|  | /* Hardware capability support for run-time dynamic loader. | 
|  | Copyright (C) 2012-2016 Free Software Foundation, Inc. | 
|  | This file is part of the GNU C Library. | 
|  |  | 
|  | The GNU C Library is free software; you can redistribute it and/or | 
|  | modify it under the terms of the GNU Lesser General Public | 
|  | License as published by the Free Software Foundation; either | 
|  | version 2.1 of the License, or (at your option) any later version. | 
|  |  | 
|  | The GNU C Library is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | Lesser General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU Lesser General Public | 
|  | License along with the GNU C Library; if not, see | 
|  | <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <elf.h> | 
|  | #include <errno.h> | 
|  | #include <libintl.h> | 
|  | #include <unistd.h> | 
|  | #include <ldsodefs.h> | 
|  |  | 
|  | #include <dl-procinfo.h> | 
|  |  | 
|  | #ifdef _DL_FIRST_PLATFORM | 
|  | # define _DL_FIRST_EXTRA (_DL_FIRST_PLATFORM + _DL_PLATFORMS_COUNT) | 
|  | #else | 
|  | # define _DL_FIRST_EXTRA _DL_HWCAP_COUNT | 
|  | #endif | 
|  |  | 
|  | /* Return an array of useful/necessary hardware capability names.  */ | 
|  | const struct r_strlenpair * | 
|  | internal_function | 
|  | _dl_important_hwcaps (const char *platform, size_t platform_len, size_t *sz, | 
|  | size_t *max_capstrlen) | 
|  | { | 
|  | /* Determine how many important bits are set.  */ | 
|  | uint64_t masked = GLRO(dl_hwcap) & GLRO(dl_hwcap_mask); | 
|  | size_t cnt = platform != NULL; | 
|  | size_t n, m; | 
|  | size_t total; | 
|  | struct r_strlenpair *result; | 
|  | struct r_strlenpair *rp; | 
|  | char *cp; | 
|  |  | 
|  | /* Count the number of bits set in the masked value.  */ | 
|  | for (n = 0; (~((1ULL << n) - 1) & masked) != 0; ++n) | 
|  | if ((masked & (1ULL << n)) != 0) | 
|  | ++cnt; | 
|  |  | 
|  | #ifdef NEED_DL_SYSINFO_DSO | 
|  | /* The system-supplied DSO can contain a note of type 2, vendor "GNU". | 
|  | This gives us a list of names to treat as fake hwcap bits.  */ | 
|  |  | 
|  | const char *dsocaps = NULL; | 
|  | size_t dsocapslen = 0; | 
|  | if (GLRO(dl_sysinfo_map) != NULL) | 
|  | { | 
|  | const ElfW(Phdr) *const phdr = GLRO(dl_sysinfo_map)->l_phdr; | 
|  | const ElfW(Word) phnum = GLRO(dl_sysinfo_map)->l_phnum; | 
|  | for (uint_fast16_t i = 0; i < phnum; ++i) | 
|  | if (phdr[i].p_type == PT_NOTE) | 
|  | { | 
|  | const ElfW(Addr) start = (phdr[i].p_vaddr | 
|  | + GLRO(dl_sysinfo_map)->l_addr); | 
|  | /* The standard ELF note layout is exactly as the anonymous struct. | 
|  | The next element is a variable length vendor name of length | 
|  | VENDORLEN (with a real length rounded to ElfW(Word)), followed | 
|  | by the data of length DATALEN (with a real length rounded to | 
|  | ElfW(Word)).  */ | 
|  | const struct | 
|  | { | 
|  | ElfW(Word) vendorlen; | 
|  | ElfW(Word) datalen; | 
|  | ElfW(Word) type; | 
|  | } *note = (const void *) start; | 
|  | while ((ElfW(Addr)) (note + 1) - start < phdr[i].p_memsz) | 
|  | { | 
|  | #define ROUND(len) (((len) + sizeof (ElfW(Word)) - 1) & -sizeof (ElfW(Word))) | 
|  | /* The layout of the type 2, vendor "GNU" note is as follows: | 
|  | .long <Number of capabilities enabled by this note> | 
|  | .long <Capabilities mask> (as mask >> _DL_FIRST_EXTRA). | 
|  | .byte <The bit number for the next capability> | 
|  | .asciz <The name of the capability>.  */ | 
|  | if (note->type == NT_GNU_HWCAP | 
|  | && note->vendorlen == sizeof "GNU" | 
|  | && !memcmp ((note + 1), "GNU", sizeof "GNU") | 
|  | && note->datalen > 2 * sizeof (ElfW(Word)) + 2) | 
|  | { | 
|  | const ElfW(Word) *p = ((const void *) (note + 1) | 
|  | + ROUND (sizeof "GNU")); | 
|  | cnt += *p++; | 
|  | ++p;	/* Skip mask word.  */ | 
|  | dsocaps = (const char *) p; /* Pseudo-string "<b>name"  */ | 
|  | dsocapslen = note->datalen - sizeof *p * 2; | 
|  | break; | 
|  | } | 
|  | note = ((const void *) (note + 1) | 
|  | + ROUND (note->vendorlen) + ROUND (note->datalen)); | 
|  | #undef ROUND | 
|  | } | 
|  | if (dsocaps != NULL) | 
|  | break; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* For TLS enabled builds always add 'tls'.  */ | 
|  | ++cnt; | 
|  |  | 
|  | /* Create temporary data structure to generate result table.  */ | 
|  | struct r_strlenpair temp[cnt]; | 
|  | m = 0; | 
|  | #ifdef NEED_DL_SYSINFO_DSO | 
|  | if (dsocaps != NULL) | 
|  | { | 
|  | /* dsocaps points to the .asciz string, and -1 points to the mask | 
|  | .long just before the string.  */ | 
|  | const ElfW(Word) mask = ((const ElfW(Word) *) dsocaps)[-1]; | 
|  | GLRO(dl_hwcap) |= (uint64_t) mask << _DL_FIRST_EXTRA; | 
|  | /* Note that we add the dsocaps to the set already chosen by the | 
|  | LD_HWCAP_MASK environment variable (or default HWCAP_IMPORTANT). | 
|  | So there is no way to request ignoring an OS-supplied dsocap | 
|  | string and bit like you can ignore an OS-supplied HWCAP bit.  */ | 
|  | GLRO(dl_hwcap_mask) |= (uint64_t) mask << _DL_FIRST_EXTRA; | 
|  | size_t len; | 
|  | for (const char *p = dsocaps; p < dsocaps + dsocapslen; p += len + 1) | 
|  | { | 
|  | uint_fast8_t bit = *p++; | 
|  | len = strlen (p); | 
|  |  | 
|  | /* Skip entries that are not enabled in the mask word.  */ | 
|  | if (__glibc_likely (mask & ((ElfW(Word)) 1 << bit))) | 
|  | { | 
|  | temp[m].str = p; | 
|  | temp[m].len = len; | 
|  | ++m; | 
|  | } | 
|  | else | 
|  | --cnt; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | for (n = 0; masked != 0; ++n) | 
|  | if ((masked & (1ULL << n)) != 0) | 
|  | { | 
|  | temp[m].str = _dl_hwcap_string (n); | 
|  | temp[m].len = strlen (temp[m].str); | 
|  | masked ^= 1ULL << n; | 
|  | ++m; | 
|  | } | 
|  | if (platform != NULL) | 
|  | { | 
|  | temp[m].str = platform; | 
|  | temp[m].len = platform_len; | 
|  | ++m; | 
|  | } | 
|  |  | 
|  | temp[m].str = "tls"; | 
|  | temp[m].len = 3; | 
|  | ++m; | 
|  |  | 
|  | assert (m == cnt); | 
|  |  | 
|  | /* Determine the total size of all strings together.  */ | 
|  | if (cnt == 1) | 
|  | total = temp[0].len + 1; | 
|  | else | 
|  | { | 
|  | total = temp[0].len + temp[cnt - 1].len + 2; | 
|  | if (cnt > 2) | 
|  | { | 
|  | total <<= 1; | 
|  | for (n = 1; n + 1 < cnt; ++n) | 
|  | total += temp[n].len + 1; | 
|  | if (cnt > 3 | 
|  | && (cnt >= sizeof (size_t) * 8 | 
|  | || total + (sizeof (*result) << 3) | 
|  | >= (1UL << (sizeof (size_t) * 8 - cnt + 3)))) | 
|  | _dl_signal_error (ENOMEM, NULL, NULL, | 
|  | N_("cannot create capability list")); | 
|  |  | 
|  | total <<= cnt - 3; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* The result structure: we use a very compressed way to store the | 
|  | various combinations of capability names.  */ | 
|  | *sz = 1 << cnt; | 
|  | result = (struct r_strlenpair *) malloc (*sz * sizeof (*result) + total); | 
|  | if (result == NULL) | 
|  | _dl_signal_error (ENOMEM, NULL, NULL, | 
|  | N_("cannot create capability list")); | 
|  |  | 
|  | if (cnt == 1) | 
|  | { | 
|  | result[0].str = (char *) (result + *sz); | 
|  | result[0].len = temp[0].len + 1; | 
|  | result[1].str = (char *) (result + *sz); | 
|  | result[1].len = 0; | 
|  | cp = __mempcpy ((char *) (result + *sz), temp[0].str, temp[0].len); | 
|  | *cp = '/'; | 
|  | *sz = 2; | 
|  | *max_capstrlen = result[0].len; | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* Fill in the information.  This follows the following scheme | 
|  | (indices from TEMP for four strings): | 
|  | entry #0: 0, 1, 2, 3	binary: 1111 | 
|  | #1: 0, 1, 3		1101 | 
|  | #2: 0, 2, 3		1011 | 
|  | #3: 0, 3			1001 | 
|  | This allows the representation of all possible combinations of | 
|  | capability names in the string.  First generate the strings.  */ | 
|  | result[1].str = result[0].str = cp = (char *) (result + *sz); | 
|  | #define add(idx) \ | 
|  | cp = __mempcpy (__mempcpy (cp, temp[idx].str, temp[idx].len), "/", 1); | 
|  | if (cnt == 2) | 
|  | { | 
|  | add (1); | 
|  | add (0); | 
|  | } | 
|  | else | 
|  | { | 
|  | n = 1 << (cnt - 1); | 
|  | do | 
|  | { | 
|  | n -= 2; | 
|  |  | 
|  | /* We always add the last string.  */ | 
|  | add (cnt - 1); | 
|  |  | 
|  | /* Add the strings which have the bit set in N.  */ | 
|  | for (m = cnt - 2; m > 0; --m) | 
|  | if ((n & (1 << m)) != 0) | 
|  | add (m); | 
|  |  | 
|  | /* Always add the first string.  */ | 
|  | add (0); | 
|  | } | 
|  | while (n != 0); | 
|  | } | 
|  | #undef add | 
|  |  | 
|  | /* Now we are ready to install the string pointers and length.  */ | 
|  | for (n = 0; n < (1UL << cnt); ++n) | 
|  | result[n].len = 0; | 
|  | n = cnt; | 
|  | do | 
|  | { | 
|  | size_t mask = 1 << --n; | 
|  |  | 
|  | rp = result; | 
|  | for (m = 1 << cnt; m > 0; ++rp) | 
|  | if ((--m & mask) != 0) | 
|  | rp->len += temp[n].len + 1; | 
|  | } | 
|  | while (n != 0); | 
|  |  | 
|  | /* The first half of the strings all include the first string.  */ | 
|  | n = (1 << cnt) - 2; | 
|  | rp = &result[2]; | 
|  | while (n != (1UL << (cnt - 1))) | 
|  | { | 
|  | if ((--n & 1) != 0) | 
|  | rp[0].str = rp[-2].str + rp[-2].len; | 
|  | else | 
|  | rp[0].str = rp[-1].str; | 
|  | ++rp; | 
|  | } | 
|  |  | 
|  | /* The second half starts right after the first part of the string of | 
|  | the corresponding entry in the first half.  */ | 
|  | do | 
|  | { | 
|  | rp[0].str = rp[-(1 << (cnt - 1))].str + temp[cnt - 1].len + 1; | 
|  | ++rp; | 
|  | } | 
|  | while (--n != 0); | 
|  |  | 
|  | /* The maximum string length.  */ | 
|  | *max_capstrlen = result[0].len; | 
|  |  | 
|  | return result; | 
|  | } |