync(&aes_work); | 
 | 	destroy_workqueue(aes_wq); | 
 | 	spin_lock(&list_lock); | 
 | 	list_del(&dev_list); | 
 | 	spin_unlock(&list_lock); | 
 |  | 
 | 	dma_free_coherent(dev, AES_HW_KEY_TABLE_LENGTH_BYTES, | 
 | 			  dd->ivkey_base, dd->ivkey_phys_base); | 
 | 	dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES, | 
 | 			  dd->buf_in, dd->dma_buf_in); | 
 | 	dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES, | 
 | 			  dd->buf_out, dd->dma_buf_out); | 
 | 	clk_put(dd->aes_clk); | 
 | 	aes_dev = NULL; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct of_device_id tegra_aes_of_match[] __devinitdata = { | 
 | 	{ .compatible = "nvidia,tegra20-aes", }, | 
 | 	{ .compatible = "nvidia,tegra30-aes", }, | 
 | 	{ }, | 
 | }; | 
 |  | 
 | static struct platform_driver tegra_aes_driver = { | 
 | 	.probe  = tegra_aes_probe, | 
 | 	.remove = __devexit_p(tegra_aes_remove), | 
 | 	.driver = { | 
 | 		.name   = "tegra-aes", | 
 | 		.owner  = THIS_MODULE, | 
 | 		.of_match_table = tegra_aes_of_match, | 
 | 	}, | 
 | }; | 
 |  | 
 | module_platform_driver(tegra_aes_driver); | 
 |  | 
 | MODULE_DESCRIPTION("Tegra AES/OFB/CPRNG hw acceleration support."); | 
 | MODULE_AUTHOR("NVIDIA Corporation"); | 
 | MODULE_LICENSE("GPL v2"); |